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Abstract. Approaches are considered to estimate the background concentration level of a target species in the atmosphere from

an analysis of the measured data provided by the National Physical Laboratory’s differential absorption lidar (DIAL) system.

The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of

the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the

background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that5

underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary

for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are

presented, and ideas for future work are discussed.

1 Introduction

Differential absorption lidar (DIAL), which is based on the optical analogue of radar, provides the capability to measure10

remotely the concentration and spatial distribution of compounds in the atmosphere [Measures (1984)]. The ability to scan

the optical measurement beam through the atmosphere enables pollutant concentrations to be mapped and emission fluxes to

be determined. The mobile ground-based DIAL systems developed at the National Physical Laboratory (NPL) for pollution

monitoring have been used worldwide for over twenty years [Milton et al. (1992); Robinson et al. (2011)]. They have been

deployed for routine monitoring, emission factor studies, research investigations and targeted monitoring campaigns. A key15

feature of the NPL system is that it operates in both ultraviolet and infrared regions. The infrared measurements at wavelengths

of around 3µm target a range of hydrocarbon gases, including methane that has a significant background concentration level

(of the order of 1.8 ppmv) [AGGI (2016)].

The lidar technique is based on transmitting a pulse of laser radiation into the atmosphere and measuring the light scattered by

the atmosphere and returned to the system. The DIAL system extends the basic lidar technique by operating the laser alternately20

at two adjacent wavelengths [Measures (1984)]. One of these wavelengths, termed the ‘on-resonant wavelength’, is chosen to

be a wavelength that is absorbed by the target species, and the other, the ‘off-resonant wavelength’, is a wavelength that

is not absorbed significantly by the target species. The two wavelengths are chosen to be close, so that parameters describing

atmospheric variability, such as differences in scattering media and interference compounds, are the same for both wavelengths.

Any measured difference in the returned signals is therefore due to absorption by the target species.25
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A critical part of the analysis of the measured data provided by the DIAL system is to estimate, and subsequently correct for,

the background concentration level of the target species along the optical measurement path. This is necessary for an accurate

quantification of the concentration level in the atmosphere of the target species, which may be a pollutant or greenhouse

gas emission, for the purpose of source attribution and to support decisions made on the basis of that quantification. This

paper is concerned with approaches to analysing the measured data provided by the DIAL system to estimate the background5

concentration level of the target species.

The paper is organised as follows. In section 2 methodologies for estimating the background concentration level are described

and contrasted. One approach makes assumptions about the nature of the functional and statistical models used to represent the

values of path integrated concentration calculated in terms of the measured data. A second approach relies upon knowledge of

the statistical model for the noise in the measured data, and approaches to understand and characterise the noise are considered10

in section 3. Results for measured data provided by a field measurement are presented in section 4. Finally, concluding remarks

and a discusion of future work are given in section 5.

2 Methodologies

2.1 Two-step linear least-squares (LLS) approach

For a given elevation angle θ, the path integrated concentration C(r) of the target species at a distance r along the optical15

measurement path is given by

C(r) =
1

2γ
log

(Soff(r)−α)/Poff

(Son(r)−β)/Pon
, (1)

where Soff(r) and Son(r) are the returned signals corresponding to the off-resonant and on-resonant wavelengths, respectively,

γ is a known differential absorption coefficient, α and β represent systematic offsets of the signals due to the instrumenta-

tion [Milton et al. (1987)], and Poff and Pon are known normalisation constants used to correct for the different laser powers at20

the two wavelengths. In the absence of a plume containing the target species, C(r) can be modelled as

C(r) =A+Br, (2)

a straight-line function of distance r with A representing a constant systematic offset and B representing the background con-

centration level of the target species along the measurement path. By equating the expressions (1) and (2), and re-parameterising,

it follows that25

log
Soff(r)−α

Son(r)−β
= a+ br, (3)

involving unknown parameters a, b, α and β, and A and B can be recovered using the expressions

A=
1

2γ

(
a+ log

Pon

Poff

)
, B =

b

2γ
. (4)

Given measured values soff,i and son,i of the signals Soff(r) and Son(r), respectively, at distances ri, i= 1, . . . ,m, an

approach often applied to determining estimates of the unknown parameters in model (3) involves the following two steps:30
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1. Evaluate an estimate α0 of α as the average of measured values soff,i, i=mfar, . . . ,m, and similarly evaluate an estimate

β0 of β as the average of measured values son,i, i=mfar, . . . ,m;

2. Evaluate estimates (a0, b0) of (a,b) as the solution to the linear least-squares (LLS) problem

min
(a,b)

mhgh∑
i=mlow

[yi − (a+ bri)]
2
, yi = log

soff,i −α0

son,i −β0
. (5)

The index mfar in step (i) is chosen empirically to define a part of the two signals for which the values of the backscattered5

lidar signals can be considered to have essentially fallen to zero and correspond to measurements made in the far-field. The

indices mlow and mhgh in step (ii) are chosen empirically to define that part of the signals that encompasses the backscattered

lidar measurement range that is free from the effects of obstructions, and for which the signal-to-noise ratio for the values

yi, i=mlow, . . . ,mhgh, is not too small such that those values provide useful information about the background level.

Figs. 1 and 2 illustrate the application of this two-step approach to the data obtained from a field measurement. Fig. 1 shows10

the measured values for the two signals, and indicates the positions of the windows of data used in each analysis step. The

signals each comprise m= 999 values, and the windows are defined by setting mlow = 30, mhgh = 300 and mfar = 500. Since

the sampling rate of the lidar data acquisition system is 40 MHz, each index step represents a distance of 3.75 m for the DIAL

measurements, and therefore the length of the path is (approximately) 3.75 km, the far-field in step (i) corresponds to distances

greater than 1 875 m and the data analysed in step (ii) corresponds to distances between 112.5 m and 1 125 m. Fig. 2 shows the15

path integrated concentration data

Ci =
1

2γ
log

(soff,i −α0)/Poff

(son,i −β0)/Pon
=

1

2γ

(
yi + log

Pon

Poff

)
, i=mlow, . . . ,mhgh, (6)

calculated in terms of the measured signal values and the estimates α0 and β0, and the straight-line model

C(r) =A0 +B0r (7)

with A0 and B0 calculated in terms of the estimates a0 and b0 using the expressions (4). The measured signal values cor-20

responding to indices i < mlow represent behaviour that is inconsistent with the remainder of the signals as they are due to

near-field scatter rather than the backscattered lidar return signals. For indices i > mhgh, the measured signal values are such

that either the path integrated concentration values calculated in terms of them and the estimates α0 and β0 are undefined or

they are dominated by noise and provide little useful information about the background concentration level.

The two-step LLS approach is based on two main assumptions. Firstly, an assumption is made about the consistency of a25

straight-line model with the data yi, i=mlow, . . . ,mhgh. In practice, a plume containing the target species (whose position and

concentration is unknown but are to be determined) may be present and, consequently, the model may be inadequate for the

data. Indeed, deviations of the data from the model may provide information about the position and path integrated concentra-

tion level of the plume. Secondly, an assumption is made about the statistical model for the data yi, i=mlow, . . . ,mhgh, viz.,

that the errors in the data are realisations of random variables that are independent and identically distributed [Mardia et al.30

(1979)]. It is apparent from Fig. 2 that the deviations between the path integrated concentration data and the model are far from

3



Distance/km
0 0.5 1 1.5 2 2.5 3 3.5 4

S
ig

na
l v

al
ue

/m
V

0

50

100

150

200

250

Figure 1. Measured signals (at off-resonant wavelength in blue and on-resonant wavelength in red), and the positions defined by indices

mlow, mhgh and mfar (vertical dashed lines, left to right) of the endpoints of the windows of data used in each step of the two-step LLS

approach.
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Figure 2. Path integrated concentration data and straight-line model calculated using the two-step LLS approach.

random, and consequently there is strong evidence that such an assumption about the statistical model is invalid. It follows that

there can be doubt about the reliability of the estimate of the background concentration level provided by the two-step LLS

approach.
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2.2 One-step generalised least-squares (GLS) approach

Some information about the location of the plume, in terms of values of indices ms and me, where ms ≤me, that define a

window known to contain the plume, is often available because there can be knowledge about the location of the source of the

plume relative to the location of the DIAL system. However, the reliability of this information will vary with the quality of

the knowledge of the emission source location and the meteorological conditions at the time of the measurement. Given this5

additional information, the model (2) can be replaced by one of the form

C(r) =

 A1 +Br, r ≤ rms ,

A1 +A2 +Br, r ≥ rme ,
(8)

with B representing (as before) the background concentration level and A2 the path integrated concentration level of the target

species within the plume. (The condition A2 = 0 would indicate the absence of a plume.) Use of the model (8) is a simple

way to address the deficiency of the model (2) by representing the overall (macro) affect of the plume on the path integrated10

concentration level without attempting to model the detail (at a micro level) of how the concentration level varies within the

plume.

The deficiency in the statistical model for the data yi can be addressed by characterising the statistical properties (or proba-

bility distributions) for the errors in that data. However, such a characterisation is not straightforward because (a) those errors

are obtained as a non-linear transformation (involving a quotient and a logarithm) of the errors in the measured values of the15

individual returned signals, and (b) they depend on the errors in the estimates (α0,β0) of (α,β) that, in turn, depend on the

measured values for (parts of) the returned signals. However, it might be expected that the errors in the measured values of the

individual returned signals themselves would be simpler to characterise and treat.

An alternative analysis approach is then based on solving a generalised least-squares (GLS) problem as follows [Forbes

(1993); Forbes et al. (2002); Milton et al. (2006)]. Let I1 = {mLOW, . . . ,ms} and I2 = {me, . . . ,mHGH} identify those parts20

of the measured data before and after the window containing the plume, e the vector containing eoff,i = soff,i −Soff,i, i ∈ I ,

and eon,i = son,i −Son,i, i ∈ I , where I = I1 ∪ I2, and V the covariance matrix for the complete set of data soff,i, i ∈ I , and

son,i, i ∈ I . The index mLOW will usually be chosen equal to mlow, but mHGH can exceed mhgh because the approach uses

the measured data soff,i and son,i directly and does not require the calculation of the data yi. Estimates of unknown parameters

a1, a2, b, α, β, Soff,i, i ∈ I , and Son,i, i ∈ I , are obtained as the solution to the GLS problem25

mine⊤V −1e, (9)

subject to the constraints

Soff,i = α+(Son,i −β)exp(a1 + bri), i ∈ I1, (10)

and

Soff,i = α+(Son,i −β)exp(a1 + a2 + bri), i ∈ I2. (11)30
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The parameters A1, A2 and B in the model (8) are recovered from those appearing in the above formulation using

A1 =
1

2γ

(
a1 + log

Pon

Poff

)
, A2 =

a2
2γ

, B =
b

2γ
(12)

(cf. expressions (4)). By using the equality constraints (10) and (11) to eliminate the parameters Soff,i, i ∈ I , the problem takes

the form of an unconstrained non-linear least-squares problem with unknown parameters a1, a2, b, α, β, and Son,i, i ∈ I , and

can be solved using standard numerical algorithms [Paige (1979); Gill et al. (1981); Björck (1996)]. The problem provides5

(simultaneously) estimates of the unknown parameters together with the covariance matrix associated with those estimates.

In terms of those estimates and uncertainties, it provides estimates and uncertainties for A2 (the path integrated concentration

level of the target species within the plume), B (the background concentration level of the target species), and the values of the

returned signals at distances ri, i ∈ I .

The above formulation of the GLS problem makes no assumption about the functional form of the returned signals. In an10

alternative formulation, the returned signal corresponding to the on-resonant wavelength is modelled as

Son(r) =

n∑
j=1

cjϕj(r), (13)

in terms of basis functions ϕj(r), j = 1, . . . ,n, and the GLS problem is formulated as follows: determine estimates of unknown

parameters a1, a2, b, α, β and cj , j = 1, . . . ,n, that solve the minimisation (9) subject to the constraints

Soff,i = α+

 n∑
j=1

cjϕj(ri)−β

exp(a1 + bri), i ∈ I1, (14)15

and

Soff,i = α+

 n∑
j=1

cjϕj(ri)−β

exp(a1 + a2 + bri), i ∈ I2. (15)

For example, the signal Son(r) (or each part of the signal before and after the window containing the plume) might be described

by a cubic polynomial spline function with the basis functions ϕj(r) taking the form of B-spline basis functions of order four

specified in terms of ‘knots’, which are the positions where the cubic polynomial pieces of the spline curve are joined [de Boor20

(1978); Cox (1972, 1993)]. The reason to use a parametric representation of the signal is to impose a degree of smoothness on

the values of the returned signals.

A number of variants of the above formulations of the GLS problem are also considered:

1. Only the data after the window containing the plume is treated, i.e., I1 is taken to be the empty set, and the GLS problem

is solved for estimates of the parameters a≡ a1 + a2, b, α, β, and cj , j = 1, . . . ,n;25

2. The parameters α and β are fixed, for example, to be the values α0 and β0 determined in terms of the data soff,i and son,i

for i=mfar, . . . ,m, as in the two-step LLS approach;
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3. The values α0 and β0 are considered to be estimates of the parameters α and β, and the minimisation (9) takes the form

mine⊤V −1e+λα(α−α0)
2 +λβ(β−β0)

2, (16)

where λα and λβ reflect the ‘quality’ of the estimates α0 and β0.

The reasons for considering these variants of the basic problem, e.g., in which the additional terms in the minimisation (16)

provide a regularisation of the minimisation (9), are discussed in section 3.5

To apply the analysis approach it is necessary to know the covariance matrix V based on a characterisation of the noise in

the (raw) returned signals. Obtaining such knowledge is the subject of section 3. In contrast to the two-step LLS approach,

it is expected that the alternative analysis approach will provide reliable estimates of the required quantities supported by an

assessment of their associated uncertainties.

3 Noise characterisation10

3.1 Auto-regressive model for the noise

A characterisation of the noise in the two returned signals is undertaken in terms of estimates of the errors in the measured

data for those signals. Let index mE ≥me be such that it can be stated a priori with confidence that the indices mE, . . . ,mHGH

define a part of the signals that does not include a plume. The data soff,i and son,i within that part of the signals are smoothed

(or filtered) and the residual deviations associated with the smoothed data are used as estimates of the errors in the measured15

data. Fig. 3 illustrates the residual deviations defined by least-squares cubic polynomial spline fits to the measured data for

the signals shown in Fig. 1 with mE = 100 and mHGH = 500. A cubic polynomial spline function is chosen as a flexible and

empirical model to describe the underlying signals for rmE
≤ r ≤ rmHGH

. An alternative approach to filtering the data is to use

a wavelet decomposition, but the results obtained and described in section 4 are not substantially different.

Fig. 4 shows the auto- and cross-correlation functions associated with the estimates of the measurement errors for the two sig-20

nals. The graphs in these figures suggest that the errors are correlated, both within each signal and between the two signals. An-

other method for studying long-term correlations (or ‘memory’) in signals is detrended fluctuation analysis (DFA) [Peng et al.

(1994)], which has been applied successfully to a wide range of applications in physics, medicine, climatology, and other areas.

When the auto-correlation function takes the form

C(s)∼ s−ζ , (17)25

the corresponding detrended fluctuation function takes the form

F (s)∼ sη, (18)

where η and ζ are related by η = 1−ζ/2 [Kantelhardt (2001)]. Whilst Gaussian noise is usually assumed to be ‘white’, i.e., its

auto-correlation function decays exponentially and the DFA scaling exponent is η = 0.5, in real-world systems the stochastic
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variables are often described by co-called ‘red’ noise with η > 0.5, which means that values have memory of previous ones.

The DFA scaling exponent is estimated from the linear fit to the data in a log-log plot of the fluctuation function F (s). Values of

η between one-half and one denote stationary noise, whereas values bigger than one denote non-stationary long-term correlated

noise, with random walk noise having η = 1.5. When applied to the estimates of the measurement errors for the two signals

shown in Fig. 3 , the values of the DFA scaling exponents are just less than 1.5 for small lags s, indicating that the signals have5

appreciable short-term memory.

A (multi-output) autoregressive (AR) model is used to characterise the noise in the signals. Let doff,i and don,i denote the

residual deviations as displayed in Fig. 3 . Then, the AR model takes the form

doff,i +

q∑
k=1

κ1,kdoff,i−k +

q∑
k=1

τ1,kdon,i−k = woff,i, (19)

and10

don,i +

q∑
k=1

τ2,kdon,i−k +

q∑
k=1

κ2,kdoff,i−k = won,i, (20)

where q is the order of the AR model, (woff,i,won,i) are random draws from the bivariate Gaussian distribution N(0,Σ), and

(woff,i,won,i) is assumed to be uncorrelated with (woff,j ,won,j) for i ̸= j. (In a general form of the AR model defined above,

the number of terms in each summation can be chosen to be different.) For a given choice of order q, fitting the AR model to the

residual deviations provides estimates κ̂ℓ,k and τ̂ℓ,k, ℓ= 1, 2, k = 1, . . . , q, for the parameters κℓ,k and τℓ,k, with an associated15

covariance matrix, together with an estimate Σ̂ of Σ.

Let

Σ̂=LL⊤ (21)

be the Cholesky decomposition of Σ̂ [Golub et al. (1996)], and define

Lzi =wi, (22)20

where

wi = (woff,i,won,i)
⊤, zi = (zoff,i,zon,i)

⊤. (23)

For the residual deviations shown in Fig. 3 and the AR model of order q = 4 fitted to those residual deviations, Fig. 5 illus-

trates the transformed residual deviations zoff,i and zon,i, which are expected to be random draws from the bivariate Gaussian

distribution N(0,I), where I denotes the identity matrix. Fig. 6 shows the auto- and cross-correlation functions associated25

with zoff,i and zon,i. The graphs in Figs. 5 and 6 suggest that the transformed residual deviations are much less correlated

compared with the estimates doff,i and don,i of the measurement errors, and resemble much more closely a white (Gaussian)

noise process. Furthermore, the values of the DFA scaling exponents are approximately 0.5 for all lags s.

8



An approach to selecting the order q of the AR model used to characterise the noise is to obtain model fits for increasing

orders, and to select that value of q for which the quality of the fit is not substantially improved using higher orders. Fig. 7 illus-

trates how the standard deviations and correlation coefficient derived from the covariance matrix Σ̂ for the pairs (woff,i,won,i)

of residual deviations associated with a fitted AR model vary with the order q. It is seen that these statistics essentially saturate

for q ≥ 4, which motivates the selection of the model order made above. Furthermore, it is seen that the standard deviations for5

the two signals saturate to values that are quite similar, suggesting that the white noise processes underlying the noise in the

two returned signals are themselves comparable.

3.2 Formulation of GLS problem with auto-regressive noise model

The estimated AR model determines the covariance matrix V in the formulation (9) of the GLS problem. However, it is

unnecessary to explicitly construct the matrix V , which can be a large matrix. Instead, the fitted AR model is used to define10

foff,i = eoff,i +

q∑
k=1

κ̂1,keoff,i−k +

q∑
k=1

τ̂1,keon,i−k, (24)

and

fon,i = eon,i +

q∑
k=1

τ̂2,keon,i−k +

q∑
k=1

κ̂2,keoff,i−k, (25)

for i ∈ I ′1 ≡ {mLOW+q, . . . ,ms} and i ∈ I ′2 ≡ {me+q, . . . ,mHGH}. Then, since (foff,i,fon,i), i ∈ I ′ = I ′1∪I ′2, is uncorrelated

with (foff,j ,fon,j) for i ̸= j and has covariance matrix Σ̂, the formulation (9) can be replaced by15

min
∑
i∈I′

f⊤
i Σ̂

−1
f i, f i = (foff,i,fon,i)

⊤, (26)

or equivalently by

min
∑
i∈I′

f̃⊤
i f̃ i ≡

∑
i∈I

f̃2
off,i + f̃2

on,i, (27)

where

Lf̃ i = f i, f̃ i = (f̃off,i, f̃on,i)
⊤, (28)20

and the minimisation is subject to the same constraints (10) and (11) (or (14) and (15)).

For the signals shown in Fig. 1 , and using an AR model of order q = 4 to characterise the noise in those signals as determined

above, consider solving the GLS problem for the data defined by indices I ≡ I2 = {me = 100, . . . ,mHGH = 500} after the

window containing the plume (variant (1) in section 2.2) and for various fixed values of the parameters α and β (variant (2) in

section 2.2). Let25

S2 =
e⊤V −1e

2|I| − p
, (29)
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Figure 3. Residual deviations for (parts of) the measured signals shown in Fig. 1: (left) at off-resonant wavelength and (right) at on-resonant

wavelength.
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Figure 4. Properties of the residual deviations shown in Fig. 3: (top) auto-correlation function for the off-resonant wavelength residual

deviations, (middle) auto-correlation function for the on-resonant wavelength residual deviations, and (bottom) cross-correlation function for

the two sets of residual deviations.
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Figure 5. Transformed residual deviations for (parts of) the measured signals shown in Fig. 1 obtained using a multi-output auto-regressive

model of order four for the residual deviations shown in Fig. 3: (left) at off-resonant wavelength and (right) at on-resonant wavelength.
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√
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Σ̂11Σ̂22, derived from the covariance matrix Σ̂ of a fitted AR noise model for different values of the order q of the model.

here a function of α and β, be the mean-square-error evaluated at the solution, where |I| is the number of indices in I and

p= 2+n is the number of unknown parameters. Fig. 8 shows how S2 depends on α when β = β0 and on β when α= α0.

The graphs in the figure also show as vertical dashed lines the particular values α0 and β0. Although a minimum with respect

to β is well-defined, and indeed corresponds to the value β0, the same is not the case for α, since S2 is essentially constant for

values of α less than α0 when β = β0.5

Fig. 9 illustrates the solution to the GLS problem with unknown parameters a, b, α, β, and cj , j = 1, . . . ,n. The solution is

displayed by showing the path integrated concentration data calculated in terms of the estimates of α and β and the straight-line

model calculated in terms of the estimates of A and B. For comparison, the path integrated concentration data calculated in

terms of the estimates of α0 and β0, and the linear least-squares straight-line fit to that data is also shown: cf. Fig. 2 . Fig. 10

illustrates the transformed residual deviations corresponding to the solution to the GLS problem shown in Fig. 9 . Figs. 1110

and 12 illustrate the same information but for the solution to the GLS problem with α= α0 and β = β0. It can be seen that

the quality of the two solutions, both in terms of the values of S2 and the distributions of transformed residual deviations, are

comparable. However, the solutions themselves are quite different, which is a reflection of the fact that the parameter estimates

are confounded with each other and are not well-defined by the data (as illustrated also in Fig. 8) . It is for this reason that

consideration of regularised versions of the GLS problem (variants (2) and (3) in section 2.2) are considered necessary.15

Finally, Figs. 13 and 14 illustrate the solution to the GLS problem with unknown parameters a, b, α, β, and cj , j = 1, . . . ,n,

for the data defined by indices I ≡ I2 = {mLOW = 30, . . . ,mHGH = 500} that includes data before and within the window

containing the plume but does not allow for the presence of the plume in the functional model. Here, particularly for data to
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Figure 8. Values of the mean-square-error for (left) different values of α with β = β0, and (right) different values of β with α= α0,

corresponding to GLS fits to data with indices mE to mHGH. The vertical dashed lines in the two graphs correspond, respectively, to the

values α0 and β0.

the left of the window, the transformed residual deviations tend to be large, and suggest a lack of fit of the model, which is

attributed to the effect of the plume. It is for this reason that adjusting the functional model for the measured data, as well as

characterising the statistical model for the data, is an important part of the analysis.

4 Results

Results are presented for field measurements made for six elevation angles θ spanning the interval 3.7◦ to 9.7◦. Figs. 1 to 145

relate to the measured data corresponding to the largest elevation angle in that interval. Additionally, Figs. 15 and 16 illustrate

the solution to the GLS problem with unknown parameters a, b, and cj , j = 1, . . . ,n, for the data defined by indices I = I1∪I2

with I1 = {mLOW = 30, . . . ,ms = 50} and I2 = {me = 100, . . . ,mHGH = 500}, i.e., allowing for the presence of a plume.

Note that in Fig 16 a larger scale for the vertical axis compared to previous graphs showing transformed residual deviations is

needed to show the behaviour of the deviations corresponding to positions before the window set to contain the plume. Here,10

the transformed residual deviations suggest that the noise characteristics may be different for the data before and after the

window considered to contain the plume. Although the transformed residual deviations for the data before the plume appear

essentially random, their magnitude is larger than would be expected.

The analysis described in sections 2 and 3 for the measured data relating to the largest elevation angle is repeated for the

other elevation angles, and the results are presented in Fig. 17 and Tables 1 and 2. For all elevation angles the same window15

of data containing the plume, and the same order for the AR model used to characterise the noise in the returned signals, are

13
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Figure 9. In red, the results of the two-step LLS approach applied to the data with indices mlow to mhgh: the path integrated concentration

data calculated using α0 and β0, and the linear least-squares straight-line fit to that data (cf. Fig. 2). In blue, the results of the GLS approach

applied to the data with indices me to mHGH: the data is calculated in terms of estimates of α and β, and the straight-line model in terms of

estimates of A and B.
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Figure 10. Values of the transformed residual deviations for the signals at (left) the off-resonant wavelength, and (right) the on-resonant

wavelength, for the results of the GLS approach shown in Fig. 9.

14



Distancek/m
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
at

h 
in

te
gr

at
ed

 c
on

ce
nt

ra
tio

n/
pp

m
v 
·
 k

m

-3

-2

-1

0

1

2

3

4

5

Figure 11. As Fig. 9, but with the values of α and β fixed to be α0 and β0 in the GLS approach.
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Figure 12. As Fig. 10, but for the results of the GLS approach shown in Fig. 11.
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Figure 13. As Fig. 9, but for the GLS approach applied to the data with indices mLOW to mHGH.
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Figure 14. As Fig. 10, but for the results of the GLS approach shown in Fig. 13.
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considered. Fig. 17 compares the estimates of the parameters κℓ,k and τℓ,k (with κ1,0 and τ2,0 set to be unity), and Table 1

compares the estimates of the elements of the covariance matrix Σ̂, that jointly define the AR model used to characterise the

noise in the returned signals for each elevation angle. There is generally good agreement between the estimates of κ1,k and τ2,k,

which suggests that the ‘auto-correlation’ terms in the statistical model defined by those parameters are reproducible across

the different elevation angles. The estimates of κ2,k and τ1,k are less in agreement, and in particular the estimates of κ2,k for5

the smallest elevation angle appear somewhat different from those for the other elevation angles (lower-right graph of Fig. 17),

which suggests the ‘cross-correlation’ terms are not so reproducible. A technical explanation for that property of the statistical

model is currently not available, but will be investigated in further work .

Table 2 gives the estimates of the background concentration level B obtained in various ways and compares them for

different elevation angles. In all cases, the offset parameters α and β are set to the values α0 and β0 calculated in terms of10

the signal values measured in the far-field. Estimates of B are obtained using the LLS approach, the GLS approach using data

with indices I2 = {me = 100, . . . ,mHGH = 500} considered to be beyond the plume, and the GLS approach using data with

indices I1∪I2 and I1 = {mLOW = 30, . . . ,ms = 50}, i.e., allowing for the presence of a plume. In the latter case, an estimate is

also provided for the parameter A2 representing the path-integrated concentration level of the target species within the interval

defined by the indices ms = 50 to me = 100. For all but the smallest elevation angle, the estimate of A2 is positive, which may15

be taken to indicate the presence of a plume somewhere within the chosen window.

It may be expected that the results provided by the GLS approach using the data with indices I2 are the most reliable

because, firstly, data that is possibly influenced by the presence of a plume is excluded and, secondly, the same data is used for

the purpose of noise characterisation. Indeed, the estimates show the least variability with elevation angle compared with the

other approaches to determine estimates of the background concentration level, and particularly compared with the estimates20

provided by the two-step LLS approach. The results provided by the GLS approach using the data with indices I = I1 ∪ I2

are, for some elevation angles, influenced appreciably by the additional data measured close to the DIAL system and before

the plume. That data constitutes only a small part of the data set (about 5 %) and, as noted above, there is evidence of an

inconsistency between that data and the functional and/or statistical models used in the analysis. In particular, the nature of

the transformed residual deviations suggest that the statistical model determined using the data after the plume may not apply25

for the data before the plume. Ideally, the noise in the data before the plume would be characterised either separately or in

combination with the data after the plume, but that is made difficult because the amount of data is small and there is a gap

between the two parts of the data. Further analysis using datasets for which there is no plume may help to give a better

understanding of this aspect .

5 Concluding remarks and future work30

This paper has been concerned with approaches to analysing the recorded measured data obtained using NPL’s DIAL system

to estimate the background concentration level of a target species in the atmosphere. The estimation of the background concen-

tration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which
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Figure 15. As Fig. 9, but for the GLS approach applied to the data with indices mLOW to mHGH and assuming a plume is contained in a

window defined by indices ms and me. The vertical lines show the endpoints of the window that is assumed to contain the plume.
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Figure 16. As Fig. 10, but for the results of the GLS approach shown in Fig. 15.
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defining the AR model in a characterisation of the noise in the two returned signals for different elevation angles.

Table 1. For each elevation angle θ, estimates of the elements of Σ defining the AR model in a characterisation of the noise in the two

returned signals.

θ/◦ Σ̂11/10
−3 mV2 Σ̂12/10

−3 mV2 Σ̂22/10
−3 mV2

3.7 0.711 0.109 0.642

4.7 0.712 0.190 0.737

5.7 0.782 0.134 0.733

6.7 0.716 0.156 0.673

7.7 0.622 0.084 0.722

9.7 0.825 0.150 0.749
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Table 2. For each elevation angle θ (column 1), estimates (α0,β0, b0) provided by the two-step LLS approach (LLS, cols 2–4), estimate

b̂ of b provided by the GLS approach with α= α0 and β = β0 for data with indices I2 = {me = 100, . . . ,mHGH = 500} (GLS1, col 5),

and estimates (̂b, â2) of (b,a2) provided by the GLS approach with α= α0 and β = β0 for data with indices I1 ∪ I2 with I1 = {mLOW =

30, . . . ,ms = 50} (GLS2, cols 6–7).

LLS GLS1 GLS2

θ◦ α0/mV β0/mV b0/ppmv b̂/ppmv b̂/ppmv â2/ppmv·km

3.7 7.716 7.645 1.822 2.020 2.440 −0.0002

4.7 7.710 7.698 2.070 2.194 1.870 0.146 0

5.7 7.036 6.987 2.117 2.043 1.866 0.132 8

6.7 7.190 7.163 2.596 2.118 1.742 0.182 4

7.7 7.317 7.198 1.546 1.911 2.222 0.038 4

9.7 7.529 7.238 1.818 2.028 2.188 0.027 3

is the quantity of interest. The paper has focussed on methodologies for estimating the background concentration level and, in

particular, contrasting the assumptions about the functional and statistical models that are part of those methodologies.

An approach to estimating the background concentration level has been described. It uses a functional model for the path

integrated concentration level that allows for the presence of a plume. It also uses a statistical model in the form of an auto-

regressive function to describe the noise in the measured data for the signals corresponding to the off-resonant and on-resonant5

wavelengths. The functional and statistical models are then used to formulate a generalised least-squares problem whose

solution provides estimates of the background concentration level and other model parameters, including the path integrated

concentration level of the target species in the plume. Results have been presented for field measurements made for six elevation

angles using a variant of the generalised least-squares approach in which the offset parameters α and β in the functional

model are set to fixed values. From an analysis of the measured data recorded beyond the plume the results show reasonable10

consistency between the statistical models for the noise and between the estimates of the background concentration level

corresponding to the different elevation angles. However, the estimates of the background concentration level are influenced

by the inclusion of measured data before the plume.

The paper describes on-going work on the analysis of the measured data provided by NPL’s DIAL system. Further aspects

of the analysis, as well as addressing issues associated with the results presented in this paper, will be described in future15

publications and include:

1. The approach relies on the availability of knowledge about the location of the plume, which is then used as the basis

for excluding data that can be expected to be inconsistent with the functional and statistical models used in the analysis.

There is benefit in trying to refine and improve that knowledge to obtain a short window containing the plume and to

increase the amount of data available to estimate the background concentration level. Similar developments could also20

be used to identify the presence of an unexpected plume.
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2. The presented results have not included an assessment of the quality of the estimate of the background concentration level

in the form of a statement of uncertainty, which is a necessary part of the quantification of the background concentration

level. The assesment will need to consider not only the influence of noise in the recorded signals, which has been

characterised using a particular statistical model, but also the uncertainty associated with that model, which has been

estimated from an analysis of the measured data.5

3. The presented results suggest that the statistical model obtained to characterise the noise in the recorded signals after the

plume may provide only a partial description of the noise before the plume, in the sense that it captures the correlation

structure of the noise but not its magnitude. A complete description of the noise is necessary if the part of the signals

before the plume are to be used to obtain a reliable estimate of the background concentration level supported by an

associated uncertainty.10

4. The analysis has been applied separately and independently for each elevation angle θ. Making an assumption about the

dependence of the background concentration level on θ, for example, that it is a constant or slowly-varying function of

θ, would allow the measured data for the different elevation angles to be aggregated and analysed together.

5. Additional experimental data, for example, direct measurement of the background concentration level undertaken inde-

pendently, such as in situations where a plume is known not to exist, would assist in the validation of the results of the15

analysis.
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