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We thank the reviewers for their careful reading of the manuscript and many helpful comments. Our 

responses to specific comments can be found below. The reviewers’ comments are in italics, our 

responses are in plain font, and changes made to the manuscript are in quotation marks and indented. 

Page and line numbers refer to the original document. We have made significant changes to some of the 

figures and have included new performance metrics for the HDMR model.  However, none of these 

changes affect the conclusions in the manuscript. 

Response to Reviewer RC1: Anonymous Referee #1 

This is a rigorous attempt to illustrate the challenges and utility of deploying ‘low cost’ air quality 

sensors in a community. This is a field of growing interest – likely to become more crowded – with 

important implications across most spheres of atmospheric research. A particularly strength of this work 

is stressed by the authors in warranting caution in interpretation of data from these types of sensors. 

Specific comments: P1, Line 14: perhaps this is better phrased as ‘...address environmental justice issues 

related to air quality.’ P1, Line 22: ‘Protecting the air environment...’ isn’t really one of the most 

important PH challenges. Rather, it is protecting populations from degraded air quality exposure that is 

important. P1, Line 29: to presume the authors mean US dollars? P8, Line 18: extra word ‘in’ 

We have made the suggested changes to wording. 

P1, line 14: “…address environmental justice issues related to air quality.” 

P1, line 22: “Protecting populations from exposure to poor air quality is…” 

P1, line 29: “…thousands of US dollars.” 

P8, line 18: deleted “in” 

General Comments: One issue that is not discussed is the potential for lot variability in sensor 

performance within a single manufacturer. Whilst the authors provide adequate detail on which 

make/model has been chosen (P2, L33-40), do these EC sensors exhibit differences within a manufacturer 

production lot? Or are there differences across different lots? 

This is an important question, and one that lies at the heart of the low-cost sensor calibration challenge.  

Based on our empirical experience, we have observed significant (up to a factor of 2.5x) differences in 

sensitivity for batches of otherwise identical sensors.  In these cases, the sensors themselves have the 

same age (relative to manufacturer production and out-of-package timescales).  This evidence supports 

the need to build sensor-specific (and in the context of multi-pollutant measurement systems, system-

specific) calibrations as opposed to a general network-wide calibration.  Based on our limited 

observations, the manufacturing process for these electrochemical sensors is not yet fully reproducible. 

We have revised the end of Section 2.1 (page 3) to address this issue: 

“This paper presents results for the four electrochemical sensors in a single ARISense system.  

Note that nominally identical electrochemical sensors can have widely different sensitivities and 



exhibit variable environmental interference effects.  As a result, the specific calibration models 

described in this paper cannot be broadly applied to all ARISense systems.  Until the 

reproducibility of electrochemical sensor manufacturing improves, system-specific HDMR 

models will need to be developed for each individual ARISense system to maintain sensor 

quantification metrics.” 

The paper begins with a discussion on environmental justice (abstract), and includes very specific 

references to asthma rates in the sampled community (P4, lines 1-4). Context is, of course, important, but 

these facts seem out of place in this manuscript which is mainly a focus on the technical details of using 

and interpreting EC sensors. 

We have removed some of the details about asthma rates.  The end of the first paragraph on page 4 now 

reads:  

“The original DAQSS deployment and initial ARISense proof-of-concept efforts were motivated 

by the need to assess the viability of lower-cost AQ sensor systems in communities suffering 

from environmental health knowledge gaps, such as the unexplained doubling of the adult asthma 

rate in North Dorchester between 2001 and 2010 (Backus, 2012).” 

It was surprising to see a reported temperature range of 5-45 degrees in a northern US city, but the 

authors later state that this was internal box temperature to assess electrode function under actual 

operating conditions. When comparing these data, was a correction to ambient temp and RH taken into 

account (e.g. temp/RH measured by a nearby met station)? For example, if ambient temp and RH were 25 

deg and 50%, but the internal temp where 35 deg and 15% because of strong sunlight, one would expect 

a significant effect, given the apparent sensitivity. 

Due to the sensitivity of the electrochemical sensors, it is more important to consider measurements of 

temperature and RH at the sampling interface of the sensors rather than ambient conditions, as these 

internal sensor-specific conditions will most closely correspond to the interference signal observed by the 

working and auxiliary electrodes. However, comparison of sensor system temperature and RH inside the 

flow-cell with ambient temperature and RH showed that even under conditions of direct sunlight, the 

sensor system internal conditions remained within 10-15% of the ambient values throughout the co-

location sampling period. We have expanded our explanation of the temperature and RH measurements in 

the 4th paragraph of section 2.1 as follows:  

“The manifold includes an embedded RH/T sensor positioned adjacent to the electrochemical 

cells which is used to model the temperature and relative humidity-derived interference effects on 

the raw sensor response.  Given the active flow of the gas sampling inlet and minimal residence 

time (~1s) of the sample air within the manifold, the RH and T measurements recorded by the 

ARISense system closely track changes in ambient RH and T conditions.  Over the co-location 

period described here, measurements inside the flow manifold were within 10-15% of the 

ambient values even under conditions of direct sunlight.” 

Why was there no data included or discussed for particulate matter or CO2? 

We explained at the end of the third paragraph on page 3 that the particulate matter measurements will be 

assessed in a future manuscript. Due to the size detection limit for the OPC, and the anticipated size 

distribution of near-field and accumulation mode aerosol particles in most urban environments – the 

utility and reliability of low-cost OPCs for PM2.5 measurements remains highly uncertain.  As such, 

significant analysis effort is required to reconcile OPC metrics and this is the subject of ongoing work in 



our laboratory.  Since this paper focuses on calibration of electrochemical sensors, we chose not to 

include the CO2 data.  We have added a sentence at the end of the second paragraph on page 3 explaining 

this: 

“Note that the CO2 measurements are not discussed in this paper which focuses on the 

electrochemical sensors, but will be addressed in a future manuscript.” 

In a number of cases, the authors refer to this sensor package as a ‘low-cost’ replacement for measuring 

air quality, which could play a key role towards empowering environmental justice (P9, Line 34). The 

authors are correct in asserting that lower cost sensors likely have a role in improving granularity in air 

quality monitoring networks, especially in locations with disproportionate air quality burdens, like the 

relatively low income communities in which this study takes place. But the idea of ‘low cost’ is a fairly 

subjective statement that seems meant to broaden the appeal of these products to communities in need. 

The development of low or lower cost sensor units with an eye towards reducing injustices is a noble and 

important direction for air quality scientists, but it might provide value to compare this instrument 

against the few other existing low/lower cost sensing units that are found in the literature – both in terms 

of sensor performance and relative cost. 

The reviewer makes an excellent point that “low-cost” is a subjective term.  We have changed the 

designation for ARISense throughout the paper from “low-cost” to “lower-cost,” and have added the 

following sentences in the introduction to explain the rough cost tiers for air quality monitoring systems. 

It is difficult to provide the exact cost of other Tier 2 systems (integrated multi-pollutant measurement 

packages) since this information is often proprietary. We have also included a table summarizing recent 

published performance data for lower cost AQ systems that utilize Alphasense electrochemical sensors in 

Table 4. 

“Air quality monitoring systems can be roughly divided into three cost tiers, 1) high cost/high 

accuracy systems costing tens to hundreds of thousands of US dollars, such as those used at 

regulatory monitoring stations, 2) lower cost systems costing a few to ten thousand US dollars, 

such as the ARISense system or the recently developed Real-time Affordable Multi-Pollutant 

(RAMP) package developed by Carnegie Mellon University and Sensevere (Zimmerman et al., 

2017), and 3) low cost systems (costing tens to hundreds of US dollars) designed for the 

consumer market that typically only measure a single pollutant and generally suffer from poor 

quality data (EPA, 2017).  The goal of second tier systems is to provide data quality approaching 

Tier 1 at a fraction of the cost.” 

The largest issue seems to be in interpretation and setup of the HDMR model to adjust sensor data to real 

values. Specifically, the authors state that the model can ‘capture the intricate interdependencies of the 

variables. . .’ in order to correct the data and provide guidance to researchers which variables are most 

impactful (P6, Line 1). These statements presume that the researchers enter in all possible variables that 

are likely to play a role in sensor performance. Given the relative few number of variables measured, and 

presumably computed, how can a researcher have confidence that they are accounting for all – or at least 

most – of the likely variants that may affect their results? The concern here is that there may be other 

plausible covariates that affect sensor performance. For example, one might imagine a measure of CO2 

by NDIR could be affected by water vapor (which is imputed by this sensor package), but also by other 

ambient IR-absorbing components (that are not measured)? 

To re-phrase the reviewer’s question – they are asking about the challenge of unknown unknowns – if 

there is a specific interference vector that is not explicitly measured (and modeled) with the system, how 

can we be confident that the results from the integrated system will remain robust in the real-world 



presence of this interference vector?  To first order, we are confident that the model can handle the full 

extent of environmental interference vectors encountered in the Dorchester micro-environment based on 

the results of the test data which leverages the long-term co-location of the sensor with reference 

measurements.  By combining on-board measurements of multiple pollutant species (via raw sensor 

outputs – both WE and Aux electrode signals) and environmental conditions (P, T, RH) and allowing the 

ambient variability of these species and conditions to train the model, the results suggest that the primary 

factors impacting sensor performance are captured by the model for this set of electrochemical sensors 

(although clearly, the Ox-B421 sensor is underperforming relative to the others).  It is certainly possible 

that the NDIR measurement of CO2 could be impacted by cross-sensitivity to species not measured by the 

other sensors in the system, but modeling and validating the NDIR sensor response is beyond the scope of 

the current manuscript and will be examined in a subsequent work.  

The authors also note (P 6, Line 8-9) that in the first step of modeling, a user can choose how many 

variables are selected to interact with one another. How does one quantitatively make this determination? 

This comment overlaps with comments from Reviewers 2 and 3, requesting more information on how the 

model was optimized.  We have added the following paragraph on page 7 and to describe the 

development of the HDMR model for the NO sensor: 

“An example of how the HDMR model is developed for the NO-B4 sensor is provided in the 

Supplemental Material. The left column of Table S2 lists all available input parameters and the 

other columns denote which parameters were included in the input matrix for each model run.  

The bottom rows list the RMSE, MAE, and MBE for each model run for both the training data 

(model generation) and test data (model evaluation).”   

We have added the following text, table and figure to the Supplemental Material: 

“Table S2 shows a subset of the input matrices for training the NO-B4 sensor output to the NO 

reference measurements.  Six model versions are shown (labelled v.8-13), and the resultant 

RMSE, MAE, and MBE (in ppb) are listed at the bottom of the table for both the training set and 

the test data (with test metrics shown in curly brackets).  The optimal model run (v.8) is indicated 

with shading.  The table shows that while the model with the most diverse set of inputs (v.12) 

resulted in the lowest RMSE, MAE, and MBE values for the training data, its RMSE and MAE 

were worse compared to v.8 when applied to the ambient test data.  It should be noted that 

ExploreHD also performs statistical F-tests to further refine which inputs and input pairs are 

considered in the HDMR model training, and to determine a suitable degree for polynomial basis 

functions for each component function. 

The poorer performance of model v.12, trained with the full set of inputs available can be 

explained by increased overfitting related to the additional degrees of freedom from the increased 

number of input pairs.  The F-tests performed by ExploreHD during model generation are aimed 

at mitigating issues with overfitting, but only consider each input independently.  Thus, this 

automated input selection is not perfect, especially for cases like electrochemical sensor 

quantification, where there is significant correlation between certain inputs in the training data.  

The approach used here of testing a range of input sets, effectively serves as a manual supplement 

to the automated input selection performed by ExploreHD. 

From Table S2 it is also seen that models excluding key inputs (e.g. v.10) exhibit poorer 

performance on test (and training) data.  The input selection used in model v.8 exhibits a 

reasonable trade-off between the issues of exclusion of important inputs and overfitting (as the 



performance on training and test datasets were comparable in this case).  Through future work, it 

may be possible to refine or replace the F-test-based input selection algorithm used by 

ExploreHD so that overfitting might be addressed in a more automated fashion for training 

datasets exhibiting high correlation between certain inputs.  

Figure S1 shows key input pairs in the NO HDMR v.8 model.  The figure plots normalized total 

sensitivity indices for the input pairs.  These sensitivity indices quantify the proportion of 

variance that can be explained by each input pair, considering both structural and correlative 

components.  These metrics are the result of a structural and correlative sensitivity analysis 

(SCSA) performed by ExploreHD, which is described in [Li et al. “Global Sensitivity Analysis 

for Systems with Independent and/or Correlated Inputs”, J. Phys. Chem. A. 114. 2010, 6022].  In 

addition to calculating a total sensitivity index for each input / input pair, this analysis 

decomposes the total sensitivity into structural contributions reflecting the underlying system 

model, and correlative contributions reflecting covariation between inputs in the dataset being 

considered. Decomposition of sensitivities in this manner provides the opportunity for additional 

insights into the role of each input / input-pair.” 

Table S2. Set of HDMR models for NO sensor. The optimal model (v.8) is indicated with shading. 

Model v. 8 9 10 11 12 13 

CO AUX x    x x 

CO WE x   x x x 

NO AUX x x   x x 

NO WE x x x x x x 

NO2 AUX     x x 

NO2 WE     x x 

Ox AUX     x  

Ox WE     x  

Dew point x x x x x x 

Temperature x x x x x x 

CO2 (voltage)     x x 

RMSE (ppb) 

{ test } 

3.38 

{ 4.52 } 

5.09 

{ 5.86 } 

6.75 

{ 7.16 } 

4.88 

{ 5.53 } 

2.58 

{ 9.19 } 

2.81 

{ 6.41 } 

MAE (ppb) 

{ test } 

2.40 

{ 2.83 } 

3.29 

{ 3.90 } 

4.23 

{ 4.94 } 

3.05 

{ 3.27 } 

1.63 

{ 4.07 } 

1.76 

{ 3.27 } 

MBE (ppb) 

{ test } 

0.02 

{ 0.97 } 

0.32 

{ 1.80 } 

-0.55 

{ 2.08 } 

0.15 

{ 1.08 } 

-0.01 

{ 0.30 } 

-0.05 

{ 0.87 } 

 



 

 

 

“Figure S1.  Normalized total sensitivity indices of each significant (contribution > 0.1%) input 

pair in NO Model v.8.  Of the possible combinations, the NO-WE/Temp, NO-WE/NO-AUX, and 

NO-AUX/CO-WE explain more than 80% of the sensor-system variance trained against the 

corresponding reference [NO] measurement.” 

 



It is very difficult to discern useful results from Figure 3. Further, we must presume that these data have 

been validated by the investigators. If so, it is surprising to see spikes of ozone exceeding 1000ppb with 

some regularity in this location, as observed by the reference monitor. 

We agree with the reviewer that Figure 3 is not very useful.  We have therefore removed it and included a 

72-hour segment of the differential voltages in what was formerly Figure 5 (now Figure 3).  The reference 

data for O3 plotted in the original Figure 3d was incorrect (displaying reference CO data instead of O3 

data in the AMTD version of the paper).  We apologize for this error. 

Figure 5 is a fairly useful illustrative figure that clearly identifies sensor limitations. But it is troubling to 

see divergence between the EC sensor and the reference sensor in periods of relative stability in 

temperature. This seems to need further explanation – how does your data compare for this specific time 

series after it has been modeled? 

Temperature is not the only variable driving the divergence between the EC and reference sensors, hence 

the need for a complex, multi-dimensional model to explain the variance in the raw sensor relative to 

reference. We have revised Figure 5 (now Figure 3) to include the model output and we have revised the 

text on page 7 (now page 8) as follows: 

“Figure 3 shows the time-series for a ~ 72-hour period for the relative humidity, dew point 

temperature (panel a, solid and dashed lines, respectively), temperature (grey shaded area), and 

raw differential sensor output (dashed line), reference measurement (thick red dashed line) and 

model output (thin solid line) for the four electrochemical sensors (panels b-e). The raw 

differential sensor output is displayed as a voltage (ΔmV) which is linearly proportional to the 

difference in current generated within the electrochemical cell at each electrode (working and 

auxiliary).  The correlation plots between the raw EC-sensor output and the reference 

measurements are shown in Figs. 4a to d, with each data point colored by flow-cell temperature.  

The intercept, slope and r2 for the linear regression indicated with a red line in Fig. 4 are listed in 

Table 1.” 

with additional discussion on page 10: 

“Closer examination of the model output for 72-hours of the test data in Fig. 3 gives additional 

clues for improving the model.  In Fig. 3d at ~18:00 on 11/2/2016, the model NO2 exceeds the 

reference NO2 by a factor of ~2 during a period of rapidly decreasing temperature and increasing 

RH.  This underscores that the rate of change of input parameters may be important in the model, 

in addition to the absolute values.  Fig. 3e also suggests that the HDMR model for Ox struggles 

during times of rapidly changing temperature, particularly when the O3 concentration is low (< 3 

ppb). Future development of HDMR models to support ARISense quantification will include 

derivatives of key variables as inputs.” 

The authors included a number of variables to consider in adjusting or training the model, but 

specifically excluded sensor age, noting that the sensors were approximately 6-7 months old at the end of 

the study and, therefore, should have limited effect on model performance. Firstly, wouldn’t it be more 

appropriate to compare sensor age to manufacturing date, rather than when a package is opened?  

Based on communications with the manufacturer of the sensors, sensor aging is directly related to the loss 

of electrolyte (7M H2SO4) from a given EC cell, which is primarily driven by exposure to extremes in RH 

(< 15% or > 80%).  Under these conditions the electrolyte will either evaporate (<15%) from the cell or 

absorb significant H2O (> 80%), overflowing the cell.  Upon completion of a batch of sensors, the 



manufacturer ships the cells in self-contained sealed containers at 25C and 60% RH, following 

equilibration in their laboratory.  Therefore, we interpret the onset of sensor-aging (sensor t0) as the date 

at which this seal is broken for a given individual sensor.   

And second, it is unsatisfying to ignore sensor age as a relevant variable, given the relatively short 

lifetimes of these sensors. For example, the NDIR lamp and electrode has a lifetime of 2000-6000 hours 

(according to the manufacturer), depending on lamp light time and the presence of heavy contaminating 

pollution. This is 80- 250 days, which is not much longer than the study length presented here, and 

suggests that long term drive is something that should not be ignored. 

While we agree that modeling the decay (i.e., aging) of electrochemical sensors is extremely important, 

such an exploration is beyond the scope of the analysis presented here. The manufacturer quotes the 

following operating lifetimes (degradation of signal to 50%): 36 months for CO, and 24 months for NO, 

NO2 and Ox. These timescales are longer than the 4.5 month deployment (6.5 mo. out of package) 

pertaining to the current work, and we therefore do not expect significant (>5%) sensor degradation due 

to aging.  A detailed assessment of sensor performance over 18-24 months of continuous ambient 

operation is ongoing and it is with this subsequent dataset that time will be considered as an input to the 

model in an effort to track and correct for degradation in performance over sensor lifetime.  The NDIR 

sensor is not discussed in this manuscript. We have revised the last paragraph of section 2 (page 8) to 

read: 

“The data presented in this paper were recorded over a 4.5-month sampling interval (July 7, 

2016- November 23, 2016).  All four electrochemical sensors used in this study were first 

removed from their packaging on May 9, 2016.  That means that from out-of-package, the sensors 

had aged ~6.5 months by November 23.  The manufacturer quoted lifetime for degradation of the 

signal to 50% is 36 months for the CO sensor and 24 months for the NO, NO2 and Ox sensors.  

Given that these lifetimes are significantly longer than the deployment time scale analysed here, 

we did not include a time-dependent sensitivity term in the input matrix of our HDMR model 

runs.  The results presented here therefore assume that the sensitivity of each of the 

electrochemical sensors did not appreciably drift over the 4.5 month deployment.  In subsequent 

studies we will analyze sensor response over longer deployment timescales (18 to 24 mo.) to 

investigate the importance of including a time-based parameter to track and correct for drift in 

sensor response with time.” 

 

Response to Reviewer RC2: Anonymous Referee #2 

General comments: This paper is timely in describing how to improve the performance of a set of 

Alphasense electrochemical sensors, which are being widely incorporated into may emerging 

multipollutant air quality sensor technologies. The paper goes into great depth in exploring causes of 

sensor measurement artifacts and demonstrates an approach to improve the data quality. However, this 

paper will have a limited impact if several important issues are not addressed. A recommendation of 

major changes is suggested, focusing upon these areas of improvement:  

1.  How are authors defining “good enough” for sensor data quality? They indicate a goal of having 

credible data and “acceptable accuracy” (line 27), but need to clarify what they consider to be their 

target (accuracy, measurement range, etc.) and for what purpose.  



We thank the reviewer for this important question and have revised the paper to include the performance 

metrics of root mean square error (RMSE), mean absolute error (MAE) and mean bias error (MBE). We 

have added the following paragraph on page 7 and the following table to the Supplemental Material. 

“The metrics used to evaluate the model are the slope and intercept of a linear least squares 

regression of the model output with the reference measurements, the coefficient of determination 

of the linear fit (r2), the root mean square error (RMSE), the mean absolute error (MAE), and the 

mean bias error (MBE). The equations for these metrics are given in Table S1 and model-to-

measurement results are summarized in Tables 2, 3, and 4.” 

 

Table S1. Metrics used for comparing EC sensor model output (yi) to reference measurements (xi). 

Statistic Abbrev. Formula Description 

Coefficient of 

determination 
�� �� = 1 − ∑ ��	 − 
	���	�∑ ��	 − �����	�  


	  is the value of the linear least squares fit at �	. Ratio of explained variation to total 

variation. For linear least squares regression, r 

is equal to Pearson’s correlation coefficient. 

Root mean 

square error 
RMSE ���� = �1� ���	 − �	���

	�  

Standard deviation of difference between 

model output and reference values. Measure of 

accuracy. Sensitive to outliers. 

Mean absolute 

error 
MAE ��� =  1� �|�	 − �	|�

	�  
Average of the absolute error. Disregards the 

direction of under- or over-prediction. 

Mean bias error MBE ��� = 1� ���	 − �	
�

	� � 

Average error. Indicates if model output values 

are biased high or low relative to reference 

values. 

 

2. The authors note in their concluding sentence that “This compression of the training period is 

especially important. . .” Currently, they used 35% of a 4 month period of data to develop a complex 

model to improve the data. Why 35%? What is the performance if only 10% of the data were used? What 

if only the first week of data were used? Authors have sufficient data to explore the implications of 

different training periods that would provide important insight to researchers looking to employ sensors 

and develop study plans yielding reasonable data quality. It is recommended that authors go into 

substantially more depth to investigate the training period required.  

The goal of this work is to show that with a sufficiently wide range of input parameters, we can 

successfully use the HDMR model to analyze electrochemical sensor raw output data. We did not 

systematically attempt to minimize the training period.  Instead, we focused this initial modeling effort on 

evaluating whether the HDMR model could yield robust results when trained with a fairly conservative 

(intentionally comprehensive) set of input data (incl. range of gas concentrations, magnitude of 

environmental conditions and rates of change of environmental conditions).  However, in our re-analysis 

of the test and training data points prompted by this question, we realized that we had unnecessarily 

eliminated test data by requiring that all four reference measurements be sampling ambient 

simultaneously (with none of the reference instruments in auto-calibration mode).  Because the reference 

instruments all have different calibration schedules, this inadvertently decreased the set of test data.  By 

treating each individual reference measurement separately, we were able to recover ~ 10% of the total test 

data and use that to evaluate the HDMR models.  As a result, the training data now constitutes ~ 24-27% 



of the total eligible co-location data points, leaving ~73-76% of the data available to test the HDMR 

model against ambient pollutant/condition variability. 

We have also added a figure to the supplemental material to show the distribution of parameters used 

during the training and test periods. And we have added the following text on page 9 to clarify our goals: 

“The training data for the HDMR model were chosen to provide comprehensive coverage of 

environmental variability spanning the July-November sampling interval.  It was important to 

include (1) sensor responses to the range of gas concentrations encountered in ambient air (near-

zero to high concentration transient spikes in pollution), (2) the range of temperatures and various 

rates-of-change in temperature, and (3) the range of measured water content of the sample air in 

the flow-cell.  The goal was to include a wide enough range of training data to avoid 

extrapolation errors when applying the model to the test dataset (all ambient co-location data not 

included in the training dataset).  Figure S3 shows the distributions of temperature, reference 

measurement, dew point temperature and relative humidity for the training data for the CO-B4 

HDMR model, overlaid with corresponding distributions of the test data.  We did not attempt to 

minimize the amount of ambient data used for training, or vary the timing of the training data 

with respect to the test data.  Approximately 25% of the full time series was used to generate the 

model (Table 2 and indicated with grey bars in Fig. 5).  The exact fraction of data used for 

training was slightly different for each sensor due to differing calibration schedules for the 

reference measurements (which automatically excludes sensor data from the training or test 

datasets).  For each sensor, the set of inputs included in the input data matrix was optimized as 

described in Section 2.5 and the Supplemental Materials.” 



 

Figure S3. Distributions of temperature, reference measurement, dew point temperature, and relative humidity for the 

training data for the CO HDMR model (dashed lines/shaded) and the test (solid lines) data.  In the case of CO, the 

training data distributions were generated from 27% of the total available co-located interval with 7974 5-min average 

data points comprising the model training matrix and 21533 5-min average data points comprising the test data.   

 

3. Authors should investigate an aging effect – they indicate they will only explore this later, but should at 

minimum demonstrate whether there is any relationship with the number of “out of box” or “in use” 

days. In Jiao et al (2016, https://doi.org/10.5194/amt-9-5281- 2016), aging was clearly demonstrated in a 

number of sensor types that incorporate Alphasense sensors.  

As noted in the response to Reviewer 1, the deployment time (4.5 months) was much shorter than the 

manufacturer quoted lifetimes (24 to 36 months) of the sensors. A detailed assessment of sensor 

performance over 18-24 months of continuous ambient operation is ongoing and it is with this subsequent 

dataset that sensor age will be considered as an input to the HDMR model formulation in an effort to 

track and correct for degradation in performance over sensor lifetime. 

4. How variable is the performance between identical sensors? How variable are the HDMR models from 

one RAMP to another?  

This work focused on results obtained from a single ARISense system, which is different from the Real-

time Affordable Multi-Pollutant (RAMP) sensor package developed by Sensevere and Carnegie Mellon 



University for which multiple units were evaluated in Zimmerman et al., 2017.  As mentioned in response 

to Reviewer 1, there is significant variability at the manufacturing level of Alphasense electrochemical 

sensors, which results in the need to build sensor-specific calibration models across the same type (e.g., 

CO-B4) of sensor.  Moving forward we anticipate that unique HDMR models will be necessary for each 

ARISense system, due to the irreproducibility of the manufacturing process as it relates to each 

electrochemical sensor.  The aim of the current work is to provide the first demonstration of the HDMR 

model trained on an ambient co-location dataset. Future laboratory-based efforts will focus on building 

HDMR models for multiple nodes from a compressed (~1 week) training interval during which pollutant 

concentrations and environmental conditions are systematically varied to sample the full range of 

conditions relevant to the field. 

We have revised the end of Section 2.1 (page 3) to clarify this issue: 

“This paper presents results for the four electrochemical sensors in a single ARISense system.  

Note that nominally identical electrochemical sensors can have widely different sensitivities and 

exhibit variable environmental interference effects.  As a result, the specific calibration models 

described in this paper cannot be broadly applied to all ARISense systems.  Until the 

reproducibility of electrochemical sensor manufacturing improves, system-specific HDMR 

models will need to be developed for each individual ARISense system to maintain sensor 

quantification metrics.” 

5. The HDMR analysis is fairly opaque – authors cite papers that describe the approach, but do not 

provide sufficient detail for this to be reproducible. It is recommended that authors provide more specific 

information on the HDMR analysis and resulting model in the supplemental information. Given some 

sensor applications involve real-time transmission and display of data to the public, does the HDMR 

approach support this or must it be performed post hoc?  

As discussed above in the response to Reviewer 1, we have added a description of how the HDMR model 

is developed in the main text with supporting tables in the Supplemental Material. Real-time 

implementation of the HDMR model is feasible by adding the sensor-specific and system-specific models 

(in closed form, algebraic expressions) to the backend database architecture to enable real-time reporting 

of calculated ppb values. 

Minor comments:  

-  Quality of the text on figures needs improvement – recommend not using red font text and ensuring 

clear, readable axes.  

The red font text within figures has been modified and the font for axis labels has been increased in size 

and bolded. 

Authors compare against DEP monitors – they should indicate what are the detection limits of the 

monitors and implications for their calibration. Since regulatory monitoring stations are employed to 

evaluate air quality relative to the NAAQS, detection limits can be an issue in low concentration areas 

(e.g., some CO monitors have ∼300 ppb detection limits, which may be fine for the NAAQS at a ppm level 

but may be an issue for co-location and calibration of sensors to be used for low-ambient sampling).  

We have modified section 2.3 to include the limit of detection (LOD) and RMS noise for each of the 

reference monitors used in the current study.   



“The reference measurements used in this study include ozone (O3, Teledyne Model T400 

Photometric Ozone Analyzer, LOD <0.6 ppb; RMS < 0.3 ppb), carbon monoxide (CO, Teledyne 

Model 300EU Carbon Monoxide Analyzer, LOD < 20 ppb; RMS ≤ 10 ppb), and nitrogen oxides 

(NO, NOx, NO2, Teledyne Model T200 Nitrogen Oxide Analyzer, LOD = 0.4 ppb; RMS < 0.2 

ppb).” 

Abstract has some awkward statements that could be improved, as well as providing more quantitative 

results. e.g., “live, work, breathe. . .” – breathing is something that happens at all locations. . .one would 

hope. Also what is meant by “stakeholders”? The public? Industry?  

We have deleted the word “breathe” in the first sentence of the abstract. We have replaced “stakeholders” 

with “public.” 

Did the authors ever characterize the response time of the sensors? (e.g., against high time-resolution 

instruments also made by Aerodyne). A brief statement on their utility for a mobile sampling approach 

and time base of the data would be helpful, as many low cost sensor systems are being employed in a 

mobile fashion.  

ARISense v1.0 was designed to serve as a stationary, fixed site AQ node.  Given that the fastest response 

times we could access from the DEP monitoring station equipment in this work was 60s averages, the 

time-response of the sensors themselves did not lag the rates of change in pollutant concentrations that 

were characterized by the reference instrumentation at the site.  Laboratory studies are underway that will 

examine the response time of the electrochemical sensors more carefully and evaluate the limits of 

reconciling pollutant gradients from mobile measurement platforms (bicycle and drone), recording sensor 

metrics at 1Hz.  This work will be the subject of a forthcoming publication.  

Response to Reviewer SC1: N. Zimmerman, R. Subramanian, A. Presto and A. Robinson 

This paper discusses using HDMR to calibrate the low-cost sensors used in the Aerodyne ARISense air 

quality monitor. While the results seem promising, it is difficult to assess the performance of the model, 

because the training data appear to have been included as part of the model performance assessment. 

This would bias the model performance and makes it difficult to compare the results with other studies 

that evaluate model performance using independent datasets.  

We thank the reviewers for bringing this issue to our attention. This was a serious oversight on our part 

and we have now corrected it. We have now re-evaluated the model performance using the test data only 

(i.e., excluding the training data).  The results are presented in Figures 3, 4 and 5 and the performance 

metrics are in Table 3. Excluding the training data from the test data decreased the r2 for each sensor by 

approximately 10%, but did not change the conclusions of the paper. 

Additionally, we believe the paper would benefit from more discussion on building and interpreting the 

HDMR model. Questions such as what was the maximum order used, what variables were significant, 

and any physical interpretation of any significant variables are either missing or underdeveloped. 

As discussed in the response to Reviewer 1, we have expanded our discussion of building and interpreting 

the HDMR model in the main text and in the Supplemental Material. 

The paper would also benefit from some additional metrics of model performance beyond correlation 

plots.  



We agree with the reviewers that additional performance metrics besides the slope of the correlation plot 

and r2 are important to include. As noted in the response to Reviewer 1, we have included RMSE, MAE 

and MBE as additional performance metrics. 

Another question to address is how the training data are chosen. From Figure 6, it appears that only 

periods where there were pollutant concentrations were elevated were chosen to build the model. How 

could this calibration approach be generalized for others? If the training data set was carefully 

constructed vs. randomly selected then is it feasible to assume that the model training window could be 

condensed to 1 week, as the other reviewers suggest? 

As noted above in the response to Reviewer 2, we chose training data that covered the full range of the 

parameters that would be encountered in the test data. We have added additional discussion in the main 

text and Figure S3 with the distributions of parameters measured during the training and test data periods. 

As a full disclosure, we are also in the process of submitting a manuscript on a different type of 

calibration model for low-cost electrochemical sensors. We welcome and encourage feedback from 

Aerodyne on our manuscript in kind to help the community collectively improve sensor performance.  

We look forward to commenting on your manuscript. 

Specific Comments  

Page 5: Line 26-27: Can you be more specific? What is your definition of “acceptable accuracy” –the 

paper would benefit greatly from some quantitative performance metrics.  

Quantitative performance metrics are now included for the training and test datasets, listed in Tables 2 

and 3 of the main text. 

Page 6, Line 11-12: What is the statistical analysis done to decide which variables are significant? 

Something like AIC/BIC? ANOVA? T-test?  

HDMR uses F-test as an initial evaluation of the relative importance of individual input parameters to a 

given trained output vector.  As noted above in the response to Reviewer 1, a more thorough description 

of our approach to HDMR is now included in the Supplemental Materials.  

Page 6, Line 13-14: I am not sure I fully understand the HDMR. Can the orthogonal basis functions be 

written in closed form (parametric?) I think a couple extra sentences here introducing the model are 

warranted.  

Yes, the 2nd order polynomial fits (cubic as max) can be exported from the HDMR log files into a closed 

form, algebraic equation which in turn can be embedded in the backend database architecture of the 

ARISense server to provide real-time concentration metrics through the online user-interface.  These 

equations are also embedded in the firmware for each ARISense system so that concentration values can 

be logged to the local on-board USB drive if the system is run in off-line mode.     

Page 6: Line 20-23: What is the spanned range? For others building their own co-location windows, 

what were the critical criteria to determine the optimal co-location period? Was 35% arbitrarily chosen 

or was the calibration window tuned and if so, what was learned during tuning? Some discussion of 

diminishing returns vs. training window would be helpful to others implementing these methods.  



As noted above in the response to Reviewer 2, we did not attempt to minimize or tune the training 

window. Our goal was to choose a set of training data that covered the full range of the input parameters 

that would be encountered during the test data. 

Page 6 Line 12-18: This is another paragraph where I think some quantitative performance criteria 

would be useful. When comparing the performance of HDMR calibrations to manufacturer corrections or 

corrections by other papers, it’s not clear what the terms ‘reasonably good correlation’ or ‘relatively 

small’ mean. 

We have added a table to the main text (Table 4) summarizing results from three recent studies examining 

Alphasense electrochemical sensor-derived concentrations, tested against co-located reference 

measurements in ambient urban and suburban micro-environments.   

Page 7 Line 26-27: It seems like a lot of interesting work was done in the lab, but none of these results 

are provided. I’d be interested to see more details here. Can this be included in supplemental?  

While we agree with the reviewer that, in many ways, the laboratory setting provides a controlled 

environment across which the sensor response to a matrix of conditions can be characterized, our 

laboratory work with the ARISense system is ongoing and will be the subject of a forthcoming 

manuscript.  The aim of that work will be to demonstrate that compressed (~1 week) training datasets can 

be generated through systematic laboratory experiments and that the resultant HDMR models provide a 

robust approach to ambient pollutant measurements made with the ARISense system across a variety of 

relevant micro-environments.   

Page 8, Line 14: What was the environmental variability spanned? And how was the 35% subset chosen? 

This is a follow up to the previous comment.  

These questions are answered above. 

Page 8, Line 20: This seems problematic, was the performance of the model tested on a data set in which 

35% was used for training? Ideally the model should be tested on completely blind test data (i.e., the 

remaining 65%). If this is what you did, it should be made clearer. If this is not what you did, you should 

provide performance metrics for the pure testing data since this approach is the only way to truly test the 

model performance. 

We agree with the reviewers that including the training data in the testing data was problematic and regret 

the error.  
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Use of electrochemical sensors for measurement of air pollution:  

correcting interference response and validating measurements 
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Correspondence to: Eben Cross (escross@aerodyne.com) 

Abstract.  The environments in which we live, work and play are subject to enormous variability in air pollutant 

concentrations.  To adequately characterize air quality, measurements must be fast (real-time), scalable, and reliable 10 

(with known accuracy, precision, and stability over time).  Lower-cost AQ sensor technologies offer new opportunities 

for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor 

performance under realistic environmental sampling conditions.  This limits our ability to inform the public about 

pollution sources and inspire policy makers to address environmental justice issues related to air quality.  In this paper, 

initial results obtained with a recently developed lower-cost air quality sensor system are reported.  In this project, data 15 

were acquired with the ARISense integrated sensor package over a 4-month time interval during which the sensor 

system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with 

reference instrumentation measuring the same pollutant species.  This paper focuses on validating electrochemical 

sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (5-min 

averages, ± 1σ):  [CO] = 231±116 ppb; {spanning 84-1706 ppb},  [NO] = 6.1±11.5 ppb; {spanning 0-209 ppb}, [NO2] = 20 

11.7±8.3 ppb; {spanning 0-71 ppb}, and [O3] = 23.2±12.5 ppb {spanning 0-99 ppb}.  Through the use of High 

Dimensional Model Representation (HDMR), we show that interference effects derived from the variable ambient gas-

concentration mix and changing environmental conditions over three seasons ([Temperature] = 23.4 ± 8.5C; {spanning 

4.1 to 45.2C} and [Relative Humidity] = 50.1 ± 15.3% {spanning 9.8-79.9%}) can be effectively modelled for the 

Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5-min average) root mean square errors 25 

(RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb respectively.  Our results substantiate the potential for distributed air pollution 

measurements that could be enabled with these sensors.  

1.  Introduction 

Protecting populations from exposure to poor air quality is one of the greatest public health challenges, affecting all 

nations on earth (WHO, 2014).  For the past half century, developed countries have made an effort to measure 30 

concentrations of major pollutants known to degrade health or damage plants and physical structures.  Generally, the 

focus has been on the most populated areas, with an intent to assess daily, monthly or annual concentrations on a 

regional basis.  While greater spatial and time resolution has been desired, the costs of purchasing and operating 
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instruments sufficiently robust, accurate and free of interferences to generate reliable data has been prohibitive – an 

instrument to assess a single pollutant at ambient levels can cost many tens to hundreds of thousands of US dollars. 

In this situation it is therefore easy to understand the motivation to develop inexpensive, rapid-response air quality 

(AQ) monitoring devices that can be deployed in large numbers around point sources or throughout specific 

neighborhoods, to create the desired high spatial and temporal resolution AQ data grid (Snyder et al., 2013; Kumar et 5 

al., 2015; McKercher et al., 2017).  Indeed, within the past decade, researchers, entrepreneurs, and manufacturers have 

pursued the development, deployment, and evaluation of lower-cost devices that measure air pollution (Mead et al., 

2013; Williams, 2014b; Masson et al., 2015; Jiao et al., 2016; Lewis et al., 2016; Castell et al., 2017; Mueller et al., 

2017).+Hagan et al., 2017 + Zimmerman et al., 2017 

While electrochemical (EC) sensors have formed the basis for workplace and hazardous leak detection applications 10 

for many decades (Stetter and Li, 2008), their transition from workplace to ambient air is accompanied by much lower 

target concentration ranges over which the sensors must accurately measure the analyte species of interest (Borrego et 

al., 2016).  Coincident with the need to resolve much lower concentrations is the need to fully understand and model the 

influence of non-analyte interferences resulting from changing temperature, humidity, pressure, or other gas molecules 

that may compete with the oxidation/reduction reactions occurring at the working electrode of a given EC-sensor 15 

(Mueller et al., 2017).  Unless great care is taken when measuring ambient air pollutants, interferences may result in 

reported pollutant concentrations that are orders of magnitude greater than the true values.  At the core of this 

quantification challenge is the fact that electrochemical sensors rely on resolving very small changes in current (µA), 

and in turn, reliably converting that raw sensor signal into a concentration.  The path from raw sensor output to 

concentration requires (1) a mechanical design that provides consistent, empirically validated sampling of the ambient 20 

air, (2) low-noise electrical circuitry (potentiostats) to amplify and resolve small changes in current, (3) electronic filters 

to remove electrical transients (e.g., radiofrequency (RF) interference) and (4) a method for converting raw signal to 

concentration that takes into account calibration and interference data. 

In order to calibrate and characterize interferences, laboratory and/or field based co-location experiments must be 

executed spanning the full range of pollutant concentrations and ambient sampling conditions that may be encountered 25 

in an actual stand-alone deployment.  Deploying lower-cost AQ sensor systems in the absence of such calibration 

significantly undermines the credibility of the data.  Indeed, reports have appeared recently raising concerns about the 

reliability of data produced from inexpensive monitoring devices containing EC-sensors (Lewis and Edwards, 2016). 

This paper describes results obtained from a newly developed, integrated lower-cost EC-sensor system, ARISense, 

which has been developed at Aerodyne Research, Inc. for simultaneous, real-time measurement of a wide range of 30 

ambient-level atmospheric pollutants and accompanying meteorological metrics.  Air quality monitoring systems can be 

roughly divided into three cost tiers, 1) high cost/high accuracy systems costing tens to hundreds of thousands of US 

dollars, such as those used at regulatory monitoring stations, 2) lower cost systems costing a few to ten thousand US 

dollars, such as the ARISense system or recently developed Real-time Affordable Multi-Pollutant (RAMP) package 

developed by Carnegie Mellon University and Sensevere (Zimmerman et al., 2017), and 3) low cost systems (costing 35 

tens to hundreds of US dollars) designed for the consumer market that typically only measure a single pollutant and 

generally suffer from poor quality data (EPA, 2017).  The goal of second tier systems is to provide data quality 

approaching Tier 1 at a fraction of the cost.  In this paper, we describe the mechanical and electronic design of the 
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ARISense system, and demonstrate a field-based calibration technique that combines co-located measurements with a 

High Dimensional Model Representation (HDMR) of the interferences.  Our results show that lower-cost EC-sensor 

systems can provide reliable measurements of air pollution under real-world ambient concentrations. 

2. Experimental 

2.1 ARISense 5 

The ARISense system used in the present study (version 1.0) measures ambient levels of five gaseous pollutants 

(CO, NO, NO2, O3, and CO2), atmospheric aerosol particles (0.4 – 17 µm in diameter), and related meteorological and 

environmental parameters (temperature (T), pressure (P), relative humidity (RH), wind speed/direction, solar irradiance, 

and noise).  Mechanical drawings of the instrumented ARISense system are shown in Figure 1.  Each ARISense system 

is housed in a NEMA weather-proof enclosure (Polycase, PN: YH-080804; 21.8 cm L × 13 cm D × 21.8 cm H) 10 

weighing approximately 2.7 kg fully integrated.  ARISense v1.0 is designed for stationary fixed-site monitoring with 

access to 120-240V AC power, exterior pole/surface mounting hardware and a consistent sampling orientation relative 

to the surface. 

ARISense v1.0 contained the following EC-sensors (purchased from Alphasense, Ltd.; UK): Carbon monoxide (CO-

B4), nitric oxide (NO-B4), nitrogen dioxide (NO2-B43F), and total oxidants (Ox-B421). (More recent versions of 15 

ARISense have been upgraded to model Ox-B431.)  The integrated system also includes a non-dispersive infrared 

(NDIR) carbon dioxide (CO2) sensor (Alphasense Pyro-IRC-A1) and an optical particle counter (OPC) for measurement 

of particulate matter size distributions (number-count; ~0.4 ≤ dp ≤ 17 µm over 16 size bins; Alphasense OPC-N2).  The 

following environmental and meteorological measurements are also included: Relative humidity/temperature sensor 

(Sensirion AG, PN SHT21), barometric pressure/temperature sensor (BOSCH, PN BMP180), solar intensity sensor 20 

(OSRAM Opto Semiconductors, PN: BPW 34), and a microphone for audible noise detection (CUI, Inc. PN: CMC-

5044PF-A).  An anemometer (Davis Instruments, Vantage Pro 6410) for wind speed and direction was mounted to the 

top of the ARISense NEMA enclosure, measuring conditions ~60 cm above the sampling inlets (see Fig. 1 for 

reference).  

ARISense electronics were designed to integrate all sensor measurements into a unified data acquisition framework 25 

and provide user access/control over the system’s configuration and operation.  EC-sensor signals were collected and 

processed by custom built electronics designed to minimize noise and amplify raw signals (i.e., potentiostat circuitry). 

Connectivity for v1.0 systems was enabled via hard-line CAT-5 ethernet connections (Lantronix XPort-Pro).  Data was 

saved at user-defined sampling intervals (5-60s) onto a local USB drive and (if internet-connected) to the ARISense 

database (https://arisense.io/), where data is available for real-time visualization and download.  Upgraded ARISense 30 

systems configured for cellular connectivity and stand-alone solar power are currently under development. 

The ARISense system has two sampling inlets, one for measuring gas-phase pollutants and the other dedicated to the 

measurement of particulate matter.  In both cases, the air flow is driven by small DC-powered fans embedded at the 

downstream end of the sample flow path, minimizing the loss of sticky or reactive gas molecules (NO2, O3) or particles 

due to surface reactivity or deposition.  The gas sample flow includes both an intake and an exhaust port in the NEMA 35 

enclosure, protected from water penetration via 3D-printed rain hoods (Formlabs; Form 2, Stereolithography 3D printer) 
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mounted to the exterior of the case (see components H, I in Fig. 1).  The gas sampling flow manifold and internal PCB 

mounting brackets were also 3D-printed.  Laboratory tests reveal that the 3D-printed material is inert to NO2 and O3 and 

does not result in significant losses of either species when sampling ambient-level concentrations.  The gas sampling 

manifold provides a consistent, compact interface for the 4 electrochemical sensors as well as the CO2 sensor.  The 

manifold includes an embedded RH/T sensor positioned adjacent to the electrochemical cells which is used to model the 5 

temperature and relative humidity-derived interference effects on the raw sensor response.  Given the active flow of the 

gas sampling inlet and minimal residence time (~1s) of the sample air within the manifold, the RH and T measurements 

recorded by the ARISense system, closely track changes in ambient RH and T conditions.  Over the co-location period 

described here, measurements inside the flow manifold were within 10% of the ambient values even under conditions of 

direct sunlight.  Note that the CO2 measurements are not discussed in this paper which focuses on the electrochemical 10 

sensors, but will be addressed in a future manuscript. 

The particle inlet is on the bottom face of the NEMA enclosure (Fig. 1C).  Given the body of evidence implicating 

PM2.5 concentrations in adverse health outcomes (Lim et al., 2012), recent years have seen substantial growth in the 

development, evaluation, and deployment of low cost OPCs (Holstius et al., 2014; Williams, 2014a; Han et al., 2017; 

Zikova et al., 2017). The principal measurement challenge of these devices is the minimum size detection limit, often dp 15 

≥ 0.5 µm (for devices that cost ~ 250 to 800 USD) or dp ≥ 1.0 µm (cost ~ 15 to 200 USD).  Unfortunately, given these 

size detection limits, such low-cost OPCs are inadequate when the accumulation mode aerosol size distribution peaks at 

dp ≤ 0.25 µm, which is typical in most urban locations.  Low-cost OPC size detection limits also make near-field 

particulate combustion emission characterization (i.e., near roadways) very challenging since the combustion mode of 

particles is typically dp < 0.1 µm.  A detailed assessment of the ARISense particulate measurements in laboratory and 20 

field experiments will be provided in a subsequent manuscript.  

This paper presents results for the four electrochemical sensors in a single ARISense system.  Note that nominally 

identical electrochemical sensors can have widely different sensitivities and exhibit variable environmental interference 

effects, such that the calibration model described in this paper will need to be re-developed for each individual 

ARISense system. 25 

2.2 Measurement site 

Two ARISense systems (indicated with yellow circles in Fig. 2) were deployed south of Boston, MA from July to 

November, 2016.  This initial deployment of the ARISense systems was in conjunction with an existing 4-node network 

(the Dorchester Air Quality Sensor System (DAQSS) project) established in January of 2016.  The DAQSS node 

locations are indicated with green markers on the map.  The neighborhoods of Roxbury and Dorchester are among 30 

Boston’s largest and most economically diverse, including low-income residential areas interspersed with light and 

heavy industry, as well as the Interstate 93 corridor which runs along the eastern edge of Dorchester.  Given their 

location and activities therein, Dorchester and Roxbury experience a high frequency of automobile, commercial truck, 

and heavy duty diesel traffic, much of which is constrained to stop-and-go driving patterns on congested, narrow streets, 

in close proximity to housing and pedestrians.  The original DAQSS deployment and initial ARISense proof-of-concept 35 

efforts were motivated by the need to assess the viability of lower-cost AQ sensor systems in communities suffering 
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from environmental health knowledge gaps, such as the unexplained doubling of the adult asthma rate in North 

Dorchester between 2001 and 2010 (Backus, 2012).   

In order to validate our approach, each ARISense system was co-located with a Massachusetts Department of 

Environmental Protection (MA DEP) air quality monitoring station (indicated with red circles on the map) for the 

duration of the present study.  This paper presents ARISense and MA DEP reference data for the Roxbury site (left hand 5 

yellow circle in Fig. 2) located adjacent to Harrison Avenue in Dudley Square (latitude: +42.3295 longitude: -

71.082619).  Forthcoming papers will present results from the DAQSS project and the I-93 ARISense node location, 

covering lower-cost AQ sensor results over longer deployment timescales (18-24 mo.) and across multiple types of 

microenvironments in Roxbury and Dorchester.  

2.3 Reference data 10 

The MA DEP Roxbury air monitoring site (id: 25-025-0042), established in December, 1998, hosts continuous and 

semi-continuous gas and particle phase measurements.  The reference measurements used in this study include ozone 

(O3, Teledyne Model T400 Photometric Ozone Analyzer), carbon monoxide (CO, Teledyne Model T300/T300M 

Carbon Monoxide Analyzer), and nitrogen oxides (NO, NOx, NO2, Teledyne Model T200 Nitrogen Oxide Analyzer).  

The reference NO/NO2 measurement is based on chemiluminescence.  This method relies on converting NO molecules 15 

to NO2 via exposure to O3.  Operationally, there are two measurements channels, one for NO alone and one for total 

NOx.  In the NOx channel, a catalytic-reactive converter is used to convert any existing NO2 molecules to NO, prior to 

exposure to O3.  NO2 concentrations are determined by taking the difference between NOx and NO.  Additional on-site 

reference measurements include a meteorological tower (relative humidity, temperature, pressure, wind direction, wind 

speed, solar intensity; MetOne), PM2.5 (BAM, Beta Attenuation Mass Monitor), PM10, black carbon, and several off-line 20 

gravimetric filter samplers including PM2.5 speciation.  Given its level of instrumentation, the Roxbury location is 

considered an N-core site within the DEP network of monitoring stations across the state and provides critical data 

comparisons for determining the viability of lower-cost AQ sensor systems.  For the current study, DEP provided real-

time (1-minute average) pollutant concentration data files from its reference gas analyzers to permit data comparisons 

with the ARISense EC-sensor response under rapidly changing conditions of temperature, humidity, and ambient gas 25 

concentrations. 

2.4 ARISense Calibration 

Calibration is a critical issue for trusting the output of EC-sensors.  Recent papers (Lewis et al., 2016; Castell et al., 

2017) have highlighted that the lack of rigorous calibration protocols for lower-cost AQ sensors results in significant 

potential error when the sensor system is deployed in ambient conditions.  For example, Mead et al. (2013) modelled 30 

the temperature dependent baseline drift of an Alphasense NO sensor using an exponential curve fit through 24 hours of 

ambient data.  Their analysis revealed that temperature-derived baseline-drift could exceed a +600 ppb bias, if 

unaccounted for in their calibration (sampling between 20 and 28 C).  Considering that the ambient NO concentration 

range encountered in the current study was 0 - 200 ppb with temperatures varying from 5 – 45 C (5-min averages), 

modelling the NO-B4 sensor temperature-derived interference is crucial to obtaining useful measurements from the 35 

sensor.  As Mead et al. (2013) point out, when measuring gas concentrations at the ppb level, temperature and humidity 
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interference effects have a first-order impact on quantification, whereas drift in sensitivity over time has second-order 

effects (much smaller in magnitude than temperature or humidity influence). Both first and second order effects need to 

be correctly parameterized in order to apply lower-cost sensors to long-term (~18-36 mo.) ambient outdoor air quality 

measurements. 

Alphasense provides some guidance to customers regarding calibration and temperature-compensation of 5 

electrochemical sensor response (Alphasense Application Note #AAN 803-03, December 2014).  This document 

highlights the utility of including a fourth electrode in their B4-series electrochemical sensors such as were used in this 

study.  The purpose of this fourth electrode (called the auxiliary electrode, AUX) is to provide a real-time correction for 

environmentally-derived interferences at the working electrode (WE).  The AUX electrode is comprised of an identical 

catalyst to that of the WE and is designed to mimic the WE’s response to environmental changes such as temperature, 10 

pressure, and humidity.  Since the AUX electrode is fully submerged in the electrolyte and directly below the WE, the 

AUX signal should be blind to the target analyte gas species which readily oxidize or reduce at the WE surface (which 

is exposed to the air on one side and the electrolyte layer on the other).  In an ideal world, a simple subtraction of the 

current generated at the AUX electrode from the current generated by the WE would provide a signal that is linearly 

proportional to the target analyte over the full concentration range of interest.  Unfortunately, we have found that in 15 

practice the AUX electrodes in most sensors are not able to track the changes in the corresponding WE over the nominal 

operational temperatures of the system.  Specifically, at temperatures > 25 C, the AUX electrode response lags that of 

the working electrode and in some cases (CO-B4, for example), the WE and AUX electrode currents diverge as 

temperature increases (i.e., the WE current decreases with increasing temperature while the AUX electrode current 

increases with increasing temperature).  In this case, recording just the differential current without correction leads to an 20 

increasingly negative concentration error for CO at temperatures above 25 C.   Alphasense provides users with a table in 

which, for each sensor model, the user can identify a correction constant to use to compensate for observed behavior at 

specified temperature ranges.  At temperatures ≤ 20 C the Alphasense documentation shows that differential 

measurements remain fairly stable in comparison to the higher temperature conditions.  The Alphasense approach to 

temperature compensation also requires the use of four static constants for each individual EC-sensor – subtracting 25 

specific electronic and zero currents from both the WE and AUX electrodes, prior to calculating the difference.  While 

there are some advantages to the additional information provided by the AUX electrode, at temperatures higher than 25 

C, the disparate response between the two electrodes can complicate quantification steps considerably. 

In practice, we have found that the manufacturer’s recommended WE and AUX electrode corrections do not lead to 

pollutant concentration values of acceptable accuracy for ambient air analysis.  In addition, the EC-sensor response is 30 

impacted by other environmental conditions besides temperature, such as relative humidity and the concentrations of 

other gas phase species. At the low concentrations present in the atmosphere (10s-100s ppb) characterizing the full 

(multi-dimensional) interference response is critical to achieving reliable measurements.  In this work we demonstrate 

the use of a multi-dimensional mathematical modelling approach (HDMR) that has the ability to adequately identify and 

quantify the complex EC-sensor response to multiple environmental variables and interfering gas species 35 

simultaneously. 
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2.5 High Dimensional Model Representation (HDMR) 

The ARISense system uses high dimensional model representation (HDMR) techniques to convert the raw sensor 

outputs into units of concentration in parts-per-billion by volume, ppb.  HDMR is a numerical method consisting of a 

general set of quantitative model assessments and analyses for capturing input-output system behavior without reliance 

on a physics-based model or the sensor manufacturer’s empirical correction procedure.  When applied to a set of 5 

experimental data (with sufficient variability), it can produce a mathematical model relating user-defined input variables 

to output variables of interest; the resulting model can capture the interdependencies of the variables and provide a 

mathematical description of the system that is otherwise difficult or impossible to describe with a physics-based model.  

The HDMR model can be used to identify and quantify which variables and variable interactions have the most impact 

on the data reduction, relative to an identified output (i.e. reference concentration). In collaboration with the research 10 

group of Prof. Herschel Rabitz of Princeton University, Aerodyne has implemented HDMR methods in a software tool 

called ExploreHD, providing graphical and command line user interfaces to HDMR algorithms. 

The details of the HDMR algorithms used here are discussed in detail elsewhere (Li and Rabitz, 2010; Sipilä et al., 

2010; Li and Rabitz, 2012; Li et al., 2012). One of the key underlying tenets of the HDMR framework is that many 

input-output relationships for complex physical systems can be captured adequately by low-order combinations of input 15 

variables, even in systems with high-dimensionality in input variables.  Each component function provides an additive 

contribution to the overall model prediction.  The modelling process involves three steps.  In the first step, the user 

specifies a maximum variable interaction order (for example a 2nd-order HDMR model would allow component 

functions involving combinations of two input variables), and the HDMR algorithm considers orthogonal component 

functions (in this case, cubic polynomials) involving all possible variable combinations up to the maximum specified 20 

order.  In the second step, a statistical analysis (using F-test) is performed to identify the input variables and 

combinations of input variables that contribute significantly to variation in the output of interest.  In the final step, 

coefficients for component basis functions are calculated through a least squares analysis that minimizes the deviation 

between HDMR model prediction and the training data.  The coefficients and the associated orthogonal basis functions 

determined through the above analysis together define an HDMR model for the input-output relationship under 25 

consideration. 

In the current study, the HDMR approach uses the raw EC-sensor output and environmental variables to model the 

multi-dimensional relationship between sensor output and the reference concentration.  We used approximately 25% of 

the dataset to train the model.  Sensor interference can be a product of the combined influences of temperature, 

humidity, pressure, non-analyte gas species, etc.  The structure of the computational model accounts for both absolute 30 

(i.e., highest to lowest concentrations) and transient (Δx/Δt) changes in the sampling conditions encountered by the 

sensor system.  By spanning three seasons in the Northeastern United States, a wide range of environmental conditions 

was captured within the training window for the model.  This emphasizes the advantage (i.e., variability in sampling 

conditions) and disadvantage (extended time-span) of a field-based co-location approach to sensor calibration.  The 

HDMR models developed in the current work were 2nd order (examining all possible input-parameter pairs) with 35 

orthogonal polynomial component functions allowed up to degree of three (cubic) in each input variable. 

The metrics used to evaluate the model are the slope and intercept of a linear least squares regression of the model 

output with the reference measurements, the coefficient of determination of the linear fit (r2), the root mean square error 
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(RMSE), the mean absolute error (MAE), and the mean bias error (MBE). The equations for these metrics are given in 

Table S1 and model-to-measurement results are summarized in Tables 2 and 3. 

An example of how the HDMR model is developed for the NO-B4 sensor is provided in the Supplemental Material. 

The left column of Table S2 lists all available input parameters and the other columns denote which parameters were 

included in the input matrix for each model run.  The bottom rows list the root-mean-square error (RMSE), mean 5 

absolute error (MAE), and mean bias error (MBE) for each model run, displaying statistical performance metrics for 

both the training data (model generation) and test data (model evaluation).   

The data presented in this paper were recorded over a 4.5-month sampling interval (July 7, 2016- November 23, 

2016).  All four electrochemical sensors used in this study were first removed from their packaging on May 9, 2016.  

That means that from out-of-package, the sensors had aged ~6.5 months by November 23.  The manufacturer quoted 10 

lifetime for degradation of the signal to 50% is 36 months for the CO sensor and 24 months for the NO, NO2 and Ox 

sensors.  Given that these lifetimes are significantly longer than the deployment time scale analysed here, we did not 

include a time-dependent sensitivity term in the input matrix of our HDMR model runs.  The results presented here 

therefore assume that the sensitivity of each of the electrochemical sensors did not appreciably drift over the 4.5 month 

deployment.  In subsequent studies we will analyze sensor response over longer deployment timescales (18 to 24 mo.) 15 

to investigate the importance of including a time-based parameter to track and correct for drift in sensor response with 

time. 

3. Results and Discussion 

3.1 ARISense meteorological/environmental data 

Continuous 5-min average non-pollutant data acquired with the ARISense system is shown in Fig S2 of the 20 

supplemental, tracking ambient variability in temperature, pressure, humidity, solar intensity, ambient noise, wind 

speed, and wind direction at the Roxbury DEP monitoring site.  The total sampling timespan covers the transition from 

mid-summer through late fall in the Northeastern United States (July through November), with meteorological 

conditions changing from warmer and more humid to cooler and less humid.  The ARISense system ran continuously 

throughout the sampling interval with the exception of a ~ 1-week period during which the node was physically 25 

removed from the site for a separate experiment.  The directionality of the wind fields at this site is predominantly from 

the N to NW (red-maroon) with occasional NE flow (blue-purple).  Temperature and humidity measurements shown 

reflect the conditions within the gas-sampling flow-cell of the integrated system, characterizing the environmental 

conditions at the surface of the electrochemical sensors.  Such environmental measurements are critically important for 

reconciling the interference effects of ambient conditions, especially humidity (water concentration) and temperature, 30 

on the raw signal from each electrochemical cell. 

3.2 ARISense electrochemical sensor data 

Figure 3 shows the time-series for a ~ 72-hour period for the relative humidity, dew point temperature (panel a, solid 

and dashed lines, respectively), temperature (grey shaded area), and raw differential sensor output (dashed line), 

reference measurement (thick red line) and model output (thin solid line) for the four electrochemical sensors. The raw 35 
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differential sensor output (diff mV) is displayed as a voltage which is linearly proportional to the difference in current 

generated within the electrochemical cell at each electrode (working and auxiliary). The correlation plots between the 

raw EC-sensor output and the reference measurements are shown in Figs. 4a to d, with each data point colored by flow-

cell temperature. The intercept, slope and r2 for the linear regression indicated with a red line are given in Table 1. 

The raw differential signals obtained from the CO-B4 sensor track reasonably well with the CO concentrations 5 

measured by the co-located DEP monitor (Fig. 3b and 4a), demonstrating the relatively small influence of ambient 

temperature, humidity or other chemical species on this EC-sensor.  The NO sensor raw output also tracks reasonably 

well with the reference measurements (Fig. 3c and 4b) except at temperatures over 25 C when the EC-sensor 

overestimates NO by a factor of 2 to 3 compared to lower temperatures.  This suggests that the temperature dependence 

of the working and auxiliary electrodes in this NO sensor do not track one another at sample temperatures > 25 C, and 10 

that additional temperature-correction is necessary to obtain reasonable NO concentrations from the raw sensor outputs.  

The NO2 and O3 raw sensor outputs track less well with the reference measurements (r2 < 0.2 in Figs. 4c and d). The 

differential NO2-B43F sensor response (Fig. 3d and 4c) indicates a strong temperature dependence that is not 

compensated for by the auxiliary electrode, suggesting that additional temperature compensation algorithms could 

improve the result. The differential signal from the Ox-B421 electrode shows poor correlation with the reference data 15 

overall (Fig. 4d). There is some temperature-dependence, but the additional variation suggests that other factors play an 

important role.  The Ox-B421 sensor is comprised of the same catalyst (working and auxiliary electrode material) as the 

NO2-B43F, and is therefore-sensitive to NO2 in addition to O3.  The key difference between these two sensors is the 

presence of an O3-scrubbing filter upstream of the working electrode in the NO2-B43F sensor package.  Laboratory 

results indicate that the Ox-B421 sensor is ~2x more sensitive to NO2 than to O3 molecules. 20 

As Fig. 3 shows, the magnitude of the interference signal due to temperature alone (for NO, NO2, and Ox) can easily 

mask real variation in pollutant concentrations.  The raw signal behavior observed for each sensor type is different, 

underscoring the necessity of species-specific HDMR models to reconcile each sensor type’s characteristic 

interferences.  In addition, substantial (~ 2-3x) differences (in sensitivity and baseline) exist for batches of nominally 

identical sensors measuring the same concentration.  Therefore, the HDMR models built for a given integrated system 25 

are specific to a given set of sensors, and must be generated for each system separately to achieve reliable concentration 

data.  Within the framework of an individual ARISense system, 4 distinct HDMR models are built, one for each EC-

derived pollutant species of interest. 

3.3 HDMR Analysis 

The training data for the HDMR model were chosen to provide comprehensive coverage of environmental 30 

variability spanning the July-November sampling interval.  It was important to include (1) sensor responses to the range 

of gas concentrations encountered in ambient air (near-zero to high concentration transient spikes in pollution), (2) the 

range of temperatures and various rates-of-change in temperature, and (3) the range of measured water content of the 

sample air in the flow-cell.  The goal was to include a wide enough range of training data to avoid extrapolation errors 

when applying the model to the test dataset (all ambient co-location data not included in the training dataset).  Figure S3 35 

shows the distributions of temperature, reference measurement, dew point temperature and relative humidity for the 

training data for the CO-B4 HDMR model, overlaid with corresponding distributions of the test data.  We did not 
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attempt to minimize the amount of ambient data used for training, or vary the timing of the training data with respect to 

the test data.  Approximately 25% of the full time series was used to generate the model (Table 2 and indicated with 

grey bars in Fig. 5).  The exact fraction of data used for training was slightly different for each sensor due to differing 

calibration schedules for the reference measurements (which automatically excludes sensor data from the training or test 

datasets).  For each sensor, the set of inputs included in the input data matrix was optimized as described in Section 2.5 5 

and the Supplemental Materials. 

Correlation plots of model-derived pollutant concentrations and reference concentrations for the training data are 

shown in the middle panels (e- h) of Fig. 4.  The linear regression fit (solid red line) and a 1:1 line (dashed black line) 

are shown for all species, and all data points are colored by flow-cell temperature. The performance metrics are 

presented in Table 2. The lack of a temperature-dependent rainbow in the scatter plots shown in Fig. 4e-h (with the 10 

exception of O3, for which ambient concentrations are expected to be temperature-dependent) indicates that the model 

has effectively compensated  for the variable temperature dependent response of the working and auxiliary electrodes 

within each cell. The remaining scatter in the correlation plots is random noise attributed to the electrodes themselves 

and the electronics.  The high correlation coefficients (r2=0.94-0.96) for CO, NO and NO2 indicate that, when trained 

appropriately, the HDMR model provides improved compensation for the environmental interferences that complicate 15 

interpretation of raw EC-sensor outputs.  The much lower correlation coefficient (r2=0.65) for Ox suggests that 

additional parameters may be needed to fully explain the behaviour of this EC sensor. 

The HDMR models were then used to analyse the remaining ~ 75% of the data (the test set). The correlation plots 

for the model output versus the reference measurement for the test data are shown in Figs. 4i-l and the performance 

metrics are presented in Table 3. Figure 5 shows the time-series for the 5-min averages of the modelled (sensor) and 20 

reference gas concentrations, with the training data intervals indicated with grey bars.  The high correlation coefficient 

for CO and NO (r2 > 0.8) and moderate correlation coefficient for NO2 (r2 = 0.69) indicates the strength of the model at 

capturing the ambient variability in pollutant concentrations encountered at the site, despite wide variations in ambient 

temperature and humidity over the changing seasons.  The higher scatter in the O3 correlation plot, and correspondingly 

low r2 = 0.39, might be due to the fact that O3 is obtained by training the Ox-B421 sensor output to reference O3; the 2:1 25 

sensitivity ratio for NO2 vs. O3 of the Ox-B421 means that the variability in ambient NO2 concentrations adds 

considerable noise to the Ox-B421 sensor signal.  The input matrix for the Ox-B421 HDMR model includes the raw 

data captured with the NO2-B43F sensor, but the inclusion of this additional information only marginally improves the 

reduction of the Ox-B421 data to O3 concentration.  It should be noted that the Ox-B421 sensor is not the latest version 

released by Alphasense and improvements may be realized with the design of their most recent model (Ox-B431).  An 30 

important design considerations pertaining to the Ox sensor is that it’s response time closely mimics that of the NO2 

sensor.  With this time-response aligned, the cross-sensitivity of the Ox sensor to NO2 can be effectively subtracted 

from the raw (Ox) sensor signal.  If the time response of the two sensors is different, reconciling O3 concentrations 

from the Ox sensor is far more challenging.  These considerations highlight the iterative and rapidly evolving nature of 

low-cost AQ sensor components.  Lower-cost air quality sensor quantification will likely improve over the coming 35 

years through advances at both the component manufacturer level (e.g., Alphasense Ltd. improving materials 

chemistry/catalyst and sensor-design) and system integrator level (e.g., Aerodyne Research, Inc. further developing 

ARISense HDMR interference modelling through laboratory and field-based measurements). 
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Closer examination of the model output for 72-hours of the test data in Fig. 3 gives additional clues for improving 

the model.  In Fig. 3d at ~18:00 on 11/2/2016, the model NO2 exceeds the reference NO2 by a factor of ~2 during a 

period of rapidly decreasing temperature and increasing RH.  This underscores the importance of the rate of change of 

input parameters may be important in the model, in addition to the absolute values.  Fig. 3e also suggests that the 

HDMR model for Ox struggles during times of rapidly changing temperature, particularly when the O3 concentration is 5 

low (< 3 ppb). Future development of HDMR models to support ARISense quantification will include derivatives of 

key variables as inputs. 

While Figures 4 and 5 illustrate that the system is capable of determining valid gas phase concentrations across a 

wide range of environmental variability in temperature, RH, and absolute concentrations, it does not speak to the 

longer-term stability of the sensors (e.g., how much does the baseline and sensitivity of each electrochemical sensor 10 

change with time).  However, it should be noted that sensor aging cannot have had a major impact on the data reported 

here or it would have been impossible for the HDMR model to converge this well without including electrode age as 

one of the input variables.  For the models developed in this work, each data point for each variable had equal weight, 

whether it was at the beginning, middle or end of the 4.5 month deployment.  It is to be expected that aging of EC-

sensors will change their sensitivities, due to electrolyte evaporation or dilution, entrapment of contaminants, and 15 

repeated exposure to wide swings in T or RH.  It will be important to establish the time span over which a given set of 

EC-sensors (and the HDMR model of that sensor set) can be expected to return reliable pollutant concentration values, 

using a longer duration (18-24 Mo.) ambient data set; such a study is in progress. 

4. Conclusion 

This study demonstrates that lower-cost air quality sensor systems can adequately characterize ambient urban 20 

pollution concentrations on rapid (5-min) timescales, underscoring the potential of integrated sensor systems to add a 

highly resolved local AQ data-layer to existing pollutant monitoring infrastructure.  The ARISense system is a first step 

toward understanding the extent to which quantification efforts can yield useful results from such systems.  Training 

electrochemical sensor measurements of CO (231±116 ppb; {spanning 84-1706 ppb}), NO (6.1±11.5 ppb; {spanning 0-

209 ppb}), NO2 (11.7±8.3 ppb; {spanning 0-71 ppb}), and O3 (23.2±12.5 ppb {spanning 0-99 ppb}) with a High 25 

Dimensional Model Representation (HDMR) method provided 5-min average RMSE values of 39.2, 4.52, 4.56, and 

9.71 ppb for CO, NO, NO2, and O3 respectively. Results indicate that HDMR can effectively model interference effects 

derived from the variable ambient gas-concentrations in an urban setting and changing environmental conditions 

encountered over three seasons in the Northeastern United States ([Temperature] = 23.4 ± 8.5C; {spanning 4.1 to 

45.2C} and [Relative Humidity] = 50.1 ± 15.3% {spanning 9.8-79.9%}).   30 

Referring back to the map displayed in Figure 2, it is striking to consider that only 4 official monitoring stations 

exist within the Boston-metro area (pop. ~700,000).  With regard to the Roxbury DEP site 1-minute average reference 

data, it is important to note that 1-min data files are not typically reported or accessible from regional air quality 

monitoring sites.  Instead, pollutant concentrations are usually reported on 1, 8, or 24-hour averages in accordance with 

the operational constraints of the measurement device and relevant air quality regulations being enforced.  This 35 

sampling paradigm is consistent with the regional focus of federal and state monitoring goals, and financial constraints 
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imposed due to the expense of the instrumentation and operating costs of a given AQ monitoring station.  But as one 

considers the pollutant sources that contribute to their local area, disproportionate pollution impacts emerge in some 

neighborhoods more than others.  Across urban landscapes, air pollution is inherently heterogeneous, subject to sharp 

concentration gradients over fast (sub-minute) and short (100’s of meters) scales.  In order to establish a more rigorous 

assessment of such disparate impacts, distributed sensor networks are needed to achieve high enough spatial resolution 5 

to inform intra-neighborhood differences in air quality.  Through such advances, researchers, regulators, and community 

members can improve their understanding of the pollutant sources that dictate their local AQ.  As sensor technologies 

(and calibration/modelling efforts) continue to improve, the local AQ data layer could play a key a role toward 

empowering environmental justice advocates to initiate change and improve environmental public health.  

It cannot be overstated that EC-sensor systems such as ARISense can return reliable data only if calibrated over the 10 

full range of pollutant concentrations and meteorological parameters that will be encountered when they are deployed.  

In the present study, co-location of the ARISense system with the MA DEP reference monitors, coupled with variability 

of natural processes and anthropogenic activities, supplied the necessary range of conditions over the 4.5-month span of 

the study.  In the future, we expect to compress that training period, using a controlled-environment laboratory chamber 

and mixes of calibration gases representative of the pollutants encountered under ambient conditions.  This compression 15 

of the training period is especially important when addressing the challenges of sensor-to-sensor variability, finite (< 

24-36 mo.) sensor lifetime, and premature damage or failures that will require rapid replacement/re-training of 

integrated systems. 
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Tables 

 

Table 1.  Performance metrics for raw sensor output versus reference measurements.–   

Sensor Ndata pnts 
Y-int 

(mV/ppb) 
Slope r2 

CO-B4 29507 3.26 0.25 0.78 
NO-B4 33310 6.32 0.30 0.21 
NO2-B43F 33363 -27.4 0.29 0.18 
Ox-B421 34077 -131 -0.48 0.12 

 

 5 

Table 2. Performance metrics for model output versus reference measurements for training data.  

Sensor Ndata pnts 
Y-int 

(ppb) 
Slope   r2 

RMSE 

(ppb) 

MAE 

(ppb) 

MBE 

(ppb) 

ftrain
* 

(%) 

CO-B4 7974 9.19 0.96 0.96 25.4 16.7 0.02 27.0% 
NO-B4 7974 0.46 0.94 0.94 3.37 2.17 -0.01 23.9% 
NO2-B43F  7874 0.80 0.94 0.94 2.29 1.73 -0.05 23.6% 
Ox-B421 9071 8.34 0.65 0.65 8.24 6.22 0.03 26.6% 

* ftrain = Ntraining/Ntotal x 100 
 

Table 3. Performance metrics for model output versus reference measurements for test data (5-min average 

temporal resolution).  10 

Sensor Ndata pnts 
Y-int 

(ppb) 
Slope r2 

RMSE 

(ppb) 

MAE 

(ppb) 

MBE 

(ppb) 

CO-B4 21533 3.98 0.94 0.88 39.2 24.8 -10.4 
NO-B4 25356 1.29 0.94 0.84 4.52 2.83 0.97 
NO2-B43F 25489 3.26 0.81 0.69 4.56 3.45 1.20 
Ox-B421 25006 13.1 0.47 0.39 9.71 7.34 0.78 
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Table 4. Comparisons to published results utilizing integrated multi-pollutant systems comprised of 5 

Alphasense electrochemical sensors 

Studies 

Temporal  

Resolution 

(min) 

Ndata pnts Slope   r2 
RMSE 

(ppb) 

MAE 

(ppb) 

MBE 

(ppb) 

CO-B4 SENSOR        
Jiao et al., 20161 60 2640-2664# 7.99E-4-8.09E-4 0.63-0.68 NR NR NR 
Castell et al., 20172 15 6912# NR 0.36 170.99 NR -147.21 
Zimmerman et al., 20173 15 3936# 0.86 0.91 NR 38 0.1 

This Work4 (CO-B4) 5 21533 0.94 0.88 32.9 24.8 -10.4 

        
NO SENSOR        
Jiao et al., 2016 60 2640-2664# 0.883-0.892 0.77-0.87 NR NR NR 
Castell et al., 2017 15 6912# NR 0.74 16.35 NR -0.54 

This Work (NO-B4) 5 25356 0.94 0.84 4.52 2.83 0.97 

        
NO2 SENSOR        
Jiao et al., 2016 60 2640-2664# NR 0.02-0.10 NR NR NR 
Castell et al., 2017 15 6912# NR 0.24 30.27 NR 13.30 
Zimmerman et al., 2017 15 2304# 0.64 0.67 NR 3.48 -0.4 

This Work (NO2-B43F) 5 25489 0.81 0.69 4.56 3.45 1.20 

        
Ox SENSOR        
Jiao et al., 2016 60 2640-2664# NR 0.15-0.20 NR NR NR 
Castell et al., 2017 15 6912# NR 0.29 22.20 NR 6.76 
Zimmerman et al., 2017 15 3648# 0.82 0.86 NR 3.36 -0.14 

This Work (Ox-B421) 5 25006 0.47 0.39 9.71 7.34 0.78 

        
NR = not reported in manuscript 
#N calculated assuming 100% duty cycle over specified days of co-location for each study 
1Results obtained from 2 AQMesh integrated sensor systems (Gen. 3) deployed in Decatur, Georgia US 
2Statistical metrics correspond to average of 24 co-located AQMesh systems deployed in Kirkeveien, Norway 10 
3Average co-location test results from 19 Real-time Affordable Multi-Pollutant (RAMP) systems co-located in 
Pittsburgh, Pennsylvania US 
4Single ARISense system deployed in Dorchester, Massachusetts US   
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Figures 

 

 5 
Figure 1.  Mechanical drawings (wires excluded) showing the main components of the ARISense system.  Each system 

includes an anemometer (A) mounted to the back-bracket of the NEMA enclosure providing a description of the wind-

fields in the immediate proximity to the gas and particle sampling inlets of the system.  Mounting brackets for wall or 

pole-mount configurations attach at position B.  Expanded view of the internal components reveals the Optical Particle 

Counter (C), gas sampling manifold (D) with embedded electrochemical and NDIR and RH/T sensors, 10 

transformer/power PCB (E), main controller PCB (side view) (F), communication PCB for ethernet connectivity (G), 

gas sampling inlet and exhaust rain hoods (H, I), RJ11 and RJ45 connections for anemometer data and CAT-5 

connectivity (J, K), microphone assembly (L), weather tight AC power input (M), and solar sensor assembly for light 

intensity measurement (N).  3D-printed parts include the gas sampling manifold, rain hoods, exhaust and microphone 

mounting bracket, solar sensor interface, and PCB mounting scaffold.  As described in the text, the gas and particle 15 

sampling inlets are decoupled, with the OPC-N2 sampling through the bottom-face of the enclosure to protect from 

liquid water penetration.     
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 10 

Figure 2.  Map showing the locations of the two ARISense systems (yellow circles) and the four metro-Boston DEP 

monitoring stations (each marked with a red circle).  The two ARISense systems were co-located with reference stations 

at the Harrison Avenue site (in Dudley Square, Roxbury) and Von Hillern Ave. site (~35 feet from I-93 North) in 

Dorchester.  The data presented in this manuscript were obtained from the Dudley Square location, an urban 

neighborhood site, primarily impacted by local combustion sources and vehicles operating on secondary routes in close 15 

proximity to the area.  Green markers are shown to indicate the positions of 4 additional sensor nodes deployed as part 

of the Dorchester Air Quality Sensor System (DAQSS) project, which pre-dated the development of ARISense.   
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Figure 3. (a) Relative humidity (solid blue line) and dew point temperature (dashed blue line), (b-e) raw differential 

sensor output (dashed line), reference measurement (thick red line) and model output (thin line) for a 3 day period 5 

during the test part of the 4.5 month deployment. Temperature is indicated with the grey shaded area. 
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Figure 4.  Correlation plots for all electrochemical sensors versus reference measurements for (a-d) raw sensor 

differential voltage signals, (e-h) model output concentrations for the training data (~25% of data), and (i-l) model 

output concentrations for test data (remaining ~75% of data).  All data shown are 5-minute average values with each 

data point colored by flow-cell temperature.  The linear regression fit-line (solid red line) is shown in all panels, and a 

1:1 line (dashed black line) is shown in panels e-l.   10 
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Figure 5.  Time-series of 5-min averages of the model output (sensor) and reference gas concentrations.  Grey shaded 

areas indicate time periods over which the model was trained.  A unique set of input parameters was used to train the 

HDMR model for each of the different electrochemical cells. Approximately 25% of the data was used for training and 

the remaining 75% was used to test the models.     10 
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In order to demonstrate the varying effect of temperature on the different electrodes, Figure 5 shows raw 2-min 

average output currents for both the working (darker hue) and auxiliary (lighter hue) electrodes for each 

electrochemical sensor over a 48-hour time interval.  Reference concentrations of each pollutant species are plotted 

(as red dashed-lines) on the right-hand axes for comparison, and the flow-cell temperature is displayed as a filled 

histogram in the background of the time-series.  Temperature changes in excess of 22 C are observed in as little as 

10 hours.  Offsets are observed between the working and auxiliary electrodes of all four sensors, but the extent to 

which the working/auxiliary pair track one another as environmental conditions change is highly sensor-dependent.  

The CO-B4 sensor appears to be fairly insensitive to the temperature changes encountered, with a positive-going 

differential reflecting changes in the ambient concentration of CO.  In contrast to the muted temperature response of 

the CO sensor, the NO-B4 sensor shows a strong temperature dependence in both the working and auxiliary signal, 

with some evidence of lagging temperature response in the auxiliary channel at the highest temperatures 

encountered.  The NO2-B43F shows a clear temperature dependence in the working electrode, but the auxiliary 

electrode shows less of a response.  However, in a few instances in the 48-hour window displayed in the figure, it 

appears that the NO2-B43F auxiliary response to rapid decreases in temperature (coincident with sunset) is opposite 

the trend observed for the working electrode.  The Ox-B421 sensor exhibits a temperature-dependent response that 

largely tracks between the auxiliary and working electrodes.   
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The next step in the analysis was to determine whether statistically significant correlations between raw EC-sensor 

outputs and reference pollutant concentrations could be extracted from the data shown in Fig. 3 plus the 

environmental data in Fig. S1.   
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 (remainder of the 4.5 month deployment, excluding the training data) 
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by systematically testing all possible input parameter combinations and then evaluating the resultant model’s 

performance against the full co-location dataset.  An example of two different input matrices for determining NO2 

concentrations is provided in the Supplemental Material (see Fig. S2). 
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 different electrochemical sensors, and the workingWE and auxiliaryAUX electrodes 
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plots for the full dataset analyzed with the HDMR models trained on the (35%) subset of ambient data.  Data shown 

are 
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Correlation plots of sensor-derived and reference concentrations for the entire dataset are shown in Fig. 4i-l.   
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Table 4. [EC1]Comparisons to published results utilizing Alphasense electrochemical sensors  

Studies 

Temporal  

Resolution 

(min) 

Ndata pnts Slope   r2 
RMSE 

(ppb) 

MA

E 

(ppb

) 

MBE 

(ppb

) 

ftrain
* 

(%) 

CO-B4 SENSOR         
Jiao et al., 2016 60 2640-2664 7.99E-4-8.09E-4 0.63-0.68 NR NR NR  
Castell et al., 2017 15 6912  0.36 170.99    
Zimmerman et al., 2017 15        
This Work 5        
         
NO-B4 SENSOR         
Jiao et al., 2016 60 2640-2664 0.883-0.892 0.77-0.87 NR NR NR  
Castell et al., 2017 15 6912  0.74 16.35    
This Work 5        
         
NO2 SENSOR         
Jiao et al., 2016 60        
Castell et al., 2017 15        
Zimmerman et al., 2017 15        



This Work 5        
         
Ox SENSOR         
Jiao et al., 2016 60        
Castell et al., 2017 15        
Zimmerman et al., 2017 15        
This Work 5        
         
         
         
         

         

NR = not reported in manuscript 
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