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Abstract. A RPG-HATPRO ground-based microwave ra-

diometer (MWR) was operated in a deep Alpine valley dur-

ing the Passy-2015 field campaign. This experiment aims

at investigating how stable boundary layers during winter-

time conditions drive the accumulation of pollutants. In or-5

der to understand the atmospheric processes in the valley,

MWR continuously provide vertical profiles of temperature

and humidity at a high time frequency, providing valuable

information to follow the evolution of the boundary layer.

A one-dimensional variational (1DVAR) retrieval technique10

has been implemented during the field campaign to opti-

mally combine MWR and 1h forecasts from the French

convective scale model AROME. Retrievals were compared

to radiosonde data launched at least every 3 hours during

two intensive observation periods (IOP). An analysis of the15

AROME forecast errors during the IOPs has shown a large

underestimation of the surface cooling during the strongest

stable episode. MWR brightness temperatures were moni-

tored against simulations from the radiative transfer model

ARTS2 (Atmospheric Radiative Transfer Simulator) and ra-20

diosonde launched during the field campaign. Large errors

were observed for most transparent channels (i.e., 51-52

GHz) affected by absorption model and calibration uncer-

tainties while a good agreement was found for opaque chan-

nels (i.e., 54-58 GHz). Based on this monitoring, a bias cor-25

rection of raw brightness temperature measurements was ap-

plied before the 1DVAR retrievals. 1DVAR retrievals were

found to significantly improve the AROME forecasts up to

3 km but mainly below 1 km and to outperform usual sta-

tistical regressions above 1 km. With the present implemen-30

tation, a root-mean-square-error (RMSE) of 1 K through all

the atmospheric profile was obtained with values within 0.5

K below 500 m in clear-sky conditions. The use of lower el-

evation angles (up to 5 ◦) in the MWR scanning and the bias

correction were found to improve the retrievals below 1000 35

m. MWR retrievals were found to catch very well deep near-

surface temperature inversions. Larger errors were observed

in cloudy conditions due to difficulty of ground-based MWR

to resolve high level inversions that are still challenging. Fi-

nally, 1DVAR retrievals were optimized for the analysis of 40

the IOPs by using radiosondes as backgrounds in the 1DVAR

algorithm instead of the AROME forecasts. A significant im-

provement of the retrievals in cloudy conditions and below

1000 m in clear-sky was observed.

From this study, we can conclude that MWR are expected 45

to bring valuable information into NWP models up to 3 km

altitude both in clear-sky and cloudy-sky conditions with the

maximum improvement found around 500 m. With an accu-

racy between 0.5 and 1 K in RMSE, our study has also proved

MWR to be capable of resolving deep near-surface temper- 50

ature inversions observed in complex terrain during highly

stable boundary layer conditions.

1 Introduction

Atmospheric boundary layer (ABL) observations of temper-

ature and humidity profiles at a high temporal resolution are 55

necessary for the improvement of numerical weather predic-

tion (NWP) and for a better understanding of small-scale

phenomena. In fact, new generation of convective scale mod-

els has been developed in the last ten years in order to im-
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prove the forecasts of high impact weather events like heavy

convection, precipitation, fog or low clouds. In order to ini-

tialize convective scale models through data assimilation al-

gorithms, a denser network of ABL observations is needed as

it is the most important under-sampled part of the atmosphere5

(National Research Council United States (2010)). In paral-

lel, a better understanding of boundary layer processes is es-

sential to improve parameterisations used to describe the evo-

lution of phenomena at a smaller scale than the model grid.

To that end, observations enabling a fine description of the10

diurnal evolution in the ABL are important to improve our

knowledge and understanding of these small-scale phenom-

ena. Among them, ABL processes in mountainous regions

are an active area of research due to complex atmospheric

dynamics, anabatic and katabatic winds and strong temper-15

ature inversions (Rotach and Zardi (2007)). Urban valleys

are often affected by severe pollution events during win-

tertime anticyclonic conditions while the atmospheric cir-

culation in the valley is decoupled from the synoptic dy-

namics aloft (Lehner and Gohm (2010), Gohm et al. (2009),20

De Franceschi and Zardi (2009), Silcox et al. (2012)). This is

particularly the case in the Arve River Valley near the city

of Chamonix located in the French Alps where the air qual-

ity is one of the worst in France. The Passy-2015 field cam-

paign was conducted to improve our knowlegde on how pol-25

lutants are accumulated and dispersed during stable episodes

in this urbanized valley (Paci et al. (2016)). To better under-

stand and forecast these pollution events, vertical profiles of

temperature at a high temporal resolution can be valuable. In

fact, information on the link between the atmospheric stabil-30

ity and the amount of pollutant in the atmosphere can be stud-

ied as well as the description of temperature inversions and

stratifications (Silcox et al. (2012), Chemel et al. (2016)).

Radiosounding remains one of the most accurate method to

measure temperature profiles but their cost and induced fi-35

nite time resolution (once or twice per day usually for in-

strumented site) is a limitation for a fine description of the

diurnal cycle of the boundary layer. On the contrary, ground-

based microwave radiometers (MWR) can provide contin-

uous observations of temperature and humidity profiles at40

a high frequency rate (up to 1 s for humidity profiles, a

few minutes for temperature). Even if the vertical resolution

decreases with altitude (Cimini et al. (2006)), information

from MWR mostly resides in the ABL (Löhnert and Maier

(2012)) and atmospheric profiles are provided in both45

clear and cloudy-sky conditions making them useful for

a long-term monitoring of boundary layer dynamics. At-

mospheric profiles are generally retrieved from statistical

regressions using a long-term database of radiosoundings

(Crewell and Lohnert (2007), Löhnert and Maier (2012)).50

This method relies on a long time serie of radiosonde pro-

files to represent most of the atmospheric variability. How-

ever such a large number of radiosonde profiles is rarely

available. NWP models can provide a database of atmo-

spheric profiles when no radiosonde is available (Güldner55

(2013)). However, this method may not be well suited in

complex terrain for which forecast skills are known to be

less accurate particularly due to unrepresented processes

associated with subgrid scale orography. One-dimensional

variational (1DVAR) retrievals have also been used to re- 60

trieve in an optimal way temperature and humidity pro-

files by combining observations and an a priori of the at-

mospheric state. This a priori profile can either be repre-

sented by a climatology, radiosounding on instrumented site

(Löhnert et al. (2004), Löhnert et al. (2008)) or a short-term 65

forecast from a NWP model. The 1D-Var technique was

applied by Hewison (2006), Cimini et al. (2006), Hewison

(2007), Cimini et al. (2010) and Cimini et al. (2011) using

forecasts from a mesoscale model on various datasets of

MWR observations from the MeteoSwiss station of Pay- 70

erne to observations in Alaska or Vancouver during the 2010

Olympic games. A root-mean-square-error (RMSE) within

1.5 K was obtained for the three experiments by comparison

to radiosondes. Recently, Martinet et al. (2015) illustrated for

the first time a 1DVAR assimilation of real MWR observa- 75

tions into the convective scale model AROME and obtained

a RMSE within 1 K in clear-sky and 1.3 K in cloudy sky

up to 6 km, most of the information content brought into the

model being located below 3 km altitude.

During the Passy-2015 field campaign, a 14 channel MWR 80

has been operated from December 2014 to March 2015 in a

deep and narrow Alpine valley. Although there have already

been MWR deployments on complex terrain (Kneifel et al.

(2010), Cimini et al. (2011), Massaro et al. (2015)), this

study investigates the following questions: 85

– Can ground-based MWR resolve temperature profiles

characterized by sharp temperature inversions during

very stable conditions in such a deep and narrow val-

ley ?

– What added value can MWR bring to NWP models in 90

stable conditions which are known to be a current issue

in NWP forecasts ?

To that end, a MWR has been deployed in a narrow Alpine

valley (less than 5 km between the closest mountain slope

and the instrument) with measurements going down to 5 ◦
95

elevation angle. This is the first time 1DVAR retrievals are

performed from a convective scale model in complex terrain

during which large forecast errors are observed.

The paper begins with an overview of the instrumentation

used in the Passy-2015 field campaign (section 2) and the 100

1D-Var algorithm (section 3) followed by an analysis of the

AROME forecast errors during the experiment (section 4).

Monitoring of the radiometer brightness temperature mea-

surements enabling the computation of a bias correction is

presented in section 5. Finally, performance of 1DVAR re- 105

trievals compared to regressions is discussed in section 6.
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2 Instrumentation

2.1 The Passy-2015 field campaign

The Passy-2015 field campaign was designed in order

to improve our understanding on how the atmospheric

dynamics during wintertime anticyclonic conditions, leading5

to persistent stable boundary layers, drives the accumulation

and dispersion of pollutants in the atmosphere of the Arve

Valley around the city of Passy. This French urbanized

valley is known for severe pollution episodes with daily

concentration of PM10 (aerosols with diameter less than 1010

µm) regularly above 50 µgm−3. The valley is approximately

2000 m deep and maximum 2 km wide (Fig. 1). The ground

altitude is approximately 560 m a.g.l down the valley. A

large number of instruments were deployed from end of

November 2014 to end of March 2015 on five instrumented15

sites down the valley. Among them, there are microwave

radiometers, wind profilers, ceilometer, sodar, lidars, teth-

ered ballons, instrumented towers. A detailed presentation

of the field campaign can be found in Paci et al. (2016). Two

intensive observation periods (IOP) have been carried out20

during the campaign. The observing system was reinforced

during these periods with radiosondes launched every 3

hours and up to 1.5 hours. The first IOP took place from the

6th to the 14th of February, the second one from the 17th to

the 20th of February.25

2.2 HATPRO MWR

A HATPRO MWR (Rose et al. (2005)) was deployed on site

1 (Fig. 1) and is oriented to scan the Passy valley in two oppo-

site directions: Passy in the NorthEast and Sallanches in the30

NorthWest direction. The HATPRO MWR measures down-

welling brightness temperatures in 14 channels. The first

seven are located on the upper-frequency wing of the 22.24

GHz water vapor absorption line (called K-band), the last

seven at the 60 GHz oxygen complex band (called V-band).35

K-band channels are used to retrieve atmospheric humidity

and liquid water content while V-band channels are used for

atmospheric temperature retrievals. Observations are made

either in zenith mode pointing at 90 ◦ or in boundary layer

mode scanning the atmosphere under lower elevation angles40

from 90 ◦ to 5.4 ◦. One boundary layer scan is performed

in each direction approximately every 10 minutes. The use

of boundary layer scan was found to significantly improve

the accuracy of temperature profiles in the first km assuming

that the atmosphere is horizontally homogeneous around the45

MWR (Crewell and Lohnert (2007)). Even if this assump-

tion is not necessarily valid in complex terrain, the study of

Massaro et al. (2015) has shown a good accuracy of temper-

ature profiles with no degradation due to the nearby moun-

tain. The radiometer needs to be well calibrated to exploit the50

optimal calibration coefficients in order to convert detected

Passy

Sallanches

HATPRO

500 m

1000 m

2000 m

3000 m

Figure 1. View of the area of interest, close to the city of Passy

in the Arve river valley. Microwave radiometer and radiosondes

were deployed on measurement site 1. Topographic maps from

www.geoportail.gouv.fr, IGN 2017

intensities into brightness temperatures. To that end a liquid

nitrogen cooled load considered as a blackbody at the boiling

temperature of 77 K is generally used (Küchler et al. (2016)).

A liquid nitrogen calibration was performed at the beginning 55

of the experimental campaign at the end of November 2014.

2.3 Ancillary Data

In addition to the HATPRO MWR, observations by 84 ra-

diosonde ascents are used to validate temperature profiles re-

trieved by the MWR. VAISALA RS92 radiosondes with an 60

expected accuracy of 0.5 K in temperature and 5 % in relative

humidity were launched approximately every 3 hours and up

to 1.5 hours during the IOPs. Radiosondes were launched ap-

proximately at 00, 03, 06, 09, 12, 15, 18 and 21 UTC. They

provide vertical profiles of pressure, temperature, relative hu- 65

midity, and wind profiles at approximately 10 m vertical res-

olution. The temperature at 1.5 m is provided by an external

weather station combined with the RS measurements through

the VAISALA software. A new system to increase the fre-

quency of radiosondes by recovering previously launched 70

probes has been used during the field campaign (Legain et al.

(2013)). In order to be able to pick up the probes, they should
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not drift too far away from the launching site. As a conse-

quence, most of the radiosondes were released at about 2 km

altitude, to make sure they can be picked up in the valley.

A ceilometer Vaisala CT25K deployed a few meters from the

MWR is also used to determine the cloud base altitude. This5

cloud base can be used to optimize the 1DVAR retrievals in

cloudy conditions and to separate clear-sky from cloudy-sky

observations when analysing the results.

3 Retrieval Algorithm

3.1 1DVAR framework10

A comparison of several methods to convert brightness tem-

peratures into temperature and humidity profiles have proved

the 1DVAR technique to be the optimal one (Cimini et al.

(2006), Martinet et al. (2015)) when the a priori profile and

uncertainty estimates are suitable. The 1DVAR framework15

used in this study is based on the optimal estimation the-

ory by Rodgers (2000). MWR observations are combined

with an a priori estimation of the atmospheric state which

can be either a short-term-forecast or a previous radiosonde

profile. In this context, a priori refers to the first guess of20

the iterative algorithm representing a good estimate of the

atmospheric conditions as the starting point of the minimiza-

tion. Each source of information is weighted by correspond-

ing uncertainty called the background-error-covariance ma-

trix (B) for the a priori profile and the observation-error-25

covariance matrix (R) for the observation to find the optimal

state. The background-error-covariance matrix represents the

auto-covariances and cross-covariances of the first guess er-

rors. Thus, it defines the variances of the first guess errors at

each vertical level for each variable, the vertical correlations30

of the first guess errors at different levels and the correlation

of these errors between different variables (temperature and

humidity for example). An observation operator including in-

terpolations from model space to observation space and a ra-

diative transfer model is needed to compute the equivalent35

observation from the a priori. The method iteratively modi-

fies the state vector x from the a priori xb to minimize the

following cost function:

J(x) =
1

2
(x−xb)

T B−1(x−xb)+
1

2
(y−H(x))T R−1(y−H(x))

where H represents the observation operator, T repre-40

sents the transpose operator and −1 the inverse operator. The

observation-error-covariance matrix R should take into ac-

count representativeness and forward model errors as well as

radiometric noise.

During the minimisation process, a Levenberg-Marquardt45

descent algorithm is applied by introducing a factor γ that is

adjusted after each iteration. If the cost function is not de-

creased with the new profile, the factor γ is multiplied by 10.

The iterative solution that minimizes the cost function J is

given by: 50

xi+1 = xi+
(

(1+ γ)B−1 +Hi
T R−1Hi

)

−1

× (1)
(

Hi
T R−1(y−H(xi))−B−1(xi− xb)

)

where Hi is the Jacobian matrix which represents the sensi-

tivity of the observation operator to changes in the control

vector x (Hi=∂H(xi)/∂xi). 55

3.2 NWP model

In this study 1-hour forecasts from the French convective

scale model AROME (Application of Research to Operations

at MEsoscale, Seity et al. (2011)) are used as a priori profiles

or "backgrounds". AROME is a limited area model covering 60

Western Europe with non-hydrostatic dynamical core. Since

beginning 2015, the horizontal resolution of AROME has

been increased from 2.5 km to 1.3 km as well as the number

of vertical levels from 60 to 90 (Brousseau et al. (2016)).

This increase in horizontal and vertical resolutions is partic- 65

ularly useful to better represent complex terrains. Vertical

levels follow the terrain in the lowest layers and isobars in

the upper atmosphere. The detailed physics of Arome are

inherited from the research Meso-NH model (Lafore et al.

(1997)). Deep convection is assumed to be resolved ex- 70

plicitly, but shallow convection is parameterized following

Pergaud et al. (2009). A bulk one-moment microphysical

scheme (Pinty and Jabouille (1998)) governs the equations

of the specific contents of six water species (humidity, cloud

liquid water, precipitating liquid water, pristine ice, snow, 75

and graupel). This new version also performs 3D-Var anal-

yses every hour instead of every three hours to optimize the

use of frequent observations. All conventional observations

are assimilated together with wind profilers, winds from

space-borne measurements (Atmospheric Motion Vectors 80

and scatterometers), Doppler winds (Montmerle and Faccani

(2009)) and reflectivity (Wattrelot et al. (2014)) from

ground-based weather radars, satellite radiances as well

as ground-based GPS measurements (Mahfouf et al. (2015)).

85

3.3 Settings

In this study the control vector x consists in temperature

and humidity profiles on the same 90 levels as defined in

AROME. These levels cover the atmospheric range from the

ground up to 30 km, the vertical resolution decreasing with 90

altitude: 20-100 m below 1 km, 100-200 m from 1 to 5 km,

around 400 m at 10 km. It is important to note here that the

retrieval grid is finer than the true instrumental resolution

but matches the AROME model vertical resolution. The ob-

servation vector y consists in brigthness temperatures (BT) 95

in all V-band channels (51.26, 52.28, 53.86, 54.94, 56.66,
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57.3, 58 GHz) at zenith and only opaque channels (above

54 GHz) at low elevation angles: 42, 30, 19.2, 10.2 and 5.4
◦. This study only focusses on temperature profiles, thus

only V-band channels are used. The forward model opera-

tor used in this study is the line-by-line Atmospheric Radia-5

tive Transfer Simulator 2 (ARTS, Eriksson et al. (2011)) and

1DVAR experiments are performed using the Qpack2 pack-

age (Eriksson et al. (2005)) provided with the ARTS soft-

ware. For the radiative transfer simulations, the gaseous ab-

sorption is calculated according to Rosenkranz (1998) for O210

and water vapour. In simulations taking into account the liq-

uid water absorption, the model of Liebe et al. (1993) is used.

The observation-error covariance matrix R is assumed to be

uncorrelated with a standard deviation of 0.5 K for channels

8 to 9 and 0.2 K for channels 10 to 14. These values have15

been chosen empirically on the basis of previous studies by

Löhnert et al. (2008) and Hewison (2007). The same values

have been used in Martinet et al. (2015) with the instrument

used in this study and have shown to be good estimates of

the observation errors. In the future, a dedicated study will20

be performed to review these values and quantify the correla-

tions in noise between the different channels by continuously

measuring the BTs of the internal black body target.

Information about instrumental errors can be obtained by in-

vestigating differences between observations and simulations25

from background profiles (short-term forecasts or radioson-

des). The monitoring of these differences called O-B (obser-

vations minus background) departures is essential to remove

any systematic errors in the measurements, the forward op-

erator or the background profiles (De Angelis et al. (2017)).30

They are investigated in section 5.

4 Evaluation of the AROME model during the

Passy-2015 field campaign

In real-time during the Passy-2015 field campaign, tempera-

ture profiles were retrieved from the MWR measurements us-35

ing linear regressions implemented within the HATPRO pro-

prietary software. The regression coefficients were provided

by the RPG manufacturer to the national service MeteoSwiss

and are based on the 1989-2005 Payerne radiosonde data via

radiative transfer calculations. The Payerne coefficients were40

chosen due to the lack of radiosonde data close to the city of

Passy and for the similar climatic conditions between Passy

and Payerne.

In order to evaluate the performance of the AROME model

during the Passy-2015 experiment figure 2 shows the time45

series of temperature profiles observed by radiosondes, re-

trieved from the HATPRO MWR by the Payerne linear re-

gression coefficients and those extracted from the AROME

analyses during the first IOP. The stable episode starts the

9th of February and ends the 13th of February. During this50

event a persistent inversion is observed, however we can note

that stability is depleted in the first 500 meters every day be-

tween noon and 3 to 5 pm due to the solar heating. The di-

urnal cycle and a very cold air mass (up to -10 ◦ C) close to

the surface at night are very well detected by the MWR. We 55

observe a good agreement of the overall atmospheric struc-

ture between radiosonde data and MWR observations. The

root-mean-square differences (RMSE) between the regres-

sions and the radiosondes are 0.7 K below 500 m except the

first two points close to the surface, below 1.3 K at 1200 m 60

and increase up to 2 K at 4000 m. These values are consis-

tent with those reported in Löhnert and Maier (2012) from

another HATPRO radiometer operated in a less complex ter-

rain and from Massaro et al. (2015) in a truly complex terrain

in the Inn Valley. This result confirms that microwave radia- 65

tion that could originate from nearby slopes does not seem to

degrade the quality of MWR inversions. MWR can thus be

safely deployed in complex terrain and then similar temper-

ature accuracy to that of flat and less complex terrain can be

expected, at least if the line of sight of the MWR is free of 70

obstacles over distances larger than about 5 km.

Figure 2 also demonstrates that the 10 minute resolution of

the MWR observations during the field campaign is a real

advantage to complete the radiosonde time serie for a de-

tailed description of the boundary layer diurnal cycle. During 75

IOP 1, the 2015 operational version of the AROME model

missed the large cooling of the surface at nighttimes. The

AROME model demonstrated difficulties in properly repre-

senting such conditions which is a well known issue of cur-

rent NWP models. It induces large differences between the 80

radiosonde observations and the AROME forecasts by up to

-12 K at the surface during the strongest stable event (10th,

11th and 12th of February).

To quantify the accuracy of the AROME analyses in the

valley during IOP1 figure 3 shows temperature differences 85

between radiosonde and AROME at three different levels:

1.5 m a.g.l., 1000 m a.g.l. and 1500 m a.g.l. The mea-

surement at 1.5 m comes from an external weather station

well ventilated. To interpret these temperature errors, the dif-

ferences between the radiosonde temperature measurement 90

at the boundary layer height zi and the surface measure-

ment from the external weather station: ∆T = TRS(zi)−
Tstation(1.5m). To estimate during the day the thin convec-

tive layer top which develops under the effect of solar heat-

ing, we used one of the standard definitions given by Stull 95

(2012) and Sullivan et al. (1998) as the height of the max-

imum gradient of potential temperature. The estimation of

the boundary layer height in stable conditions is more tricky

and has been a longstanding problem with definitions vary-

ing according to the application. Here, the stable boundary 100

layer top has been defined as the top of the surface inversion

of the stable layer using the definition from Beyrich (1997).

This definition is used when a positive temperature gradient

near the surface is found. The temperature difference ∆T

quantifies the atmospheric boundary layer stability. Negative 105

values indicate convective conditions while positive values

indicate stable conditions more pronounced when the tem-
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Figure 2. Time series of temperature profiles during IOP 1: (a) from

radiosounding with corresponding boundary layer heights (black

crosses), (b) from microwave radiometer, (c) from AROME anal-

yses. Altitudes are given in m above ground level.

perature difference is larger. The term "stability index" will

be used in our analysis. We can note that the surface error is

relatively low at the beginning of the period (smaller than 5

K) and increases with the atmospheric stability. The stability

index increases from the 9th to the 11th of February and de-5

creases after to reach values similar to the beginning of the

episode. The stability index changes from positive (i.e. sta-

ble) to negative (i.e. unstable) every day between 12 and 18

UTC approximately. The temperature errors of the AROME

analyses at the surface are consistent with the evolution of the10

atmospheric stability. The largest errors reach -12 K the 11th

of February at 03 UTC (Fig. 4) when the stability is maximal

with a value of 14 K.

On the contrary, the evolution of the 1000 m temperature er-

ror is not correlated with the atmospheric stability and shows15

larger errors before the stable conditions (9th of February)

with a stability index reaching -10 K. At the beginning of the

IOP cloudy conditions with low level clouds located around

1000 m were observed. It results in a sharp temperature inver-

sion at the cloud base (Fig. 4) which is also a known source 20

of error in NWP forecasts. At 1500 m a.g.l, the error stays

within 2 K during all the period showing a good accuray of

the AROME analyses at an altitude corresponding roughly to

the averaged valley crest.

To summarize, the accuracy of the AROME analyses is de- 25

graded inside the valley which is affected by an atmospheric

circulation decoupled from the synoptic dynamics above the

valley crest. The degradation of the AROME analyses is cor-

related with the establishment of the stable episode. The sur-

face cooling is strongly underestimated by AROME in this 30

context. However, above the top of the valley, the analysis

errors are much smaller and correspond to the expected ac-

curacy of the model. This result confirms the fact that MWR

can bring valuable information in the altitude range where the

NWP error is the largest and where a lack of observations is 35

still observed in operational networks.

5 Observation minus background monitoring

5.1 Data screening

In order to remove discrepancies in the forward simulations

due to cloud mislocations in the forecast model, a screening 40

of MWR observations between clear and cloudy-sky cases

has been performed. First of all, a sanity check is performed

to remove MWR observations for which the rain flag pro-

vided within the instrument datastream was activated. As

the HATPRO configuration was optimized to retrieve tem- 45

perature profiles at a high vertical resolution, few zenithal

observations were performed between two boundary layer

scans. Note that the small amount of data at zenith does not

allow the use of the standard deviation of MWR BT mea-

surements at 31 GHz to detect possible clouds in the field of 50

view of the instruments (Ebell et al. (2017)). The cloud base

height provided by the CT25K ceilometer was thus used as

a reference to identify cloudy-sky observations. If the low-

est cloud base height during a +/- 20 min window around

the MWR observation is smaller than 6000 m, the obser- 55

vation is classified as cloudy. In case no ceilometer obser-

vation is available, the infrared radiometer temperature pro-

vided with the HATPRO platorm has to be smaller than -30 ◦

C to consider the observation as liquid free (similar approach

used in Martinet et al. (2015)).The result of this classification 60

of radiosondes between clear-sky and cloudy-sky observa-

tions is shown in figure 5 in addition to the ceilometer cloud

base height. Among the 84 radiosondes launched during the

Passy-2015 field campaign, 56 were classified as clear-sky.
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Figure 3. Top panel: Temperature differences between radiosondes and AROME analyses at three levels: 1.5 m in black, 1000 m in red,

1500 m in blue. Bottom panel: temperature differences between the radiosonde measurement at the boundary layer height and the surface

measurement from an external weather station. Altitudes are given in m above ground level.

5.2 O-B analysis from AROME forecasts

Monitoring observation minus background departures is an

important step before any assimilation. First of all, the best

estimate of the analysis state is obtained only if background

and observation errors follow Gaussian distribution with zero5

mean. Quality-controlled and bias-free observations are thus

necessary to obtain good estimate of atmospheric profiles.

Should not this be the case, a bias correction of the obser-

vations can be proposed to meet the requirements of vari-

ational assimilation. While Löhnert and Maier (2012) and10

Navas-Guzmán et al. (2016) used radiosonde to simulate the

equivalent brightness temperature spectrum, Martinet et al.

(2015) showed the possibility of using the AROME forecasts

instead of radiosonde data. Using AROME forecasts enables

the detection of BT bias offset when no radiosonde is avail-15

able close to the MWR site. However, a new source of er-

ror is added coming from possible systematic NWP errors.

Even though differentiating the different sources of errors (

instrumental, forward model and background errors) can be

complex, this monitoring is widely used in the satellite data 20

community.

BT simulations were performed with the ARTS radiative

transfer model and 1-hour AROME forecasts (temperature,

humidity) using 2 months of data (February and March

2015). The closest AROME grid point in the valley with an 25

altitude difference of only 2 m compared to the MWR loca-

tion was used. Figure 6 shows the observation minus back-

ground departures (O-B) as a function of the atmospheric

boundary layer stability for one transparent channel (51.26

GHz) and one opaque channel (58 GHz) and different eleva- 30

tion angles. Only clear-sky observations are considered with

a screening procedure described in section 5.1. As radioson-

des are not available throughout the period, the atmospheric

stability is computed from MWR temperature profiles re-

trieved by linear regression. The temperature difference be- 35

tween 500 m and 50 m is used. Different altitudes have been

tested but 500 m was found to describe best the development

and destruction of stability in the boundary layer at least dur-

ing the IOPs. The MWR temperature retrieval at surface was
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Figure 4. Temperature profiles observed by the radiosonde (red

line) or extracted from the AROME analyses (black line): during

unstable conditions the 07th of February at 21 UTC (left panel) and

during the most stable periode the 11th of February at 03 UTC (right

panel). Altitudes are given in m above ground level.

not used as large errors have been observed (1.9 K see fig-

ure 9) and would impact the evaluation of the stability. In-

stead, the second level of the MWR retrievals (50 m) has

been chosen as it has shown a better accuracy with respect

to radiosonde measurements. From this figure, we can ob-5

serve that the O-B departures at 58 GHz are highly correlated

to the atmospheric stability which is not the case at 51.26

GHz. As opaque channels are more sensitive to the lowest

atmospheric layers, this result indicates that the forward sim-

ulations are highly affected by the larger AROME forecast10

errors in the boundary layer during stable episodes. On the

contrary, the accuracy of the AROME forecasts in the upper

layers stay stable during the period. The forward simulations

at 51.26 GHz are thus quite stable during the whole cam-

paign. Larger errors are also found with decreasing elevation15

angles for both transparent and opaque channels. For opaque

channels, this can be explained by an increased sensitivity

to atmospheric layers close to the surface where the largest

errors in the AROME forecasts are observed. For transpar-

ent channels, radiations from surrounding slopes can degrade20

the observations and atmospheric inhomogeneities can cause

larger discrepancies with the simulation.

This section has shown that, in the particular case of the

Passy-2015 experiment, the use of AROME forecasts to infer

any systematic BT offset is not appropriate. In fact, the large25

forecast errors during wintertime stable episodes exceed the

instrumental errors. The computation of O-B departures on a

larger time period could probably smooth the forecast errors

to only highlight instrumental errors like calibration jumps,

systematic errors and drifts. In order to correctly infer any BT 30

offset, the O-B departures are computed from the radioson-

des launched during the IOPs in the next section.

5.3 O-B analysis from radiosondes

Observation minus background departures have been com-

puted from radiosonde profiles launched during the field 35

campaign. As most of the radiosondes did not reach more

than 2 km altitude above ground, it is important to complete

the atmospheric profiles up to 30 km to avoid large discrep-

ancies in the simulation of transparent channels. Radioson-

des were interpolated into the AROME vertical grid below 40

2 km and completed with AROME analyses above. As the

accuracy of AROME analyses is better than 1 K above 2 km,

this combination should not degrade the forward simulations.

Figure 7 shows the bias and standard deviation of O-B de-

partures at different elevation angles. We can note a stronger 45

dependency to the elevation angles for transparent channels

(51 to 52 GHz). These channels are more sensitive to cali-

bration errors for decreasing optical depth (higher elevation

angles). The largest bias (-4.2 K) is found at 52.25 GHz and

an elevation angle of 90 ◦ while it is below 0.5 K for opaque 50

channels. Standard deviations within 1 K are observed for all

channels and all elevation angles except at 51.25 GHz for el-

evation angles lower than 19.2 ◦ and at 52.25 GHz at 5.4 ◦.

This degradation can be due to an increase in atmospheric in-

homogeneities explaining that transparent channels are gen- 55

erally not used at low elevation angles (Crewell and Lohnert

(2007)). For opaque channels, bias and standard deviation

smaller than 0.2 K are observed at all angles except at 5.4
◦ where the bias reaches 0.5 K. Similar values were found

in the study of Martinet et al. (2015) with the same HAT- 60

PRO instrument on a less complex terrain. The consistency

between both studies points out a good stability of the in-

strument despite several deployments and calibrations. An

improvement in the calibration procedure has also been ob-

served with a significant decrease of standard deviation for 65

all channels (up to 3 times at 90 ◦). A similar bias shape was

found in Löhnert and Maier (2012) and Navas-Guzmán et al.

(2016) with a large negative bias at 52.25 GHz but also on

several sites in Europe (De Angelis et al. (2017)). This large

bias can be due to a combination of calibration errors and 70

absorption model uncertainties (Hewison 2006). This analy-

sis demonstrates that a constant bias correction can be safely

applied to the set of measurements used for temperature re-

trievals: only zenith angle for frequency below 53 GHz, and

all elevation angles above. It will be applied and discussed in 75

the next sections.
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6 1DVAR retrievals

6.1 Background errors

In the operational AROME model, the background-error-

covariance matrix B is computed from an ensemble as-

similation that considers explicit observation perturbations5

and implicit background perturbations through the cycling

(Brousseau et al. (2011)). The AROME ensemble assimila-

tion is coupled to the operational ensemble assimilation at

global scale AEARP (Berre et al. (2007)). However, the ex-

pected background accuracy (diagonal terms of the B matrix)10

suggests a forecast error of less than 1 K in the boundary

layer on average through all the AROME domain. This op-

erational B matrix significantly underestimates the AROME

forecast errors during the Passy-2015 experiment. A new B

matrix has thus been computed from the differences between15

the AROME forecasts and the radiosonde data both in clear-

sky and cloudy-sky similarly to Cimini et al. (2011). The bias

and standard deviation of these differences compared to the

operational background errors used for the assimilation of

satellite data are shown in figure 8. In temperature, a large 20

bias of approximately -5 K is observed at the surface and

corresponds to the large overestimation of the temperature

by AROME during the stable episodes. A standard devia-

tion of 2 to 3 K, which is two to three times larger than the

expected background error, is evident between the surface 25

and 1700 meters. The temperature error at higher altitude is

much smaller (∼ 1 K) and closer to the value prescribed in

the operational assimilation system, corresponding to a de-

crease in the forecast error above the valley crest. Similar

features were found with ECMWF and NCEP models in an 30

Arctic environment in the study of Cimini et al. (2010). As

the 1DVAR retrieval accuracy depends on how well the B
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matrix is defined, the diagonal terms of the B matrix (auto-

covariance of the temperature errors) were simply replaced

by the variance of the radiosonde minus AROME differ-

ences (i.e. the square of standard deviation values in Fig-

ure 8) below 2 km. In order to provide statistically consis-5

tent increments at the neighbouring levels of the model, the

vertical correlations of the operational B matrix were con-

served. Non-Gaussianity can also affect forecast errors. Re-

cently, Legrand et al. (2016) evaluated the non-Gaussianity

of analysis and forecast errors using a 90 member AROME10

ensemble assimilation. It was found that for all variables,

non-Gaussianity exists but dynamical variables (vorticity and

divergence) are more affected than temperature and humid-

ity. Data assimilatione reduces this non-Gaussianity at each

cycle in regions well covered by observations. This ensem-15

ble assimilation does not exist for our period making compli-

cated the evaluation of this Gaussianity in our context. How-

ever, it should affect higher moments of the error distribution

than those used in the B matrix.

6.2 Sensitivity of retrievals to elevation angles and bias20

correction

The 1DVAR method with the settings previously described

has been applied to MWR observations during the two IOPs

of the Passy-2015 campaign. The retrievals are evaluated

against radiosondes and compared to the standard HATPRO25

linear regressions with the Payerne coefficients. Here the ra-

diosonde profiles are interpolated to the retrieval grid with-

out taking into account the smoothing errors due to the lim-

ited vertical resolution of the MWR. In fact, this resolution is

approximately between 50 m and 500 m and only 4 indepen-30

dent pieces of information can be extracted from the signal

(Löhnert and Maier (2012)). On the contrary, the tempera-

ture profile is sampled approximately every 10 m by the ra-

diosonde. In the future, the averaging kernel matrix could be

used to bring the radiosonde profile onto the MWR vertical35

resolution. According to section 5, a constant bias correction
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Figure 8. Bias (black line), standard deviation (red line) of the ra-

diosonde minus 1h-AROME temperature differences. The opera-

tional background error used in AROME for the assimilation of

satellite data is shown as the blue dashed line.

is removed from all channels before the 1DVAR algorithm.

This bias correction is not used for the linear regressions that

directly come from the uncorrected BT measurements and

the HATPRO proprietary software. Figure 9 evaluates tem- 40

perature retrievals against radiosondes in terms of bias and

RMSE focussing only on clear-sky profiles. For the sake of

clarity figure 9 also shows MWR retrievals either with re-

gression or 1DVAR with a focus on the range 0 - 1000 m. To

evaluate the impact of the bias correction, 1DVAR retrievals 45

with and without bias correction are also compared while the

impact of low elevation angles is investigated by comparing

retrievals using only zenith angle or all angles.

Very similar values of mean deviations are found (from

-0.4 K to 0.2 K) for the two 1DVAR configurations imple- 50

menting a bias correction (zenith and boundary layer scan)

despite a decrease of the bias in the first 100 m with addi-

tional low elevation angles. Regressions show a larger bias
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with values between -0.1 K and 0.8 K. These values are re-

duced compared to those observed with neural networks in

Martinet et al. (2015). Without applying a bias correction to

the measurements, a small degradation in the 1DVAR bias is

observed below 1000 m. The maximum degradation is found5

at 1150 m where the bias reaches 0.7 K instead of -0.03 K.

1DVAR RMSE values are smaller than 0.8 K below

500 m and within 1 K through all the atmospheric profile.

Large RMSE values are found close to the surface for all

retrieval methods (up to 1.6 K). The best accuracy of 1DVAR10

retrievals is found when the bias correction is applied to

the measurements and using all elevation angles up to 5.4
◦. A degradation below 1000 m in the 1DVAR retrievals is

observed when only observations at zenith are used in the

minimisation. In this case, the RMSE values can reach 1.215

K instead of 0.8 K with low elevation angles. This result

demonstrates the benefit of low elevation angles to resolve

temperature inversions below 1000 m. Below 1000 m,

regressions perform slightly better (differences between 0.1

and 0.2 K in RMSE) than 1DVAR. Above 1000 m 1DVAR20

outperforms regressions whose RMSE values increase up

to 2.5 K at 6000 m. Overall, 1DVAR retrievals provide

the best estimate of the atmosphere. The performance

of 1DVAR retrievals is similar when using the standard

deviations from the operational B matrix and a custom B25

matrix computed comparing AROME and RS profiles (not

shown). This suggests that the operational B matrix may

be safely adopted for other sites where RS profiles are not

available for computing a custom B matrix. However, in the

future, it would be interesting to investigate the sensitivity30

of the 1DVAR retrievals to the flow dependency of the B

matrix and particularly to the vertical correlation lengths.

The flow-dependency and diurnal cycle of forecast errors

can be determined by implementing a real-time AROME

ensemble assimilation system (Ménétrier et al. (2014)). This35

is under-development and should be available next year.

In order to investigate more in details the large RMSE val-

ues observed close to the surface, time series of the temper-

ature difference between the surface (external weather sta-40

tion) and the first HATPRO level are investigated in figure

10. This difference is compared to the differences between

the surface station and tower measurements at 5 m. The evo-

lution of the temperature error is compared to the diurnal cy-

cle of the temperature difference between the surface (1.5 m)45

and the RS measurement at the first level above (∼ 10 m

a.g.l). Positive values indicate stable atmosphere while nega-

tive values indicate convective conditions. We can note a cor-

relation between the decrease in the stability and the increase

in the HATPRO surface error. Maximum differences (- 9 K)50

are found when the stability is minimum corresponding to a

maximum of convective activity during daytime. The MWR

seems to significantly underestimate the surface warming

during the transition phase from stable to convective condi-

tions. However, MWR retrievals can easily be combined with55

surface sensors providing an higher accuracy at the surface.

To test the feasibility of combining surface measurements

and MWR observations in a physical way, the tower mea-

surement at 5 m was included in the observation vector with

a sharp surface-peaked Jacobian associated. The 1DVAR re- 60

trievals look very similar to what was previously shown but

a significant improvement in the RMSE at the surface was

found with a decrease from 1.6 K to 1 K as expected (this

configuration is used later on in figure 13). In the future, this

combination could thus be used by deploying a well cali- 65

brated surface station in parallel to the MWR.

6.3 Sensitivity of retrievals to the a priori

The previous section has investigated the capability of MWR

observations to be assimilated into NWP models by follow-

ing a similar approach to operational assimilation systems 70

(3DVAR, 4DVAR). However, in the context of field cam-

paigns and the study of boundary layer processes, it can be

interesting to get the best possible 1DVAR retrievals by us-

ing a more appropriate background profile. In the case of the

Passy-2015 field campaign, thanks to the high temporal reso- 75

lution of RS, the previously launched radiosonde can be used

as the background profile instead of the AROME 1h forecast

to start the minimisation from a more reasonable a priori pro-

file. The B matrix has also been recomputed according to the

differences between two successive radiosondes in order to 80

be consistent. In order to evaluate this new configuration fig-

ure 11 compares the accuracy of 1DVAR retrievals if either

1h AROME forecasts or the previously launched radiosondes

are used as backgrounds. As expected when radiosondes are

used as backgrounds, the bias is decreased during the anal- 85

ysis providing the best accuracy compared to the other re-

trievals. In terms of RMSE, the 1DVAR accuracy is improved

between 400 m and 1200 m and outperforms the regressions

through all the atmospheric profile except a slight degrada-

tion at 1200 m. Using RS as backgrounds, RMSE values are 90

below 0.6 K in the first 1000 m and within 1 K above.

An attempt to use the 1DVAR algorithm in cloudy condi-

tions is also shown in figure 11. The liquid water path is esti-

mated from HATPRO with a simple and classical dual chan-

nel algorithm using brightness temperature measurement at 95

23 and 31 GHz (Westwater (1978)). The liquid water con-

tent profile is estimated from the background temperature

and humidity profiles from a modified adiabatic assumption

(Karstens et al. (1994)) in layer where the relative humid-

ity exceeds 95 %. The computed liquid water content profile 100

is then scaled with the estimated liquid water path. The ob-

tained liquid water content profile is translated vertically to fit

the cloud base height provided by the ceilometer. In case no

atmospheric layer exceeds the 95 % relative humidity thresh-

old, a cloud layer is placed at the cloud base height provided 105

by the ceilometer with a geometrical thickness of one layer

and a liquid water path equal to the one derived from HAT-

PRO measurements. As MWR are mostly sensitive to the in-
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tegrated liquid water content rather than the vertical distribu-

tion of clouds, this configuration should be sufficient to take

into account the cloud contribution in the radiative transfer.

Note that only 25 profiles are taken into account in the statis-

tics which makes the dataset too small for a good represen-5

tativness. A large degradation of the 1DVAR retrievals from

AROME forecasts is observed in cloudy-conditions with an

increase of RMSE values up to 3 K at 1000 m. Contrary to

what one may think, this degradation does not seem to be

directly related to large background errors in the liquid wa-10

ter content but more to the misrepresentation of cloud-based

temperature inversions in AROME. In fact, figure 5 shows

that most of the cloudy profiles are located at the beginning of

the first IOP between 07 and 09 February. This period corre-

sponds to the strong temperature inversion at 1000 m altitude15

missed by AROME (Fig. 4) inducing large forecast errors

up to - 9 K. As the information content from the microwave

radiometer is maximum below 1000 m and decreases with

altitude, the MWR likely does not bring enough information

during the analysis to correct the background profile. In addi-20

tion to this decrease in information content, the large RMSE

value at 1000 m is likely due to the smoothing error related

to the low vertical resolution of MWR. This is evident in the

bias, showing large positive to negative values going from

500 to 1500 m altitude.25

To confirm that this degradation does not come from large er-

rors in the liquid water content background profile, 1DVAR

retrievals have been performed using only opaque channels

(54-58 GHz). These channels are known to be less affected

by cloud-liquid water emission contrary to transparent chan-30

nels. Figure 12 shows the RMSE of 1DVAR retrievals with

this reduced channel set differentiating the results between

clear-sky and cloudy-sky conditions. In clear-sky conditions,

using only opaque channels, a slight improvement between

900 and 1600 m and a degradation between 1600 and 3000 m35

are observed although these differences stay small (0.1 K in

RMSE). In cloudy-sky conditions, the same 1DVAR statis-

tics are found with the different channel configurations. As

transparent channels are more affected by cloud liquid water

emission, we could have expected to observe a larger degra-40

dation when these channels are used if the liquid water con-

tent is not well modelled. As few differences are observed

with transparent channels included in cloudy-conditions, it

supports that the degradation in cloudy-conditions is likely

to come from sharp elevated temperature inversions.45

In cloudy-sky, regressions also show a degradation with a

RMSE of 2.2 K at 1000 m but are slightly better than 1DVAR

below 1300 m if AROME is used as background (Fig. 11).

Above 1300 m, an increase in the bias makes the regressions

less accurate than both 1DVAR configurations. The best per-50

formance is found if radiosondes are used as backgrounds

even though the RMSE values still reach 1.8 K at 1000 m.

This configuration shows that one way to deal with sharp el-

evated temperature inversion with MWR could be to use a

background profile already simulating this inversion.55

In order to evaluate the added value brought by MWR to

the background profile and how much improvement could be

expected in future data assimilation, figure 13 summarizes

the performance of the 1DVAR retrievals either from RS or

from AROME backgrounds compared to the AROME fore- 60

cast errors. It also shows the performance of the "persistent"

method where the last RS is used as an estimate of the cur-

rent conditions. As radiosondes were launched every 3 hours

during the Passy-2015 campaign, it is interesting to investi-

gate if MWR could still bring an information on atmospheric 65

changes during the 3 hour time window. Note that when the

previously launched RS is used as background, the external

weather station was added to the observation vector.

In clear-sky conditions, as previously mentioned, we observe

a large RMSE of the AROME forecasts up to 8 K due to a 70

positive bias up to 6 K in the AROME background decreas-

ing with altitude. The RMSE profiles of 1DVAR retrievals

indicate that a significant amount of information can be ex-

tracted from MWR observations to improve the AROME

backgrounds even though large errors below 1500 m are ob- 75

served in the a priori profile. This situation is quite extreme

as the background is very far from the truth at the beginning

of the minimisation. However, the largest background errors

are found in the 0-1000 m range where MWR can constrain

the most the minimisation due to the high information con- 80

tent of the instrument in this altitude range.

In cloudy-sky conditions, AROME suffers from large errors

both at surface and 1000 m corresponding to sharp temper-

ature inversions. A significant improvement of the AROME

forecasts is observed in the first 1200 m. Temperature errors 85

are decreased from 3.5 K to 0.4 K at 200 m and from 4.5 to

2.5 K at the cloud-based inversion. This result demonstrates

the potential benefit of assimilating MWR observations in

NWP models both in clear-sky and cloudy-sky conditions.

Even though RS could be launched at a high temporal res- 90

olution (here up to three hours), the 10 minute resolution of

MWR can be valuable to fill in the gap between RS. In fact,

we note that even if radiosondes are launched every three

hours, significant changes in the boundary layer temperature

profiles are observed between two adjacent RS with RMSE 95

values larger than 1 K below 1000 m and up to 4.4 K at the

surface in clear-sky conditions. In cloudy-sky conditions, er-

rors up to 1.6 K in RMSE in the temperature profile are also

associated to the cloud-based inversion with this "persistent"

method. 1D assimilation of MWR observations manages to 100

significantly decrease the errors in the boundary layer mainly

below 1500 m with values between 0.3 and 1.3 K in the first

1000 m. MWR observations can thus fill in the gap between 3

h radiosondes to provide valuable temperature profiles. This

result also demonstrates how the MWR temporal resolution 105

is a necessity to complete our understanding and description

of the ABL diurnal cycle.
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Figure 11. Vertical profiles of bias (dashed lines) and root-mean-square-errors (solid line) of 1DVAR retrievals using either AROME 1h

forecast (blue) or previously launched radiosonde (red) as background. 1DVAR retrievals are performed with bias correction and using all

elevation angles (90 to 5.4 ◦). Comparison with linear regressions (black line). Left panel shows results on 56 clear-sky temperature profiles

while right panels shows results on 25 cloudy-sky temperature profiles.

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

Temperature [K]

A
lt
it
u
d
e
 [
m

]

Root�mean�square�error

51�58 GHz clear

51�54 GHz clear

51�58 GHz cloudy

51�58 GHz cloudy

Figure 12. Vertical profiles of root-mean-square-errors of 1DVAR

retrievals using AROME 1h forecasts as backgrounds. Either all V-

band channels are used (blue) or only opaque channels (red). Re-

sults differentiated by clear-sky (solid lines) or cloudy-sky condi-

tions (dashed lines)

6.4 Examples of temperature profiles

In order to illustrate the capability of MWR to resolve deep

near surface as well as elevated temperature inversions,

figure 14 shows temperature profiles during two opposite

weather regimes: convective and cloudy conditions the 07th 5

of February at 06:04 UTC and stable clear conditions the

13th of February at 02:56 UTC. In each figure, temperature

retrievals from different configurations (regression, 1DVAR

from AROME forecast, 1DVAR from radiosonde) are

compared to radiosonde. The a priori profile used in each 10

configuration, either the previously launched radiosonde

or the 1h AROME forecast is also shown. First of all, we

can note the difficulty of ground-based MWR to resolve

high level inversions. Neither the regression or the AROME

1DVAR can catch the sharp inversions at 1000 m above 15

ground level. Only the RS 1DVAR is able to catch it as the

minimisation starts from a background profile already sim-

ulating an elevated inversion that is barely modified during

the retrieval. Note that 1DVAR with AROME background

shows an elevated inversion, though the AROME profile 20

is almost linear. This already represents an improvement

with respect to the AROME background which is much

smoother. This limitation is a well-known issue of MWR;

Massaro et al. (2015) suggested the use of additional pres-

sure and temperature observations from meteorological 25

stations on the surrounding mountain slopes. Our study

shows that another way of improvement is to use an external

information to infer the presence of an elevated temperature
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Figure 13. Vertical of profiles root-mean-square-errors of 1DVAR retrievals using the previously launched radiosonde (red line) or the

AROME forecasts (blue line) as backgrounds. Comparison with the persistent method where the last RS is used as an estimate of the current

conditions (dashed red) and the AROME forecast errors (dashed blue). Here, the weather station is included in the 1DVAR from RS to

improve the temperature retrieval at the surface (1.5 m). Statistics on 56 clear-sky profiles (left panel) and 25 cloudy-sky profiles (right

panel).

inversion that will be incorporated in the background of the

1DVAR algorithm. An improvement can also be expected

from more appropriate vertical correlations in the B matrix.

In fact, correlations currently used probably smooth the

increments and a reduction on the vertical correlation length5

should lead to a beneficial impact on the retrievals in such

conditions. This approach will be investigated in the future.

Contrary to the high-level inversion, MWR can catch very

well clear-sky deep near-surface temperature inversions

as observed during the stable episode of the Passy-201510

campaign. Both 1DVAR and regressions capture well the

structure of the profile even though 1DVAR retrievals are

slightly more accurate than regressions. We can again note

the significant improvement of the AROME profile in the

lowest 500 m thanks to the MWR information content15

brought during the analysis.

7 Conclusions

Within the Passy-2015 field campaign, a HATPRO ground-

based microwave radiometer was operated in a deep Alpine20

valley making complex the instrumental deployment due to

surrounding mountains. A 1DVAR technique combining 1h

forecasts of the convective scale model AROME and ob-

servations from the HATPRO MWR was tested and evalu-

ated during two IOPs foccussing on wintertime stable bound-25

ary layers out of three months of instrumental deployment.

In such complex terrain we could have expected the mea-

surements to be affected by surrounding mountains and one

interesting result of this study is to show that MWR ob-

servations are not affected in such a narrow valley even 30

going down to 5 ◦ elevation angles. Previous papers de-

ploying MWR in complex terrain are not abundant, among

them we can cite : Kneifel et al. (2009), Kneifel et al. (2010),

Cimini et al. (2011), Xie et al. (2012) and Massaro et al.

(2015). In Kneifel et al. (2009) the terrain is not as complex 35

as in Passy with a maximum elevation of only 350 m and

only integrated water vapor retrievals are investigated. Both

studies of Kneifel et al. (2009) and Xie et al. (2012) do not

investigate temperature profile retrievals neither and the ra-

diometer is deployed at 2650 meters above sea level which 40

differs from the deployment at the bottom of the 2000 m deep

Passy valley. In Cimini et al. (2011), the terrain is more com-

plex but the 1DVAR is investigated with a global NWP model

at a 10 km horizontal resolution and using only one elevation

angle in addition to the zenith. The radiometer measurements 45

do not go lower than 15 ◦ elevation angle which significantly

limits the possible perturbation from surrounding mountains.

Massaro et al. (2015) deploys the instrument in a valley with

a free viewing angle up to 28 km and only focussed on re-

gressions. Regarding the Passy valley, the free line of sight is 50

limited to 5 km in the Passy direction and 1DVAR retrievals

from a convective scale model are performed. Temperature

gradients were also larger compared to those observed in

Massaro et al. (2015).
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Figure 14. Vertical profiles of temperature during convective conditions (07 February 2015 at 06:04 UTC, top panel) or stable conditions (13

February at 02:56 UTC). Comparison between radiosonde profile (magenta), linear regression (dashed black line), 1DVAR from AROME

forecasts (blue), 1DVAR from previous radiosonde (red). Background profiles corresponding to either the 1h AROME forecast (black) or the

previously launched radiosonde (cyan) are also shown.

An evaluation of the accuracy of the AROME model was

first studied. A large underestimation of the surface cooling

up to -12 K during the most stable episode was observed.

This is a well-known issue of current NWP models that mo-

tivated, among other scientific questions, the preparation of5

the Passy-2015 campaign. This issue is currently investigated

by the modelling community at CNRM and some significant

leads for improvement have already been found. During the

beginning of the IOP, AROME was found to smooth cloud-

based inversions leading to larger errors at the cloud base10

around 1000 m while during clear-sky conditions the tem-

perature inversion is not large enough. The measured bright-

ness temperature (BT) measurements were compared with

the ones simulated either from AROME 1h forecasts or RS

and the ARTS radiative transfer model. The goal of this mon-15

itoring is to propose a bias correction to improve the retrieval

of atmospheric profiles. The use of the AROME model to

compute the instrumental bias correction was found inap-

propriate because the BT deviations for opaque channels are

mainly driven by the large forecast errors in the boundary20

layer during stable conditions. The instrumental bias was

thus inferred from BT simulations with the RS launched dur-

ing the campaign in clear-sky conditions. A large negative

bias was observed for the most transparent channels with val-

ues up to -4.2 K (52.28 GHz, 90 ◦) while it is below 0.5 K25

for opaque channels and all elevation angles. Relatively low

standard deviations (within 1 K) were observed for channels

and elevation angles used in the retrieval demonstrating that

the biases can be safely removed by applying a constant bias

correction. The bias is close to that found in previous stud- 30

ies. This demonstrates that the bias can be assumed constant

as long as calibrations are performed properly. The second

part of this study has evaluated 1DVAR retrievals in terms

of bias and RMSE against collocated radiosondes. By ex-

ploiting the 1DVAR assimilation of MWR observations, the 35

large forecast errors close to the surface (up to 8 K in RMSE)

were decreased within 1 K through all the atmospheric pro-

file except the surface temperature (1.6 K RMSE). This result

is really encouraging as it shows the high information con-

tent of MWR in the boundary layer specifically where the 40

AROME forecasts are less accurate and could be improved

by a dense network of ground-based instruments. 1DVAR re-

trievals were found to outperform linear regressions above

1000 m where RMSE values increase up to 2.5 K at 6000 m.

Linear regressions show similar performance below 1000 m. 45

The use of the elevation scanning mode was also found to

significantly improve the retrievals below 1000 m while the

use of a bias correction improves the retrievals below 2000

m. These last results are not in agreement with the results

in Martinet et al. (2015). However, the dataset used in this 50

study contains mainly deep clear-sky near-surface tempera-

ture inversions for which low elevation angles can bring new

information to the zenith mode. Finally, the use of an exter-

nal weather station to constrain the temperature retrieval at
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the surface can decrease the RMSE values from 1.6 K to 1 K

which includes the uncertainty due to relative distance.

In order to improve 1DVAR retrievals for processes study in

the context of field campaigns, RS previously launched dur-

ing the field campaign can be used as backgrounds in place of5

AROME forecasts. Starting from an a priori profile already

closer to the true atmospheric state, a better estimation of

the optimal atmospheric profile should be observed. In clear-

sky conditions, this configuration leads to an improvement

of 1DVAR retrievals below 1000 m with RMSE values be-10

low 0.6 K. An attempt of retrieving temperature profiles in

cloudy-conditions was also studied. A significant degrada-

tion of both regressions and 1DVAR was found especially

around 1000 m wih RMSE values around 2 K for regressions

and 3 K for 1DVAR retrievals. This degradation is signifi-15

cantly reduced if RS are used as backgrounds. This degrada-

tion at 1000 m is probably due to cloud-based temperature

inversions not caught by the MWR and does not seem to be

directly related to large background errors in the liquid wa-

ter absorption. This study confirms the known difficulty of20

MWR to capture elevated temperature inversions in cloudy-

sky at the level of the valley crest (Crewell and Lohnert

(2007), Massaro et al. (2015)) while highlighting the high ca-

pability of MWR to catch clear-sky deep near-surface tem-

perature inversions during stable boundary layers. MWR ob-25

servations were also found to provide valuable information

between two adjacent RS to catch significant changes in the

ABL temperature profile.

Regarding the scientific questions addressed in section 1, our

results show that MWR are expected to bring valuable in-30

formation into NWP models up to 3 km altitude but mainly

in the first km both in clear-sky and cloudy-sky conditions.

With an accuracy between 0.5 and 1 K in RMSE, our study

has proved MWR to be capable of resolving deep near-

surface temperature inversions observed in complex terrain35

during stable boundary layer conditions. This accuracy can

be obtained only if the MWR field of view is free of obstacles

and is similar to what was observed in less complex terrain.

Elevated temperature inversions are still challenging due to

the decreased vertical resolution of the instrument with alti-40

tude. Using a more appropriate background already simulat-

ing an elevated inversion was already found to greatly im-

prove the retrievals. In the future, extra work needs to be

undertaken to decrease the correlation length of the back-

ground error covariance matrix which should improve the45

retrievals. New generation of MWR also shows a larger sen-

sitivity which is expected to help resolving elevated inver-

sions. Finally, synergy with other passive and active instru-

ments (infrared radiometers and lidars) is expected to im-

prove the vertical resolution of the retrievals through all the50

atmospheric column (Barrera-Verdejo et al. (2016)).

The results shown in this study are encouraging and demon-

strate the potential for assimilating MWR in operational con-

vective scale models even though studies on larger dataset

and larger time periods should be investigated. The develop-55

ment of the ground-based version of the fast radiative transfer

model RTTOV (RTTOV-gb, De Angelis et al. (2016)) paves

the way for future data assimilation of brightness tempera-

ture measurements which should bring more in the assimi-

lation system than retrievals (Caumont et al. (2016)). In the 60

context of urbanized valley, this study has proved the capabil-

ity of MWR for long-term monitoring to improve our under-

standing of wintertime pollution events. Temperature gradi-

ents linked to the atmospheric stability could be used to better

forecast wintertime pollution events. Scanning in two differ- 65

ent directions of the valley, MWR observations also offer the

possibility of investigating temperature heterogeneity in the

valley and how these differences are linked to the mesoscale

circulation. This will be further investigated in a future study.

In the future, 1DVAR retrievals will be extended to humid- 70

ity and liquid water content. Improvement in the definition of

the R and B matrices will also be carried out to be optimized

with the weather regime.

8 Data availability

Data used in this paper are available on the Passy-2015 cam- 75

paign website: http://passy.sedoo.fr.
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