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From reviewer #1, "Because the paper focuses on determination of ramp dimensions using 

VA method, this Ms must.. say something about the ramp period. Otherwise, a reader has the 

feeling that the Ms is incomplete.... the present Ms must to add a sentence about the ramp period. 

In fact, I do not understand why it was not included because after determination of the ramp 

amplitude and the time lag that peaks S3r/r the calculation of the ramp period is straightforward 

using VA. Thus, no extra figures or calculations must be implemented."  I have added a more 

complete description of the SR calculation of flux, including the determination of the ramp 

period (tau) as it relates to computation efficiency.  I have also reordered some of the method 

description to be more pertinent to the surface renewal method in particular. 

Also from Reviewer #1, "Because the authors mentioned that there is a companion paper 

where they compared (I guess) SR and EC fluxes, one may hesitate the latter issue was 

addressed in the forthcoming Ms.  I have clarified that the experiment alluded to in the 

manuscript does calibrate surface renewal flux on the basis of fluxes calculated via eddy 

covariance. 
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From Reviewer #2," I am eager to try the supplemental code over my own data."  I have 

updated the manuscript with a declaration of data availability (with a DOI), and listed the URL 

from which data and complete code can be downloaded.  "Some clarification will be necessary in 

parts of the manuscript."   I have made some attempt to identify some ambiguous references and 

clarify these, expecting that the discussion forum will raise additional needed clarifications.  

"Also, very important comment on possibility to use this computationally efficient approach in 

dataloggers programming for online flux computation is needed in more detailed discussion.".  

While this is a research interest that will be pursued, no attempt has been made to date to 

implement such computational approaches in a data logger programming language.  Nonetheless, 

it should be straightforward to program the  most relevant aspects of these techniques in 

languages that are pre-compiled with methods such as the FFT (for example, Campbell Scientific 

loggers using CRBasic).  The authors will attempt to address this in the discussion forum, as it is 

not a task that has actually been completed to date. 
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GENERAL COMMENTS: 

The authors gratefully acknowledge the reviewer's comments, which have led to substantial 

changes in the manuscript, which was initially revised in May 2017, and again recently in 

response to additional review.  Overall, I have attempted to improve clarity of writing; 

specifically,  the hypotheses and goals of the manuscript have been clarified, and the methods are 

more clearly delineated with appropriate and up to date citations.  The brief conclusion has been 

changed to be more appropriate, in particular to describe additional results which have been 

included in response to additional reviewer requests.  The most significant of these was 

expanding on actual implementation of despiking via convolution, using a phase space criteria 

for quantitative spike identification.  I have also attempted to clarify those parts of the analysis 

which are novel in implementation, within the context of previous work in programmatic 

algorithms. 

Specific comments are addressed in the supplementary notes, attached. 

   

SPECIFIC COMMENTS: 

P1L9: “20 Hz+” I suggest changing to “10+ Hz” since there are articles published on 

successful SR application over data collected at 10 Hz frequency. Similarly, it is mentioned 10+ 

Hz in the introduction section. 

Changed as requested.  Further clarifications later in the text as to different sampling frequencies 

and the corresponding cost in data storage and computational efficiency. 

 

P1L13: Please add, “computational” before the word “efficiency” 

Added as requested. 

 

P1L14: Please, be more specific, i.e. avoid saying “Programming techniques such as these”, it is 

still not clear in the abstract what you are referring to... 

This section has been re-written to be more concrete and an appropriate summary. 

 

P1L19: Please add word “possible” between “determinations” and “using”. 

Added as requested. 

 

P2L50: Please clarify. It is said in this line that the convolution is used for structure functions 

computation, while later is said the convolution is used to despike the data. It seems that the 

convolution is used for both and should be explained. 

Added clarification here as requested. 

 

P2L51: Replace “simplifying” with “to simplify” 

Replaced as requested. 

 

P2L53: Please, start the Methods differently... it is always better for the reader to be more 

specific. 

Changed with the intent to be more specific for the reader. 

 

P2L59: Add, “the method” before “implementation” 

Added as requested. 
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P4L105: Please change the word “approach” to “program” or “program run” for clarity. 

Changed as requested. 

 

P4L111‐113: Please rewrite for the clarity. 

Changed as requested. 

 

P4L114: Please replace “identical” by “from the same 20 Hz dataset”. 

Replaced as requested. 

 

P4L131 and L133: Should “N‐1” be actually “N‐r”? 

Yes, thank you for catching this error in the text. 

 

P4L133: Should “T(t)” be “T(i)” in accordance to Eq.1. and for clarity? 

No, this sentence refers to the time series rather than the discrete samples, but I agree it was 

unclear due to proximity of the terms.  It has been changed for clarity. 

 

P5L137: “sweeps and ejections” of what? It should be clarified adding more description of the 

surface renewal method background. 

Added as requested. 

 

P5L138: Please add “ramps in the temperature signal caused by” between “geometry of” and 

“coherent structures” 

Added as requested. 

 

P5L140 and L141: Please change to be clearer that the detection of the structure functions in the 

scalar signals improved. 

Added discussion of the improved detection and concurrent increase in statistical robustness with 

larger sample sizes (higher frequency measurement) 

 

P5L144: Explain under which conditions. 

Added as requested.  Other reviewers noted the ambiguity of this statement so a short discussion 

of flux direction and atmospheric stability was added. 

 

P5L146: Please replace “to” by “for” if I understand well. In addition, explain why are the 

periods of 8 hours collected, and not continuously for two months. What challenges did you find? 

Was it only data collection for the unstable conditions? 

This language was too abbreviated in the text, and has been updated to reflect that I am 

describing several different experiments.  The description now indicates that this data was used 

to test the methods with different performance criteria- i.e. data of different sizes, experiment 

durations, and captured at different frequencies. 

 

P5L147‐L150: Please explain how this analysis is useful. Are fluxes better to be calculated for 3 

minute periods? 

The introduction and discussion have been expanded to indicate why short duration fluxes are 

under consideration. 
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P5L163: What “total data size” means? It works with the same efficiency over 20Hz and 100Hz 

dataset? Please clarify. 

I have attempted to clarify this characterization of "total data size". 

 

P5L169‐170: Is this the result of the authors’ own research? If not, please give a reference. 

I have gone back through my results and observations and changed this statement.  I believe that 

my original intent was to indicate the relationship between friction velocity, vertical flux rate,  

and ramps times, and mis-stated these observations as being related to stability.  I have changed 

the text and added a short explanation of the rationale, which is not a novel observation (i.e. 

higher velocity means faster exchange rates).  

 

P6L174: “again the largest factor in the difference between two methods” is making this phrase 

unclear. Please change to clarify 

Changed for clarity. 

 

TECHNICAL CORRECTIONS: 

P1L10: One extra space seems to be typed in between the words “demonstrate” and “that” 

P1L26: I think “manifests” is necessary instead of “manifest” 

P2L60: “on” instead of “one” 

P3L95: “an” instead of “a” before “application” 

P4L111: Please use different word instead of “conditioning” if possible (i.e. “despiking”) 

P4L135: Please replace “product of” instead “product by”? 

P5L165 and 166: are empty. 

Avoid “@” in Figure titles. 

These technical corrections are appreciated and have been addressed. 

 

P4L135: Please replace “sense” by “importance in the flux measurement” or similar. Also, 

replace “generate” by “are” 

The language has been changed for clarity. In particular, the word "sense" was used to indicate 

vector direction. 

 

P5L158: Please replace “difference vectors” by ”the vectors of the differences”. In addition, 

change “for each sample lag” by “for the corresponding sample lag” 

This has been changed for clarity as suggested. 
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General comments from Reviewer #3: 

These comments made by this reviewer have helped to make significant improvements in the 

revised manuscript.  In particular, I was unaware of the review of despiking methods by 

Starkenburg et al. (2016), and this citation has significantly improved the context of this research 

and has helped narrow the discussion of the intent of my manuscript, and clarify what the novel 

aspects of  the methods described here.  Also, the reviewers prompted me to re-read of French et 

al.'s 2012 publication using the SR method, and the discussion of lag time there has helped 

improve my discussion of practical aspects of computation.  Following the reviewers 

suggestions, I have re-written the abstract, introduction, and conclusions sections to clarify the 

intent, context, and relevance of the three computational methods described in the manuscript. 

 

Specific Comments: 

Abstract: Logical presentation in the abstract needs improvement... What is your thesis? 

I acknowledge the lack of clarity and have re-written the abstract to clarify that the intent of the 

paper is to document and quantify the efficiency of three algorithms, which rely on convolution 

and algebraic simplifications, and consequently facilitate implementation of the surface renewal 

method.  A secondary finding of the manuscript relates the flux averaging period and 

computational efficiency.  Mention of potential uses for this findings (open source methods, 

implementing  SR on mobile platforms, integration into hardware solutions, etc.) and similar 

have been moved to the discussion in the conclusions section, rather than being misleadingly 

referenced in the abstract.  

 

Not mentioned, but should be, are the SR limitations relative to EC... quantify the benefits: how 

much less does SR cost?  

I have added discussion relating more context and citations regarding practical implementation 

of SR to measure flux. 

 

What fetch benefit does one gain with SR? 

Because it is relevant to the context and motivation for the SR method generally, I have added 

language to better cite relevant references (Castellví 2012, Göckede et al. 2004; Paw U 2005), 

and brief discussion regarding the measurement fetch.  I have kept this limited as it is not directly 

relevant to the computational method.  In one sense, the method's reduction of measurement 

fetch is not clearly established in the literature, and following Castellví (2012), it is probably 

comparable to eddy covariance.  However, it is clearly established that SR can give reliable 

measurements of flux within the roughness sub-layer (Paw U et al. 1995; Katul et al. 1996; Chen 

et al. 1997; among others more recently).  Due to this difference from eddy covariance and 

gradient methods which require measurements at two heights, the practical source-sink area 

associated with a measured flux is smaller, and spatial footprints can therefore be resolved at 

finer scales. 

 

L43: a major problem here: you have yet to publish your manuscript assessing efficacy of 

different averaging periods, but as of now we don’t know the result and so do not know how 

important your algorithm refinement is.  

I have expanded the description of the field experiments, and included results that quantify the 

improved calculation efficiency.  
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Regarding de-spiking: authors should read and consider findings in Starkenburg et al. 2016, 

with attention to their Table 1.  

I am grateful for the reviewer for bringing this paper to my attention as it was published after this 

manuscript was originally prepared, and significantly adds to the context of the work shown 

here.  While de-spiking is a required QAQC process with micromet data, the convolution method 

shown here specifically addresses and improves computational efficiency, and shows 

significantly improvement over the methods shown in Starkenburg's review of published 

methods.  In addition, the convolution approach facilitates a more sophisticated application of 

the phase space approach, and overcomes a major limitation of that approach through efficient 

calculation.  I have added a brief discussion of my method to the manuscript to demonstrate the 

benefit of signal processing techniques like convolution. 

 

Discussion of convolution should mention that the time-series operation includes multiplication 

of the time-reversed kernel. 

I have added more technical description of convolution. 

 

Regarding structure function lag estimation, consider findings reported in French et al. 

discussing lag vs. SR accuracy. 

This citation was also a good suggestion, and I have added a brief discussion of the relevance of 

lag time to the methods' accuracy, and how this pertains to computational efficiency. 

 

Root solving is not innovative although I will grant innovation in the diagnostic findings of 

pathological cubic equations by Edwards and Beaver. It would be useful to compare the speed 

improvement using Cardano’s method vs. numerical Newton-Raphson.  

Although I grant that this would be an interesting comparison, I think that it suffices to state that 

algebraic solutions are always less computational intensive than any iterative root finding 

algorithm.  Cardano's algebraic solution requires fewer operations than any numerical root 

findinig solution of which I am aware- it is a happy coincidence that he so-called "depressed" 

cubic polynomial is the one needed to solve the structure function arrangement posed by Van 

Atta. 

 

If your aim is open-source you should provide readers with evidence that m script successfully 

executes on a non-proprietary software platform. 

I agree!  In the interest of time, I have not included my partial results of executing these methods 

in Python, which are ongoing.  I rephrased this mention of potential open source 

implementations to my discussion as a needed action. 

 

Line 166: here is a critical finding about computation time vs. averaging period; you should find 

a way to highlight this and not bury it in the text. 

I agree that this is one of the coherent points in the results, and I have reworded to emphasize it. 
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Abstract.   

Measuring surface fluxes using the surface renewal (SR) method requires a set of programmatic functions 

algorithms for tabulation, algebraic calculation, and data quality control.  A number of different methods have been 

published describing automated calibration of SR parameters.  Field experiments conducted over a variety of surface 

conditions used eddy covariance (EC) as a control flux determination for sensible heat flux and evaporation.  10 

Because the SR method requires utilizes high frequency (10 Hz+) measurements of a temperature or scalar 

traceconcentration, some steps in the flux calculation these tasks are computationally expensive, especially when 

automating SR to.  Some implementations of SR, such as Experimental hypothesis optimization of averaging time, 

that requireperform many iterations analysis of time averaging require many iterations of these calculations.  For a 

study on the minimum time to measure flux, To economize this type of analysis, ss Several new programmatic 15 

algorithms methods were written to that perform the required calculations more efficiently and rapidly, and tested 

for sensitivity to length of flux averaging period, ability to measure over a large range of lag time scales, and for 

overall computational efficiency.  These algorithms, utilize signal processing techniques and algebraic 

simplifications that .demonstrateing simple modifications ofthattomethods dramatically improve computational 

efficiency.  The results here complement efforts by other authors to standardize a robust and accurate computational 20 

SR method.  IncreasedProgramming techniques speed of computation time such as these can grants flexibility to 

implementing the SR method, opening new avenues for SR to be appliedused in research, for applied monitoring, 

and in novel field deployments.  

1 BackgroundIntroduction 

Originally described by Van Atta (1977), the SR model measures vertical flux that occurs during rapid events which 25 

manifest as coherent structures in a turbulent flow.  The physical mechanisms are statistically distinct from those 

described in the Eddy eddy covariance (EC) method, which has been established as  a robust and accurate method to 

measure flux (Baldocchi, 2014)(Baldocchi, 2014).,  yet tThe surface renewal (SR ) method offers several advantages 

and complements over the use of EC to measure flux.  While EC requires a high frequencyfast (10 Hz+) 

measurement of both the vertical wind speed and air temperature to measure the sensible heat flux, the SR method 30 

does not explicitly require vertical wind speed, allowing can make this flux to be determined solely determination 

usingfrom rapid measurements of temperature or other scalar concentrationsair temperature measurement only.  By 

ing ecause fewer, lower costed sensors are required, cost is d, which expandsthe SR method theoretically can be 



 

used for directflux measurement from research applications to more general to develop the SR method for field 

appliedcations monitoring (Paw U et al., 2005; Spano et al., 2000).  Another advantage of SR is over methods such 35 

as EC Previous studies have shown isthat the ability to measure flux measurements can be captured very near the 

surface or near the top of the plant canopy using SR (Katul et al., 1996; Paw U et al., 1992)(Katul et al., 1996; Paw 

U et al., 1992).  By taking measurements very close to the surface, the measurement fetch is effectively reduced and 

consequently the effective so-called "area from which the flux can be attributedfootprint" or contributing area is 

smaller (Castellví, 2012),. yielding a more localized flux estimate. 40 

The SR method estimates turbulent transport rates from fast response measurements of scalar properties such as 

temperature or trace gas concentration. In the SR conceptual model, rapid changes in scalar concentration are 

associated with episodic displacement of near-surface air parcels, and the surface condition is renewed from upper 

air.  While in proximity to the surface, the air parcels are gradually enriched or depleted in temperature or scalar 

concentration by diffusion (Castellví et al., 2002; Paw U et al., 1995).  The majority of flux from the surface is 45 

attributed to these rapid ejections, which distinguish coherent structures in near surface atmospheric motions (Gao et 

al., 1989).  The duration and amplitude of these rapid fluctuations (visible as ramps in the scalar trace) are used to 

determine the magnitude and direction of the flux density.    As in Taylor's concept of frozen turbulencedescribed 

by, small scale turbulent transport primarily occurs in during rapid events which manifest as  (ramp-like coherent 

structures).  Consequently, ipotentially t should anbe possible to measureestimate flux over shorter periods with SR 50 

than is typical for EC (15-30 minutes).  One possible use of this kind of rapid flux measurement will facilitatewould 

be to map spatially heterogeneous flux using , near surfacelightweight sensors mounted on a mobile device.  A 

mobile application of SR could provide missing information for understanding sub-basin scale hydrology, to 

validate downscaled models, and facilitate  efficient water use throughheterogeneity precision irrigation systems.  

Another advantage is by reducing sensor cost, SR can allow more extensive flux measurements than can be 55 

accomplished with expensive equipment such as EC systems.  By measuring extensively, the spatial heterogeneity 

of surface fluxes can be explored, and adding to the data collection capacity of sparsely located, tregional weather 

networks.  Low cost sensors also facilitate measuring flux in situations where deploying more expensive equipment 

would be infeasible, such as direct monitoring of farm water use, at unsecured field sites, and in developing 

regions.standardizationof calibration and quality control measures to establish  , uniform, and te methods 60 

Because of the short duration of these events, the SR method complements spectral methods to evaluate the flux 

contributions made over time scales shorter than the typical 15-30 minute averaging time used for EC (Katul et al., 

2006; Shapland et al., 2012a, 2012b).  Rapid flux measurement will facilitate new applications, such as spatial 

mapping of flux using vehicle mounted, near-surface sensors, and real-time monitoring systems.  Mobile SR 

implementations and other novel field methods could provide new insights into the complexities of sub-basin scale 65 

hydrology, be used to validate downscaled models, and measure the heterogeneity of flux at sub-field scales.   

The implementation of specific The use of SR to map heterogeneous surface flux fromonto map flux requires a 

prescribed will first will require establishing knowing a the minimum averaging time period (on the order of 

minutes) and ramp time duration (on the order of seconds), in which SR can resolvefor robustinfor which a 

representative and statistically robust a flux magnitude can be determined can be obtained robustly.  To implement 70 



 

SR on a moving vehicle (for instance, to map spatially variable flux), finding a minimum averaging time is desirable 

to increase the spatial resolution of the resulting map.  The averaging time and lag time used in the SR method relate 

the sensitivity of the scalar measurement to the time scales at which most significant flux occurs (Shapland et al., 

2014).  To find the minimum required measurement period, several field studies were conducted over in 2014 and -

2015 over various types of surface conditions.  This required a rapid computational method that worked .  F, and 75 

fluxes were computed over a range of different time averaging periods, and which could implement the various 

calibration procedures used in the SR method with co-located EC and SR sensors, with several different surface, 

weather, and crop conditions.  Initial attempts to calculate flux Initially, the computation fFfollowededing the 

methods as described by described in Paw U et al. (2005a) and Snyder et al. (2008) literally.  However, 

implementing these methods as documented but wasere hampered by slowed by computation time, which 80 

constrained for the processing many required iterations required to determine the minimum flux averaging period 

Paw U et al., 2005 and Snyder et al., 1996.  However, executing these methods literally as described was constrained 

by computationfound to be inefficient time . 

As late as the 1990's, limits on computing power, data logger memory, and telemetry limited the implementation of 

SR to highly skilled researchers (Katul et al., 1996; Snyder et al., 1996).  Open source software and online forums 85 

are abound with methods that utilize advances in computing power, memory availability, and the accessibility of 

multithreaded processingwhen calculating over the many iterations that were required for multiple averaging 

periods.    More efficient methods were found to utilize the increased computing power that is currently available, 

and to take advantage of parallel processing approaches.  These approaches methods reduce computational 

overhead, and open possibilitiescan augment the  for SR technique as to allow implementation  which can be a 90 

constraint when with using low cost data computers and data loggers, or where remote telemetry is required.  

TThree example methods are shown here are shown which clarify streamline specific operational steps in the SR 

method.  The first is a rapid method adapted from signal processing to "despike" noisy data, a quality control 

technique commonly required used to in processing raw meteorological data.  Second is a method to compute 

structure functions over multiple time lags rapidly using convolution in two dimensions.  Third, an algebraic 95 

solution array calculation is used to to find the rootfind the  of a cubic polynomials roots used to , which facilitates 

the rapid determinen the SR ation of SR ramp amplitude as an array calculation.  By using more efficient algorithms, 

rapid iterative trials can be conducted to adjust calibration parameters, test hypotheses on the time averaging of flux 

calculations, and potentially measure SR flux in real-time. 

Advantages such as low cost, relatively simple instrumentation, and easier field implementation are all cited as 100 

motivating factors to use the SR method (Paw U et al., 2005), yet work remains to standardize a robust method 

(French et al., 2012; Suvočarev et al., 2014).  Because sensor cost is reduced, SR systems can be implemented to 

measure flux more extensively than EC, and in situations where EC is impractical.  Extensive, site specific SR 

estimates can augment the utility of sparsely located, permanent weather stations in mapping the heterogeneity of 

surface flux.  Examples of situations which could benefit from low cost flux measurements include direct crop ET 105 

monitoring, experiments at remote field sites, and in developing regions.  While SR may expand flux measurement 



 

applications, the method still requires standardized calibration and quality control measures to establish that SR is 

robust and accurate, and a critical step in developing the method is to reduce computation costs. 

 

2 Methods 110 

The examplese computational approaches algorithms shown here were adaptimprove or economize existinged from 

calculation previously described methods, including despiking of scalar tracestime series data (Højstrup, 1993; 

Starkenburg et al., 2016)(Højstrup, 1993)(Vickers and Mahrt, 1997), calculation of structure functions (Antonia and 

Van Atta, 1978)(Antonia and Van Atta, 1978), and Fourier analysis of signals i.e. spectral analysis (Press, 2007; 

Stull, 1988)(Stull, 1988).  In each case, dramatically faster execution times were accomplished using simple 115 

programming improvements.  Most efficiency gains were due a result of code to "vectorization", which is :the  

conversion ofting iterative looping algorithms from an iterative loop process into an array calculations.  All methods 

described  here were implemented in the Matlab language (The Mathworks Inc., 2016)(The Mathworks Inc., 2016), 

with including the Statistics, Curve Fitting, and Signal Analysis Toolboxes.  Matlab's Profiler (profile.m) was used 

to track the memory demand and speed oftime to implement calculationsation.  Trials were conducted on multiple 120 

desktop systems; for uniformity, analysis shown here data fromonly used Test test runs shown her used in this 

analysise that were conducted one one system, a in the Windows 10 operating system running on using an Intel Core 

(TM) i7-3720QM processor operating at 2.60GHz with 16GB RAM.  Processor clock speed was verified using the 

Matlab's Profiler tool at run time, and all processing times reported here includeare described as both run time 

(actual observed execution time) and or asa Total Run Time, which is the sum of CPU time used in for all 125 

calculation threads.  Example methods are indicated by function name (in italics)., and full  Abbreviated, 

commented code scripts for the example functions is are provided in the supplementary material.  Complete code for 

this analysis can be obtained directly from the corresponding author.  Although these methods were prototyped in 

Matlab, the examples shown are generally useful as solutions to challenges commonly encountered in 

micrometeorology.  Example data was collected during two fvarious field experiments in from 2014- and 2017,5 130 

using an integrated sonic anemometer and infrared gas analyzer (IRGASON) and fine wire thermocouples (FWTs) 

which was, and was recorded at 10,  Hz and 20, and 100 Hz using a CR1000 datalogger (Campbell Scientific).  The 

data used in verifying the methods is provided through supplementary materials online (DOI: 10.7267/N9X34VDS). 

 

Vector and array calculations are more efficiently executed than iterative methods; Vectorization vectorization of 135 

Matlab code entails removing loops (which are not pre-compiled) and taking advantage of implicit parallel methods 

in Matlab’s pre-compiled library functions (Altman, 2015)(Altman, 2015).  Other significant improvements were 

enabled through the Fast Fourier Transform by using convolution of number arrays, rather than iterative operations.  

In the case of determining ramp geometry in the SR method, Cardano’s solution for depressed cubic polynomials 

(published in 1545) reduces a root finding algorithm from an iterative numerical approximation to an algebraic exact 140 

algebraic vector vector calculation.  While some of the implementation of these se programming methods address 

unique aspects are particular to the Matlab language, the general mathematical concepts are universal.  Although 



 

these methods were prototyped in Matlab, the examples shown are generally useful as solutions to challenges 

commonly encountered in micrometeorology.  By reducing computational overhead, these methods expand the 

possible uses of SR flux measurements to monitor agricultural water use, to measure from lightweight aerial 145 

platforms, and in other specialty applications. 

Example 2.1: Despiking of noisy data using convolution 

Despiking is the removal of erroneous or extreme data points from a time series of sampled values. It is a common 

procedure when measuring environmental parameters, such as wind speed, temperature, and trace gas 

concentrationespecially in challenging conditions or complex environments (Göckede et al., 2004; Starkenburg et 150 

al., 2016)(Göckede et al., 2004).  The origin of spikes in a time series can may be or electronic be eitheror physical 

(sensor malfunction or actual physical non-errors) or electronic. in nature;  regardlessRegardless of the origin, these 

spikes can be recorded as either abnormally large or small values, or may be marked by as somea pre-firmware 

defined error flag.  Spikes become problematic which isif they are not readily differentiated when during automatic 

data automatically importsing data  (Rebmann et al., 2012)(Rebmann et al., 2012).  Spikes interfere with normal 155 

statistical calculations,, and requiring require some deliberate and objective method to identify, remove, and 

interpolate where they exist.   For instance, a data logger program may record an error as "9999" or a character 

string, while Matlab denotes missing values in a numerical array as NaN (“not a number”). Because normally 

distributed data may contains noise across in a wide range of scalesvalues, robustness of the despiking algorithm is 

complicated by the requirement to differentiate between "hard spikes" characteristic of automatic flags (such as 160 

9999) and "soft spikes" which are realistically valued, but exceed some objective limiterroneous measurement.  This 

An objective limit for soft spikes is usually defined as appropriate for the signal to noise ratio of any particular data, 

usually in terms of variance during some a stationary defined windowing period.  Clearly distinguishing between 

these explicit errors and flagged errors can be achieved by a static objective criteria, by a dynamic statistic, or in a 

separate pre-processing operation.  Previous authors have described a variety of methods including use of 165 

autocorrelation (Højstrup, 1993)(Højstrup, 1993)(Hojstrup, 1993) and statistics within a moving window (Vickers 

and Mahrt, 1997)(Vickers and Mahrt, 1997). A comprehensive review of despiking methods is presented by 

Starkenburg et al., (2016), with emphasis on the accuracy and statistical robustness of different computation 

methods. 

Despiking is largely a problem of conditional low pass filtering; consequently this procedure can be treated as an 170 

application of signal conditioning processing and which can be therefore performed efficiently using convolution.  

Mathematically, convolution can be understood as a multiplicative function that combines a data signal with a filter 

signal.  TFor a discrete signal, the filter is a weighting array , the size of the moving window, which is multiplied (in 

the Fourier domain) with data inside the a window.  In the time domain, the window can be visualized whichas it 

isas movinged along the data array as it is multiplied.  For As examples, a window filter with a weight of 2 at the 175 

center of the window,  and zeros elsewhere, would amplify the data signal by a factor of two;.  Caonvolution with a 

window  filter 10 units samples wide,, each weighted at 0.1, generates a 10 samples running average (smoothed) of 

the data over 10 samples.   The computational efficiency of convolution is a result product of the Fast Fourier 



 

Transform (FFT), which allocates memory efficiently by a process known as bit switching.  An thorough treatment 

of bit switching can be found in   (Chapters 12 and -13, in of Press (2007)Press, 2007).  To demonstrate the 180 

increased efficiency of the FFT, two programs methods were used to despike 8.5 hours of 20 Hz sonic temperature 

data (609139 samples).  A first attemptOne method utilized a sliding window in a for loop, following the objective 

criteria described by Vickers and Mahrt (1997).  AThen improved second program method (shown in despike.m) 

used convolution to determine a running mean and standard deviation used in the identification of spikes.  After 

multiple runs with different input criteria, the first program average run time was 27 seconds.  Using convolution, 185 

the second program average run time was 0.2 seconds, decreasing run time by approximately 99%.  While this 

drastic improvement may potentially overemphasize the slow compile times of for loops in Matlab (compared to 

other languages), it nonetheless demonstrates the value of the FFT in speeding calculations with time domain signal 

conditioningsignals.  Faster processing time , and facilitatesd the abandonment of time saving strategies used in 

earlier applications of despiking, such as skipping samples or limiting window sizemore comprehensive, calibrated, 190 

and accurate analysis, and can reduce data loss compared to coarser filtering techniques. 

To measure recordtest computation time independently of hardwareuniformly (processor speed and RAM size), 

identical 10 Hz data was sub-sampled in to record lengths from of 0.25 to 48 hours, and multiple runs were despiked 

with each sample set.  Raw data was checked for hard error flags which required text to number conversion, but was 

not otherwise manipulated prior to despiking.  Matlab Profiler was used to track the run time for all threads, using 195 

the undocumented flag "built-in" to track pre-compiled Matlab functions as well as custom user functions
1
.  The 

total run time for all threads was tabulated and averaged across sets of each data length (Figure 1).  Despiking in 

despike.m was accomplished with convolution used to calculate the running mean and running standard deviation 

arrays, which are used as comparators in identifying spikes (see supplementary materials).  By using convolution, 

despiking was two orders of magnitude faster for all lengths of data.  To illustrate the effect of Matlab's built-in 200 

parallel processes, Figure 2 shows the ratio of actual run time to Total Run Time, indicating that the convolution 

method relies on computations conducted in parallel for processing increasingly larger longer data records.  This 

benefit is direct accrued from the efficiency of the FFT. 

With increased computation speed, automatic and accurate despiking can be accomplished, with reduced time cost 

to determine any necessary calibrate for the procedure.  The various methods employed to despike data are variously 205 

limited by computational inefficiency (Starkenburg et al., 2016).  "Phase space thresholding", originally described 

by Goring and Nikora (2002) is one such method that Starkenburg noted as being hampered by computational costs, 

and by a requirement for iterative applications to calibrate despiking parameters.  By decreasing the execution time, 

a similar method was developed that allows rapid and accurate despiking of data, both for the detection of hard and 

soft spikes.  A phase space method allows objective criteria to be calibrated for specific sensor data, and a visual 210 

diagnostic phase space diagram that allows for rapid calibration of the despiking criteria (Figure 3).  Projecting the 

signal into a phase space diagram reveals modes related to sensor error, response time, and other factors leading to 

spikes.  Using convolution to determine moving window statistics (such as a moving mean, standard deviation, etc.), 

objective identification of behaviors characteristic to a particular sensor response.  In figure 3, infrared gas analyzer 
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data (in this case, signal strength) collected at 20Hz for 17 days is projected with one minute moving window 215 

statistics.  Based on this projection, a cut-off in phase space for spike identification can be assigned, and the 

subsequent percentage of removed data calculated.  In this case, the sensor was repeatedly affected by dust from 

farm operations (Figure 4), yet only 1.5% of the data was required to be removed as spikes due to the precision of 

the despiking algorithm.  This procedure took less than five seconds of computation.  

 

Figure 1: The total computation time is the sum of CPU time spent on all calculation threads.  Marker is the mean run time for 

multiple runs, which varied from 30 runs (15min - 4h data) to 10 runs (8, 12, 24 h).  48h calculation is represented by one run 

only. Error bars represent one standard deviation of all runs. 

 

 

Figure 2: In addition to faster overall run times, calculation of larger data sets remains fast in part due to implicit parallel 
processing via the Fast Fourier Transform, which can be readily conducted on multiple threads.  Parallel processing of noise in 

the loop method is not apparent. 

Example 2.2:  Structure function calculation 220 

Another computationally  intensive process in SR is the determination of the 2nd, 3rd, and 5th order structure 

functions.  Ramps are an identifiable feature in the measured temperature trace above any natural surface, yet 

calculating determining the the amplitude of characteristic ramp geometrys from high frequency data requires an 



 

efficient, robust, and preferably automated procedure.  There are several methods to determine ramp geometry, 

including visual detection (Shaw and Gao, 1989)(Shaw and Gao, 1989), low pass filtering (Katul et al., 1996; Paw U 225 

et al., 1995)(Katul et al., 1996; Paw U et al., 1995), wavelet analysis (Gao and Li, 1993)(Gao and Li, 1993), and 

structure functions (Spano et al., 1997)(Spano et al., 1997).  Structure functions in particular provide both objective 

criteria to detect ramps and an efficient method to tabulate ramp geometrystatistics of time series data, and use of 

structure functions has become the predominant method used for SR.  The general form for a structure functions is: 

 
i N r

nn

1

1
S (r) T(i r) T(i)

N r

 

  

   Equation (1) 

in which a vector of length N-1 is composed of the differences between sequential (Temperature) samples T(i), 230 

separated by lag r.  The structure function S
n
(r) of order n for a given sample time lag r is obtained by finding 

differences between each sample i and sample i+r (lagged in time by r samples).  The nth order structure function 

are defined by the nth power in the summationraising the difference vector to the n power, summing the vector and 

normalizing by N-1.  In a turbulent flow field, The the sampled fluctuations of scalar time series  of signal T(i)  in 

a turbulent flow can be shown to beare a combination of random fluctuations and coherent structures (Van Atta and 235 

Park, 1972)(Van Atta and Park, 1972).  The random (incoherent) part of the signal is produced a product by of 

isotropic turbulent processes, and over an a statistically significantdequately large sample this sample should thus 

haves no particular directional sense or orientation (by the isotropic definition).  On the other hand, By contrast, 

coherent structures are by definitiongenerate characteristic anisotropic anisotropicsignatures, with periods of 

gradually rischange punctuated bye period and  sharp transitions.  These sharp transitions occur during "sweeps and 240 

ejections" of parcels enriched or depleted in scalar concentration (heat or water trace gas), evidence of transport 

from an Eulerian perspective.  The total variance is composed of additive random and coherent components, and 

sStructures functions can be used to decompose the measured tracetime series fluctuations into random and 

coherentisotropic and anisotropic components and identify the characteristic ramp amplitude and duration of 

coherent structures (Van Atta, 1977)(Van Atta, 1977).    245 

Advances in sensor response time and processor speed have revealed an increasingly detailed picture of the coherent 

ramp structures.  In deriving a method to find ramp geometry, Van Atta (1977) calculated structure functions for 

eight different lags.  Two decades later, increased processor power and memory size allowed Snyder et al., (1996) to 

calculate structure functions on 8 Hz data for lags from 0.25-1.0 seconds, but they were unable to resolve fluxes 

accurately at some measurement heights and surface roughness conditions.  Later it was realized that determining 250 

the contributions from “imperfect ramp geometry” would require more thorough examination of ramp durations 

(Chen et al., 1997a; Paw U et al., 2005)(Chen et al., 1997; Paw U et al., 2005a).   

For thethis analysis of minimum SR averaging periods, data was used from several field experiments.  The data 

records used collected ranged in length over from long measurement periods (8 -24 hours) to over two months, with 

at sampling frequencies of 10Hz, 20Hz, and up to 100Hz (fastest frequency for short duration trials only).  Initially, 255 

Computation computation of structure functions with the first method (series of nested for loops) for 3 minute 

periods with lags up to 10 seconds required an average 39 seconds computation timeon average with a series of 

nested loops.  In contrast, using 2-d the convolution method, accomplishes this same calculation was accomplished 



 

in 7.6 seconds,, an ~80% reduction in execution time.  The function strfnc.m (provided in Supplementary Materials, 

S1) also simultaneously time stamps the averaging period, finds the sign of S
3
(r) (used to find flux direction), and 260 

indexes the maximized value of S
3
(r)/r, preparing the data for subsequent steps in determining flux.  Using 100 Hz 

FWT data increased the processing time using the convolution method to 38.4 seconds.  , demonstrating that tThe 

loop based method would be too slow fo unable tor processing 100 Hz data with large data sets or in real time 

applications, and would require long calculation time when using large continuous data records. 

For a total of N sample lags, Two two dimensional convolution is accomplished performed with using a filter 265 

matrix, which is composed ofithwith each N column vectors of length N+1: s as  [1 -1 0 0...0], [1 0 -1 0 ...0],...[1 0 0 

0.... -1]0 0 ... -1 ...]. ,  eEach column in the filter representsing amatrix representing  a time sample lag increasing 

distance.  When the filter matrix is convolved with time series data, The the resulting column matrix is composed 

ofvectors of the resulting matrix are  difference vectorsvectors, each representing the difference of the element-wise 

differences (T(i+r) - T(i)) as in Eq. 1; these vectors correspond to each sample lag in the at each sequential lag for r 270 

(Equation 1)filter.  Trials of 10Hz data using Matlab's Profiler showsed that calculation efficiency is not accrued 

directly from convolution, but by changing the order of implementation when multiplying large arrays (for 

exponentials) and summing.  In the looping method, the 2,3, and 5th exponentiation (n = 2,3,5) is conducted on the 

difference vectors for each lag separately.  The Exponentiation is implemented accelerated exponentiation in the 

convolution method viain strfnc.m is possible by using matrix multiplication of large matriceson the convolved 275 

matrix, which and is possible faster once the data is reordered bydue to compact memory allocation of the FFT 2-d 

convolution.  The resulting efficiency (calculation time for a given data size) is notdoesn't dependant on total data 

sizesize, but is strongly dependent on the length of the averaging period used to calculate fluxpartition the data 

(Figure 5) (Figure 3).  In other words, the choice of averaging period length is the most significant factor in 

computation time of the maximized structure functions used to determine ramp geometry.  Computation time 280 

increases rapidly for periods shorter than 5 minutes.  With the ultimate goal of investigating the shortest robust SR 

measurement periodThe length of averaging time, this proves isto be a critical improvementconsideration initerative 

SR calculations used to developing a rapide SR measurement method. 

In most SR studies to determine flux, a lag time is assigned to the structure function calculation, with only a few 

authors allowing for a procedure to maximize the ratio S
3
(r)/r (Shapland et al., 2014).  Yet lag time has been 285 



 

identified as a critical parameter in the linear calibration of ramp geometry to calculate flux (French et al., 2012).  

 

Figure 3: Ten iterations of the structure function calculations using a range of averaging periods. 

Because the ideal The SR calculation must identifies the lag which maximizes the ratio S
3
(r)/r, the strfnc.m 

procedure calculates also be scripted to evaluate structure functions for a continuous range of lags up to some 290 

maximuman assigned maximum lag number of lagged samples.  Based on repeated trials over a broad range of 

stability conditions, A a short maximum lag (3-5 seconds) may beis usually adequate under some atmospheric 

unstabileity conditions.  Following the model of parcel residence time, this is likely a result of  in which buoyancy 

drives and higher temperature flux magnitude via leading to rapidly transporting coherent structuresshorter ramp 

duration.  Under stable conditions, though, longer lags are required to may be important to detect the true maximum 295 

of the ratio S
3
(r)/r, indicating that thee largest flux contributing time scale contributing to flux increases.   To eTo 

evaluate the sensitivity to the maximum calculated maximum lag, the total run time wasstructure functions were 

calculated iteratively,ted with  varying the averaging periods and maximum tested lag times (Figure 46).  For 

allRegardless of the length of the assigned range of likely maximum lagss, the convolution method outpaced was 

between 4 and 14 times faster than the loop method by a factor of 4-14, with short averaging periods again the 300 

largest factor in the difference in total run timebetween the two methods.  Using the 2-d convolution, automated 

selection of a lag in a continuous time series is feasible. 

 

 



 

Figure 4: The performance gains using convolution are more significant for short averaging periods, regardless of 305 

maximum lag used in calculating structure functions. 

Example Method 2.3:  Cardano’s method for depressed cubic polynomials 

For the idealized SR method, the calculated structure functions aret calculated retained (for each averaging period) 

at fromfor some the lag which maximizes the ratio S
3
(r)/r - this lag is associated with the theoretical maximum 

contributing scale of flux.  The resulting values are used as coefficients in a cubic polynomial, the root of which is 310 

the ramp amplitude (A) used to calculate flux: 

5
3 2 3

3

S (r)
A 10S (r) A 10S (r) 0

S (r)

 
    
 

  Equation (2) 

The magnitude of the real root (of 3 possible roots) is regarded as the corresponding solution foris the characteristic  

ramp amplitude of the scalar trace (Spano et al., 1997)(Spano et al., 1997).  The Matlab root finding algorithm 

computes eigenvalues of a companion matrix to approximate the solution to a n
th
 order polynomial, regarding the 

input function as a vector with n+1 elements (roots.m documentation
2
).  Consequently, this function cannot be 315 

executed directly on an array.  On the other hand, The an algebraic solution method can be applied to vectors.  An 

appropriate method for this type of cubic polynomial was proposed found by Gerolamo Cardano in the 1545 Ars 

Magna. Cardano's solution for “depressed” cubics (with no squared term), on the other hand, can be applied to 

vectors.  Cardano’s solution is found by substituting A with (m
1/3

 + n
1/3

) into the abbreviated equation A
3
+pA+q=0. 

Expanding terms and using the quadratic equation yields an exact (complex) solution: 320 

       
1 1

3 32 3 2 3
q q p q q p

2 2 3 2 2 3
A

   
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   

  Equation (3) 

where p and q are the coefficients of thein the depressed cubic and derived from the structure functions (Edwards 

and Beaver, 2015)(Edwards and Beaver, 2015).  The function cardanos.m was adapted from a function by Bruno 

Luong
3
, in a reduced form for the real valued cases used to implement the SR method.  The function output was 

verified against the Matlab function roots.m for polynomials with both positive and negative real valued inputs 

(imaginary inputs are applicable to ramp parameters). Solution for the real roots in this manner expedites rapid SR 325 

flux calculatidetermination ofons, flux magnitude and and facilitates the determination of flux direction.  The The 

decreased time of implementation is trivial in this example; rather,algebraic root finding method on arrays 

dramatically simplifies and speeds iterative application of the SR method by operating directly on arrays. 

Solving for the roots of this function yields a single, predominant ramp amplitude from a given temperature trace 

(with units of C or K).  In addition to ramp amplitude, the time scale or ramp duration must also be determined.   330 

(Van Atta, 1977) suggested that ramp time τ should be related linearly to amplitude A, and proposed: 
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3
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3

3

A r

S (r)


   (4) 

In practice, determination of ramp time τ from A using this equation requires an empirical calibration; this 

calibration has been shown to be related to surface conditions and instrumentation (Chen et al., 1997b; Shapland et 

al., 2014).  Ongoing work using replicate measurements at multiple heights (Castellvi, 2004) and frequency response 

calibration (Shapland et al., 2014; Suvočarev et al., 2014) have begun to resolve the causes of variability in this 335 

parameter.  In this study, it was found that the ratio in equation 4 remains essentially constant for a given surface 

roughness condition, allowing determination of τ algebraically.  Automated computation of equation 2 using the 

exact solution facilitates rapid evaluation of the ramp geometry, and determining flux magnitude from ramp 

geometry is a relatively simple matter of linear scaling when calibrating to a control measure such as eddy 

covariance. 340 

 

3 Conclusions 

As with other methods forto measuringe flux from the surfaceflow parameters such as flux and turbulent, analytic 

solutions do not always translate easily into straightforward numerical computation, especially when working with 

longlarge data records or when calculating in real-time of high frequency data.  In applied research, Despite 345 

advances in data storage, memory size, and processor speed, the basiccustom programming methods usedalgorithms 

for analysis are often often developed by individual researchers, requiring, special who often do not have training in 

programming, significant time investment, or and the motivation to develop use sophisticated programming 

methodstechniques that fully utilize available memory and processing power.  Efforts to standardize the eddy 

covariance method (Aubinet et al., 2012; Baldocchi, 2014)(Aubinet et al., 2012; Baldocchi, 2014) and data quality 350 

control (Allen et al., 2011; Foken et al., 2012)(Allen et al., 2011; Foken et al., 2012) have not yet extended been 

similarly applied to the SR method, although substantial work has been made to validate calibrationand unify SR 

methods  and field methods (Castellví, 2012; Chen et al., 1997b; French et al., 2012; Suvočarev et al., 

2014)(Castellví, 2012; Paw U et al., 2005b; Shapland et al., 2014).  By appropriating methods common to other 

disciplines such asin signal processing, and by sharing open source tools using online forums such as 355 

stackexchange.com
4
, more sophisticated approaches can be implemented more broadly.  One goal of these open 

source efforts should be toIn particular,  reducinge the computational overhead of calculating flux enables, so as to 

facilitate the broadest implementation and robust verification of the SR method in applied contexts.  Rapid 

algorithms allow for automated assignment of lag time, rather than fixed assignment, and allow flux determinations 

while varying the length of flux averaging periods.  These procedures allow for comprehensive analysis of both the 360 

physical time scales of surfaces flux, and the sensor response and uncertainty associated with the SR derived flux.  

Calibration of despiking criteria can be implemented quickly at low computational cost.  In summary, efficient 

methods for computing SR flux allow implementation in novel deployments such as low cost, continuous 
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monitoring, and on moving platforms.  Future work remains to transfer efficient methods from the Matlab 

development platform to open source implementations, and enable hardware to perform these techniques directly for 365 

real-time applications.  Reducing the cost and power requirement of the required data loggers, computers, and 

telemetry, will facilitate the extensive deployment of SR sensors to aid in describing the heterogeneity of flux across 

the landscape. 

4 Data Availability 

All data used in this analysis and scripts implementing the algorithms described above are available online at 370 

http://hdl.handle.net/1957/60599.  This supplementary materials is also listed with DOI: 10.7267/N9X34VDS 

Abbreviated scripts for the three example methods may be found in the supplemental materials.  Requests for phase-

space despiking methods can be directed to the corresponding author. 

 

References 375 

Allen, R., Pereira, L. S., Howell, T. A. and Jensen, M. E.: Evapotranspiration information reporting: I. Factors 

governing measurement accuracy, Agricultural Water Management, 98(6), 899–920, 2011. 

Altman, Y.: Accelerating Matlab Performance, CRC Press., 2015. 

Antonia, R. A. and Van Atta, C. W.: Structure functions of temperature fluctuations in turbulent shear flows, Journal 

of Fluid Mechanics, 84(03), 561–580, 1978. 380 

Aubinet, M., Vesala, T. and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, 

Springer Science & Business Media., 2012. 

Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and 

future of the eddy covariance method, Global change biology, 20(12), 3600–3609, 2014. 

Castellvi, F.: Combining surface renewal analysis and similarity theory: a new approach for estimating sensible heat 385 

flux, Water resources research, 40(5), 2004. 

Castellví, F.: Fetch requirements using surface renewal analysis for estimating scalar surface fluxes from 

measurements in the inertial sublayer, Agricultural and Forest Meteorology, 152, 233–239, 

doi:10.1016/j.agrformet.2011.10.004, 2012. 

Castellví, F., Perez, P. J. and Ibañez, M.: A method based on high‐frequency temperature measurements to estimate 390 

the sensible heat flux avoiding the height dependence, Water Resources Research, 38(6), 20-1-20–9, 2002. 

Chen, W., Novak, M., Black, T. A. and Lee, X.: Coherent eddies and temperature structure functions for three 

contrasting surfaces. Part I: Ramp model with finite microfront time, Boundary-Layer Meteorology, 84(1), 99–124, 

doi:10.1023/A:1000338817250, 1997a. 

Chen, W., Novak, M., Black, T. A. and Lee, X.: Coherent eddies and temperature structure functions for three 395 

contrasting surfaces. Part II: Renewal model for sensible heat flux, Boundary-Layer Meteorology, 84(1), 125–147, 

doi:10.1023/A:1000342918158, 1997b. 

Edwards, A. C. and Beaver, J. M.: Investigating Cardano’s Irreducible Case, 2015 NCUR, 2015. 

Foken, T., Leuning, R., Oncley, S. R., Mauder, M. and Aubinet, M.: Corrections and data quality control, in Eddy 

Covariance, pp. 85–131, Springer., 2012. 400 

http://hdl.handle.net/1957/60599


 

French, A. N., Alfieri, J. G., Kustas, W. P., Prueger, J. H., Hipps, L. E., Chávez, J. L., Evett, S. R., Howell, T. A., 

Gowda, P. H., Hunsaker, D. J. and Thorp, K. R.: Estimation of surface energy fluxes using surface renewal and flux 

variance techniques over an advective irrigated agricultural site, Advances in Water Resources, 50, 91–105, 

doi:10.1016/j.advwatres.2012.07.007, 2012. 

Gao, W. and Li, B. L.: Wavelet analysis of coherent structures at the atmosphere-forest interface, Journal of Applied 405 

Meteorology, 32(11), 1717–1725, 1993. 

Gao, W., Shaw, R. H. and Paw U, K. T.: Observation of organized structure in turbulent flow within and above a 

forest canopy, Boundary-Layer Meteorology, 47(1), 349–377, 1989. 

Göckede, M., Rebmann, C. and Foken, T.: A combination of quality assessment tools for eddy covariance 

measurements with footprint modelling for the characterisation of complex sites, Agricultural and Forest 410 

Meteorology, 127(3), 175–188, 2004. 

Goring, D. G. and Nikora, V. I.: Despiking Acoustic Doppler Velocimeter Data, Journal of Hydraulic Engineering, 

128(1), 117–126, doi:10.1061/(ASCE)0733-9429(2002)128:1(117), 2002. 

Højstrup, J.: A statistical data screening procedure, Measurement Science and Technology, 4(2), 153, 1993. 

Katul, G., Hsieh, C.-I., Oren, R., Ellsworth, D. and Phillips, N.: Latent and sensible heat flux predictions from a 415 

uniform pine forest using surface renewal and flux variance methods, Boundary-Layer Meteorology, 80(3), 249–

282, 1996. 

Katul, G., Porporato, A., Cava, D. and Siqueira, M.: An analysis of intermittency, scaling, and surface renewal in 

atmospheric surface layer turbulence, Physica D: Nonlinear Phenomena, 215(2), 117–126, 2006. 

Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J. and Hipps, L.: On coherent structures in 420 

turbulence above and within agricultural plant canopies, Agricultural and Forest Meteorology, 61(1–2), 55–68, 

doi:10.1016/0168-1923(92)90025-Y, 1992. 

Paw U, K. T., Qiu, J., Su, H.-B., Watanabe, T. and Brunet, Y.: Surface renewal analysis: a new method to obtain 

scalar fluxes, Agricultural and Forest Meteorology, 74(1–2), 119–137, doi:10.1016/0168-1923(94)02182-J, 1995. 

Paw U, K. T., Snyder, R. L., Spano, D. and Su, H.-B.: Surface Renewal Estimates of Scalar Exchange, in 425 

Micrometeorology in Agricultural Systems, pp. 455–483, American Society of Agronomy, Crop Science Society of 

America, and Soil Science Society of America, Madison, WI. [online] Available from: 

http://dx.doi.org/10.2134/agronmonogr47.c20, 2005. 

Press, W. H., Ed.: Numerical recipes: the art of scientific computing, 3rd ed., Cambridge University Press, 

Cambridge, UK ; New York., 2007. 430 

Rebmann, C., Kolle, O., Heinesch, B., Queck, R., Ibrom, A. and Aubinet, M.: Data acquisition and flux calculations, 

in Eddy Covariance, pp. 59–83, Springer., 2012. 

Shapland, T. M., McElrone, A. J., Snyder, R. L. and Paw U, K. T.: Structure Function Analysis of Two-Scale Scalar 

Ramps. Part I: Theory and Modelling, Boundary-Layer Meteorol, 145(1), 5–25, doi:10.1007/s10546-012-9742-5, 

2012a. 435 

Shapland, T. M., McElrone, A. J., Snyder, R. L. and Paw U, K. T.: Structure Function Analysis of Two-Scale Scalar 

Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation, Boundary-Layer Meteorol, 145(1), 27–

44, doi:10.1007/s10546-012-9740-7, 2012b. 

Shapland, T. M., Snyder, R. L., Paw U, K. T. and McElrone, A. J.: Thermocouple frequency response compensation 

leads to convergence of the surface renewal alpha calibration, Agricultural and Forest Meteorology, 189–190, 36–440 

47, doi:10.1016/j.agrformet.2014.01.008, 2014. 

Shaw, R. H. and Gao, W.: Detection of temperature ramps and flow structures at a deciduous forest site, 

Agricultural and forest meteorology, 47(2), 123–138, 1989. 

Snyder, R. L., Spano, D. and Pawu, K. T.: Surface renewal analysis for sensible and latent heat flux density, 

Boundary-Layer Meteorology, 77(3–4), 249–266, 1996. 445 



 

Snyder, R. L., Spano, D., Duce, P., Paw U, K. T. and Rivera, M.: Surface renewal estimation of pasture 

evapotranspiration, Journal of Irrigation and Drainage Engineering, 134(6), 716–721, 2008. 

Spano, D., Snyder, R. L., Duce, P. and Paw U, K. T.: Surface renewal analysis for sensible heat flux density using 

structure functions, Agricultural and Forest Meteorology, 86(3), 259–271, 1997. 

Spano, D., Snyder, R. L. and Duce, P.: Estimating sensible and latent heat flux densities from grapevine canopies 450 

using surface renewal, Agricultural and Forest Meteorology, 104(3), 171–183, 2000. 

Starkenburg, D., Metzger, S., Fochesatto, G. J., Alfieri, J. G., Gens, R., Prakash, A. and Cristóbal, J.: Assessment of 

Despiking Methods for Turbulence Data in Micrometeorology, Journal of Atmospheric and Oceanic Technology, 

33(9), 2001–2013, doi:10.1175/JTECH-D-15-0154.1, 2016. 

Stull, R. B.: An introduction to boundary layer meteorology, Springer., 1988. 455 

Suvočarev, K., Shapland, T. M., Snyder, R. L. and Martínez-Cob, A.: Surface renewal performance to independently 

estimate sensible and latent heat fluxes in heterogeneous crop surfaces, Journal of Hydrology, 509, 83–93, 

doi:10.1016/j.jhydrol.2013.11.025, 2014. 

The Mathworks Inc.: Matlab R2016b, The MathWorks Inc., Natick, MA., 2016. 

Van Atta, C. W.: Effect of coherent structures on structure functions of temperature in the atmospheric boundary 460 

layer, Archiwum Mechaniki Stosowanej, 29(1), 161–171, 1977. 

Van Atta, C. W. and Park, J.: Statistical self-similarity and inertial subrange turbulence, in Statistical Models and 

Turbulence, pp. 402–426, Springer., 1972. 

Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, Journal of 

Atmospheric and Oceanic Technology, 14(3), 512–526, 1997. 465 

  



 

 

Figures 

Allen, R., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing 

measurement accuracy. Agricultural Water Management 98, 899–920. 

Altman, Y., 2015. Accelerating Matlab Performance. CRC Press. 

Antonia, R.A., Van Atta, C.W., 1978. Structure functions of temperature fluctuations in turbulent shear flows. Journal of 

Fluid Mechanics 84, 561–580. 

Aubinet, M., Vesala, T., Papale, D., 2012. Eddy covariance: a practical guide to measurement and data analysis. Springer 

Science & Business Media. 

Baldocchi, D., 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and 

future of the eddy covariance method. Global change biology 20, 3600–3609. 

Castellví, F., 2012. Fetch requirements using surface renewal analysis for estimating scalar surface fluxes from 

measurements in the inertial sublayer. Agricultural and Forest Meteorology 152, 233–239. 

doi:10.1016/j.agrformet.2011.10.004 

Chen, W., Novak, M., Black, T.A., Lee, X., 1997. Coherent eddies and temperature structure functions for three 

contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorology 84, 99–124. 

doi:10.1023/A:1000338817250 

Edwards, A.C., Beaver, J.M., 2015. Investigating Cardano’s Irreducible Case. 2015 NCUR. 

Foken, T., Leuning, R., Oncley, S.R., Mauder, M., Aubinet, M., 2012. Corrections and data quality control, in: Eddy 

Covariance. Springer, pp. 85–131. 

Gao, W., Li, B.L., 1993. Wavelet analysis of coherent structures at the atmosphere-forest interface. Journal of Applied 

Meteorology 32, 1717–1725. 

Göckede, M., Rebmann, C., Foken, T., 2004. A combination of quality assessment tools for eddy covariance 

measurements with footprint modelling for the characterisation of complex sites. Agricultural and Forest Meteorology 

127, 175–188. 

Højstrup, J., 1993. A statistical data screening procedure. Measurement Science and Technology 4, 153. 

Katul, G., Hsieh, C.-I., Oren, R., Ellsworth, D., Phillips, N., 1996. Latent and sensible heat flux predictions from a 

uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorology 80, 249–282. 

Paw U, K.T., Brunet, Y., Collineau, S., Shaw, R.H., Maitani, T., Qiu, J., Hipps, L., 1992. On coherent structures in 

turbulence above and within agricultural plant canopies. Agricultural and Forest Meteorology 61, 55–68. 

doi:10.1016/0168-1923(92)90025-Y 

Paw U, K.T., Qiu, J., Su, H.-B., Watanabe, T., Brunet, Y., 1995. Surface renewal analysis: a new method to obtain scalar 

fluxes. Agricultural and Forest Meteorology 74, 119–137. doi:10.1016/0168-1923(94)02182-J 

Paw U, K.T., Snyder, R.L., Spano, D., Su, H.-B., 2005a. Surface Renewal Estimates of Scalar Exchange, in: 

Micrometeorology in Agricultural Systems, Agronomy Monograph. American Society of Agronomy, Crop Science Society 

of America, and Soil Science Society of America, Madison, WI, pp. 455–483. 

Paw U, K.T., Snyder, R.L., Spano, D., Su, H.-B., 2005b. Surface Renewal Estimates of Scalar Exchange, in: 

Micrometeorology in Agricultural Systems. American Society of Agronomy, Crop Science Society of America, and Soil 

Science Society of America, Madison, WI, pp. 455–483. 

Press, W.H. (Ed.), 2007. Numerical recipes: the art of scientific computing, 3rd ed. ed. Cambridge University Press, 

Cambridge, UK ; New York. 



 

Rebmann, C., Kolle, O., Heinesch, B., Queck, R., Ibrom, A., Aubinet, M., 2012. Data acquisition and flux calculations, in: 

Eddy Covariance. Springer, pp. 59–83. 

Shapland, T.M., Snyder, R.L., Paw U, K.T., McElrone, A.J., 2014. Thermocouple frequency response compensation leads 

to convergence of the surface renewal alpha calibration. Agricultural and Forest Meteorology 189–190, 36–47. 

doi:10.1016/j.agrformet.2014.01.008 

Shaw, R.H., Gao, W., 1989. Detection of temperature ramps and flow structures at a deciduous forest site. Agricultural 

and forest meteorology 47, 123–138. 

Snyder, R.L., Spano, D., Duce, P., Paw U, K.T., Rivera, M., 2008. Surface renewal estimation of pasture 

evapotranspiration. Journal of Irrigation and Drainage Engineering 134, 716–721. 

Snyder, R.L., Spano, D., Pawu, K.T., 1996. Surface renewal analysis for sensible and latent heat flux density. Boundary-

Layer Meteorology 77, 249–266. 

Spano, D., Snyder, R.L., Duce, P., 2000. Estimating sensible and latent heat flux densities from grapevine canopies using 

surface renewal. Agricultural and Forest Meteorology 104, 171–183. 

Spano, D., Snyder, R.L., Duce, P., Paw U, K.T., 1997. Surface renewal analysis for sensible heat flux density using 

structure functions. Agricultural and Forest Meteorology 86, 259–271. 

Stull, R.B., 1988. An introduction to boundary layer meteorology. Springer. 

The Mathworks Inc., 2016. Matlab R2016b. The MathWorks Inc., Natick, MA. 

Van Atta, C.W., 1977a. Effect of coherent structures on structure functions of temperature in the atmospheric boundary 

layer. Archiwum Mechaniki Stosowanej 29, 161–171. 

Van Atta, C.W., 1977b. Effect of coherent structures on structure functions of temperature in the atmospheric boundary 

layer. Archiwum Mechaniki Stosowanej 29, 161–171. 

Van Atta, C.W., Park, J., 1972. Statistical self-similarity and inertial subrange turbulence, in: Statistical Models and 

Turbulence. Springer, pp. 402–426. 

Vickers, D., Mahrt, L., 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of 

Atmospheric and Oceanic Technology 14, 512–526. 

Allen, R., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing 

measurement accuracy. Agricultural Water Management 98, 899–920. 

Altman, Y., 2015. Accelerating Matlab Performance. CRC Press. 

Antonia, R.A., Van Atta, C.W., 1978. Structure functions of temperature fluctuations in turbulent shear flows. Journal of 

Fluid Mechanics 84, 561–580. 

Aubinet, M., Vesala, T., Papale, D., 2012. Eddy covariance: a practical guide to measurement and data analysis. Springer 

Science & Business Media. 

Baldocchi, D., 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and 

future of the eddy covariance method. Global change biology 20, 3600–3609. 

Castellví, F., 2012. Fetch requirements using surface renewal analysis for estimating scalar surface fluxes from 

measurements in the inertial sublayer. Agricultural and Forest Meteorology 152, 233–239. 

doi:10.1016/j.agrformet.2011.10.004 

Chen, W., Novak, M., Black, T.A., Lee, X., 1997. Coherent eddies and temperature structure functions for three 

contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorology 84, 99–124. 

doi:10.1023/A:1000338817250 

Edwards, A.C., Beaver, J.M., 2015. Investigating Cardano’s Irreducible Case. 2015 NCUR. 



 

Foken, T., Leuning, R., Oncley, S.R., Mauder, M., Aubinet, M., 2012. Corrections and data quality control, in: Eddy 

Covariance. Springer, pp. 85–131. 

Gao, W., Li, B.L., 1993. Wavelet analysis of coherent structures at the atmosphere-forest interface. Journal of Applied 

Meteorology 32, 1717–1725. 

Göckede, M., Rebmann, C., Foken, T., 2004. A combination of quality assessment tools for eddy covariance 

measurements with footprint modelling for the characterisation of complex sites. Agricultural and Forest Meteorology 

127, 175–188. 

Hojstrup, J., 1993. A statistical data screening procedure. Measurement Science and Technology 4, 153. 

Katul, G., Hsieh, C.-I., Oren, R., Ellsworth, D., Phillips, N., 1996. Latent and sensible heat flux predictions from a 

uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorology 80, 249–282. 

Paw U, K.T., Brunet, Y., Collineau, S., Shaw, R.H., Maitani, T., Qiu, J., Hipps, L., 1992. On coherent structures in 

turbulence above and within agricultural plant canopies. Agricultural and Forest Meteorology 61, 55–68. 

doi:10.1016/0168-1923(92)90025-Y 

Paw U, K.T., Qiu, J., Su, H.-B., Watanabe, T., Brunet, Y., 1995. Surface renewal analysis: a new method to obtain scalar 

fluxes. Agricultural and Forest Meteorology 74, 119–137. doi:10.1016/0168-1923(94)02182-J 

Paw U, K.T., Snyder, R.L., Spano, D., Su, H.-B., 2005a. Surface Renewal Estimates of Scalar Exchange, in: 

Micrometeorology in Agricultural Systems, Agronomy Monograph. American Society of Agronomy, Crop Science Society 

of America, and Soil Science Society of America, Madison, WI, pp. 455–483. 

Paw U, K.T., Snyder, R.L., Spano, D., Su, H.-B., 2005b. Surface Renewal Estimates of Scalar Exchange, in: 

Micrometeorology in Agricultural Systems. American Society of Agronomy, Crop Science Society of America, and Soil 

Science Society of America, Madison, WI, pp. 455–483. 

Press, W.H. (Ed.), 2007. Numerical recipes: the art of scientific computing, 3rd ed. ed. Cambridge University Press, 

Cambridge, UK ; New York. 

Rebmann, C., Kolle, O., Heinesch, B., Queck, R., Ibrom, A., Aubinet, M., 2012. Data acquisition and flux calculations, in: 

Eddy Covariance. Springer, pp. 59–83. 

Shapland, T.M., Snyder, R.L., Paw U, K.T., McElrone, A.J., 2014. Thermocouple frequency response compensation leads 

to convergence of the surface renewal alpha calibration. Agricultural and Forest Meteorology 189–190, 36–47. 

doi:10.1016/j.agrformet.2014.01.008 

Shaw, R.H., Gao, W., 1989. Detection of temperature ramps and flow structures at a deciduous forest site. Agricultural 

and forest meteorology 47, 123–138. 

Snyder, R.L., Spano, D., Pawu, K.T., 1996. Surface renewal analysis for sensible and latent heat flux density. Boundary-

Layer Meteorology 77, 249–266. 

Spano, D., Snyder, R.L., Duce, P., Paw U, K.T., 1997. Surface renewal analysis for sensible heat flux density using 

structure functions. Agricultural and Forest Meteorology 86, 259–271. 

Stull, R.B., 1988. An introduction to boundary layer meteorology. Springer. 

The Mathworks Inc., 2016. Matlab R2016b. The MathWorks Inc., Natick, MA. 

Van Atta, C.W., 1977. Effect of coherent structures on structure functions of temperature in the atmospheric boundary 

layer. Archiwum Mechaniki Stosowanej 29, 161–171. 

Van Atta, C.W., Park, J., 1972. Statistical self-similarity and inertial subrange turbulence, in: Statistical Models and 

Turbulence. Springer, pp. 402–426. 

Vickers, D., Mahrt, L., 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of 

Atmospheric and Oceanic Technology 14, 512–526. 

 



 

19 

  



 

20 

 

Figure 1: The total computation time is the sum of CPU time spent on all calculation threads.  Marker is the mean run 

time for multiple runs, which varied from 30 runs (15min - 4h data) to 10 runs (8, 12, 24 h).  48h calculation is 

represented by one run only. Error bars represent one standard deviation of all runs. 

 

 

Figure 2: Fast calculation of larger data sets is due to implicit parallel processing via the FFT, which is readily performed 

by multiple simultaneous threads.  The efficiency of parallel processing is shown by a  lower ratio of Run Time to Total 

Thread Time. 
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Figure 3: Phase space diagram showing moving window statistics of IRGA signal (17 days of 20 Hz data) 

 

 

Figure 4: Time series showing data removed as spikes (bolded) from phase space criteria in Figure 3. 
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Figure 5: Ten iterations of the structure function calculations using a range of averaging periods. 

 

 

Figure 6: The performance gains using convolution are more significant for short averaging periods, regardless of 

maximum lag used in calculating structure functions. 
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Supplementary Materials 

S.1 Despiking method using convolution  (despike.m) 

function [data_ds, ns, index] = despike(data, nw, sig, buffer, varargin) 1 

 2 

% DESPIKE filters out spikes from a data vector using a Gaussian convolution. 3 

%   INPUTS: data: nx1 vector 4 

%           nw: sample size of “sliding window” used for convolution 5 

%           sig: # of standard deviations considered significant (& removed) 6 

%           buff: number of adjacent samples to remove 7 

%           varargin{1}: 'interp' option interpolates over nans (cubic) 8 

%           varargin{2}: timestamps for data 9 

%           varargin{3}: (optional) passes interpolation method ('cubic', etc.) 10 

%                        w/o 3rd varargin, reverts to default 'linear' 11 

%  OUTPUTS: data_ds: despiked data 12 

%           ns: number of (removed) spikes 13 

%           index: logical vector with TRUE = spike 14 

% REQUIRES: setnan.m (function that sets flagged values to NaN for index with buffer) 15 

% 16 

% Jason Kelley NEWAg Lab OSU 17 

% Written 29 FEB 2016 18 

% Last modified 27JUL2016 (Jewell) 19 

 20 

% check for pre-existing non-number points (errors) and interpolate during despiking  21 

nn = isnan(data); 22 

xs = 1:length(data); 23 

if nnz(isnan(data))>0 24 

    data = interp1(xs(~nn),data(~nn),xs,'nearest')'; 25 

end 26 

 27 

w = gausswin(nw,1); % Matlab function generates Gaussian filter 28 

sw = sum(w);                    % total area under window function 29 

w = w./sw;                      % normalize window 30 

 31 

filter = conv(data,w,'same');   % filtered data using _convolution_ 32 

 33 

ii = true(length(data),1);      % eliminate edge bias: index to original data 34 

    hw = ceil(length(w)/2);  % data to ignore is 50% of filter window size 35 

    ii(1:hw) = false; 36 

    ii(end-hw:end) = false; 37 

 38 

mstd = mw_std(data,nw).*sig;    % significance level in terms of standard deviation  39 

fluc = zeros(length(data),1);   % normalize fluctuations by absolute value 40 

% fluc(ii) = (data(ii)-filter(ii))./data(ii); % alternate def for significance  41 



 

S-2 

fluc(ii) = data(ii)-filter(ii); % spikes are fluctuations exceeding signif. threshold 42 

index = abs(fluc)>mstd;         % index the spikes 43 

ns = nnz(index); % count the spikes 44 

 45 

data_ds = setnan(data,index,buffer); % set spikes and adjacent values to NaN 46 

if nnz(nn)>0                    % reset pre-existing NaNs in data vector 47 

    data_ds(nn) = NaN; 48 

    data(nn) = NaN; 49 

end 50 

fprintf('  %i spikes removed ; ',ns) 51 

fprintf('%3.3f%% of data NaN''ed\n',(sum(isnan(data_ds))/length(data))*100) 52 

 53 

% optional plotting for visual inspection (not included here for brevity) 54 

 55 

% optional interpolation between nan'd points using timestamp for ordinates 56 

 if nargin > 4 && strcmp(varargin{1},'interp') 57 

     ind = isnan(data_ds); 58 

     switch nargin 59 

        case 5 60 

            time = 1:length(data); 61 

        case 6; 62 

            time = varargin{2}; 63 

     end % switch 64 

     if nargin == 7 65 

           data_ds(ind) = interp1(time(~ind),data_ds(~ind),time(ind),varargin{3}); 66 

     else 67 

           data_ds(ind) = interp1(time(~ind),data_ds(~ind),time(ind)); 68 

     end 69 

 end % end interp option 70 

 71 

end % end main despike function 72 

 73 

% sub function for moving window standard deviation 74 

    function mstd = mw_std(signal,w) 75 

        % adapted from http://matlabtricks.com/post-20/ 76 

        % "calculate-standard-deviation-case-of-sliding-window" 77 

 78 

        N = length(signal); 79 

        n = conv(ones(N,1),ones(w,1),'same'); % counts no. elements in each window 80 

        s = conv(signal, ones(1, w), 'same'); % s vector 81 

        q = signal .^ 2; 82 

        q = conv(q, ones(1, w), 'same');     % q vector 83 

        mstd = (q - s.^2./n)./(n-1);           % variance of moving window 84 

        mstd = mstd.^0.5;                     % standard deviation 85 

    end % moving window mw_std sub-function 86 

 87 
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S.2 Structure function calculation using convolution (strfnc.m) 

function [S, max_i, fluxdir] = strfnc( trace, freq, maxlag ) 1 

%STRFNC Structure function calculation (following Van Atta, 1977) 2 

%   Last modified 09mar16 3 

% INPUTS 'trace' data to analyze (Nx1 vector array) 4 

%        'freq' sampling frequency (Hz) 5 

%        'maxlag' maximum lag time, (seconds) 6 

% OUTPUTS 'S' structure functions S(r)^n and lag r (in seconds) for rows 7 

%                only calculates 2nd 3rd 5th order to save memory, 8 

%                column order corresponds to SFs, also calculates -S^3(r)/r 9 

%                format: [r S^2(r) S^3(r) -S^3(r)/r S^5(r)] 10 

%        ‘max_i’ relative location (ieration) at which S^3(r)/r is maximum 11 

%        ‘fluxdir’ sign of S^3(r)/r, used to determine vertical flux direction 12 

  13 

    m = length(trace); 14 

 lags = 1:maxlag*freq; % vector of lags from 1 to maxlag 15 

   rn = length(lags); 16 

    S = zeros(rn,5);  % initialize array S to store str funcs 17 

  18 

% method by nested iterative loops -------------------------------------------- 19 

 for j = lags 20 

  r = lags(j); early  = trace(1:end-r);     later  = trace(r+1:end); 21 

  diffs  = later-early; 22 

  for i = [2 3 5] 23 

   S(j,i) = sum((diffs).^i)/(m-r); 24 

      end %structure functions at lag j 25 

 end % lags j 26 

 S(:,6) = lags./freq; 27 

 28 

% method using convolution ---------------------------------------------------- 29 

filt = [ones(1,rn); -eye(rn)];  % singleton comparators at 1:rn lags  e.g. [1 0 0 -1] 30 

  cT = conv2(trace,filt);       % conv filter with trace to get all lags 31 

  cT = cT(rn+1:end-rn,:);       % trim edges.  'same' does not work as with conv1.m 32 

cTp(:,:,1) = power(cT,ones(m-rn,rn).*2);    % for second order SF 33 

cTp(:,:,2) = cTp(:,:,1).*cT;                % third order SF 34 

cTp(:,:,3) = cTp(:,:,1).*cTp(:,:,2);        % fifth order SF 35 

         w = (m-rn-(1:rn))-1;               % unbiased weighting vector 1/(N-1) 36 

    S(:,2) = sum(cTp(:,:,1),1)./w;          % column order corresponds to SF order 37 

    S(:,3) = sum(cTp(:,:,2),1)./w;          % i.e. 3rd order SF is S(:,3) 38 

    S(:,5) = sum(cTp(:,:,3),1)./w; 39 

    S(:,1) = lags./freq;                    % sample N -> dt 40 

    S(:,4) = -S(:,3)./S(:,1);               % ratio used to detect lag max’ing S3r 41 

% identify time lag at which S_3(r)/r is maximized, flux direction by +/- S^3(r)/r 42 

  fluxdir = sign(nanmean(S(:,4),1)); 43 

[~,max_i] = max(fluxdir.*(S(:,4))); 44 

 45 

end %function 46 
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S.3 Cardanos Method for roots of depressed cubic polynomial (cardanos.m) 

function [REALrts, ALLrts] = cardanos(p,q) 1 

% CARDANOS(p,q) root finding algorithm for depressed cubic polynomial with real 2 

valued p and q.  This has reduced functionality of CardanRoots.m for limited 3 

cases required for the surface renewal method.  Vectors p and q (from structure 4 

functions) used to determine ramp Amplitudes. polynomial should be of form A^3 + 5 

p*A + q = 0,  p & q real valued  6 

% RETURNS REALrts: only positive real valued solutions, complex and negative 7 

solutions replaced with NaN 8 

 ALLrts: includes positive and negatively valued and complex solutions  9 

% References 10 

%refs:<ahref="matlab:web('https://en.wikipedia.org/wiki/Cubic_function#Cardano.27s_me11 

thod','-browser')">Wiki</a> 12 

%<ahref="matlab:web('https://www.mathworks.com/matlabcentral/newsreader/view_thre13 

ad/165013?requestedDomain=www.mathworks.com','-browser')">Source Code</a> 14 

 15 

D = q.^2 + (4/27)*p.^3;  % the discriminant 16 

 Dneg = D<0; 17 

 Dpos = ~Dneg;  18 

        n = size(D,1); 19 

      rts = zeros(n, 3);  % initialization 20 

        a = -q(Dneg); b = sqrt(-D(Dneg)); 21 

       r2 = a.^2-D(Dneg); 22 

      rho = (4^(1/3))*exp(log(r2)/6); 23 

    theta = atan2(b,a)/3; 24 

        a = rho.*cos(theta);   b = rho.*sin(theta); 25 

       S1 = a; 26 

        x = (-0.5)*a;          y = (sqrt(3)/2)*b; 27 

       S2 = x-y;              S3 = x+y; 28 

  29 

rts(Dneg,1:3) = [S1 S2 S3]; 30 

        E = sqrt(D(Dpos)); 31 

       u3 = (-q(Dpos)+E)/2; 32 

       v3 = (-q(Dpos)-E)/2; 33 

        u = sign(u3).*exp(log(abs(u3))/3);   % Cubic roots of u3 and v3 34 

        v = sign(v3).*exp(log(abs(v3))/3); 35 

       S1 = u+v; 36 

        j = complex(-0.5,sqrt(3)/2);         % Complex solutions 37 

       j2 = complex(-0.5,-sqrt(3)/2); 38 

       S2 = j*u+j2*v;        S3 = conj(S2); 39 

 40 

rts(Dpos,1:3) = [S1 S2 S3]; 41 

ALLrts = rts; 42 

rts(imag(rts)~=0) = NaN; 43 

REALrts = rts; 44 

end  45 
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