Response to reviews of paper “Wave-optics uncertainty propagation and regression-based bias model in GNSS
radio occultation bending angle retrievals” by M.E. Gorbunov and G. Kirchengast

Anonymous Referee

Figure 8 suggests that the bias correction scheme in increasing positive biases over large parts of the globe (e.g.,
Africa, Australia). This needs to be explained.

We modified the comment to Figure 8 as follows:

This plot indicates that, although the overall average bias is minimized, there are some regional maxima and
minima. Some of them correspond to the areas with a sharp marine boundary layer (Xie et al., 2006, 2010;
Gorbunov, 2014), where the negative bias is reduced but still remains. Other regions with larger deviations are
located above Northern Africa and Australia, where there is a positive over-correction. The latter regions
correspond to a similar terrain type, 1.e., dry desert areas. This indicates the need for refined predictors, taking into
account such regional effects, in order to further mitigate in a next step these more specific biases.

1 would still argue that the reader would find information on the typical number of predictors used in a radiance
bias correction scheme useful. I think this is typically 6-8.

We added this remark and complemented it with a reference to (Zhu et al., 2014).
Editor
Please mention briefly what the "real"” data is, e.g. UCAR phase data processed at Graz (e.g. for figure 3)?

The COSMIC data were processed by the OCC package for RO data processing, as described in Gorbunov et al.
(2006). This remark has been added to the text.

1t was not clear to me if figure 3 and 8 show the same information, just before and after the bias correction (you
do this link for other figures). If they do, please indicate this in the text.

Ok, in the text paragraph referring to Figure 8, we have now added a reference also to Figure 3, indicating that
Figure 8 is similar to Figure 3, but presents the bias map after the BLB correction.

And, if they do, I was too wondering why the bias does change quite substantially at all latitudes (even high ones).
Isn't that a potential issue?

This remark was co-addressed in our modified text related to Figure 8 (see answer to first comment above). The
remaining bias variations indicate the need for more refined predictors in a next step that would aim at further
mitigating also several regional residual biases.

It would be nice if some information can be given why ECMWF should be biased at high latitudes.

As visible from Figures 3 and 8, both COSMIC-ECMWF bias and its correction are small at high(er) latitudes,
1.e., latitudes exceeding about 45°. We do not see any indications that ECMWF is biased there.
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Abstract. A new reference occultation processing system (rOPS) méluide a Global Navigation Satellite System (GNSS)
radio occultation (RO) retrieval chain with integrated ertainty propagation. In this paper, we focus on wave-sgiend-

ing angle retrieval in the lower troposphere and introducanlempirically estimated boundary layer bias (BLB) motielt
employed to reduce the systematic uncertainty of excesseghtend bending angles in the lowest about two kilometeitseof t
troposphere, and 2. the estimation of (residual) systematertainties and their propagation together with randooertain-
ties from excess phase to bending angle profiles. Our BLB husberibes the estimated bias of the excess phase trawsferr
from the estimated bias of the bending angle, for which thelehds built, informed by analyzing refractivity fluctuatio
statistics shown to induce such biases. The model is defiiwenregression analysis using a large ensemble of Coattel|
Observing System for Meteorology, lonosphere, and Clinf@@SMIC) RO observations and concurrent European Centre
for Medium-Range Weather Forecasts (ECMWF) analysis fiélds.formulated in terms predictors and adaptive functions
(powers and cross-products of predictors), where we usmain predictors derived from observations: impact algtudti-
tude, bending angle and its standard deviation, canomeasform amplitude and its fluctuation index. Based on arrabte

of test days, independent of the days of data used for thegsign analysis to establish the BLB model, we find the model
very effective for bias reduction, capable of reducing liegéngle and corresponding refractivity biases by aboactof of
five. The estimated residual systematic uncertainty, #feeBLB profile subtraction, is lower-bounded by the undatjefrom
(indirect) use of ECMWF analysis fields but is significantlwkyr than the systematic uncertainty without BLB correctibine
systematic and random uncertainties are propagated froessyhase to bending angle profiles, using a perturbatoagh
and the wave-optical method recently introduced by Gorlwara Kirchengast (2015), starting with estimated excesseh
uncertainties. The results are encouraging that this taiogr propagation approach combined with BLB correctinaldes a

robust reduction and quantification of the uncertaintiesxaess phases and bending angles in the lower troposphere.

1 Introduction

The bending angle and atmospheric profiles retrieval claifobal Navigation Satellite System (GNSS) radio ocdidta
(RO) data includes many steps involving linear and (mo@grahon-linear transformations, starting from excesssprend
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amplitude measurements (Gorbunov et al., 2006). Error cemainty propagation through the geometric optical pathe
retrieval chain has been investigated in a series of theatetnd empirical studies (Kursinski et al., 1997; Syndarg, 1999;
Palmer et al., 2000; Rieder and Kirchengast, 2001; Kuo g2804; Steiner and Kirchengast, 2005; Schreiner et al.7;200
Scherllin-Pirscher et al., 2011b, a, 2017; Innerkofler e2416; Schwarz et al., 2016, 20174, b; Li et al., 2016, 2017)

The uncertainty propagation through the wave-optical benangle retrieval block was investigated recently fogéascale
(systematic) and small-scale (random) uncertainties bp@wv and Kirchengast (2015), including simulation resdémon-
strating random uncertainty propagation. Such wave-abtetrieval is essential in the lower troposphere (algsielow 5
km), where the RO observations are subject to several spaaifiertainties not present higher up in the atmospheredimg
effects from low signal-to-noise ratio, multipath proptga, and super-refraction (Sokolovskiy, 2001, 2003; Xiale 2006;

Ao, 2007; Xie et al., 2010; Sokolovskiy et al., 2010).

A thorough treatment of systematic uncertainty and its pgapion from excess phase to bending angle in the lower tro-
posphere, including the aim to correct for the known boupdtarer bias (BLB) in standard lower troposphere RO retigva
often termed "negative refractivity bias" (Sokolovskiyaét 2010; Gorbunov et al., 2015), is lacking so far. Alsophepaga-
tion of both estimated systematic and estimated randomriaiicges through the wave-optical chain, complementarthe
geometric-optical uncertainty propagation work of Sclenatral. (2016, 2017b), was not yet investigated and denaiestr
This study focuses on providing these missing investigatend on demonstrating BLB correction for a representédigge
ensemble of real RO data from the COSMIC mission as well asdoting a complete uncertainty propagation approach.
The findings and algorithms obtained are used in the devedopof the new reference occultation processing system3yOP
including an RO retrieval chain with integrated uncertaimtopagation (Kirchengast et al., 2015, 20164, b).

Our starting points for the BLB model construction are th@rapch based on refractivity fluctuations introduced by
Gorbunov et al. (2015) and the recent study of RO systematicseby Gorbunov (2014). Refractivity fluctuations consti
tute an external factor that results in a systematic shithefsignal phase due to its physical nature rather than digietey
of the processing algorithm. Although this model cannotdigkéd at as a complete explanation of the bias, is serves as a
convenient structural model that allow exposing probalaledidates for the role the objective characteristics ofsilyeal
received that may correlate with the bias. These charatitariwill hereafter be referred to as predictors in the BL&del. In
particular, it was shown already by Gorbunov (2014) thadliangle can serve as such a predictor. Further prediatats
the complete BLB model setup based on a regression-modgbipigpach are described in this study.

This approach results in the BLB and (residual) systematterctainty model formulated in terms of tropospheric begdi
angles. In order to incorporate this uncertainty modelirig the RO retrieval chain with integrated uncertainty jggtion, it
needs to be transferred into the equivalent excess phasaBi Besidual) systematic uncertainty estimate. For apggation
then a perturbation approach or the approximation deriwe@rbunov and Kirchengast (2015) can be employed. In that
paper we discussed the propagation of excess phase to fenrdjle uncertainty through the Fourier Integral Operaft®)
used for the bending angle retrieval (Gorbunov and Laurjt2004). This uncertainty propagation uses the statiophage
approximation, which allowed for the derivation of simpl®pagation formulae.
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In order to now transform the bending angle uncertainty héoequivalent excess phase uncertainty, we use the irviidse
which was recently employed by Gorbunov (2016) for the eg#i of reflected rays from RO data. Specifically, the systema
uncertainty is evaluated for every RO event in the form oihestted profiles of bending angle BLB and (residual) syst&mat
uncertainty. These estimates are then transformed integhizalent BLB and (residual) systematic uncertainty eféiRcess
phase, where they complement the estimated random andslyaseenatic uncertainty of the excess phase, availableatepa
from the preceding step of excess phase processing (Irffarkbal., 2016; Schwarz et al., 2016, 2017b). Both togediner
used as input to the wave-optical uncertainty propagation.

The paper is organized as follows. In Sect. 2 we describerttperezal BLB model, based on a regression analysis guided by
the understanding that refractivity fluctuation statstitduce such biases, as well as a simple (residual) systeunmaertainty
model for the BLB-corrected bending angles. Section 3 dessithe wave-optical propagation of estimated systenaaiit
random uncertainties from excess phase to bending angliganethodology also recalling the key results needed faeh
(Gorbunov and Kirchengast, 2015; Gorbunov, 2016). In Seet discuss the results of the application of the BLB coioact
based on a large ensemble of COSMIC RO data from representast days throughout the year 2008. Section 5 provides our

conclusions.

2 Boundary Layer Bias (BLB) Model of Bending Angle and its Uncertainty

The BLB model is formulated to be capable of providing begdimgle BLB profiles over the lower troposphere up to 5km
impact altitude, corresponding to about 4 km (mean-seahleWtitude, with the primary bias effects occuring withire atmo-
spheric boundary layer below about 2 km altitude. Here werilas its setup by first introducing the underlying refraityi
fluctuations model (Sect. 2.1) then followed by the BLB matkcription (Sect. 2.2). The model is built as a regressiodeah
using adaptive functions based on predictors availabledoh RO event, including impact altitude, latitude, begdingle
(BA), BA standard deviation, canonical transform (CT) aitaole, and CT fluctuation index as main ones. The selectidineof
predictors is explained in Sect. 2.3 and their use in coosiry the adaptive functions in Sect. 2.4.

Along with the decription we illustrate the performancelas BLB model to quantify the boundary layer biases based®n th
predictors, underpinning that the BLB profiles obtainediffividual RO events can be effectively used for BLB cori@tt
and lead to a significant reduction of systematic uncestafsimple model for the estimated residual systematic taogy
after the BLB profile subtraction, which is accounting foe tlesidual bias and the uncertainty (indirectly) incurnexhf the
use of ECMWEF analysis profiles as regression reference, itheéesn Sect. 2.5.

2.1 Underlying Model of Refractivity Fluctuations

In order to formulate our approach to the bending angle BL&ims of "negative refractivity bias" (Sokolovskiy et £010)

we use the fluctuation-based model introduced by Gorbunak €015). This model is used as a simple structural model th
allows finding good candidates for the objective charasitess of the observed signals that correlate with the btégure

1 shows an example profile of the refractivity structure tamsC%, () and the corresponding relative difference statistics
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of an ensemble of bending angle and refractivity profilese Hiter were obtained by comparison of the modeled "truth”
based on ECMWF refractivity fields, used as reference, artdibed data based on the same ECMWEF fields but with random
refractivity fluctuations according to th&%, (z) profile superimposed. Th€%, (=) profile was tuned to realistically represent
BLB statistics of RO observations and the wave optics prafmagdWOP) package (Gorbunov, 2011) was used to realistical
compute the bending angles.

It is visible in Fig:Figure 1 that the refractivity fluctuations lead to a negative refiiéty bias of up to about 2% in the
boundary layer and an associated negative BLB in bendinfparigip to about 5 %, typical of biases seen in real RO data.
Random differences (standard deviation) reach realisiices as well, about 1.5 % in refractivity and about 5% in lend
angle.

To put these simulation results into direct context with oksia, Fig-Figure 2 shows another set of difference statistics for
bending angles and refractivities, from low latitudes tghhliatitudes, where we again used the modeled "truth" frondVBAE
fields as reference but now to illustrate the differencesostoved profiles from COSMIQ.he COSMIC datawereprocessed
by theOCCpackagdor RO dataprocessingasdescribedn (Gorbunov et al., 2006 hese results confirm that the refractivity
fluctuations model, with corresponding settings, can répce the systematic and random error behavior of RO bendigle s
and refractivities in the boundary layer. A somewhat higeeel of RMS deviations (standard deviation) seen for th&S®IC
data, compared tBig:Figure1, is likely caused by the fact that ECMWEF fields themselvesadeirom the real atmospheric
state (see, e.g., the error modeling of Scherllin-Pirsehat. (2011b, 2017)).

Fig:Figure 3 presents a latitude-longitude map of COSMIC-ECM¥#ferencerefractivity differencesat a height of 0.6
km, in terms of systematic relative refractivity deviation.eBe resultsllustrate the regionalvariationsof refractivity bias
behaviorandare similar to those presented in (Xie et al., 2006, 2010bGaov, 2014).

Our further strategy of the bias correction consists in tifing. We preform the numerical simulation of occulteti
events with superimposed fluctutaions and analyze diffevejective characteristics of RO signals in order to findsththat
correlated with the simulated bias. These characterigfit®e referred to as predictors. Using this set of predigtave also
compare the simulation results with the processing of réa8MIIC observations. We assume that this will allow formellat
the model for BLB correction, will also effectively mitigatbiases in the retrieved refractivity profiles and furtterived
atmospheric profiles. We have to formulate the BLB model aittexible functional behavior in order to reliably serve its

purpose.
2.2 Bending Angle BLB Model from Regression to Adaptive Functions

We model the BLB by a predictor-based empirical model thdteisible enough to capture the BLB behavior by suitable
predictors under widely variable predictor value rangesrfdividual RO events. Because the dependence of the BLBemod
profiles from predictors is unknowa priori, we solve for this dependence in the form of linear combamabf a set of
linear and non-linear functions of the predictors. We rédethese functions as adaptive functions. The model estiwiaihe
regression coefficients of the linear combination is basethe comparison of a large set of bending angle observatitths

a reference data set.



10

15

20 10 10

- - %7 8
15 8 i -
! e | .
- = | i 6 H
10 £ 6 ik o+
R s f il S|
gl g <
- Q. | 1 -
i E | |
5 4 3 =
l i : = 2
i \> i S I *:g
O L LU L LU Ll L \\Mm 2 Ll Ll - - Ll \\\\l O L '\% L L
0™ 10" 10® 10" 10™ 10" 20 -15 -10 5 0 5 10 15 -4 2 0 2
C_N72, m"\(2/3) Bending angle difference, % Refractivity difference, %

Figure 1. Deviation statistics induced by simulated refractivity fluctuations: refrigttructure constar@? (=) profile (left) and associated

difference statistics of ECMWF profiles with and without fluctuations supseg, for bending angle as function of impact altitude (middle)
and refractivity as function of altitude (right), where mean differemee); standard deviation (green) and the difference-ensembladspre
(horizontal bars at vertical levels) are shown. COSMIC event gatiyand concurrent ECWMF analysis fields from the 15th day of every

month of year 2008 were used to produce the statistics.

In this study, introducing a first reliable BLB model versidine observations are from the COSMIC mission and the refer-
ence data set consists of gridded fields of meteorologicealhlas from ECMWF. The ECMWF data have their own systematic
uncertainty, which is taken into account by letting theseantainties flow into the estimated residual systematiettamty of
bending angle profiles after BLB correction (Sect. 2.5).

The BLB model is formulated as follows. We used a set of COShbHB@ding angle observations, including 24 representative
days from year 2008. We adopted the 15th and 16th day of eventhmamounting in total to about 54000 RO events. We
used the corresponding ECMWEF fields as basis for obtainingthe" reference bending angles. To this end, we employed th
Wave Optics Propagator (WOP) (Gorbunov, 2011) to genehnatbeénding angle profiles from the ECMWF refractivity fields.
We then performed a regression of the differences of obdeame reference bending angles in the lower troposphere with
respect to the chosen adaptive functions (Sect. 2.4). Taptiad functions are formulated in terms of predictors,chhare
evaluated from objective characteristics of every RO eweitiiout using the reference data (Sect. 2.3). These ingnesiallow
for the derivation of regression coefficients, which upoeittiestimation complete the BLB model then ready to be adplie
based on predictors from a given RO event.

Because we need to derive the regression model for wideBrsivBLB behavior, we start with very general regression

relations. Consider two series of random variables, veetoand scalar serieg;, where the lower index enumerates the
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Figure 2. Deviation statistics obtained for real RO data: difference statistics of C@3Mbfiles including real fluctuations relative to
ECWMF profiles without fluctuations, for bending angle as function of ichpétitude (left column) and refractivity as function of altitude
(right column), with same style of panels as for the difference statistiegiRigurel. Results for low latitudes (top), mid latitudes (middle),
and high latitudes (bottom) are shown, for COSMIC events and comtiE@WMF analysis fields from the 15th day of every month of year
2008.
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Figure 3. Deviation statistics obtained for real RO data: latitude-longitude magpvefsiendifferencestatistics of COSMIC observations
relative to ECWMF profiles without fluctuations, for refractivity am altitude of 0.6km. Results are shown for COSMIC events and
concurrent ECWMF analysis fields from the 1st, 11th, and 21th dayesf/emonth of year 2008.

realizations. We will term the components ®f predictors, because we approximate the random variahles a linear
combination of pre-defined adaptive functions of x;. The number of predictors, and of associated adaptive ifurs;t
is much smaller than the number of realizations (differepicdiles of observed and reference bending angles in therlowe

troposphere). We write the over-determined system of émnmt

vi=» g (x) = oK, @
J J

Kij = ¢ (), (2)

or in the vector form,

This system has a pseudo-inverse solution, i.e., the vectbat minimizes the discrepancy

-~ \T .
(y—Ka) (y—Ka) = min 4)
is obtained as the least-squares solution of this overtd@ied problem in the form

T oL
a= (KTK> Ky, )
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Now consider a numerical estimation@fthat allows for an evaluation readily augmentable in terfmumnber of realizations
and adaptive functions. Preparing the quadratic form

B=K'K (6)

Byj :ZKkiKkj :ZKkiKkj ZZW (1) ¢ (1), (7)
% % 3

we have available matri8 as a square symmetric matrix that can be evaluated by the atiomover any existing set of
realizations ofe;. Similarly, using the transform

z =Ky, ®)
=Y Kyyy =Y ¢ (@), 9)
J J

we have available vectar as a vector that can also be evaluated by the summation oyexasting set of realizations af;
andy;. Finally, it is straightforward in this formulation to olitethe regression coefficients from

a=B z. (20)

For convenience, matrii and vectorz can be redefined in terms of averaging over the ensemble lafatians. DenotingV

the number of realizations, this is performed by dividingthB andz by N,
1 ; : .y
Bij = Nzkjw (k) ¢ (z1) = (¢"¢), (11)
1 . :
zi= D¢ (@)y = (e'y). (12)
j

Practically, normalization can also be an issue, depenaiinthe number of adaptive functions. If their number is a$ laig
about 200 such as in our study (Sect. 2.4) then even a smaljjelad the normalization factor is raised to the 200th poweznv
evaluating the matrix determinant. This may result in oerfor underflow in the matrix inversion. Therefore, the nuicer
algorithm requires accurate tuning of the normalizatiarnidain order to ensure a stable and robust inversion of matri

After having solved for the regression coefficient veetoit can be used within Eq. 3, which then serves as the BLB model
applicable to any given RO event. It will provide the estiethbending angle BLB profilg for the RO event when its predictors
are used to specify the model matfix

2.3 Predictorsfor the Model’s Adaptive Functions

Here we consider the predictors that we may reasonably ehBesides predictors depending on RO event altitude aitudat
(discussed separately below) we adopt the following foadmtors that are derived from observational RO data, dlirmstion
of impact parametep within the lower troposphere (below an impact altitude & Km): 1) bending angle(p), 2) bending
angle standard deviatiaf (p), 3) normalized CT amplitudélcr (p), and 4) CT amplitude fluctuation indek(p). Bending
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Figure 4. Scatter plot of fluctuation-affected bending angle profiles (x-axishfBECMWF-based simulations with refractivity fluctuations
superposed (left) and from COSMIC observations (right), respeygtiversus reference bending angle profiles (y-axis) from ECMMF s
ulations without refractivity fluctuations superposed. COSMIC everdscancurrent ECWMF analysis fields from the 15th and 16th day of
every month of year 2008 were used for these example results.

angle standard deviation is the bending angle standard estonate based on radio-holographic analysis (Gorbuhak,e
2006). The CT amplitude (Gorbunov, 2002; Gorbunov and ltsem, 2004) is the normalized the energy distribution oags r

in the impact parameter space. We use the CT amplitude nizedah such a way that it should equal unity in vacuum. The
CT amplitude fluctuation indeX (p) is defined as,

8= 55 ( (4cr )~ 47 9)"). 13)

WhereS“ﬂ is a smoothing operator (lowpass filter) for which we use a Zkmoothing width.

Figure 4 shows the scatter plot of fluctuation-affected b@mdngles versus reference bending angles for the fluotuati
model simulations (like foFig-tFigurel) and the COSMIC observations (like fBig-2Figure2). In both cases the asymmetry
with respect to the diagonal is visible (fluctuation-aféetbending angles tentatively smaller than reference ombs indi-
cates that the bending angle itself can serve as one meahprgtlictor of (negative) boundary layer biases.

Figure 5 shows scatter plots of the difference of fluctuatifiacted and reference bending angle profiles versus beaat-
gle standard deviation (top), normalized CT amplitude ¢@t&yl and CT amplitude fluctuation index (bottom), for siatidns
(left) and COSMIC observations (right).

Comparing the behavior of these predictors, their cornigratith the bending angle difference is clearly more sdlietthe
simulations but some smaller asymmetry can also be notmethé COSMIC observation differences. We therefore kdpt al
four predictors in this study and left possible further retthn of these predictors (and associated adaptive fumstim future
fine-tuning of the BLB model regression. An important cos@bn from these comparisons is that the fluctuation modelealo
does not explain the patterns observed in the real obsengatiHowever, the role of this model is to help finding reabtsma
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predictors. The further bias correction procedure is oalgeal on the predictors that can be readily derived from gasens,
rather than on the fluctuation model.

In addition to these four predictors we utilize the RO evemdrdinates impact altitude and latitude), wherez =p —
Rrc — Ugeoia, With R ¢ the local radius of curvature artd..;q the geoid undulation applying to the event location. We use
the impact altitude: directly and in form of the following six trigopnometric futions of z,
sin <27mzzmm) ,COS (27mzzmm> ,n=1.3, (14)

Zmax — Fmin Zmax — Fmin
wherez,,;, andz,,,, are the limits of impact altitude wherein the BLB profiles akaluated (equal to 1.5 km and 4.5 km).

Latitude X is used in form of another six trigonometric functions\of
sin (n\),cos(n\),n=1...3. (15)

Altogether we therefore us¥,, = 17 predictors, including impact altitude, the four obsematterived predictors, six func-

tions of impact altitude, and six functions of latitudéis numberof predictorsexceedghatin radiationcorrectionschemes,
where6-8onesaretypically used(e.g., Zhu et al., 2014)

2.4 Construction of the M odel’s Adaptive Functions

General adaptive functions as we use here are construdiauhirof different degrees of the predictors and their cnossiucts,
from degree zero, which produces unity, up to some maximuyregd),,,

[Peoh={L @) @) @)}, (16)
1<i<N,, 1<vy<D,, (17)

1< <ia <N, 1<y +% <D, mv,.2>0. (18)

We use a maximum degree bf, = 3 and apply some additional constraints in order to reduceuh@ber of adaptive functions.
For the six trigonometric functions of impact altitude (E4) it is not allowed to take their degrees beyond degree ltaid
cross-products as these will not be linearly independemh fother trigonometric functions of the impact altitude eTame
applies to the six trigonometric functions of latitude (E§) for which we therefore also disregard degrees beyoncedel
and cross-products.

For our choice oD, = 3 we thus obtainV; = 214 adaptive functions. To understand this number, considierdnt degrees
of predictors. There is one 0-degree function (unity). Bheme 17 functions of degree 1 (the 17 predictors). Theré arg +
5)+6x5+4+ (5x4)/2+5 =111 functions of degree 2. There &&6x5+ 5+ 5x4 = 85 functions of degree 3. Therefore, we
arrive in total atl + 17 + 111 + 85 = 214 adaptive functions, which provide the needed flexibility thee highly variable BLB
profile behavior while still allowing for a robust estimatiof the regression coefficients. If future fine-tuning of tegression
model would reduce the number of predictors, the number aptae functions would reduce accordingly.
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25 Simple Residual Systematic Uncertainty Model

As described in Sect. 2.2, after obtaining the regressiefficeent vector (Eq. 10) we can use it within the regressiadet
(Eq. 3), which then serves as the BLB model applicable to angngRO event. It provides the bending angle BLB model
profile for the RO eventjapri(2), based on its predictors depending on location (impactidki latitude) and bending angle
and CT amplitude characteristics (Sect. 2.3).

Given this basis, we define a simple intial systematic uaggsgt model for the BLB-corrected bending angle profiles of
the lower troposphermga,BLB(z), which consists of two components: 1.) an estimated "loveemid” ECWMF reference
field-induced systematic uncertainty, .., that accounts for the uncertainty from using the ECMWF &sialfields as the
regression reference which have their own (small) systerdatiiations from the "truth”, and 2.) an estimated redlidhias
uncertainty after BLB correction by subtracting the BLB mbgrofile, v, 5; 5, Since the empirical-statistical BLB regression
model can never fully fit the individual bias situation of a® Rvent.

From experience with estimated biases of ECWMF analysis sfiétd other studies (e.g., Lietal.,, 2013, 2015;
Scherllin-Pirscher et al., 2017; Li et al., 2017) we forneléhe model for the ECMWF reference field-induced systematic
uncertainty profileu? -~ (z) as a fractional modelf{‘iz-(z)) with a linear increase downward over the lower troposphere
towards the surface,

’u,S (Z) (Zmax - Z)
100 - —EC=S — it (2) = fistne smin - T, 19
QrefEC (Z) tEC ( ) f fEC, (Z'rnaa; - Zmin) ( )

wherea,rc(2) is the ECMWEF reference bending angle profilg,,, andz,,.. are the limits of impact altitude (set to 1.5 km
and 5.0 km), and'¢xc ,min 1S the fractional uncertainty at,,;, empirically set to 0.25 %. For perspective, the bendingeng!
uncertainties obtained this way correspond in terms of egatpre to uncertainties from about 0.2 K near 4 km impaittiei:
to 0.6 K near the surface (for details on uncertainty refetiamong RO-derived variables seeland(Scherllin-Pirscher et al.,
2011b, 2017andreferences therein).

The estimated residual bias uncertainty profile after BLBeaxion is formulated from experience with other bias eosr
tions, such as sampling bias correction (e.g., ScheriliseRer et al., 2011a, 2017), and based on BLB correcticiopeance
results with test ensembles during this study, in a strédgivard fractional form,

UjesBLB (%) = resBLB - 00BLB(2), (20)

wherer..sp1g is the systematic uncertainty reduction factor empirjcadit to 0.2, i.e., expressing that due to the BLB correc-
tion the bias in the bending angle profile is reduced by a fatéive.
For the estimated residual systematic uncertainty findthjbated to the BLB-corrected lower tropospheric bendamgjle

at any impact altitude we then simply adopt the larger on@@tiwo uncertainties,

Ufsa,BLB(Z) = Sus (Max (ugespLE (2) , Uremme (2))) 5 (21)

implementing the "lower bound uncertainty" rolewf .~ in case the estimated residual bias uncertaitity;; 5 of individual
RO events according to Eq. 20 is occasionally very snall.is a smoothing operator (lowpass filter) with a 0.4 km filtedthi
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that we use to ensure adequate smoothness of the resujting 5 (=) profile also over those altitude levels where the two
uncertainty components cross in their magnitude.

3 Wave-Optical Propagation of Systematic and Random Uncertainties

The propagation of systematic and random uncertaintiesutfir the wave optical retrieval chain was investigated by
Gorbunov and Kirchengast (2015), where a simple approximatas derived and verified based on numerical simulatiags (
summarized in Sect. 1). The approximation considers thessxphase as function of tim&,(¢), and its systematic ("small-
scale") and random ("large-scale") uncertainties(t) andX, (¢), respectively. The uncertainty in the impact parametecspa
(Gorbunov and Lauritsen, 2004) is then evaluate&as (p) = 1.2 (¢ (p)), wheret (p) is the time of observation of the ray
with impact parametey.

Practically the application of this approximation was shdw Gorbunov and Kirchengast (2015) to work well for propa-
gating random uncertainties (covariance matrices), whigensitivity tests and evaluations for this study we fothat it does
not work sufficiently well for propagating systematic urtegérties, due to the large-scale nature of such (increnpof)les
not transforming smoothly under FIO operations (Gorbunay laauritsen, 2004). Similarly, given the BLB and residugd-s
tematic uncertainty model being formulated in terms of egéngle, their inverse transformation into the equivaéxtess
phase bias and uncertainty proves to be not straightforaiéndr.

The reason and underlying problem is that the perturbatidheoexcess phase due to superimposing the systematic un-
certainty of the bending angle is not smooth. The variatibtihe bending angle profile in each realization results ifedént
phase perturbation corresponding to a different ray mahifoth a different caustic structure. Therefore, the escelsase
perturbation has a complicated non-linear relation with phase (eikonal) uncertainty in impact parameter spackthas
perturbation corresponds to a complicated coherent skggiaf) a superposition of multiple signals correspondindifferent
rays.

To overcome this difficulty, we do apply the linearized apgmmation only for the propagation of random uncertainty,
i.e., the covariance propagation according to Gorbunovkarahengast (2015); Eqgs. (29) and (30) therein. This is iegpl
within the rOPS wave-optical retrieval, for both GNSS frendies, right after the bending angle profiles themselves ha
been retrieved by the (forward) FIO in CT2 implementatiomi@inov and Lauritsen, 2004; Gorbunov, 2011). The BLB and
estimated systematic uncertainty propagation is then atedpin a consistent way for bending angles and excess gphaitle
a perturbation approach in a three-step sequence as follows

First, the BLB profile and its estimated systematic uncetyaprofile after BLB subtraction are computed according to
Sect. 2.5 for the lower tropospheric bending angle profilthatL1 frequency, for the location and characteristics, (thee
applicable predictors) of the given RO event. It is not cotedufor the second (L2) frequency, since the L2 profiles are
generally more noisy (making BLB estimation difficult) amd/avay not further used at impact altitudes below 5 km. Below t
level, where the neutral atmospheric excess phase alwage@s several hundreds of meters, the dual-frequencypbeds
correction rather always uses L1-L2 difference bendindemngxtrapolated from above (Schwarz et al., 2017b), angidi
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noise amplification and mitigating potentially adversesef§ on top-of-boundary-layer (TBL) estimates recentlyntaal out
by Sokolovskiy et al. (2016).

Second, the BLB-corrected L1 bending angle profile, and phidile perturbed by the estimated systematic uncertainty
profile, are each projected back to excess phase by apphgrigierse FIO approach recently introduced by Gorbunot§0
This provides the BLB-corrected L1 excess phase profile &odj the difference of the two back-projected profiles, the
estimated systematic excess phase uncertainty profilaipe to it. The latter BLB-related systematic uncertgiist then
added (in a root-mean-square sense) to the basic systexetiss phase uncertainty available from the raw procegsivayds
excess phase (Innerkofler et al., 2016), yielding the tat@#iated systematic excess phase uncertainty profile.

Third, the BLB-corrected L1 excess phase profile, and thadilprperturbed by the total estimated systematic unceytain
profile, are processed again through the standard (forvii@ICT2-wave-optics retrieval in order to obtain a BLB-@mted
retrieved bending angle profile, for consistency check trighorginal BLB-corrected bending angle profile, as welhestotal
estimated systematic bending angle uncertainty profiten fthe difference of the two CT2-retrieved bending angldiles
The systematic bending angle uncertainty profile at thers&®2) frequency is finally obtained from processing alsolth
excess phase profile perturbed by its associated systematctainty through the wave-optics retrieval and esfimgat from
the difference of the resulting perturbed bending angldilprto the one originally retrieved from the unperturbed X2ess
phase.

Despite of the complexities from the non-liniearites iwaal, we obtain in this way a conistent set of excess phase and
bending angle profiles together with their estimated syatenand random uncertainties, which are BLB-correctethat tl
frequency in the lower troposphere. The extra computaltiexgense for the uncertainty propagation due to the nawgtity is
reasonably limited to one additional forward and inverse Bperation at L1 frequency, required for the perturbatigpraach
to systematic uncertainty propagation. This is similarhte tincertainty propagation work ehe-Schwarz et al. (2017a, b),
where the perturbation approach is also needed in a smab@uaf steps (during geometric-optics bending angle rettie

and dry-air temperature retrieval) for the systematic tagsty propagation.

4 Results

Here we evaluate the consistency of the BLB-corrected Iograiigles and their asssociated retrieved refractivitts Bither
using the original BLB-corrected bending angles directlfrom using the BLB-corrected retrieved bending angles, those
from first back-projecting the original bending angles téaii BLB-corrected excess phases and then retrieving theihg
angles again. This provides a basic validation of our promeds described in Sect. 3; for limiting the extent of thipgrethe
detailed inspection and validation of the uncertainty jpgation itself is left for a follow-on study.

We investigated the BLB-correction of an independent etdeiof COSMIC-retrieved bending angles employing our BLB
model, as in Sect. 2.1 using ECWMF analysis fields as referéfigere 6 shows the COSMIC-ECMWF difference statistics
of bending angles (left) and refractivities (right) aftemioling angle BLB correction. These statistics were evatlifir a set of
12 days of COSMIC data from year 2008, including the 17th dawery month, amounting in total to about 26000 RO events.
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This implies that these COSMIC and ECMWF ensembles of praditesndependent from the ones used in the derivation of
the BLB model regression coefficients (the 15th and 16th da&yery month; cf. Sect. 2.1).

Cross-checking these results with results from COSMIC a@MB/F ensembles using the 16th day of every month (not
separately shown), we find them practically indistinguidban terms of their difference statistics. This indicates statistical
homogeneity of the data sets and the robustness of the BLRInfearthermore, from comparirigg-6-with-Fig-Figure6 with
Figure?2, it is clear that the BLB correction achieves a substadéakease of the boundary layer biases, by about a factor of
five, consistent with the systematic uncertainty redudiémtorr..sgr.5 = 0.2 (EQ. 20). Inmediately above the boundary layer,
above about 2 km altitude, the BLB-corrected profiles pdgsibntains slightly increased uncertainty, at small magte,
which is accounted for by the reference field-induced "lob@und" uncertainty:} .~ (Eg. 19) included in the systematic
uncertainty model up to 5 km impact altitude. This may be iowpd in the future by further refined BLB model design.

Figure 7 shows the COSMIC-ECMWEF difference statistics ofddeg angles (left) and refractivities (right) based on the
BLB-corrected retrieved bending angles, i.e., those frost fiack-projecting the original bending angles by therisgd-10 to
obtain BLB-corrected excess phases and then retrievingeghding angles again. Except for about the lowest halfrkéter
above surface where there is possibly some degradatiomesléts are found very close to those showsrig:Figure6 for
the original BLB-corrected bending angles. This indicdtes basic validity and robustness of our approach to trarkée
BLB-corrected bending angles to BLB-corrected excessgméand via perturbation approach also the associatedrstite
uncertainties). Future more detailed inspection of thesfutertainty propagation approach according to Sect.[3afilsolidate
this encouraging initial validation.

Fig:Figure8 presents a latitude-longitude map of COSMIC-ECMWF diffieesat a height of 0.Em in terms of systematic
relative refractivity deviationgfterthebiascorrectionsimilarto Figure3 butafterthe BLB correctionappliedto theunderlying
bendingangles This plotindicateindicatesthat, although the overall average bias is minimized, theeesomeecalregional
maxima and minimeerrespending Someof them correspondo the areas with a sharp marine boundary layer (Xie et al.,
2006, 2010; Gorbunov, 20Iadie-somesontinents. wherethe negativebiasis reducedbutstill remains Otherregionswith

5 Conclusions

In this study we developed a regression-based approach ddeling and propagating atmospheric boundary layer biases
(BLBs) and associated (residual) systematic uncertaintithin the wave-optical retrieval chain of the referenceudtation
processing system (rOPS), a new RO processing system wégrated uncertainty propagagtion that focuses on calibra
tion/validation and climate applications.

Currently, there is no a quantitative physical model dégog BLB in RO data, although there was a series of studies
discussing different mechanisms resulting in BLB. Thetstgrpoint encouraging and informing our BLB model desigrswa
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Figure 6. Deviation statistics based on original BLB-corrected bending anglesreélifEe statistics of COSMIC profiles relative to ECWMF
reference profiles, with same layout of panels agfgiFigure2, for bending angle as function of impact altitude (left column) anchoeifrity

as function of altitude (right column). Results for low latitudes (top), mid laétugmiddle), and high latitudes (bottom) are shown, based on
COSMIC data from the 17th day of every month of year 2008 and comeuECMWF analysis fields.

fluctuation-based explanatory modeling of the well knowedative refractivity bias" problem in the boundary layee W
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Figure 7. Deviation statistics based on BLB-corrected retrieved bending angkes feafck-projection of original BLB-corrected bending
angles to excess phases and in turn retrieving the bending angles &@BIYIC-ECMWF difference statistics with the same layout and
using the same COSMIC and ECMWF data asHarFigure6.

showed that it is possible to achieve a reasonable agreemitbribserved bending angle and refractivity biases by riogle

fluctuation statistics consistent with reasonable tropesp profiles of the refractivity structure constdrg: (z).
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Figure 8. Deviation statistics based on original BLB-corrected bending anglesitude-longitude map ofiversiondifferencestatistics
of COSMIC observations relative to ECWMF profiles without fluctuatioos réfractivity atan altitude of 0.6km. Results are shown for
COSMIC events and concurrent ECWMF analysis fields from the 1st, aath21th day of every month of year 2008.

Based on this understanding we can robustly assume thalblelinodeling of the bending angle BLB, and subsequent use
of the model for BLB correction, will also effectively mitige biases in the retrieved refractivity profiles and furiherived
atmospheric profiles. However, given the highly variablgaetivity fluctuations affecting individual RO events irality,
which implies a complex dependence of the bending angle BLBe location and the data characteristics of individual RO
profiles, we found it needed to implement a BLB model with ay\exible functional behavior in order to reliably serve its
purpose.

We therefore have chosen a versatile empirical regressamtelimg approach and found suitable predictors of the BLB in
lower tropospheric bending angle, including: bending aragid its standard deviation, CT amplitude and its fluctaatidex,
impact altitude and its trigonometric functions, and trigmetric functions of latitude. Degrees and cross-pradatthese
predictors were used to form a set of flexible adaptive fumgithat served as basis for the BLB model, which was then
obtained by regression to a large ensemble of COSMIC and EClgdibfife differences. Also a simple (residual) systematic
uncertainty model was formulated, applying to the bendingles after BLB correction. For any given RO event, the BLB
model profile can be computed based on the predictors thalypdepend on the event location and the characteristidseof t

bending angle and CT amplitude profiles.
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Together with the linearized wave-optics (random) undetya propagation approach described by
Gorbunov and Kirchengast (2015) we used the new approaclortaufate the algorithmic sequence for wave-optical
retrieval of bending angles from excess phases includimgistent BLB correction and associated random and sysiemat
unceratainty propagation. Evaluating the consistencyhefBLB-corrected bending angles and their asssociateigvedr
refractivities we achieved a successful basic validatibthe new procedure: we found that the BLB correction defiver
a substantial decrease of the boundary layer biases, byt abfactor of five, consistent with our initial model of resau
systematic uncertainty.

Our bias model uses ECMWEF fields as a reference, thereforejdlvies the biases that are imminent to ECMWF model.
However, the same approach can be applied together withdep@mdent estimate of the ECMWF biases. In this study, we
assumed that ECMWEF biases form a small fraction of the obdesystematic COSMIC-EMCWEF differences.

These results are encouraging for follow-on work in the frietre that can provide a refined BLB model design and a de-
tailed inspection and validation of the complete waveegbtietrieval and uncertainty propoagation as introdunetis study.

In this way, the rOPS geometric-optical bending angleeeals (Schwarz et al., 2017b), generally available rejidgm the
middle troposphere upwards, can be complemented and mdrgedthe upper troposphere downwards, with these wave-
optical bending angle retrievals. Jointly this provideghhguality of the RO data and their integrated uncertaintyredes
from the stratosphere down close to the surface.

6 Code availability

The code used in this study does not belong to the public doara cannot be distributed.

7 Dataavailability

COSMIC radio occultation data are freely available. To gateas to them, it is necessary to sign up at the website of the
CDAAC: http://lcdaac-www.cosmic.ucar.edu/cdaac/ (felitne "Sign up" link for further details). ECMWF analyses a n
free products and can only be obtained subject to licensamgliions depending on country and other factors. Infoionmat
about ECMWEF datasets and availability from the archive isjoied at http://www.ecmwf.int/en/forecasts/accesdimmgcasts;

the commercial catalogue can be found at http://www.ecmtién/forecasts/datasets/catalogue-ecmwf-real-pnoelucts.
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