
We  would  like  to  thank  the  reviewers  for  their  time  to  review  this  manuscript  and  helpful
suggestions to improve the manuscript. The reviewers questions are highlighted in bold, and the
modifications  to  the  manuscript  in  red.  Figures  6 and 7 have been recomputed  with  a  smaller
number of elevation angles, and new colors have been chosen for figures 6, 7 and 9 to 13.
To answer to reviewer 2 comments, original figures 9 to 15 have been modified. We hope that the
improvement we brought to the figures will now fit the reviewer comments to make the manuscript
suitable for publication.

Reviewer 1 comments :

Figure 16 - it is well known that the radiometer could resolve ground-based inversions
but poor in depicting elevated temperature inversions. What would be the value added
by 1DVAR?

The main improvement from 1DVAR can be expected above 1 km altitude but for the two cases
shown in the paper, the 1DVAR performs slightly better than regressions even below 1km. For the
stable case (deep near surface temperature inversions), both 1DVAR and regressions can resolve the
temperature inversions but the best accuracy is found with the 1DVAR particularly below 1 km
altitude.  For the  cloud-based  temperature  inversion,  the  1DVAR  retrieval  resolves  better  the
inversion than  the  regressions.  With both  configurations  (from the  AROME background or  the
radiosonde), the inversion is more pronounced and closer to the radiosonde.  Figures 9, 12 and 13
show that the value added by the 1DVAR is mainly above 1 km altitude where the RMSE stays
within 1 K whereas it reaches 3 K with regressions.

One of the scientific objectives of the paper is to study the performance of radiometer in deep
valley. However, the results look like similar observations have been reported
for flat terrain as well. Which unique features of the measurements of the radiometer
have been shown in the paper?

In such complex terrain we could have expected the measurements to be affected by surrounding
mountains and one major result of this study is to show that MWR observations are not affected in
such a narrow valley even going down to 5° elevation angles. In fact, previous papers deploying
MWR in truly complex terrain are not abundant, from our knowledge only three : Kneifel et al
2010, Cimini et al 2011 and Massaro et al 2015. The study of Kneifel et al 2010 does not investigate
the temperature profile retrievals and the radiometer is deployed at  the mountain top above the
crest. 
In Cimini et al 2011, the terrain is more complex but the 1DVAR is investigated with a global NWP
model at a 10 km horizontal resolution and only one elevation angle in addition to the zenith. The
radiometer measurements do not go lower than 15° elevation angle which significantly limits the
possible perturbance from surrounding mountains. 
Massaro et  al  2015 deploys the instrument  in a valley with a free viewing angle up to 28 km
whereas the Passy valley is only 5 to 6 km long in the Passy direction.  This is also the first time,
from our  knowledge,  that  the instrument  was operated scanning in  two directions.  In  addition,
Massaro  et  al  2015  only  focussed  on  regressions  without  any  comparison  with  the  1DVAR
algorithm and the temperature gradients were smaller compared to what was observed during Passy.
The study has thus shown that microwave radiometers are suitable for very complex terrain where
mountains at less than 5 km from the instrument do not affect the quality of the measurements even
if very low elevation angles are used (down to 5.4 °) , in particular during cold pool events.. This is
also the first time that 1DVAR retrievals in a very complex terrain are evaluated using forecasts
from a convective scale model.

What new features have been found for retrieval at an elevation angle/boundary layer



scans?

This study confirms that low elevation angles can be used in a complex terrain. The improvement
brought by low elevation angles is equivalent to what was found in previous studies on flat terrain. 

To summarize these comments, the following sentence has been added to the introduction :

To that end, this is the first time that a MWR has been deployed in such a narrow valley (less
than 5 km between the closest mountain slope and the instrument) with measurements going
down to 5 ° elevation angle during which 1DVAR retrievals are performed from a convective
scale model.



We  would  like  to  thank  the  reviewers  for  their  time  to  review  this  manuscript  and  helpful
suggestions to improve the manuscript. The reviewers questions are highlighted in bold, and the
modifications  to  the  manuscript  in  red.  Figures  6 and 7 have been recomputed  with  a  smaller
number of elevation angles, and new colors have been chosen for figures 6, 7 and 9 to 13.
To answer to reviewer 2 comments, original figures 9 to 15 have been modified. We hope that the
improvement we brought to the figures will now fit the reviewer comments to make the manuscript
suitable for publication.

Reviewer 2 comments :

1) In the introduction, the authors pose the question whether the surrounding moun-
tains in the narrow valley affect the microwave observations. However, this is not really
investigated in this study as only a comparison with radiosondes is made. Neither the
atmospheric volume observed by the radiometer nor the flight track of the radiosonde
is considered. One would need to calculate the effect of the antenna pattern or perform
azimuth scans to see at which point the mountain slopes are in the field of view. In fact
a simple calculation shows that even for transparent channels which receive radiation
over the full extent of the atmosphere, mountains in 2 km wide valley should not pro-
vide a contribution to the main beam (2.5 deg FWHM). As side lobe suppression is
-30 dB this is unlikely to contribute. More interesting is the question how strongly the
true temperature field varies across the valley, e.g. is there any influence of mesoscale
circulations or solar insolation? I do not expect the authors to perform an elaborated
analysis in this respect but a more careful wording is necessary, e.g. "..thus can be
safely deployed in complex terrain.."(p8, l5) or at p13,l1. It would be very interesting to
know if the boundary layer scans performed in the two different directions as indicated
in Figure 1 differ from each other?

We agree with the reviewer that the paper does not clearly investigate the effect of the mountain
emission as azimuthal scans should have been performed. It is also true that mountain slopes should
not contribute to the main beam at zenith. However, the mountain slopes were quite close in the
Passy  direction  and  it  was  interesting  to  investigate  to  what  extent  it  impacts  the  MWR
measurements.   In  fact,  measurements  at  54.94 GHz receives  a  small  contribution of  emission
further than 6000 m and the first mountain slopes in the Passy direction are found at a distance of
4.5 km from the radiometer.  As the sensitivity to the mountain slope is not detailed in the paper, we
propose to remove « without being affected by surrounding mountain » in the introduction. The
sentence «  MWR can thus be safely deployed in complex terrain and similar temperature  accuracy
to that of flat and less complex terrain can be expected. » has been changed into : MWR can thus
be safely deployed in complex terrain and then similar temperature  accuracy to that of flat
and less complex terrain can be expected, at least if the line of sight of the MWR is free of
obstacles over distances larger than about 5 km.



Figure  1 :  Vertical
profiles  of  bias  (solid
line)  and  root-mean-
square-error (dashed line)
of  temperature  profiles
retrieved  by  regression
against  radiosondes.
Profiles  retrieved  using
all  measurements (black)
or  only  measurements
made  in  the  Passy
direction  or  only
measurements  made  in
the Sallanches direction

The reviewer is right that it is interesting to investigate the differences in boundary layer scans. It
was the reason for this alternance of observations in the valley.
Figure 1 shows that most differences between temperature profiles retrieved in each direction are
located above the boundary layer. The agreement with radiosonde is degraded between 2 and 5 km
with  measurements  in  the  Sallanches  direction.  Figure  2  also  investigates  the  differences  in
brightness temperatures between Passy and Sallanches. We can see that very few differences are
found for opaque channels. On the contrary, the lower the elevation angle is, the larger the BT
differences are for transparent channels. The maximum of differences is found at 5.4° with BT
measurements colder in the Sallanches direction than Passy. Figure 3 shows a time serie of BT
measurements at 51.26 GHz and 5.4° of elevation and we can observe a time delay in the diurnal
cycle between Sallanches and Passy, Sallanches getting warmer before Passy.  
The brightness temperatures are also warmer in the direction of Passy all  day long that can be
explained  by  the  local  orography  differences  between  Passy  and  Sallanches  (for  example  the
altitude  of  the  valley  bottom is  lower  at  Sallanches  than  Passy  and  the  valley  is  narrower  at
Sallanches) and maybe by the impact of the urbanization in the direction of Passy. Another source
of explanation could be the formation of cold pool in Sallanches.
If we look at the time series of BT measurements at 58 GHz (figure 3, bottom panel), we observe
the same diurnal cycle and measurements in both directions. The city of Passy at 2.5 km is too far to
affect  the  measurement  of  opaque  channels  and  the  mountain  emission  is  totally  absorbed  by
previous atmospheric layers. We observe thus the diurnal cycle of the atmospheric temperature in
the valley at less than 2 km of the radiometer. Even though temperature heterogeneities probably
exist in the valley,  it  is likely that they are not strong enough over such a short  distance to be
captured by the MWR. This will be investigated in future work.
The  differences  observed  at  5.4°  should  be  investigated  more  in  details  in  a  future  work  to
understand  and  explain  how  temperature  heterogeneity  in  the  valley  can  be  linked  to  the
atmospheric circulation. This perspective has been described in the discussion:
Scanning in two different directions of the valley, MWR observations also offer the possibility
of investigating temperature heterogeneity in the valley and how these differences are linked
to the mesoscale circulation. This will be further investigated in a future study.



Figure 2 : Bias (solid lines) and standard deviations (dashed lines) of BT observations between
Sallanches and Passy (BT Sallanches – BT Passy)

Figure 3 : Time series of BT observations at 51.26 GHz (top panel) and 58 GHz (bottom panel)
in the Sallanches direction (blue) or Passy direction (red) at angle 5.4°



As far as  I  know the  HATPRO standard regression boundary layer temperature  rerieval
makes  use  of  the  inbuilt  in-situ  temperature  measurements.  This  might  explain  the  good
performance despite the lack of bias correction. However, the HATPRO sensor should not be
as accurate (representative) as the weather station - did you intercompare them?

This is right that the inbuilt  in-situ temperature measurements can normally be included in the
regressions.  However,  the  HATPRO  sensor  is  known  to  suffer  from  large  errors  due  to  an
inappropriate  ventilation  of  the  sensor.  Figure  4  shows the  bias  and  standard  deviation  of  the
HATPRO in-situ sensor minus the 2.5 m tower measurements. We observe a large bias during the
day with a maximum of 7 K around 12 UTC. The use of this in-built sensor would thus degrade the
retrievals.  For  that  reason,  the  manufacturer  regressions  are  generally  provided  without  the
inclusion of this in-situ sensor and it would need a lot of extra work to properly recompute the
regression coefficients including the surface temperature which could be applied by replacing the
HATPRO in-situ station by an accurate weather station. However, we made some testing during our
previous campaign and the inclusion of the temperature sensor only improves the result in the first
200m where regressions are already very accurate in our experiment.

Figure 4 : Bias and standard deviation of HATPRO in-built station minus tower measurements at
2.5 m.



The authors use radiosonde measurements down to 10 m, however, the first roughly 100 m of
the radiosonde ascent suffer from the fact that the sensors are not fully vented,
Do the authors have some information on this from the tethered balloon measure-
ments ?

The Vaisala probe used in the radiosonde has a very short time response of less than 0.5 s and is
naturally  ventilated  by  the  balloon ascent  at  a  5m/s  speed.  We are  thus  quite  confident  in  the
accuracy of the radiosonde measurements. We do not expect the measurements to be degraded in
the first 100 m but only in the first 10 to 20 m.
The Vaisala probe used under the tethered balloon has a similar time response but the  tethered
balloon at about 1 m/s so it is even less ventilated than the radiosonde probe.
However the temperature profiles from RS and tethered balloon (both from Vaisala probes) have
been compared from the ground to 45 m (maximum height of the tethered balloon when it was on
the same site than the RS from 6/02 3pm to 10/02 noon). Maximum differences observed are lower
than the sensors accuracy (0.5 deg C). 

A short discussion on the vertical resolution of the MWR should be included. Löhnert and
Maier (2012) smooth the radiosonde profile with the averaging kernels for comparison to take
these effects into account but here you are interested in the optimal retrieval. In fact, this
discussion would support your outlook that the inclusion of infrared radiometers and lidar
could improve the vertical resolution (p26, l27), cf Barrera et al., AMT, 2016. I do not agree
that this would help only below clouds: IR and lidar give information below clouds and thus
the information content from the MWR could be exploited for the higher levels.

The reviewer is right and a small discussion about the limited vertical resolution of the MWR has
been included. Firstly in section 3.3 :It is important to note here that the retrieval grid is finer
than the true instrumental resolution but matches the AROME model vertical resolution.

and section 6.2 :
Here the radiosonde profiles are interpolated to the retrieval grid without taking into account
the smoothing errors due to the limited vertical resolution of the MWR. In fact, this resolution
is approximately between 50 m and 500 m and only 4 independent pieces of information can
be extracted from the signal {Lohnert et al 2012}. On the contrary, the temperature profile is
sampled approximately every 10 m by the radiosonde. In the future, the averaging kernel
matrix could be used to bring the radiosonde profile onto the MWR vertical resolution.

Fig. 8 shows a bias of about -5 K with STD of about 3 K. Looking at Fig.3 the
difference between Arome and RS is certainly not Gaussian distributed - what is the
impact on the B matrix? This might be discussed in respect to the question what the
optimal way to build the B-matrix is, e.g. dependence on flow and diurnal cycle?

Even though a bias is observed in the AROME forecast errors it does not necessarily imply that the
forecast  errors  are  not  Gaussian.  The  only  accurate  way  that  is  known nowadays  to  infer  the
forecast error distribution is to use an ensemble assimilation with an adequate number of members.
It allows the evaluation of the Gaussianity by computing the distribution of the member differences
with respect to the mean ensemble, all members being valid for the same forecast time. In our case,
this  ensemble  assimilation  is  not  available  and  we can  only  plot  the  frequency distribution  of
AROME minus RS differences mixing different days and forecast hours. This comparison is thus
not-optimal for this estimation. However, we computed these differences for levels below 1000 m
because the sample is too small above due to fewer radiosondes reaching high altitude (figure 6).
We can see that the approximation of Gaussian distribution is respected for the lowest levels but a



negative skewness is observed at 1000 m. This is due to the small number of large errors at 1000 m
at the beginning of the period corresponding to the  cloud-based temperature inversions.

Figure 6 : Frequency distribution of AROME minus radiosonde differences at 500 m (left panel)
and 1000 m (right panel) with corresponding Gaussian Distributions (red line).

Legrand  et  al  2016 recently  evaluated  this  non-Gaussianity  for  the  AROME model  with  a  90
member assimilation system. It was found that all control variables present some non-gaussianity
but vorticity and divergence are more affected than temperature and humidity. This non-Gaussianity
is reduced by the analysis process in areas constrained the most by observations.  Even though non-
gaussianity  exists,  current  3D-Var  and 4D-Var system does  not  take  into account  this  error.  In
addition, the B matrix should not be affected by the non-Gaussianity as it only affects the higher
moments of the distribution (skewness and kurtosis) and not the ones used to compute the B matrix
(mean and standard deviation). 
The optimal way to build the B-matrix and to make it flow dependent and evolve with the diurnal
cycle is again to use an ensemble assimilation to compute a new B matrix at each assimilation cycle
(see Ménétrier et al 2014). This system has been extensively developed at Météo France in the last 5
years and should be operational by 2018. A B matrix flow-dependeng and varying in time will thus
be available in the future and the impact on the 1D-Var will also be possible.

This problem has been discussed in the manuscript :
Section 6.1 :
Non-Gaussianity can also affect forecast errors. Recently, Legrand et al 2016 evaluated the
non-Gaussianity  of  analysis  and  forecast  errors  using  a  90  member  AROME  ensemble
assimilation.  It  was  found  that  for  all  variables,  non-Gaussianity  exists  but  dynamical
variables (vorticity and divergence) are more affected than temperature and humidity. The
data  assimilation  reduces  this  non-Gaussianity  at  each  cycle  in  regions  well  covered  by
observations. This ensemble assimilation does not exist for our period making complicated the
evaluation of this Gaussianity in our context. However, it should affect higher moments of the
error distribution than those used in the B matrix.

Section 6.2 :



The flow-dependency and diurnal cycle of forecast errors can be determined by implementing
a  real-time  AROME ensemble  assimilation  system (Menetrier et  al  2014).  This  is  under-
development and should be available next year.

Minor Comments

All comments have been taken into account. The changes are highlighted in red in the manuscript. 

P10, l3 : A more
Not clear to us what the referee refers to here; thus, we take no action
p7, l19 : One sentence explaining O-B would be helpful.
O-B monitoring has been introduced at the end of section 3.3 :
Information about instrumental errors can be obtained by investigating differences between
observations and simulations from background profiles (short-term forecasts or radiosondes).
The monitoring of these differences called O-B (observations minus background) departures
is essential to remove any systematic errors in the measurements, the forward operator or the
background profiles (De Angelis et al 2017). They are investigated in section 5.

p12,l4: Did you look at the variability of Arome within the valley?
The  variability  of  the  AROME  profiles  has  been  studied  and  was  found  very  homogeneous
justifying the use of only the closest AROME grid point in the valley. Figure 7 shows a time serie of
the temperature values extracted at different levels for all AROME grid points within the Valley.
Figure 8 shows a comparison of the different temperature profiles within the valley for two different
days. 

Figure 7 : Time series of AROME temperature values at three different levels (300 m top panel, 800
m middle panel, 1500 m bottom panel) for all AROME grid points within the valley (grey dots) and
the AROME grid point closest to the microwave radiometer (black dots). This is compared to the
radiosonde  (red) and the 2.5 m  tower (orange) measurements.  

Figure 8 : Temperature profiles for all AROME grid points within the valley (grey lines) compared
to the closest grid point to the microwave radiometer (black line) during two different days. 



P15, l19 : How is this done in detail, should be reproducible
As the standard deviation of RS minus AROME differences are on top of the operational standard
deviation  above  2  km altitude,  a  new standard  deviation  vector  is  obtained  by  combining  the
operational  standard  deviation  above  2  km  and  the  one  computed  from  AROME  minus  RS
differences below 2 km altitude :
sigma_new = [sigma_oper(1:61), sigma_Passy(62:90)]
Covariances are then computed with the usual formulation :
cov(i,j)=cor(i,j) * sigma_new (i) * sigma_new (j)
with the operational correlations.

In order to make this more clear, we modified the sentence :
As the 1DVAR retrieval accuracy depends on how well the B matrix is defined, the diagonal
terms of the B matrix (auto-covariance of the temperature errors) were simply replaced by
the  variance  of  the  radiosonde  minus  AROME  differences  (i.e.  the  square  of  standard
deviation values in Figure 8) below 2 km.

Tower measurement differences between 2.5 and 5 m :

The  values  were  not  mixed  up  but  we  are  more  confident  with  the  accuracy  of  the  5  m
measurements. They are based on a Socrima shield which is naturally ventilated whereas the 2.5 m
sensor is a new development undertaken in our laboratory. It is composed of a PT100 probe and a
thin wire in a prototype shield with a forced ventilation to retrieve temperature at a high temporal
frequency.  The  experiment  highlighted  some  problems  that  would  request  an  improved  shield



design. We suggest to modify the figure to remove the comparison with the measurements at 2.5 m
and only compare with the measurements at 5 m. Figure 11 has been changed accordingly.

 
p18, l10 : A bit provocative: When you use the RS as a priori and also evaluate with an RS one
could argue that systematic RS errors (time lag, calibration..) might be similar and therefore
Arome has no chance

Of course using radiosonde measurements which show less background errors than AROME was
expected to improve the retrievals especially at the cloud-based temperature inversions. However,
the systematic RS errors should be negligible in this comparison. Here, we just want to illustrate
how the 1DVAR can be applied in an experimental campaign adapting the background profile to
obtain  the  best  estimation  of  the  true  atmosphere  and  how to  deal  with  elevated  cloud-based
inversion by using a more appropriate background. This has been highlighted in section 6.4 :
Our study shows that another way of improvement is to use an external information to infer
the presence of an elevated temperature inversion that will be incorporated in the background
of the 1DVAR algorithm.

P24, l7 : I do not understand how the valley constrained the measurement configuration - do
you mean the difficulty to find a site with a free view?
By « constrained  the  measurement  configuration »  we  mean  a  direction  free  of  obstacles.  We
changed the sentence into :

Within the Passy-2015 field campaign, a HATPRO ground-based microwave radiometer was
operated  in  a  deep  Alpine  valley  making  complex  the  instrumental  deployment  due  to
surrounding mountains.

 



Regarding Dr. Stefan Kneifel additional discussion, our comments on the deployment of MWR in
complex terrain have been moderated.

In the introduction we have changed the sentence :

To that end, this is the first time that a MWR has been deployed in such a narrow valley (less than 5
km between the closest mountain slope and the instrument) with measurements going down to 5°
elevation angle during which 1DVAR retrievals are performed from a convective scale model.

Into :

To that end, a MWR has been deployed in a narrow Alpine valley (less than 5 km between the
closest mountain slope and the instrument) with measurements going down to 5° elevation
angle. This is the first time 1DVAR retrievals are performed from a convective scale model in
complex terrain during which large forecast errors are observed.

In the conclusion we have changed :

In such complex terrain we could have expected the measurements to be affected by surrounding
mountains and one major result of this study is to show that MWR observations are not affected in
such a narrow valley even going down to 5° elevation angles

into :

In such complex terrain we could have expected the measurements to be affected by surrounding
mountains  and one  interesting result  of  this  study is  to  show that  MWR observations  are  not
affected in such a narrow valley even going down to 5° elevation angles

The discussion on the literature of complex terrain deployment has been changed from :

Previous papers deploying MWR in complex terrain are not abundant, only three to our knowledge :
Kneifel et al. (2010), Cimini et al. (2011) and Massaro et al. (2015). The study of Kneifel et al.
(2010) does not investigate the temperature profile retrievals and the radiometer is deployed at the
mountain top above the crest. In Cimini et al. (2011), the terrain is more complex but the 1DVAR
is investigated with a global NWP model at  a 10 km horizontal  resolution and using only one
elevation angle in addition to the zenith. The radiometer measurements do not go lower than 15°
elevation angle which significantly limits the possible perturbance from surrounding mountains.
Massaro et al. (2015) deploys the instrument in a valley with a free viewing angle up
to 28 km whereas the Passy valley is only 5 to 6 km long in the Passy direction and only focussed
on regressions without any comparison with the 1DVAR algorithm. Temperature gradients were
also smaller compared to those observed during Passy. This is also the first time, to our knowledge,
that the instrument was operated scanning in two different directions.

Into :

Previous papers deploying MWR in complex terrain are not abundant, among them we can cite :
Kneifel et al. (2009), Kneifel et al. (2010), Cimini et al. (2011), Xie et al. (2012) and Massaro et al.
(2015).  In Kneifel et al.  (2009) the terrain is not as complex as in Passy with a maximum
elevation of only 350 m and only integrated water vapor retrievals are investigated.  Both
studies of Kneifel et al.  (2009) and Xie et al.  (2012) do not investigate temperature profile
retrievals neither and the radiometer is deployed at 2650 meters above sea level which differs
from the deployment at the bottom of the 2000 m deep Passy valley. In Cimini et al. (2011), the



terrain is  more complex but the 1DVAR is investigated with a global NWP model at  a 10 km
horizontal resolution and using only one elevation angle in addition to the zenith. The radiometer
measurements do not go lower than 15° elevation angle which significantly limits  the possible
perturbation from surrounding mountains. Massaro et al. (2015) deploys the instrument in a valley
with a free viewing angle up to 28 km and only focussed on regressions.  Regarding the Passy
valley, the free line of sight is limited to 5 km in the Passy direction and 1DVAR retrievals
from  a  convective  scale  model  are  performed.  Temperature  gradients  were  also  larger
compared to those observed in Massaro et al. (2015).
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Abstract. A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the

Passy-2015 field campaign. This experiment aims at investigating how stable boundary layers during wintertime conditions

drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWR continuously provide

vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution

of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field5

campaign to optimally combine MWR and 1h forecasts from the French convective scale model AROME. Retrievals were

compared to radiosonde data launched at least every 3 hours during two intensive observation periods (IOP). An analysis of

the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest

stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2

(Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errors were observed for10

most transparent channels (i.e., 51-52 GHz) affected by absorption model and calibration uncertainties while a good agreement

was found for opaque channels (i.e., 54-58 GHz). Based on this monitoring, a bias correction of raw brightness temperature

measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME

forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present

implementation, a root-mean-square-error (RMSE) of 1 K through all the atmospheric profile was obtained with values within15

0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5 ◦) in the MWR scanning and the bias

correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch very well deep near-

surface temperature inversions. Larger errors were observed in cloudy conditions due to difficulty of ground-based MWR to

resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs

by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of20

the retrievals in cloudy conditions and below 1000 m in clear-sky was observed.

✿✿✿✿

From
✿✿✿✿

this
✿✿✿✿✿

study,
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿✿

conclude
✿✿✿

that
✿✿✿✿✿✿

MWR
✿✿✿

are
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿

bring
✿✿✿✿✿✿✿

valuable
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

into
✿✿✿✿✿

NWP
✿✿✿✿✿✿

models
✿✿✿

up
✿✿

to
✿

3
✿✿✿

km
✿✿✿✿✿✿✿

altitude
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✿✿✿✿

both
✿✿

in
✿✿✿✿✿✿✿

clear-sky
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

cloudy-sky
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿✿✿✿

found
✿✿✿✿✿✿

around
✿✿✿✿

500
✿✿

m.
✿✿✿✿✿

With
✿✿

an
✿✿✿✿✿✿✿✿

accuracy
✿✿✿✿✿✿✿

between

✿✿✿

0.5
✿✿✿

and
✿✿

1
✿✿

K
✿✿

in
✿✿✿✿✿✿

RMSE,
✿✿✿✿

our
✿✿✿✿✿

study
✿✿✿

has
✿✿✿✿

also
✿✿✿✿✿✿

proved
✿✿✿✿✿

MWR
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿

capable
✿✿

of
✿✿✿✿✿✿✿✿

resolving
✿✿✿✿

deep
✿✿✿✿✿✿✿✿✿✿✿

near-surface
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

inversions

✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿

terrain
✿✿✿✿✿✿

during
✿✿✿✿✿✿

highly
✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿

layer
✿✿✿✿✿✿✿✿✿✿

conditions.

1 Introduction

Atmospheric boundary layer (ABL) observations of temperature and humidity profiles at a high temporal resolution are nec-5

essary for the improvement of numerical weather prediction (NWP) and for a better understanding of small-scale phenomena.

In fact, new generation of convective scale models have
✿✿✿

has
✿

been developed in the last ten years in order to improve the

forecasts of high impact weather events like heavy convection, precipitation, fog or low clouds. In order to initialize con-

vective scale models through data assimilation algorithms, a denser network of ABL observations is needed as it is the most

important under-sampled part of the atmosphere (National Research Council United States (2010)). In parallel, a better under-10

standing of boundary layer processes is essential to improve parameterisations used to describe the evolution of phenomena at

a smaller scale than the model grid. To that end, observations enabling a fine description of the diurnal evolution in the ABL

are important to improve our knowledge and understanding of these small-scale phenomena. Among them, ABL processes in

mountainous regions are an active area of research due to complex atmospheric dynamics, anabatic and katabatic winds and

strong temperature inversions (Rotach and Zardi (2007)). Urban valleys are often affected by severe pollution events during15

wintertime anticyclonic conditions while the atmospheric circulation in the valley is decoupled from the synoptic dynamics

aloft (Lehner and Gohm (2010), Gohm et al. (2009), De Franceschi and Zardi (2009), Silcox et al. (2012)). This is particularly

the case in the Arve River Valley near the city of Chamonix located in the French Alps where the air quality is one of the worst

in France. The Passy-2015 field campaign was conducted to improve our knowlegde on how pollutants are accumulated and

dispersed during stable episodes in this urbanized valley (Paci et al. (2016)). To better understand and forecast these pollution20

events, vertical profiles of temperature at a high temporal resolution can be valuable. In fact, information on the link between

the atmospheric stability and the amount of pollutant in the atmosphere can be studied as well as the description of temperature

inversions and stratifications (Silcox et al. (2012), Chemel et al. (2016)).

Radiosounding remains one of the most accurate method to measure temperature profiles but their cost and induced finite

time resolution (once or twice per day usually for instrumented site) is a limitation for a fine description of the diurnal cycle25

of the boundary layer. On the contrary, ground-based microwave radiometers (MWR) can provide continuous observations

of temperature and humidity profiles at a high frequency rate (up to 1 s for humidity profiles, a few minutes for tempera-

ture). Even if the vertical resolution decreases with altitude (Cimini et al. (2006)), information from MWR mostly resides in

the ABL (Löhnert and Maier (2012)) and atmospheric profiles are provided in both clear and cloudy-sky conditions making

them useful for a long-term monitoring of boundary layer dynamics. Atmospheric profiles are generally retrieved from statis-30

tical regressions using a long-term database of radiosoundings (Crewell and Lohnert (2007), Löhnert and Maier (2012)). This

method relies on a long time serie of radiosonde profiles to represent most of the atmospheric variability. However such a

large number of radiosonde profiles is rarely available. NWP models can provide a database of atmospheric profiles when no
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radiosonde is available (Güldner (2013)). However, this method may not be well suited in complex terrain for which fore-

cast skills are known to be less accurate particularly due to unrepresented processes associated with subgrid scale orography.

One-dimensional variational (1DVAR) retrievals have also been used to retrieve in an optimal way temperature and humidity

profiles by combining observations and an a priori of the atmospheric state. This a priori profile can either be represented by

a
✿✿✿✿✿✿✿✿✿✿

climatology,
✿

radiosounding on instrumented site (Löhnert et al. (2004), Löhnert et al. (2008)) or a short-term forecast from5

a NWP model. The 1D-Var technique was applied by Hewison (2006), Cimini et al. (2006), Hewison (2007), Cimini et al.

(2010) and Cimini et al. (2011) using forecasts from a mesoscale model on various datasets of MWR observations from the

MeteoSwiss station of Payerne to observations in Alaska or Vancouver during the 2010 Olympic games. A root-mean-square-

error (RMSE) within 1.5 K was obtained for the three experiments by comparison to radiosondes. Recently, Martinet et al.

(2015) illustrated for the first time a 1DVAR assimilation of
✿✿✿

real
✿

MWR observations into the convective scale model AROME10

and obtained a RMSE within 1 K in clear-sky and 1.3 K in cloudy sky up to 6 km, most of the information content brought

into the model being located below 3 km altitude.

During the Passy-2015 field campaign, a 14 channel MWR has been operated from December 2014 to March 2015 in a deep

and narrow Alpine valley. Although there have already been MWR deployments on complex terrain (Kneifel et al. (2010),

Cimini et al. (2011), Massaro et al. (2015)), this study investigates the following questions:15

– Can ground-based MWR resolve temperature profiles characterized by sharp temperature inversions during very stable

conditions in such a deep and narrow valley , without being affected by surrounding mountains ?

– What
✿✿✿✿✿

added
✿✿✿✿

value
✿

can MWR bring to NWP models in stable conditions which are known to be a current issue in NWP

forecasts ?

✿✿

To
✿✿✿✿

that
✿✿✿✿

end,
✿

a
✿✿✿✿✿✿

MWR
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿

deployed
✿✿

in
✿✿

a
✿✿✿✿✿✿

narrow
✿✿✿✿✿✿

Alpine
✿✿✿✿✿

valley
✿✿✿✿

(less
✿✿✿✿

than
✿✿

5
✿✿✿

km
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿

closest
✿✿✿✿✿✿✿✿

mountain
✿✿✿✿✿

slope
✿✿✿✿

and20

✿✿

the
✿✿✿✿✿✿✿✿✿✿

instrument)
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿✿

going
✿✿✿✿✿

down
✿✿

to
✿

5
✿✿

◦

✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿

angle.
✿✿✿✿

This
✿✿

is
✿✿✿

the
✿✿✿✿

first
✿✿✿✿

time
✿✿✿✿✿✿✿

1DVAR
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

are
✿✿✿✿✿✿✿✿✿

performed

✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿✿✿

convective
✿✿✿✿✿

scale
✿✿✿✿✿

model
✿✿

in
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿

terrain
✿✿✿✿✿✿

during
✿✿✿✿✿

which
✿✿✿✿✿

large
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿✿✿✿✿

observed.
✿

The paper begins with an overview of the instrumentation used in the Passy-2015 field campaign (section 2) and the 1D-Var

algorithm (section 3) followed by an analysis of the AROME forecast errors during the experiment (section 4). Monitoring of

the radiometer brightness temperature measurements enabling the computation of a bias correction is presented in section 5.25

Finally, performance of 1DVAR retrievals compared to regressions is discussed in section 6.

2 Instrumentation

2.1 The Passy-2015 field campaign

The Passy-2015 field campaign was designed in order to improve our understanding on how the atmospheric dynamics during

wintertime anticyclonic conditions, leading to persistent stable boundary layers, drives the accumulation and dispersion of30

pollutants in the atmosphere of the Arve Valley around the city of Passy. This French urbanized valley is known for severe
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Passy

Sallanches

HATPRO

500 m

1000 m

2000 m

3000 m

Figure 1. View of the area of interest, close to the city of Passy in the Arve river valley. Microwave radiometer and radiosondes were

deployed on measurement site 1. Topographic maps from www.geoportail.gouv.fr, IGN 2017

pollution episodes with daily concentration of PM10 (aerosols with diameter less than 10 µm) regularly above 50 µgm−3.

The valley is approximately 2000 m deep and maximum 2 km wide (fig. 1). The ground altitude is approximately 560 m a.g.l

down the valley. A large number of instruments were deployed from end of November 2014 to end of March 2015 on five

instrumented sites down the valley. Among them, there are microwave radiometers, wind profilers, ceilometer, sodar, lidars,

tethered ballons, instrumented towers. A detailed presentation of the field campaign can be found in Paci et al. (2016). Two5

intensive observation periods (IOP) have been carried out during the campaign. The observing system was reinforced during

these periods with radiosondes launched every 3 hours and up to 1.5 hours. The first IOP took place from the 6th to the 14th of

February, the second one from the 17th to the 20th of February.

2.2 HATPRO MWR10

A HATPRO MWR (Rose et al. (2005)) was deployed on site 1 (Fig. 1) and is oriented to scan the Passy valley in two opposite

directions: Passy in the NorthEast and Sallanches in the NorthWest direction. The HATPRO MWR measures downwelling
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brightness temperatures in 14 channels. The first seven are located on the upper-frequency wing of the 22.24 GHz water vapor

absorption line (called K-band), the last seven at the 60 GHz oxygen complex band (called V-band). K-band channels are

used to retrieve atmospheric humidity and liquid water content while V-band channels are used for atmospheric temperature

retrievals. Observations are made either in zenith mode pointing at 90 ◦ or in boundary layer mode scanning the atmosphere

under lower elevation angles from 90 ◦ to 5.4 ◦. One boundary layer scan is performed in each direction approximately every5

10 minutes. The use of boundary layer scan was found to significantly improve the accuracy of temperature profiles in the

first km assuming that the atmosphere is horizontally homogeneous around the MWR (Crewell and Lohnert (2007)). Even if

this assumption is not necessarily valid in complex terrain, the study of Massaro et al. (2015) has shown a good accuracy of

temperature profiles with no degradation due to the nearby mountain. The radiometer needs to be well calibrated to exploit

the optimal
✿✿✿✿✿✿✿✿

calibration
✿

coefficients in order to convert detected intensities into brightness temperatures. To that end a liquid10

nitrogen cooled load considered as a blackbody at the boiling temperature of 77 K is generally used (Küchler et al. (2016)). A

liquid nitrogen calibration was performed at the beginning of the experimental campaign at the end of November .
✿✿✿✿

2014.
✿

2.3 Ancillary Data

In addition to the HATPRO MWR, observations by 84 radiosonde ascents are used to validate temperature profiles retrieved

by the MWR. VAISALA RS92 radiosondes with an expected accuracy of 0.5 K in temperature and 5 % in relative humidity15

were launched approximately every 3 hours and up to 1.5 hours during the IOPs. Radiosondes were launched approximately

at 00, 03, 06, 09, 12, 15, 18 and 21 UTC. They provide vertical profiles of pressure, temperature, relative humidity, dew point

temperature, and wind profiles at approximately 10 m vertical resolution. The temperature at 1.5 m is provided by an external

weather station combined with the RS measurements through the VAISALA software. A new system to increase the frequency

of radiosondes by recovering previously launched probes has been used during the field campaign (Legain et al. (2013)). In20

order to be able to pick up the probes, they should not drift too far away from the launching site. As a consequence, most of

the radiosondes were released at about 2 km altitude, to make sure they can be picked up in the valley.

A ceilometer Vaisala CT25K deployed a few meters from the MWR is also used to determine the cloud base altitude. This cloud

base can be used to optimize the 1DVAR retrievals in cloudy conditions and to separate clear-sky from cloudy-sky observations

when analysing the results.25

3 Retrieval Algorithm

3.1 1DVAR framework

A comparison of several methods to convert brightness temperatures into temperature and humidity profiles have proved the

1DVAR technique to be the optimal one (Cimini et al. (2006), Martinet et al. (2015))
✿✿✿✿✿

when
✿✿

the
✿✿

a
✿✿✿✿✿

priori
✿✿✿✿✿

profile
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

uncertainty

✿✿✿✿✿✿✿

estimates
✿✿✿

are
✿✿✿✿✿✿✿

suitable. The 1DVAR framework used in this study is based on the optimal estimation theory by Rodgers (2000).30

MWR observations are combined with an a priori estimation of the atmospheric state which can be either a short-term-forecast
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or a previous radiosonde profile.
✿

In
✿✿✿✿

this
✿✿✿✿✿✿

context,
✿✿

a
✿✿✿✿✿

priori
✿✿✿✿

refers
✿✿

to
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

guess
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿✿✿

representing
✿

a
✿✿✿✿✿

good

✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿

starting
✿✿✿✿✿

point
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

minimization.
✿

Each source of information is weighted by

corresponding uncertainty called the background-error-covariance matrix (B) for the a priori profile and the observation-error-

covariance matrix (R) for the observation to find the optimal state.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

background-error-covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-covariances
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariances
✿✿

of
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

guess
✿✿✿✿✿

errors.
✿✿✿✿✿

Thus,
✿✿

it
✿✿✿✿✿✿

defines
✿✿✿

the
✿✿✿✿✿✿✿✿

variances
✿✿✿

of
✿✿✿

the
✿✿✿

first
✿✿✿✿✿

guess
✿✿✿✿✿

errors
✿✿

at
✿✿✿✿✿

each5

✿✿✿✿✿✿

vertical
✿✿✿✿

level
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿

variable,
✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

of
✿✿✿

the
✿✿✿

first
✿✿✿✿✿

guess
✿✿✿✿✿✿

errors
✿✿

at
✿✿✿✿✿✿✿

different
✿✿✿✿✿

levels
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿

of
✿✿✿✿✿

these

✿✿✿✿✿

errors
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿✿✿✿✿

(temperature
✿✿✿

and
✿✿✿✿✿✿✿✿

humidity
✿✿✿

for
✿✿✿✿✿✿✿✿✿

example). An observation operator including interpolations

from model space to observation space and a radiative transfer model is needed to compute the equivalent observation from

the a priori. The method iteratively modifies the state vector x from the a priori xb to minimize the following cost function:

J(x) =
1

2
(x− xb)

T B−1(x− xb)+
1

2
(y−H(x))T R−1(y−H(x))10

whereH represents the observation operator, T represents the transpose operator and −1 the inverse operator. The observation-

error-covariance matrix R should take into account representativeness and forward model errors as well as radiometric noise.

During the minimisation process, a Levenberg-Marquardt descent algorithm is applied by introducing a factor γ that is

adjusted after each iteration. If the cost function is not decreased with the new profile, the factor γ is multiplied by 10. The

iterative solution that minimizes the cost function J is given by:15

xi+1 = xi+
(

(1+ γ)B−1 +Hi
T R−1Hi

)

−1

× (1)
(

Hi
T R−1(y−H(xi))−B−1(xi − xb)

)

where Hi is the Jacobian matrix which represents the sensitivity of the observation operator to changes in the control vector x

(Hi=∂H(xi)/∂xi).

3.2 NWP model20

In this study 1-hour forecasts from the French convective scale model AROME (Application of Research to Operations at

MEsoscale, Seity et al. (2011)) are used as a priori profiles or "backgrounds". AROME is a limited area model covering

Western Europe with non-hydrostatic dynamical core. Since beginning 2015, the horizontal resolution of AROME has been

increased from 2.5 km to 1.3 km as well as the number of vertical levels from 60 to 90 (Brousseau et al. (2016)). This in-

crease in horizontal and vertical resolutions is particularly useful to better represent complex terrains. Vertical levels follow25

the terrain in the lowest layers and isobars in the upper atmosphere. The detailed physics of Arome are inherited from the

research Meso-NH model (Lafore et al. (1997)). Deep convection is assumed to be resolved explicitly, but shallow convec-

tion is parameterized following Pergaud et al. (2009). A bulk one-moment microphysical scheme (Pinty and Jabouille (1998))

governs the equations of the specific contents of six water species (humidity, cloud liquid water, precipitating liquid water,

pristine ice, snow, and graupel). This new version also performs 3D-Var analyses every hour instead of every three hours to
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optimize the use of frequent observations. All conventional observations are assimilated together with wind profilers, winds

from space-borne measurements (Atmospheric Motion Vectors and scatterometers), Doppler winds (Montmerle and Faccani

(2009)) and reflectivity (Wattrelot et al. (2014)) from ground-based weather radars, satellite radiances as well as ground-based

GPS measurements (Mahfouf et al. (2015)).5

3.3 Settings

In this study the control vector x consists in temperature and humidity profiles on the same 90 levels as defined in AROME.

These levels cover the atmospheric range from the ground up to 30 km, the vertical resolution decreasing with altitude: 20-100

m below 1 km, 100-200 m from 1 to 5 km, around 400 m at 10 km.
✿✿

It
✿✿

is
✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿

note
✿✿✿✿

here
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

retrieval
✿✿✿✿

grid
✿

is
✿✿✿✿✿

finer10

✿✿✿

than
✿✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

but
✿✿✿✿✿✿✿

matches
✿✿✿

the
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿

model
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

resolution. The observation vector y consists

in brigthness temperatures (BT) in all V-band channels (51.26, 52.28, 53.86, 54.94, 56.66, 57.3, 58 GHz) at zenith and only

opaque channels (above 54 GHz) at low elevation angles: 42, 30, 19.2, 10.2 and 5.4 ◦. This study only focusses on temperature

profiles, thus only V-band channels are used. The forward model operator used in this study is the line-by-line Atmospheric

Radiative Transfer Simulator 2 (ARTS, Eriksson et al. (2011)) and 1DVAR experiments are performed using the Qpack2 pack-15

age (Eriksson et al. (2005)) provided with the ARTS software. For the radiative transfer simulations, the gaseous absorption

is calculated according to Rosenkranz (1998) for O2 and water vapour. In simulations taking into account the liquid water

absorption, the model of Liebe et al. (1993) is used.

The observation-error covariance matrix R is assumed to be uncorrelated with a standard deviation of 0.5 K for channels 8 to

9 and 0.2 K for channels 10 to 14. These values have been chosen empirically on the basis of previous studies by Löhnert et al.20

(2008) and Hewison (2007). The same values have been used in Martinet et al. (2015) with the instrument used in this study

and have shown to be good estimates of the observation errors. In the future, a dedicated study will be performed to review

these values and quantify the correlations in noise between the different channels by continuously measuring the BTs of the

internal black body target.

✿✿✿✿✿✿✿✿✿✿

Information
✿✿✿✿✿

about
✿✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿

errors
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

investigating
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

simulations25

✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿✿

(short-term
✿✿✿✿✿✿✿✿

forecasts
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿

radiosondes).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

monitoring
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿

called
✿✿✿

O-B
✿✿✿✿✿✿✿✿✿✿✿✿

(observations

✿✿✿✿✿

minus
✿✿✿✿✿✿✿✿✿✿✿

background)
✿✿✿✿✿✿✿✿✿

departures
✿

is
✿✿✿✿✿✿✿✿

essential
✿✿

to
✿✿✿✿✿✿✿

remove
✿✿✿

any
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿

errors
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿✿

the
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿

operator
✿✿✿

or
✿✿✿

the

✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(De Angelis et al. (2017)).
✿✿✿✿

They
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿

in
✿✿✿✿✿✿

section
✿✿

5.
✿

4 Evaluation of the AROME model during the Passy-2015 field campaign

In real-time during the Passy-2015 field campaign, temperature profiles were retrieved from the MWR measurements using30

linear regressions implemented within the HATPRO proprietary software. The regression coefficients were provided by the

RPG manufacturer to the national service MeteoSwiss and are based on the 1989-2005 Payerne radiosonde data via radiative

transfer calculations. The Payerne coefficients were chosen due to the lack of radiosonde data close to the city of Passy and for
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the similar climatic conditions between Passy and Payerne.

Figure
✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿

model
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Passy-2015
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿✿

figure 2 shows the time

series of temperature profiles observed by radiosondes(top panel), retrieved from the HATPRO MWR by the Payerne linear

regression coefficients (middle panel) and
✿✿✿

and
✿✿✿✿✿

those extracted from the AROME analyses (bottom panel) during the first IOP.

The stable episode starts the 9th of February and ends the 13th of February. During this event a persistent inversion is observed,5

however we can note the destruction of the stability
✿✿✿

that
✿✿✿✿✿✿✿

stability
✿✿

is
✿✿✿✿✿✿✿

depleted
✿

in the first 500 meters every day between noon

and 3 to 5 pm due to the solar heating. The diurnal cycle and a very cold air mass (up to -10 ◦ C) close to the surface at night

are very well detected by the MWR. We observe a good agreement of the overall atmospheric structure between radiosonde

data and MWR observations. The root-mean-square differences (RMSE) between the regressions and the radiosondes are 0.7

K below 500 m except the first two points close to the surface, below 1.3 K at 1200 m and increase up to 2 K at 4000 m.10

These values are consistent with those reported in Löhnert and Maier (2012) from another HATPRO radiometer operated in

a less complex terrain and from Massaro et al. (2015) in a truly complex terrain in the Inn Valley. This result confirms that

microwave radiation that could originate from nearby slopes does not seem to degrade the quality of MWR inversions. MWR

can thus be safely deployed in complex terrain and
✿✿✿

then
✿

similar temperature accuracy to that of flat and less complex terrain

can be expected. ,
✿✿

at
✿✿✿✿

least
✿✿

if
✿✿✿

the
✿✿✿✿

line
✿✿

of
✿✿✿✿

sight
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

MWR
✿✿

is
✿✿✿

free
✿✿

of
✿✿✿✿✿✿✿✿

obstacles
✿✿✿✿

over
✿✿✿✿✿✿✿✿

distances
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿✿✿

about
✿

5
✿✿✿✿

km.
✿

15

Figure 2 also demonstrates that the 10 minute resolution of the MWR observations during the field campaign is a real advantage

to complete the radiosonde time serie for a detailed description of the boundary layer diurnal cycle. During IOP 1, the 2015

operational version of the AROME model had troubles stabilising the air mass and missed the large cooling of the surface at

nighttimes. The AROME model demonstrated difficulties in properly representing such conditions
✿✿✿✿

which
✿

is a well known issue

of current NWP models. It induces large differences between the radiosonde observations and the AROME forecasts by up to20

-12 K at the surface during the strongest stable event (10th, 11th and 12th of February).

Figure 3 shows more in details
✿✿

To
✿✿✿✿✿✿✿

quantify
✿

the accuracy of the AROME analyses in the valley during the IOP 1. The top

panel
✿✿✿✿

IOP1
✿✿✿✿✿

figure
✿✿

3 shows temperature differences between radiosonde and AROME at three different levels: 2
✿✿✿

1.5 m a.g.l.in

black, 1000 m a.g.l. in red and 1500 m a.g.lin blue. .
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿

at
✿✿✿

1.5
✿✿

m
✿✿✿✿✿✿

comes
✿✿✿✿✿

from
✿✿

an
✿✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿

station

✿✿✿

well
✿✿✿✿✿✿✿✿✿

ventilated.
✿

To interpret these temperature errors, the bottom panel shows
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿

the radiosonde tempera-25

ture difference between
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿

at the boundary layer height
✿✿

zi
✿

and the surface : ∆T = TRS(zi)−TRS(1) where zi

represents the boundary layer height
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿

station:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∆T = TRS(zi)−Tstation(1.5m). To es-

timate during the day the thin convective layer top which develops under the effect of solar heating, we used one of the standard

definitions given by Stull (2012) and Sullivan et al. (1998) as the height of the maximum gradient of potential temperature.

The estimation of the boundary layer height in stable conditions is more tricky and has been a longstanding problem with30

definitions varying according to the application. Here, the stable boundary layer top has been defined as the top of the surface

inversion of the stable layer using the definition from Beyrich (1997). This definition is used when a positive temperature gra-

dient near the surface is found. The temperature difference ∆T quantifies the atmospheric boundary layer stability. Negative

values indicate convective conditions while positive values indicate stable conditions more pronounced when the temperature

difference is larger. The term "stability index" will be used in our analysis. We can note that the surface error is relatively low at35
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Figure 2. Time series of temperature profiles during IOP 1: (a) from radiosounding
✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layer
✿✿✿✿✿✿

heights
✿✿✿✿✿

(black

✿✿✿✿✿✿

crosses), (b) from microwave radiometer, (c) from AROME analyses. Altitudes are given in m above ground level.

the beginning of the period (smaller than 5 K) and increases with the atmospheric stability. The stability index increases from

the 9th to the 11th of February and decreases after to reach values similar to the beginning of the episode. The stability index

changes from positive (i.e. stable) to negative (i.e. unstable) every day between 12 and 18 UTC approximately. The temperature

errors of the AROME analyses at the surface are consistent with the evolution of the atmospheric stability. The largest errors

reach -12 K the 11th of February at 03 UTC (Fig. 4) when the stability is maximal with a value of 14 K.5

On the contrary, the evolution of the 1000 m temperature error is not correlated with the atmospheric stability with larger errors
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during unstable conditions before the
✿✿✿

and
✿✿✿✿✿

shows
✿✿✿✿✿✿

larger
✿✿✿✿✿

errors
✿✿✿✿✿✿

before
✿✿✿

the
✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿✿

conditions
✿✿

(9th of February
✿

)
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿

stability

✿✿✿✿

index
✿✿✿✿✿✿✿✿

reaching
✿✿✿

-10
✿✿

K. At the beginning of the IOP cloudy conditions with low level clouds located around 1000 m were ob-

served. It results in a sharp temperature inversion at the cloud base (Fig. 4) which is also a known source of error in NWP

forecasts. At 1500 m a.g.l, the error stays within 2 K during all the period showing a good accuray of the AROME analyses at

an altitude corresponding roughly to the averaged valley crest.5

To summarize, the accuracy of the AROME analyses is degraded inside the valley which is affected by an atmospheric circula-

tion decoupled from the synoptic dynamics above the valley crest. The degradation of the AROME analyses is correlated with

the establishment of the stable episode. The surface cooling is strongly underestimated by AROME in this context. However,

above the top of the valley, the analysis errors are much smaller and correspond to the expected accuracy of the model. This

result confirms the fact that MWR can bring valuable information in the altitude range where the NWP error is the largest and

where a lack of observations is still observed in operational networks.

5 Observation minus background monitoring5

5.1 Data screening

In order to remove discrepancies in the forward simulations due to cloud mislocations in the forecast model, a screening of

MWR observations between clear and cloudy-sky cases has been performed. First of all, a sanity check is performed to remove

MWR observations for which the rain flag provided within the instrument datastream was activated. As the HATPRO config-

uration was optimized to retrieve temperature profiles at a high vertical resolution, few zenithal observations were performed10

between two boundary layer scans. The
✿✿✿✿

Note
✿✿✿

that
✿✿✿✿

the small amount of data at zenith does not allow the use of the standard

deviation of MWR BT measurements at 31 GHz to detect possible clouds in the field of view of the instruments (Ebell et al.

(2017)). The cloud base height provided by the CT25K ceilometer was thus used as a reference to identify cloudy-sky obser-

vations. If the lowest cloud base height during a +/- 20 min window around the MWR observation is smaller than 6000 m, the

observation is classified as cloudy. In case no ceilometer observation is available, the infrared radiometer temperature provided15

with the HATPRO platorm has to be smaller than -30 ◦ C to consider the observation as liquid free (similar approach used in

Martinet et al. (2015)).Figure 5 shows the ceilometer cloud base height and the classification of radiosonde
✿✿✿

The
✿✿✿✿✿

result
✿✿

of
✿✿✿✿

this

✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

radiosondes between clear-sky and cloudy-sky observations
✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

figure
✿✿

5
✿✿

in
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ceilometer

✿✿✿✿

cloud
✿✿✿✿

base
✿✿✿✿✿✿

height. Among the 84 radiosondes launched during the Passy-2015 field campaign, 56 were classified as clear-sky.

5.2 O-B analysis from AROME forecasts

Monitoring observation minus background departures is an important step before any assimilation. First of all, the best esti-5

mate of the analysis state is obtained only if background and observation errors follow Gaussian distribution with zero mean.

Quality-controlled and bias-free observations are thus necessary to obtain good estimate of atmospheric profiles. Should not

this be the case, a bias correction of the observations can be proposed to meet the requirements of variational assimilation.
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Figure 3. Top panel: Temperature difference
✿✿✿✿✿✿✿✿

differences
✿

between radiosondes and AROME analyses at three levels: 2
✿✿✿

1.5 m in black, 1000 m

in red, 1500 m in blue. Bottom panel: radiosonde temperature differences between the
✿✿✿✿✿✿✿✿

radiosonde
✿✿✿✿✿✿✿✿✿✿

measurement
✿✿

at
✿✿✿

the boundary layer height

and the surface
✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

from
✿✿

an
✿✿✿✿✿✿

external
✿✿✿✿✿✿

weather
✿✿✿✿✿✿

station. Altitudes are given in m above ground level.

While Löhnert and Maier (2012) and Navas-Guzmán et al. (2016) used radiosonde to simulate the equivalent brightness tem-

perature spectrum, Martinet et al. (2015) showed the possibility of using the AROME forecasts instead of radiosonde data.10

Using AROME forecasts enables the detection of BT bias offset when no radiosonde is available close to the MWR site. How-

ever, a new source of error is added coming from possible systematic NWP errors. Even though differentiating the different

sources of errors ( instrumental, forward model and background errors) can be complex, this monitoring is widely used in the

satellite data community.

BT simulations were performed with the ARTS radiative transfer model and 1-hour AROME forecasts (temperature, humidity)15

using 2 months of data (February and March 2015). The closest AROME grid point in the valley with an altitude difference of

only 2 m compared to the MWR location was used. Figure 6 shows the observation minus background departures (O-B) as a
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Figure 4. Temperature profiles observed by the radiosonde (red line) or extracted from the AROME analyses (black line): during unstable

conditions the 07th of February at 21 UTC (left panel) and during the most stable periode the 11th of February at 03 UTC (right panel).

Altitudes are given in m above ground level.
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Figure 5. Cloud base height retrieved from ceilometer CT25K during the two IOPs of the Passy-2015 experiment. Stars represent the launch

times of the radiosondes during the campaign classified as clear-sky in red and cloud-sky in blue. When no cloud is found by the ceilometer

(clear-sky), a value of 10 000 m has been chosen by default.

function of the atmospheric boundary layer stability for one transparent channel (51.26 GHz) and one opaque channel (58 GHz)

and different elevation angles. Only clear-sky observations are considered with a screening procedure described in section 5.1.
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Figure 6. Observation minus background (AROME forecasts) departures as a function of HATPRO temperature differences between 500 m

and 50 m and different elevation angles from 90 ◦ to 5.4 ◦.

As radiosondes are not available throughout the period, the atmospheric stability is computed from MWR temperature profiles

retrieved by linear regression. The temperature difference between 500 m and 50 m is used. Different altitudes have been tested

but 500 m was found to describe best the development and destruction of stability in the boundary layer at least during the

IOPs. The MWR temperature retrieval at surface was not used as large errors have been observed in Martinet et al. (2015)
✿✿✿

(1.9

✿

K
✿✿✿✿

see
✿✿✿✿✿

figure
✿✿

9)
✿

and would impact the evaluation of the stability. Instead, the second level of the MWR retrievals (50 m) has5

been chosen as it has shown a better accuracy with respect to radiosonde measurements. From this figure, we can observe that

the O-B departures at 58 GHz are highly correlated to the atmospheric stability which is not the case at 51.26 GHz. As opaque

channels are more sensitive to the lowest atmospheric layers, this result indicates that the forward simulations are highly af-

fected by the larger AROME forecast errors in the boundary layer during stable episodes. On the contrary, the accuracy of the

AROME forecasts in the upper layers stay stable during the period. The forward simulations at 51.26 GHz are thus quite stable10

during the whole campaign. Larger errors are also found with decreasing elevation angles for both transparent and opaque

channels. For opaque channels, this can be explained by an increased sensitivity to atmospheric layers close to the surface

where the largest errors in the AROME forecasts are observed. For transparent channels, radiations from surrounding slopes

can degrade the observations and atmospheric inhomogeneities can cause larger discrepancies with the simulation.

This section has shown that, in the particular case of the Passy-2015 experiment, the use of AROME forecasts to infer any15

systematic BT offset is not appropriate. In fact, the large forecast errors during wintertime stable episodes exceed the instru-

mental errors. The computation of O-B departures on a larger time period could probably smooth the forecast errors to only

highlight instrumental errors
✿✿✿

like
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿

jumps,
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿

errors
✿✿✿

and
✿✿✿✿✿

drifts. In order to correctly infer any BT offset, the

O-B departures are computed from the radiosondes launched during the IOPs in the next section.
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5.3 O-B analysis from radiosondes

Observation minus background departures have been computed from radiosonde profiles launched during the field campaign.

As most of the radiosondes did not reach more than 2 km altitude above ground, it is important to complete the atmospheric

profiles up to 30 km to avoid large discrepancies in the simulation of transparent channels. Radiosondes were interpolated into

the AROME vertical grid below 2 km and completed with AROME analyses above. As the accuracy of AROME analyses5

is better than 1 K above 2 km, this combination should not degrade the forward simulations. Figure 7 shows the bias and

standard deviation of O-B departures at different elevation angles. We can note a stronger dependency to the elevation angles

for transparent channels (51 to 52 GHz). These channels are more sensitive to calibration errors for decreasing optical depth

(higher elevation angles). The largest bias (-4.2 K) is found at 52.25 GHz and an elevation angle of 90 ◦ while it is below 0.5 K

for opaque channels. Standard deviations within 1 K are observed for all channels and all elevation angles except at 51.25 GHz10

for elevation angles lower than 19.2 ◦ and at 52.25 GHz at 5.4 ◦. This degradation can be due to an increase in atmospheric

inhomogeneities explaining that transparent channels are generally not used at low elevation angles (Crewell and Lohnert

(2007)). For opaque channels, bias and standard deviation smaller than 0.2 K are observed at all angles except at 5.4 ◦ where

the bias reaches 0.5 K. Similar values were found in the study of Martinet et al. (2015) with the same HATPRO instrument

on a less complex terrain. The consistency between both studies points out a good stability of the instrument despite several15

deployments and calibrations. An improvement in the calibration procedure has also been observed with a significant decrease

of standard deviation for all channels (up to 3 times at 90 ◦). A similar bias shape was found in Löhnert and Maier (2012)

and Navas-Guzmán et al. (2016) with a large negative bias at 52.25 GHz but also on several sites in Europe (De Angelis et al.

(2017)). This large bias can be due to a combination of calibration errors and absorption model uncertainties (Hewison 2006).

This analysis demonstrates that a constant bias correction can be safely applied to the set of measurements used for temperature

retrievals: only zenith angle for frequency below 53 GHz, and all elevation angles above. It will be applied and discussed in

the next sections.

6 1DVAR retrievals

6.1 Background errors5

In the operational AROME model, the background-error-covariance matrix B is computed from an ensemble assimilation

that considers explicit observation perturbations and implicit background perturbations through the cycling (Brousseau et al.

(2011)). The AROME ensemble assimilation is coupled to the operational ensemble assimilation at global scale AEARP

(Berre et al. (2007)). However, the expected background accuracy (diagonal terms of the B matrix) suggests a forecast error of

less than 1 K in the boundary layer on average through all the AROME domain. This operational B matrix significantly un-10

derestimates the AROME forecast errors during the Passy-2015 experiment. A new B matrix has thus been computed from the

differences between the AROME forecasts and the radiosonde data
✿✿✿✿

both
✿✿

in
✿✿✿✿✿✿✿✿

clear-sky
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

cloudy-sky similarly to Cimini et al.

(2011). Figure 8 shows the
✿✿✿

The bias and standard deviation of these differences compared to the operational background errors
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Figure 7. Observation minus background departures from radiosondes combined with AROME analyses for different elevation angles from

90 ◦ to 5.4 ◦ (coloured lines). For each angle, the bias is shown in solid line and the standard deviation in dashed line.

used for the assimilation of satellite data
✿✿✿

are
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

figure
✿

8. In temperature, a large bias of approximately -5 K is observed at

the surface and corresponds to the large overestimation of the temperature by AROME during the stable episodes. A standard15

deviation of 2 to 3 K, which is two to three times larger than the expected background error, is observed
✿✿✿✿✿

evident
✿

between

the surface and 1700 meters. The temperature error at higher altitude is much smaller (∼ 1 K) and closer to the value pre-

scribed in the operational assimilation system, corresponding to a decrease in the forecast error above the valley crest. Similar

features were found with ECMWF and NCEP models in an Arctic environment in the study of Cimini et al. (2010). As the

1DVAR retrieval accuracy depends on how well the B matrix is defined, the diagonal terms of the B matrix (auto-covariance

of the temperature errors) were modified below 2 km altitude with the standard deviation
✿✿✿✿✿

simply
✿✿✿✿✿✿✿✿

replaced
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿

of

the radiosonde minus AROME differences .
✿✿✿

(i.e.
✿✿✿

the
✿✿✿✿✿✿

square
✿✿

of
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿

values
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

8)
✿✿✿✿✿

below
✿✿

2
✿✿✿✿

km. In order

to provide statistically consistent increments at the neighbouring levels of the model, the vertical correlations of the opera-5

tional B matrix were conserved.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Non-Gaussianity
✿✿✿

can
✿✿✿✿

also
✿✿✿✿✿

affect
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

errors.
✿✿✿✿✿✿✿✿

Recently,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Legrand et al. (2016) evaluated
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿

non-Gaussianity
✿✿

of
✿✿✿✿✿✿✿

analysis
✿✿✿✿

and
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

errors
✿✿✿✿✿

using
✿

a
✿✿✿

90
✿✿✿✿✿✿✿

member
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿✿

It
✿✿✿

was
✿✿✿✿✿✿

found
✿✿✿

that
✿✿✿

for
✿✿✿

all

✿✿✿✿✿✿✿✿

variables,
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-Gaussianity
✿✿✿✿✿✿

exists
✿✿✿

but
✿✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿✿

(vorticity
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

divergence)
✿✿✿

are
✿✿✿✿✿

more
✿✿✿✿✿✿✿

affected
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and

✿✿✿✿✿✿✿✿

humidity.
✿✿✿✿

Data
✿✿✿✿✿✿✿✿✿✿✿

assimilatione
✿✿✿✿✿✿

reduces
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-Gaussianity
✿✿

at
✿✿✿✿

each
✿✿✿✿✿

cycle
✿✿

in
✿✿✿✿✿✿

regions
✿✿✿✿

well
✿✿✿✿✿✿

covered
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿

exist
✿✿

for
✿✿✿✿

our
✿✿✿✿✿

period
✿✿✿✿✿✿✿

making
✿✿✿✿✿✿✿✿✿✿✿

complicated
✿✿✿

the
✿✿✿✿✿✿✿✿

evaluation
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

Gaussianity
✿✿

in
✿✿✿✿

our
✿✿✿✿✿✿✿

context.
✿✿✿✿✿✿✿✿

However,
✿✿

it10

✿✿✿✿✿

should
✿✿✿✿✿

affect
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿

moments
✿✿

of
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿

than
✿✿✿✿✿

those
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿

B
✿✿✿✿✿✿

matrix.

6.2 Sensitivity of retrievals to elevation angles and bias correction

The 1DVAR method with the settings previously described has been applied to MWR observations during the two IOPs of

the Passy-2015 campaign. The retrievals are evaluated against radiosondes and compared to the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

HATPRO
✿

linear

regressions with the Payerne coefficients.
✿✿✿

Here
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

radiosonde
✿✿✿✿✿✿

profiles
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

interpolated
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

retrieval
✿✿✿✿

grid
✿✿✿✿✿✿✿

without
✿✿✿✿✿

taking
✿✿✿✿

into15
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Figure 8. Bias (black line), standard deviation (red line) of the radiosonde minus 1h-AROME temperature differences. The operational

background error used in AROME for the assimilation of satellite data is shown as the blue dashed line.

✿✿✿✿✿✿

account
✿✿✿

the
✿✿✿✿✿✿✿✿✿

smoothing
✿✿✿✿✿

errors
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

limited
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿

the
✿✿✿✿✿

MWR.
✿✿✿

In
✿✿✿

fact,
✿✿✿✿

this
✿✿✿✿✿✿✿✿

resolution
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿✿✿✿

between

✿✿

50
✿✿

m
✿✿✿

and
✿✿✿✿

500
✿✿

m
✿✿✿

and
✿✿✿✿

only
✿

4
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿

pieces
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

extracted
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

signal
✿

(
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Löhnert and Maier (2012))
✿

.
✿✿✿

On

✿✿

the
✿✿✿✿✿✿✿✿

contrary,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

profile
✿✿

is
✿✿✿✿✿✿✿

sampled
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿✿

every
✿✿✿

10
✿

m
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

radiosonde.
✿✿

In
✿✿

the
✿✿✿✿✿✿

future,
✿✿✿

the
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿✿✿

kernel

✿✿✿✿✿

matrix
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿

bring
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

radiosonde
✿✿✿✿✿

profile
✿✿✿✿

onto
✿✿✿

the
✿✿✿✿✿✿

MWR
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

resolution.
✿

According to section 5, a constant bias

correction is removed from all channels before the 1DVAR algorithm. This bias correction is not used for the linear regressions20

that directly come from the raw
✿✿✿✿✿✿✿✿✿✿

uncorrected
✿✿✿

BT
✿

measurements and the HATPRO proprietary software. Figure 9 evaluates

temperature retrievals against radiosondes in terms of bias and RMSE focussing only on clear-sky profiles. 1DVAR retrievals

are compared to AROME 1h forecasts used as backgrounds in the algorithm and to linear regressions.
✿✿✿

For
✿✿✿

the
✿✿✿✿

sake
✿✿

of
✿✿✿✿✿✿

clarity

✿✿✿✿✿

figure
✿

9
✿✿✿✿

also
✿✿✿✿✿✿

shows
✿✿✿✿✿

MWR
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿✿

either
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

regression
✿✿✿

or
✿✿✿✿✿✿

1DVAR
✿✿✿✿✿

with
✿

a
✿✿✿✿✿

focus
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

range
✿

0
✿✿

-
✿✿✿✿

1000
✿✿✿

m. To evaluate the

impact of the bias correction, 1DVAR retrievals with and without bias correction are also compared while the impact of low25

elevation angles is investigated by comparing retrievals using only zenith angle or all angles. As previously mentioned, we

observe a positive bias up to 6 K in the AROME backgrounds decreasing with altitude to reach -0.5 K above 1200 m.

Very similar values of mean deviations are found between both
✿✿✿✿✿

(from
✿✿✿✿

-0.4
✿✿

K
✿✿

to
✿✿✿

0.2
✿✿✿

K)
✿✿✿

for
✿✿✿

the
✿✿✿

two
✿

1DVAR retrievals when

✿✿✿✿✿✿✿✿✿✿✿

configurations
✿✿✿✿✿✿✿✿✿✿✿✿

implementing
✿

a bias correction is applied to the measurements
✿✿✿✿✿✿

(zenith
✿✿✿

and
✿✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layer
✿✿✿✿✿

scan) despite a

decrease of the bias in the first 100 m with additional low elevation angles. Regressions show also almost identical values30

demonstrating a better behaviour compared to the large bias
✿

a
✿✿✿✿✿

larger
✿✿✿

bias
✿✿✿✿✿

with
✿✿✿✿✿

values
✿✿✿✿✿✿✿

between
✿✿✿✿

-0.1
✿✿

K
✿✿✿

and
✿✿✿

0.8
✿✿✿

K.
✿✿✿✿✿

These
✿✿✿✿✿✿

values

✿✿

are
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

those observed with neural networks in Martinet et al. (2015). Without applying a bias correction to

the measurements, a small degradation in the
✿✿✿✿✿✿

1DVAR
✿

bias is observed below 1000 m. The maximum degradation is found at

1000
✿✿✿✿

1150 m where the bias reaches 0.7 K instead of -0.1 K. The RMSE profiles of
✿✿✿✿

-0.03
✿✿✿

K.

1DVAR retrievals indicate that a significant amount of information can be extracted from MWR observations to improve

the AROME backgrounds even though large errors below 1500 m are observed (from 1 to 8 K) in the a priori profile. This
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situation is quite extreme as the background is very far from the truth at the beginning of the minimisation. However, the

largest background errors are found in the 0-1000 m range where MWR can constrain the most the minimisation due to the

high information content of the instrument in this altitude range. Above 1000 m 1DVAR outperforms regressions whose RMSE5

values increase up to 2.5 K at 6000 m. The performances of 1DVAR retrievals are similar when using the standard deviations

from the operational B matrix and a custom B matrix computed comparing AROME and RS profiles (not shown). This suggests

that the operational B matrix may be safely adopted for other sites where RS profiles are not available for computing a custom

B matrix. However, in the future, it would be interesting to investigate the sensitivity of the 1DVAR retrievals to the flow

dependency of the B matrix and particularly to the vertical correlation lengths.For the sake of clarity figure ?? shows MWR10

retrievals either with regression or 1DVAR with a focus on the range 0 - 1000 m. 1DVAR RMSE values are
✿✿✿✿✿

RMSE
✿✿✿✿✿✿

values
✿✿✿

are

smaller than 0.8 K below 500 m and within 1 K through all the atmospheric profile. Large RMSE values are found close to

the surface for all retrieval methods (up to 1.6 K). The best accuracy of 1DVAR retrievals is found when the bias correction is

applied to the measurements and using all elevation angles up to 5.4 ◦. A degradation below 1000 m in the 1DVAR retrievals

is observed when only observations at zenith are used in the minimisation. In this case, the RMSE values can reach 1.2 K15

instead of 0.8 K with low elevation angles. This result demonstrates the benefit of low elevation angles to resolve temperature

inversions below 1000 m. Below 1000 m, regressions perform slightly better (differences between 0.1 and 0.2 K in RMSE)

than 1DVAR.
✿✿✿✿✿✿

Above
✿✿✿✿

1000
✿✿

m
✿✿✿✿✿✿✿

1DVAR
✿✿✿✿✿✿✿✿✿✿✿

outperforms
✿✿✿✿✿✿✿✿✿

regressions
✿✿✿✿✿✿

whose
✿✿✿✿✿✿

RMSE
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿

increase
✿✿

up
✿✿

to
✿✿✿

2.5
✿✿

K
✿✿

at
✿✿✿✿✿

6000
✿✿✿

m. Overall,

1DVAR retrievals provide the best estimate of the atmosphere.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿✿✿✿✿

1DVAR
✿✿✿✿✿✿✿

retrievals
✿✿

is
✿✿✿✿✿✿

similar
✿✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿

the

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviations
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

operational
✿✿

B
✿✿✿✿✿✿

matrix
✿✿✿

and
✿✿

a
✿✿✿✿✿✿

custom
✿✿

B
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿✿✿✿✿✿

AROME
✿✿✿

and
✿✿✿

RS
✿✿✿✿✿✿✿

profiles
✿✿✿✿

(not

✿✿✿✿✿✿

shown).
✿✿✿✿

This
✿✿✿✿✿✿✿✿

suggests
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

operational
✿✿

B
✿✿✿✿✿✿

matrix
✿✿✿✿

may
✿✿

be
✿✿✿✿✿

safely
✿✿✿✿✿✿✿

adopted
✿✿✿

for
✿✿✿✿✿

other
✿✿✿✿

sites
✿✿✿✿✿

where
✿✿✿

RS
✿✿✿✿✿✿✿

profiles
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

available5

✿✿

for
✿✿✿✿✿✿✿✿✿

computing
✿✿

a
✿✿✿✿✿✿

custom
✿✿

B
✿✿✿✿✿✿✿

matrix.
✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

future,
✿

it
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿✿✿✿✿✿

interesting
✿✿

to
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

1DVAR

✿✿✿✿✿✿✿

retrievals
✿✿✿

to
✿✿✿

the
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿✿

dependency
✿✿✿

of
✿✿✿

the
✿✿

B
✿✿✿✿✿✿

matrix
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

lengths.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

flow-dependency

✿✿✿

and
✿✿✿✿✿✿

diurnal
✿✿✿✿✿

cycle
✿✿

of
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿

errors
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

determined
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

implementing
✿

a
✿✿✿✿✿✿✿✿

real-time
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ménétrier et al. (2014)).
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

under-development
✿✿✿

and
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿✿

available
✿✿✿✿

next
✿✿✿✿

year.
✿

Vertical profiles of bias (dashed lines) and root-mean-square-errors (solid lines) of MWR retrievals against radiosondes with10

a focus on the range 0-1000 m. 1DVAR retrievals from AROME 1h forecasts and bias correction (magenta), without bias

correction (cyan), with bias correction but using only zenith angle (blue) and linear regressions (black). Results on 56 clear-sky

temperature profiles.

Time
✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿✿✿

more
✿✿

in
✿✿✿✿✿

details
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿

RMSE
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

surface,
✿✿✿✿

time
✿

series of the tempera-

ture difference between the surface (
✿✿✿✿✿✿✿

external weather station) and the first HATPRO level is
✿✿

are
✿

investigated in figure 10. This15

difference is compared to the differences between the surface station and tower measurements at 2.5 and 5 m. The evolution

of the temperature error is compared to the diurnal cycle of the temperature difference between the surface (1.5 m) and the RS

measurement at the first level above (∼ 10 m a.g.l). Positive values indicate stable atmosphere while negative values indicate

convective conditions. We can note a correlation between the decrease in the stability and the increase in the HATPRO surface

error. Maximum differences (- 9 K) are found when the stability is minimum corresponding to a maximum of convective ac-20

tivity during daytime. The MWR seems to significantly underestimate the surface warming during the transition phase from
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Figure 9. Vertical profiles of bias (left panel
✿✿✿✿✿

dashed
✿✿✿✿

lines) and root-mean-square-errors (right panel
✿✿✿

solid
✿✿✿✿

lines) of the AROME background

(red line) and MWR retrievals using all elevation angles against radiosondes: 1DVAR retrievals from AROME 1h forecasts,
✿✿✿

all
✿✿✿✿✿✿✿

elevation

✿✿✿✿✿

angles and bias correction (magenta
✿✿✿✿

green), without
✿✿

all
✿✿✿✿✿✿✿

elevation
✿✿✿✿✿

angles
✿✿✿

but
✿✿

no
✿

bias correction (cyan
✿✿

red), with bias correction but using only

zenith angle
✿✿✿

and
✿✿✿

bias
✿✿✿✿✿✿✿✿

correction (blue) and linear regressions (black). Results on 56 clear-sky temperature profiles.

stable to convective conditions. However, MWR retrievals can easily be combined with surface sensors providing an higher

accuracy at the surface. Figure 10 also shows the differences of the tower measurements at 2.5 and 5 m with respect to the

surface station. The standard deviation is slightly larger with the measurement at 2.5 m compared to the 5 m measurement

(1.1 K instead of 0.9 K respectively). To test the feasibility of combining surface measurements and MWR observations in25

a physical way, the tower measurement at 5 m was included in the observation vector with a sharp surface-peaked Jacobian

associated. The 1DVAR retrievals look very similar to what was previously shown but a significant improvement in the RMSE

at the surface was found with a decrease from 1.6 K to 1 K as expected (this configuration is used later on in figure 13). In the

future, this combination could thus be used by deploying a well calibrated surface station in parallel to the MWR.

6.3 Sensitivity of retrievals to the a priori30

The previous section has investigated the capability of MWR observations to be assimilated into NWP models by following a

similar approach to operational assimilation systems (3DVAR, 4DVAR). However, in the context of field campaigns and the

study of boundary layer processes, it can be interesting to get the best possible 1DVAR retrievals by using a more appropriate

background profile. In the case of the Passy-2015 field campaign, thanks to the high temporal resolution of RS, the previously

launched radiosonde can be used as the background profile instead of the AROME 1h forecast to start the minimisation from a
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Figure 10. Time series of temperature differences between the first HATPRO level and a surface weather station (blue line), between tower

measurements at 2.5 and 5 m and the surface station (cyan and red lines respectively
✿✿✿

line). Radiosonde temperature difference (black line)

between the surface
✿✿✿✿✿

weather
✿✿✿✿✿✿

station and the first level above.

more reasonable a priori profile. The B matrix has also been recomputed according to the differences between two successive

radiosondes in order to be consistent. Figure
✿✿

In
✿✿✿✿

order
✿✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

this
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿✿✿✿✿

figure 11 compares the accuracy of

1DVAR retrievals if either 1h AROME forecasts or the previously launched radiosondes are used as backgrounds. When
✿✿

As

✿✿✿✿✿✿✿

expected
✿✿✿✿✿

when radiosondes are used as backgrounds, the bias is decreased during the analysis providing the best accuracy com-5

pared to the other retrievals. In terms of RMSE, the 1DVAR accuracy is improved between 400 m and 1200 m and outperforms

the regressions through all the atmospheric profile except a slight degradation at 1200 m. Using RS as backgrounds, RMSE

values are below 0.6 K in the first 1000 m and within 1 K above.

An attempt to use the 1DVAR algorithm in cloudy conditions is
✿✿✿

also shown in figure ??
✿✿

11. The liquid water path is estimated

from HATPRO with a simple and classical dual channel algorithm using brightness temperature measurement at 23 and 3110

GHz (Westwater (1978)). The liquid water content profile is estimated from the background temperature and humidity profiles

from a modified adiabatic assumption (Karstens et al. (1994)) in layer where the relative humidity exceeds 95 %. The com-

puted liquid water content profile is then scaled with the estimated liquid water path. The obtained liquid water content profile
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is translated vertically to fit the cloud base height provided by the ceilometer. In case no atmospheric layer exceeds the 95

% relative humidity threshold, a cloud layer is placed at the cloud base height provided by the ceilometer with a geometrical

thickness of one layer and a liquid water path equal to the one derived from HATPRO measurements. As MWR are mostly

sensitive to the integrated liquid water content rather than the vertical distribution of clouds, this configuration should be suf-5

ficient to take into account the cloud contribution in the radiative transfer. Note that only 25 profiles are taken into account

in the statistics which makes the dataset too small for a good representativness. A large degradation of the 1DVAR retrievals

from AROME forecasts is observed in cloudy-conditions with an increase of RMSE values up to 3 K at 1000 m. Contrary

to what one may think, this degradation does not seem to be directly related to large background errors in the liquid water

content but more to the misrepresentation of cloud-based temperature inversions in AROME. In fact, figure 5 shows that most10

of the cloudy profiles are located at the beginning of the first IOP between 07 and 09 February. This period corresponds to

the strong temperature inversion at 1000 m altitude missed by AROME (fig. 4) inducing large forecast errors up to - 9 K. As

the information content from the microwave radiometer is maximum below 1000 m and decreases with altitude, the MWR

likely does not bring enough information during the analysis to correct the background profile. In addition to this decrease in

information content, the large RMSE value at 1000 m is likely due to the smoothing error related to the low vertical resolution15

of MWR. This is evident in the bias, showing large positive to negative values going from 500 to 1500 m altitude.

To confirm that this degradation does not come from large errors in the liquid water content background profile, 1DVAR

retrievals have been performed using only opaque channels (54-58 GHz). These channels are known to be less affected by

cloud-liquid water emission contrary to transparent channels. Figure 12 shows the RMSE of 1DVAR retrievals with this re-

duced channel set differentiating the results between clear-sky and cloudy-sky conditions. In clear-sky conditions, using only20

opaque channels, a slight improvement between 900 and 1600 m and a degradation between 1600 and 3000 m are observed

although these differences stay small (0.1 K in RMSE). In cloudy-sky conditions, the same 1DVAR statistics are found with

the different channel configurations. As transparent channels are more affected by cloud liquid water emission, we could have

expected to observe a larger degradation when these channels are used if the liquid water content is not well modelled. As few

differences are observed with transparent channels included in cloudy-conditions, it supports that the degradation in cloudy-25

conditions is likely to come from sharp elevated temperature inversions.

In cloudy-sky, regressions also show a degradation with a RMSE of 2.2 K at 1000 m but are slightly better than 1DVAR be-

low 1300 m if AROME is used as background (fig. ??
✿✿

11). Above 1300 m, an increase in the bias makes the regressions less

accurate than both 1DVAR configurations. The best performance is found if radiosondes are used as backgrounds even though

the RMSE values still reach 1.8 K at 1000 m.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿✿

one
✿✿✿

way
✿✿✿

to
✿✿✿

deal
✿✿✿✿✿

with
✿✿✿✿

sharp
✿✿✿✿✿✿✿✿

elevated
✿✿✿✿✿✿✿✿✿✿

temperature30

✿✿✿✿✿✿✿

inversion
✿✿✿✿

with
✿✿✿✿✿✿

MWR
✿✿✿✿✿

could
✿✿

be
✿✿

to
✿✿✿

use
✿✿

a
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

profile
✿✿✿✿✿✿✿

already
✿✿✿✿✿✿✿✿✿

simulating
✿✿✿

this
✿✿✿✿✿✿✿✿✿

inversion.

Figure
✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿

added
✿✿✿✿

value
✿✿✿✿✿✿✿

brought
✿✿✿

by
✿✿✿✿✿

MWR
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

profile
✿✿✿

and
✿✿✿✿

how
✿✿✿✿✿

much
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿✿✿✿

could
✿✿✿

be

✿✿✿✿✿✿✿

expected
✿✿

in
✿✿✿✿✿✿

future
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation,
✿✿✿✿✿✿

figure 13 summarizes the performance of the 1DVAR retrievals either from RS or from

AROME backgrounds compared to the AROME forecast errors. When the previously launched
✿

It
✿✿✿✿

also
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

"persistent"
✿✿✿✿✿✿✿

method
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

last RS is used as background, the external weather station was added to the observation35

vector
✿✿

an
✿✿✿✿✿✿✿

estimate
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿✿✿✿✿

conditions. As radiosondes were launched every 3 hours during the Passy-2015 campaign,
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it is interesting to investigate if MWR could still bring an information on atmospheric changes during the 3 hour time win-

dow. Figure 13 also shows the performance of the "persistent" method where the last RS is used as an estimate of the current

conditions. We
✿✿✿

Note
✿✿✿✿

that
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿

launched
✿✿✿

RS
✿✿

is
✿✿✿✿

used
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

background,
✿✿✿

the
✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿

station
✿✿✿

was
✿✿✿✿✿✿

added
✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

vector.
✿

5

✿✿

In
✿✿✿✿✿✿✿

clear-sky
✿✿✿✿✿✿✿✿✿✿

conditions,
✿✿

as
✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿✿✿

mentioned,
✿✿✿

we
✿✿✿✿✿✿

observe
✿✿

a
✿✿✿✿

large
✿✿✿✿✿✿

RMSE
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿✿✿

forecasts
✿✿

up
✿✿

to
✿✿

8
✿

K
✿✿✿✿

due
✿✿

to
✿

a
✿✿✿✿✿✿✿

positive

✿✿✿

bias
✿✿✿

up
✿✿

to
✿✿

6
✿✿

K
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿

with
✿✿✿✿✿✿✿

altitude.
✿✿✿✿

The
✿✿✿✿✿✿

RMSE
✿✿✿✿✿✿✿

profiles
✿✿

of
✿✿✿✿✿✿✿

1DVAR
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿✿✿✿

indicate
✿✿✿

that
✿✿

a

✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

extracted
✿✿✿✿

from
✿✿✿✿✿✿

MWR
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿✿✿✿✿✿

backgrounds
✿✿✿✿

even
✿✿✿✿✿✿

though

✿✿✿✿

large
✿✿✿✿✿

errors
✿✿✿✿✿

below
✿✿✿✿✿

1500
✿✿

m
✿✿✿

are
✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

the
✿✿

a
✿✿✿✿✿

priori
✿✿✿✿✿✿

profile.
✿✿✿✿

This
✿✿✿✿✿✿✿

situation
✿✿

is
✿✿✿✿

quite
✿✿✿✿✿✿✿

extreme
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿

is
✿✿✿✿

very
✿✿

far
✿✿✿✿✿

from

✿✿

the
✿✿✿✿✿

truth
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

beginning
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

minimisation.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿✿

found
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

0-1000
✿✿

m
✿✿✿✿✿

range
✿✿✿✿✿✿

where10

✿✿✿✿✿

MWR
✿✿✿✿

can
✿✿✿✿✿✿✿✿

constrain
✿✿✿

the
✿✿✿✿

most
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

minimisation
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

content
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

instrument
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿

altitude
✿✿✿✿✿✿

range.

✿✿

In
✿✿✿✿✿✿✿✿✿

cloudy-sky
✿✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿

suffers
✿✿✿✿✿

from
✿✿✿✿

large
✿✿✿✿✿✿

errors
✿✿✿✿

both
✿✿

at
✿✿✿✿✿✿

surface
✿✿✿✿

and
✿✿✿✿

1000
✿✿

m
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿

to
✿✿✿✿✿

sharp
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿✿✿✿✿✿

inversions.
✿✿

A
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

AROME
✿✿✿✿✿✿✿✿

forecasts
✿✿✿

is
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

1200
✿✿✿

m.
✿✿✿✿✿✿✿✿✿✿✿

Temperature
✿✿✿✿✿

errors
✿✿✿✿

are

✿✿✿✿✿✿✿✿

decreased
✿✿✿✿

from
✿✿✿✿

3.5
✿✿

K
✿✿

to
✿✿✿

0.4
✿✿

K
✿✿✿

at
✿✿✿

200
✿✿✿

m
✿✿✿

and
✿✿✿✿✿

from
✿✿✿

4.5
✿✿

to
✿✿✿

2.5
✿✿✿

K
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

cloud-based
✿✿✿✿✿✿✿✿✿

inversion.
✿✿✿✿

This
✿✿✿✿✿

result
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿

the

✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿

benefit
✿✿

of
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿✿

MWR
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

in
✿✿✿✿✿

NWP
✿✿✿✿✿✿✿

models
✿✿✿✿

both
✿✿

in
✿✿✿✿✿✿✿

clear-sky
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

cloudy-sky
✿✿✿✿✿✿✿✿✿✿

conditions.15

✿✿✿✿

Even
✿✿✿✿✿✿

though
✿✿✿

RS
✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿✿✿

launched
✿✿

at
✿

a
✿✿✿✿

high
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

(here
✿✿✿

up
✿✿

to
✿✿✿✿

three
✿✿✿✿✿✿

hours),
✿✿✿

the
✿✿✿

10
✿✿✿✿✿✿

minute
✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿✿✿✿

MWR
✿✿✿

can

✿✿

be
✿✿✿✿✿✿✿

valuable
✿✿

to
✿✿✿

fill
✿✿

in
✿✿✿

the
✿✿✿✿

gap
✿✿✿✿✿✿✿

between
✿✿✿

RS.
✿✿✿

In
✿✿✿✿

fact,
✿✿

we
✿

note that even if radiosondes are launched every three hours, significant

changes in the boundary layer temperature profiles are observed between two adjacent RS with RMS
✿✿✿✿✿

RMSE
✿

values larger than

1 K below 1000 m and up to 3.6 K at 2 m
✿✿

4.4
✿✿

K
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface
✿

in clear-sky conditions. Errors
✿✿

In
✿✿✿✿✿✿✿✿✿

cloudy-sky
✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿✿✿

errors
✿

up

to 1.6 K in RMSE in the temperature profile are also associated to the cloud-based inversion with the
✿✿✿

this "persistent" method.20

1D assimilation of MWR observations manages to significantly decrease the errors in the boundary layer mainly below 1500 m

with values between 0.3 and 1
✿✿

1.3 K in the first 1000 m. MWR observations can thus fill in the gap between 3 h radiosondes to

provide valuable temperature profiles. This result also demonstrates how the MWR temporal resolution is a necessity to com-

plete our understanding and description of the ABL diurnal cycle. As already shown, the AROME forecasts are significantly

improved in clear-sky conditions but also in cloudy-sky. Even though errors up to 3 K are observed with the 1DVAR from the25

AROME forecasts, a significant improvement of the AROME forecasts is found in cloudy-sky conditions in the first 1200 m.

Temperature errors are decreased from 3 K to 1 K in the boundary layer and 4.5 to 2.5 K at the cloud-based inversion. This

result demonstrates the potential benefit of assimilating MWR observations in NWP models both in clear-sky and cloudy-sky

conditions.

Vertical profiles of bias (left panel) and root-mean-square-errors (right panel) of 1DVAR retrievals using either AROME30

1h forecast (blue line) or previously launched radiosonde (purple line) as background. 1DVAR retrievals are performed with

bias correction and using all elevation angles (90 to 5.4 ◦ ). Comparison with linear regressions (black line). Results on 25

cloudy-sky temperature profiles.

6.4 Examples of temperature profiles
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Figure 11. Vertical profiles of bias (left panel
✿✿✿✿✿

dashed
✿✿✿✿

lines) and root-mean-square-errors (right panel
✿✿✿✿

solid
✿✿✿

line) of 1DVAR retrievals using

either AROME 1h forecast (blueline) or previously launched radiosonde (purple line
✿✿

red) as background. 1DVAR retrievals are performed

with bias correction and using all elevation angles (90 to 5.4 ◦). Comparison with linear regressions (black line). Results
✿✿✿

Left
✿✿✿✿✿

panel
✿✿✿✿✿

shows

✿✿✿✿✿

results on 56 clear-sky temperature profiles
✿✿✿✿

while
✿✿✿

right
✿✿✿✿✿

panels
✿✿✿✿✿

shows
✿✿✿✿✿

results
✿✿✿

on
✿✿

25
✿✿✿✿✿✿✿✿

cloudy-sky
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

profiles.

Figure
✿✿

In
✿✿✿✿

order
✿✿✿

to
✿✿✿✿✿✿✿

illustrate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

capability
✿✿

of
✿✿✿✿✿✿

MWR
✿✿

to
✿✿✿✿✿✿

resolve
✿✿✿✿✿

deep
✿✿✿✿

near
✿✿✿✿✿✿

surface
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿

elevated
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿

inversions,

✿✿✿✿✿

figure 14 shows temperature profiles during two opposite weather regimes: convective and cloudy conditions the 07th of Febru-

ary at 06:04 UTC and stable clear conditions the 13th of February at 02:56 UTC. In each figure, temperature retrievals from

different configurations (regression, 1DVAR from AROME forecast, 1DVAR from radiosonde) are compared to radiosonde.

The a priori profile used in each configuration, either the previously launched radiosonde or the 1h AROME forecast is also5

shown. First of all, we can note the difficulty of ground-based MWR to resolve high level inversions. Neither the regression or

the AROME 1DVAR can catch the sharp inversions at 1000 m above ground level. Only the RS 1DVAR is able to catch it as

the minimisation starts from a background profile already simulating an elevated inversion that is barely modified during the

retrieval. Note that 1DVAR with AROME background shows an elevated inversion, though the AROME profile is almost linear.

This already represents an improvement with respect to the AROME background which is too smooth
✿✿✿✿✿

much
✿✿✿✿✿✿✿✿

smoother. This10

limitation is a well-known issue of MWR; Massaro et al. (2015) suggested the use of additional pressure and temperature obser-

vations from meteorological stations on the surrounding mountain slopes.
✿✿✿

Our
✿✿✿✿✿

study
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿✿✿✿

another
✿✿✿✿

way
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

improvement

✿

is
✿✿✿

to
✿✿✿

use
✿✿

an
✿✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿✿✿✿

information
✿✿

to
✿✿✿✿

infer
✿✿✿

the
✿✿✿✿✿✿✿✿

presence
✿✿✿

of
✿✿

an
✿✿✿✿✿✿✿

elevated
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿

inversion
✿✿✿

that
✿✿✿✿

will
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿✿

background
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿

1DVAR
✿✿✿✿✿✿✿✿✿

algorithm.
✿

An improvement can also be expected from more appropriate vertical correlations in the

B matrix. In fact, correlations currently used probably smooth the increments and a reduction on the vertical correlation length
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Figure 12. Vertical profiles of root-mean-square-errors of 1DVAR retrievals using AROME 1h forecasts as backgrounds. Either all V-band

channels are used (blue) or only opaque channels (magenta
✿✿

red). Results differentiated by clear-sky (solid lines) or cloudy-sky conditions

(dashed lines)

should lead to a beneficial impact on the retrievals in such conditions. This approach will be investigated in the future.

Contrary to the high-level inversion, MWR can catch very well clear-sky deep near-surface temperature inversions as observed

during the stable episode of the Passy-2015 campaign. Both 1DVAR and regressions capture well the structure of the profile

even though 1DVAR retrievals are slightly more accurate than regressions. We can again note the significant improvement of5

the AROME profile in the lowest 500 m thanks to the MWR information content brought during the analysis.

7 Conclusions

Within the Passy-2015 field campaign, a HATPRO ground-based microwave radiometer was operated in a deep Alpine valley

constraining the measurement configuration
✿✿✿✿✿✿

making
✿✿✿✿✿✿✿

complex
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿✿✿✿✿✿

deployment due to surrounding mountains.10

A 1DVAR technique combining 1h forecasts of the convective scale model AROME and observations from the HATPRO

MWR was tested and evaluated during two IOPs foccussing on wintertime stable boundary layers out of three months of

instrumental deployment.
✿✿

In
✿✿✿✿

such
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿

terrain
✿✿✿

we
✿✿✿✿✿

could
✿✿✿✿

have
✿✿✿✿✿✿✿✿

expected
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿

affected
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

surrounding

✿✿✿✿✿✿✿✿

mountains
✿✿✿✿

and
✿✿✿

one
✿✿✿✿✿✿✿✿✿

interesting
✿✿✿✿✿

result
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

study
✿✿

is
✿✿

to
✿✿✿✿✿

show
✿✿✿

that
✿✿✿✿✿✿

MWR
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

affected
✿✿✿

in
✿✿✿✿

such
✿

a
✿✿✿✿✿✿

narrow
✿✿✿✿✿✿

valley

✿✿✿✿

even
✿✿✿✿✿

going
✿✿✿✿✿

down
✿✿

to
✿

5
✿✿

◦

✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

angles.
✿✿✿✿✿✿✿

Previous
✿✿✿✿✿✿

papers
✿✿✿✿✿✿✿✿✿

deploying
✿✿✿✿✿

MWR
✿✿

in
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿

terrain
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

abundant,
✿✿✿✿✿✿

among
✿✿✿✿✿

them15

✿✿

we
✿✿✿✿

can
✿✿✿✿

cite
✿

:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kneifel et al. (2009),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kneifel et al. (2010),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cimini et al. (2011),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Xie et al. (2012) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Massaro et al. (2015).
✿✿✿

In
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Figure 13. Vertical of profiles root-mean-square-errors of 1DVAR retrievals using the previously launched radiosonde (magenta
✿✿

red line) or

the AROME forecasts (blue line) as backgrounds. Comparison with the persistent method where the last RS is used as an estimate of the

current conditions (dashed magenta
✿✿

red) and the AROME forecast errors (dashed blue). Here, the weather station is included in the 1DVAR

from RS to improve the temperature retrieval at the surface (1.5 m). Statistics on 56 clear-sky profiles (left panel) and 25 cloudy-sky profiles

(right panel).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kneifel et al. (2009) the
✿✿✿✿✿✿

terrain
✿✿

is
✿✿✿

not
✿✿✿

as
✿✿✿✿✿✿✿

complex
✿✿

as
✿✿✿

in
✿✿✿✿✿

Passy
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿

elevation
✿✿

of
✿✿✿✿✿

only
✿✿✿

350
✿✿

m
✿✿✿✿

and
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

integrated

✿✿✿✿

water
✿✿✿✿✿

vapor
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

investigated.
✿✿✿✿✿

Both
✿✿✿✿✿✿

studies
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kneifel et al. (2009) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Xie et al. (2012) do
✿✿✿

not
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿✿

profile
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿✿✿

neither
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

radiometer
✿✿

is
✿✿✿✿✿✿✿✿

deployed
✿✿

at
✿✿✿✿

2650
✿✿✿✿✿✿

meters
✿✿✿✿✿✿

above
✿✿✿

sea
✿✿✿✿

level
✿✿✿✿✿

which
✿✿✿✿✿✿

differs
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

deployment
✿✿

at

✿✿

the
✿✿✿✿✿✿✿

bottom
✿✿

of
✿✿✿

the
✿✿✿✿

2000
✿✿

m
✿✿✿✿

deep
✿✿✿✿✿

Passy
✿✿✿✿✿✿

valley.
✿✿

In
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cimini et al. (2011),
✿✿✿

the
✿✿✿✿✿✿

terrain
✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿

complex
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿

1DVAR
✿✿

is
✿✿✿✿✿✿✿✿✿✿

investigated

✿✿✿✿

with
✿

a
✿✿✿✿✿✿

global
✿✿✿✿✿

NWP
✿✿✿✿✿

model
✿✿

at
✿✿

a
✿✿

10
✿✿✿✿

km
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

and
✿✿✿✿✿

using
✿✿✿✿

only
✿✿✿✿

one
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿

angle
✿✿

in
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

zenith.
✿✿✿✿

The5

✿✿✿✿✿✿✿✿✿

radiometer
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

do
✿✿✿

not
✿✿✿

go
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

15
✿

◦

✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿

angle
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿

limits
✿✿✿

the
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿✿

from

✿✿✿✿✿✿✿✿✿✿

surrounding
✿✿✿✿✿✿✿✿✿

mountains.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Massaro et al. (2015) deploys
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

instrument
✿✿

in
✿✿

a
✿✿✿✿✿

valley
✿✿✿✿

with
✿✿

a
✿✿✿

free
✿✿✿✿✿✿✿✿

viewing
✿✿✿✿

angle
✿✿✿

up
✿✿

to
✿✿✿

28
✿✿✿

km
✿✿✿✿

and

✿✿✿✿

only
✿✿✿✿✿✿✿

focussed
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

regressions.
✿✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the
✿✿✿✿✿

Passy
✿✿✿✿✿✿

valley,
✿✿✿

the
✿✿✿✿

free
✿✿✿

line
✿✿

of
✿✿✿✿✿

sight
✿✿

is
✿✿✿✿✿✿

limited
✿✿

to
✿✿

5
✿✿✿

km
✿✿

in
✿✿✿

the
✿✿✿✿✿

Passy
✿✿✿✿✿✿✿✿

direction
✿✿✿✿

and

✿✿✿✿✿✿

1DVAR
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿✿✿✿

convective
✿✿✿✿

scale
✿✿✿✿✿✿

model
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

performed.
✿✿✿✿✿✿✿✿✿✿

Temperature
✿✿✿✿✿✿✿✿

gradients
✿✿✿✿✿

were
✿✿✿✿

also
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

those

✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Massaro et al. (2015).
✿

10

An evaluation of the accuracy of the AROME model was first studied. A large underestimation of the surface cooling up to

-12 K during the most stable episode was observed. This is a well-known issue of current NWP models that motivated, among

other scientific questions, the preparation of the Passy-2015 campaign. This issue is currently investigated by the modelling

community at CNRM and some significant leads for improvement have already been found. During the beginning of the IOP,

AROME was found to smooth cloud-based inversions leading to larger errors at the cloud base around 1000 m while during15
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Figure 14. Vertical profiles of temperature during convective conditions (07 February 2015 at 06:04 UTC, top panel) or stable conditions (13

February at 02:56 UTC). Comparison between radiosonde profile (magenta), linear regression (dashed black line), 1DVAR from AROME

forecasts (blue), 1DVAR from previous radiosonde (red). Background profiles corresponding to either the 1h AROME forecast (black) or the

previously launched radiosonde (cyan) are also shown.

clear-sky conditions the temperature inversion is not large enough. The measured brightness temperature (BT) measurements

were compared with the ones simulated either from AROME 1h forecasts or RS and the ARTS radiative transfer model. The

goal of this monitoring is to propose a bias correction to improve the retrieval of atmospheric profiles. The use of the AROME

model to compute the instrumental bias correction was found inappropriate because the BT deviations for opaque channels

are mainly driven by the large forecast errors in the boundary layer during stable conditions. The instrumental bias was thus5

inferred from BT simulations with the RS launched during the campaign in clear-sky conditions. A large negative bias was

observed for the most transparent channels with values up to -4.2 K (52.28 GHz, 90 ◦) while it is below 0.5 K for opaque

channels and all elevation angles. Relatively low standard deviations (within 1 K) were observed for channels and elevation

angles used in the retrieval demonstrating that the biases can be safely removed by applying a constant bias correction. The

bias is close to that found in previous studies. This demonstrates that the bias can be assumed constant as long as calibrations10

are performed properly. The second part of this study has evaluated 1DVAR retrievals in terms of bias and RMSE against

collocated radiosondes. By exploiting the 1DVAR assimilation of MWR observations, the large forecast errors close to the

surface (up to 8 K in RMSE) were decreased within 1 K through all the atmospheric profile except the surface temperature (1.6

K RMSE). This result is really encouraging as it shows the high information content of MWR in the boundary layer specifically
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where the AROME forecasts are less accurate and could be improved by a dense network of ground-based instruments. 1DVAR

retrievals were found to outperform linear regressions above 1000 m where RMSE values increase up to 2.5 K at 6000 m. Linear

regressions show similar performance below 1000 m. The use of the elevation scanning mode was also found to significantly

improve the retrievals below 1000 m while the use of a bias correction improves the retrievals below 2000 m. These last results

are not in agreement with the results in Martinet et al. (2015). However, the dataset used in this study contains mainly deep5

clear-sky near-surface temperature inversions for which low elevation angles can bring new information to the zenith mode.

Finally, the use of an external weather station to constrain the temperature retrieval at the surface can decrease the RMSE

values from 1.6 K to 1 K which includes the uncertainty due to relative distance.

In order to improve 1DVAR retrievals for processes study in the context of field campaigns, RS previously launched during the

field campaign can be used as backgrounds in place of AROME forecasts. Starting from an a priori profile already closer to10

the true atmospheric state, a better estimation of the optimal atmospheric profile should be observed. In clear-sky conditions,

this configuration leads to an improvement of 1DVAR retrievals below 1000 m with RMSE values below 0.6 K. An attempt

of retrieving temperature profiles in cloudy-conditions was also studied. A significant degradation of both regressions and

1DVAR was found especially around 1000 m wih RMSE values around 2 K for regressions and 3 K for 1DVAR retrievals. This

degradation is significantly reduced if RS are used as backgrounds. This degradation at 1000 m is probably due to cloud-based15

temperature inversions not caught by the MWR and does not seem to be directly related to large background errors in the liquid

water absorption. This study confirms the known difficulty of MWR to capture elevated temperature inversions in cloudy-sky

at the level of the valley crest (Crewell and Lohnert (2007), Massaro et al. (2015)) while highlighting the high capability of

MWR to catch clear-sky deep near-surface temperature inversions during stable boundary layers. MWR observations were also

found to provide valuable information between two adjacent RS to catch significant changes in the ABL temperature profile.20

✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the
✿✿✿✿✿✿✿✿

scientific
✿✿✿✿✿✿✿✿

questions
✿✿✿✿✿✿✿✿

addressed
✿✿

in
✿✿✿✿✿✿

section
✿✿

1,
✿✿✿

our
✿✿✿✿✿✿

results
✿✿✿✿

show
✿✿✿✿

that
✿✿✿✿✿

MWR
✿✿✿

are
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿

bring
✿✿✿✿✿✿✿

valuable
✿✿✿✿✿✿✿✿✿✿

information

✿✿✿

into
✿✿✿✿✿

NWP
✿✿✿✿✿✿

models
✿✿✿

up
✿✿

to
✿

3
✿✿✿

km
✿✿✿✿✿✿✿

altitude
✿✿✿

but
✿✿✿✿✿✿

mainly
✿✿

in
✿✿✿

the
✿✿✿

first
✿✿✿✿

km
✿✿✿✿

both
✿✿

in
✿✿✿✿✿✿✿

clear-sky
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

cloudy-sky
✿✿✿✿✿✿✿✿✿

conditions.
✿✿✿✿✿

With
✿✿

an
✿✿✿✿✿✿✿✿

accuracy

✿✿✿✿✿✿✿

between
✿✿✿

0.5
✿✿✿

and
✿

1
✿✿

K
✿✿

in
✿✿✿✿✿✿✿

RMSE,
✿✿✿

our
✿✿✿✿

study
✿✿✿✿

has
✿✿✿✿✿

proved
✿✿✿✿✿✿

MWR
✿✿

to
✿✿

be
✿✿✿✿✿✿✿

capable
✿✿

of
✿✿✿✿✿✿✿✿

resolving
✿✿✿✿

deep
✿✿✿✿✿✿✿✿✿✿

near-surface
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

inversions

✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿

terrain
✿✿✿✿✿✿

during
✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layer
✿✿✿✿✿✿✿✿✿

conditions.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

accuracy
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

only
✿✿

if
✿✿✿

the
✿✿✿✿✿✿

MWR
✿✿✿✿

field

✿✿

of
✿✿✿✿

view
✿✿

is
✿✿✿✿

free
✿✿

of
✿✿✿✿✿✿✿✿

obstacles
✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿

similar
✿✿

to
✿✿✿✿

what
✿✿✿✿

was
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

less
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿

terrain.
✿✿✿✿✿✿✿✿

Elevated
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

inversions
✿✿✿

are25

✿✿✿

still
✿✿✿✿✿✿✿✿✿✿

challenging
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

decreased
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

instrument
✿✿✿✿

with
✿✿✿✿✿✿✿

altitude.
✿✿✿✿✿

Using
✿✿

a
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿✿✿✿✿✿✿✿

background

✿✿✿✿✿✿

already
✿✿✿✿✿✿✿✿✿

simulating
✿✿

an
✿✿✿✿✿✿✿✿

elevated
✿✿✿✿✿✿✿✿

inversion
✿✿✿

was
✿✿✿✿✿✿✿

already
✿✿✿✿✿

found
✿✿

to
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿

retrievals.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿

future,
✿✿✿✿✿

extra
✿✿✿✿✿

work
✿✿✿✿✿

needs

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿

undertaken
✿✿

to
✿✿✿✿✿✿✿✿

decrease
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿

length
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿

which
✿✿✿✿✿✿

should
✿✿✿✿✿✿✿

improve
✿✿✿✿

the

✿✿✿✿✿✿✿✿

retrievals.
✿✿✿✿

New
✿✿✿✿✿✿✿✿✿

generation
✿✿✿

of
✿✿✿✿✿

MWR
✿✿✿✿

also
✿✿✿✿✿✿

shows
✿

a
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿

help
✿✿✿✿✿✿✿✿

resolving
✿✿✿✿✿✿✿

elevated
✿✿✿✿✿✿✿✿✿✿

inversions.

✿✿✿✿✿✿

Finally,
✿✿✿✿✿✿✿

synergy
✿✿✿✿

with
✿✿✿✿✿

other
✿✿✿✿✿✿

passive
✿✿✿

and
✿✿✿✿✿

active
✿✿✿✿✿✿✿✿✿✿

instruments
✿✿✿✿✿✿✿✿

(infrared
✿✿✿✿✿✿✿✿✿✿

radiometers
✿✿✿

and
✿✿✿✿✿✿

lidars)
✿✿

is
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿

vertical30

✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

retrievals
✿✿✿✿✿✿✿

through
✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿

column
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Barrera-Verdejo et al. (2016)).
✿

The results shown in this study are encouraging and show
✿✿✿✿✿✿✿✿✿✿

demonstrate the potential for assimilating MWR in operational

convective scale models even though studies on larger dataset and larger time periods should be investigated. The development

of the ground-based version of the fast radiative transfer model RTTOV (RTTOV-gb, De Angelis et al. (2016)) paves the way

for future data assimilation of brightness temperature measurements which should bring more in the assimilation system than

26



retrievals (Caumont et al. (2016)). In the context of urbanized valley, this study has proved the capability of MWR for long-5

term monitoring to improve our understanding of wintertime pollution events. Temperature gradients linked to the atmospheric

stability could be used to better forecast wintertime pollution events.
✿✿✿✿✿✿✿

Scanning
✿✿

in
✿✿✿✿

two
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

directions
✿✿✿

of
✿✿

the
✿✿✿✿✿✿

valley,
✿✿✿✿✿✿

MWR

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

also
✿✿✿✿

offer
✿✿✿

the
✿✿✿✿✿✿✿✿✿

possibility
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

investigating
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿

heterogeneity
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

valley
✿✿✿

and
✿✿✿✿

how
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿

are

✿✿✿✿✿

linked
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

mesoscale
✿✿✿✿✿✿✿✿✿

circulation.
✿✿✿✿

This
✿✿✿✿

will
✿✿

be
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿

in
✿✿

a
✿✿✿✿✿

future
✿✿✿✿✿

study.

In the future, 1DVAR retrievals will be extended to humidity and liquid water content. Improvement in the definition of the R

and B matrices will also be carried out to be optimized with the weather regime.

8 Data availability

Data used in this paper are available on the Passy-2015 campaign website: http://passy.sedoo.fr.5
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