
Response to reviews of paper “Wave-optics uncertainty propagation and regression-based bias model in GNSS 
radio occultation bending angle retrievals” by M.E. Gorbunov and G. Kirchengast 
 
Anonymous Referee 
 
Figure 8 suggests that the bias correction scheme in increasing positive biases over large parts of the globe (e.g., 
Africa, Australia). This needs to be explained.  
 
We modified the comment to Figure 8 as follows: 
This plot indicates that, although the overall average bias is minimized, there are some regional maxima and 
minima. Some of them correspond to the areas with a sharp marine boundary layer (Xie et al., 2006, 2010; 
Gorbunov, 2014), where the negative bias is reduced but still remains. Other regions with larger deviations are 
located above Northern Africa and Australia, where there is a positive over-correction. The latter regions 
correspond to a similar terrain type, i.e., dry desert areas. This indicates the need for refined predictors, taking into 
account such regional effects, in order to further mitigate in a next step these more specific biases. 
 
I would still argue that the reader would find information on the typical number of predictors used in a radiance 
bias correction scheme useful. I think this is typically 6-8. 
 
We added this remark and complemented it with a reference to (Zhu et al., 2014). 
 
Editor 
 
Please mention briefly what the "real" data is, e.g. UCAR phase data processed at Graz (e.g. for figure 3)? 
 
The COSMIC data were processed by the OCC package for RO data processing, as described in Gorbunov et al. 
(2006). This remark has been added to the text. 
 
It was not clear to me if figure 3 and 8 show the same information, just before and after the bias correction (you 
do this link for other figures). If they do, please indicate this in the text. 
 
Ok, in the text paragraph referring to Figure 8, we have now added a reference also to Figure 3, indicating that 
Figure 8 is similar to Figure 3, but presents the bias map after the BLB correction. 
 
And, if they do, I was too wondering why the bias does change quite substantially at all latitudes (even high ones). 
Isn't that a potential issue?  
 
This remark was co-addressed in our modified text related to Figure 8 (see answer to first comment above). The 
remaining bias variations indicate the need for more refined predictors in a next step that would aim at further 
mitigating also several regional residual biases. 
 
It would be nice if some information can be given why ECMWF should be biased at high latitudes. 
 
As visible from Figures 3 and 8, both COSMIC–ECMWF bias and its correction are small at high(er) latitudes, 
i.e., latitudes exceeding about 45°. We do not see any indications that ECMWF is biased there. 
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Abstract. A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS)

radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bend-

ing angle retrieval in the lower troposphere and introduce 1. an empirically estimated boundary layer bias (BLB) model then

employed to reduce the systematic uncertainty of excess phases and bending angles in the lowest about two kilometers of the

troposphere, and 2. the estimation of (residual) systematic uncertainties and their propagation together with randomuncertain-5

ties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred

from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation

statistics shown to induce such biases. The model is derivedfrom regression analysis using a large ensemble of Constellation

Observing System for Meteorology, Ionosphere, and Climate(COSMIC) RO observations and concurrent European Centre

for Medium-Range Weather Forecasts (ECMWF) analysis fields.It is formulated in terms predictors and adaptive functions10

(powers and cross-products of predictors), where we use sixmain predictors derived from observations: impact altitude, lati-

tude, bending angle and its standard deviation, canonical transform amplitude and its fluctuation index. Based on an ensemble

of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model

very effective for bias reduction, capable of reducing bending angle and corresponding refractivity biases by about a factor of

five. The estimated residual systematic uncertainty, afterthe BLB profile subtraction, is lower-bounded by the uncertainty from15

(indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The

systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach

and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase

uncertainties. The results are encouraging that this uncertainty propagation approach combined with BLB correction enables a

robust reduction and quantification of the uncertainties ofexcess phases and bending angles in the lower troposphere.20

1 Introduction

The bending angle and atmospheric profiles retrieval chain for Global Navigation Satellite System (GNSS) radio occultation

(RO) data includes many steps involving linear and (moderately) non-linear transformations, starting from excess phase and
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amplitude measurements (Gorbunov et al., 2006). Error or uncertainty propagation through the geometric optical part of the

retrieval chain has been investigated in a series of theoretical and empirical studies (Kursinski et al., 1997; Syndergaard, 1999;

Palmer et al., 2000; Rieder and Kirchengast, 2001; Kuo et al., 2004; Steiner and Kirchengast, 2005; Schreiner et al., 2007;

Scherllin-Pirscher et al., 2011b, a, 2017; Innerkofler et al., 2016; Schwarz et al., 2016, 2017a, b; Li et al., 2016, 2017).

The uncertainty propagation through the wave-optical bending angle retrieval block was investigated recently for large-scale5

(systematic) and small-scale (random) uncertainties by Gorbunov and Kirchengast (2015), including simulation results demon-

strating random uncertainty propagation. Such wave-optical retrieval is essential in the lower troposphere (altitudes below 5

km), where the RO observations are subject to several specific uncertainties not present higher up in the atmosphere, including

effects from low signal-to-noise ratio, multipath propagation, and super-refraction (Sokolovskiy, 2001, 2003; Xie et al., 2006;

Ao, 2007; Xie et al., 2010; Sokolovskiy et al., 2010).10

A thorough treatment of systematic uncertainty and its propagation from excess phase to bending angle in the lower tro-

posphere, including the aim to correct for the known boundary layer bias (BLB) in standard lower troposphere RO retrievals,

often termed "negative refractivity bias" (Sokolovskiy etal., 2010; Gorbunov et al., 2015), is lacking so far. Also thepropaga-

tion of both estimated systematic and estimated random uncertainties through the wave-optical chain, complementary to the

geometric-optical uncertainty propagation work of Schwarz et al. (2016, 2017b), was not yet investigated and demonstrated.15

This study focuses on providing these missing investigations and on demonstrating BLB correction for a representativelarge

ensemble of real RO data from the COSMIC mission as well as introducing a complete uncertainty propagation approach.

The findings and algorithms obtained are used in the development of the new reference occultation processing system (rOPS)

including an RO retrieval chain with integrated uncertainty propagation (Kirchengast et al., 2015, 2016a, b).

Our starting points for the BLB model construction are the approach based on refractivity fluctuations introduced by20

Gorbunov et al. (2015) and the recent study of RO systematic errors by Gorbunov (2014). Refractivity fluctuations consti-

tute an external factor that results in a systematic shift ofthe signal phase due to its physical nature rather than any deficiency

of the processing algorithm. Although this model cannot be looked at as a complete explanation of the bias, is serves as a

convenient structural model that allow exposing probable candidates for the role the objective characteristics of thesignal

received that may correlate with the bias. These characteristics will hereafter be referred to as predictors in the BLB model. In25

particular, it was shown already by Gorbunov (2014) that bending angle can serve as such a predictor. Further predictorsand

the complete BLB model setup based on a regression-modelingapproach are described in this study.

This approach results in the BLB and (residual) systematic uncertainty model formulated in terms of tropospheric bending

angles. In order to incorporate this uncertainty modeling into the RO retrieval chain with integrated uncertainty propagation, it

needs to be transferred into the equivalent excess phase BLBand (residual) systematic uncertainty estimate. For its propagation30

then a perturbation approach or the approximation derived by Gorbunov and Kirchengast (2015) can be employed. In that

paper we discussed the propagation of excess phase to bending angle uncertainty through the Fourier Integral Operator (FIO)

used for the bending angle retrieval (Gorbunov and Lauritsen, 2004). This uncertainty propagation uses the stationaryphase

approximation, which allowed for the derivation of simple propagation formulae.
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In order to now transform the bending angle uncertainty intothe equivalent excess phase uncertainty, we use the inverseFIO,

which was recently employed by Gorbunov (2016) for the retrieval of reflected rays from RO data. Specifically, the systematic

uncertainty is evaluated for every RO event in the form of estimated profiles of bending angle BLB and (residual) systematic

uncertainty. These estimates are then transformed into theequivalent BLB and (residual) systematic uncertainty of the excess

phase, where they complement the estimated random and basicsystematic uncertainty of the excess phase, available separately5

from the preceding step of excess phase processing (Innerkofler et al., 2016; Schwarz et al., 2016, 2017b). Both togetherare

used as input to the wave-optical uncertainty propagation.

The paper is organized as follows. In Sect. 2 we describe the empirical BLB model, based on a regression analysis guided by

the understanding that refractivity fluctuation statistics induce such biases, as well as a simple (residual) systematic uncertainty

model for the BLB-corrected bending angles. Section 3 describes the wave-optical propagation of estimated systematicand10

random uncertainties from excess phase to bending angle, for the methodology also recalling the key results needed fromand

(Gorbunov and Kirchengast, 2015; Gorbunov, 2016). In Sect.4 we discuss the results of the application of the BLB correction

based on a large ensemble of COSMIC RO data from representative test days throughout the year 2008. Section 5 provides our

conclusions.

2 Boundary Layer Bias (BLB) Model of Bending Angle and its Uncertainty15

The BLB model is formulated to be capable of providing bending angle BLB profiles over the lower troposphere up to 5 km

impact altitude, corresponding to about 4 km (mean-sea-level) altitude, with the primary bias effects occuring withinthe atmo-

spheric boundary layer below about 2 km altitude. Here we describe its setup by first introducing the underlying refractivity

fluctuations model (Sect. 2.1) then followed by the BLB modeldescription (Sect. 2.2). The model is built as a regression model

using adaptive functions based on predictors available foreach RO event, including impact altitude, latitude, bending angle20

(BA), BA standard deviation, canonical transform (CT) amplitude, and CT fluctuation index as main ones. The selection ofthe

predictors is explained in Sect. 2.3 and their use in constructing the adaptive functions in Sect. 2.4.

Along with the decription we illustrate the performance of the BLB model to quantify the boundary layer biases based on the

predictors, underpinning that the BLB profiles obtained forindividual RO events can be effectively used for BLB correction

and lead to a significant reduction of systematic uncertainty. A simple model for the estimated residual systematic uncertainty25

after the BLB profile subtraction, which is accounting for the residual bias and the uncertainty (indirectly) incurred from the

use of ECMWF analysis profiles as regression reference, is desribed in Sect. 2.5.

2.1 Underlying Model of Refractivity Fluctuations

In order to formulate our approach to the bending angle BLB interms of "negative refractivity bias" (Sokolovskiy et al.,2010)

we use the fluctuation-based model introduced by Gorbunov etal. (2015). This model is used as a simple structural model that30

allows finding good candidates for the objective characterisitics of the observed signals that correlate with the bias.Figure

1 shows an example profile of the refractivity structure constantC2

N (z) and the corresponding relative difference statistics
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of an ensemble of bending angle and refractivity profiles. The latter were obtained by comparison of the modeled "truth"

based on ECMWF refractivity fields, used as reference, and perturbed data based on the same ECMWF fields but with random

refractivity fluctuations according to theC2

N (z) profile superimposed. TheC2

N (z) profile was tuned to realistically represent

BLB statistics of RO observations and the wave optics propagator (WOP) package (Gorbunov, 2011) was used to realistically

compute the bending angles.5

It is visible in Fig.
✿✿✿✿✿✿

Figure1 that the refractivity fluctuations lead to a negative refractivity bias of up to about 2 % in the

boundary layer and an associated negative BLB in bending angle of up to about 5 %, typical of biases seen in real RO data.

Random differences (standard deviation) reach realistic values as well, about 1.5 % in refractivity and about 5 % in bending

angle.

To put these simulation results into direct context with real data,Fig.
✿✿✿✿✿

Figure
✿

2 shows another set of difference statistics for10

bending angles and refractivities, from low latitudes to high latitudes, where we again used the modeled "truth" from ECWMF

fields as reference but now to illustrate the differences of observed profiles from COSMIC.
✿✿✿

The
✿✿✿✿✿✿✿✿

COSMIC
✿✿✿✿

data
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

processed

✿✿

by
✿✿✿

the
✿✿✿✿

OCC
✿✿✿✿✿✿✿

package
✿✿✿

for
✿✿✿

RO
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

processing,
✿✿

as
✿✿✿✿✿✿✿✿

described
✿✿

in (Gorbunov et al., 2006)
✿

. These results confirm that the refractivity

fluctuations model, with corresponding settings, can reproduce the systematic and random error behavior of RO bending angles

and refractivities in the boundary layer. A somewhat higherlevel of RMS deviations (standard deviation) seen for the COSMIC15

data, compared toFig.
✿✿✿✿✿

Figure
✿

1, is likely caused by the fact that ECMWF fields themselves deviate from the real atmospheric

state (see, e.g., the error modeling of Scherllin-Pirscheret al. (2011b, 2017)).

Fig.
✿✿✿✿✿

Figure
✿

3 presents a latitude-longitude map of COSMIC–ECMWFdifference
✿✿✿✿✿✿✿✿✿

refractivity
✿✿✿✿✿✿✿✿✿

differences
✿

at a height of 0.6

km,
✿

in terms of systematic relative refractivity deviation. These results
✿✿✿✿✿✿✿

illustrate
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿✿

variations
✿✿

of
✿✿✿✿✿✿✿✿✿✿

refractivity
✿✿✿✿

bias

✿✿✿✿✿✿✿

behavior
✿✿✿

and
✿

are similar to those presented in (Xie et al., 2006, 2010; Gorbunov, 2014).20

Our further strategy of the bias correction consists in the following. We preform the numerical simulation of occultation

events with superimposed fluctutaions and analyze different objective characteristics of RO signals in order to find those that

correlated with the simulated bias. These characteristicswill be referred to as predictors. Using this set of predictors, we also

compare the simulation results with the processing of real COSMIC observations. We assume that this will allow formulate

the model for BLB correction, will also effectively mitigate biases in the retrieved refractivity profiles and further-derived25

atmospheric profiles. We have to formulate the BLB model witha flexible functional behavior in order to reliably serve its

purpose.

2.2 Bending Angle BLB Model from Regression to Adaptive Functions

We model the BLB by a predictor-based empirical model that isflexible enough to capture the BLB behavior by suitable

predictors under widely variable predictor value ranges for individual RO events. Because the dependence of the BLB model30

profiles from predictors is unknowna priori, we solve for this dependence in the form of linear combination of a set of

linear and non-linear functions of the predictors. We referto these functions as adaptive functions. The model estimate of the

regression coefficients of the linear combination is based on the comparison of a large set of bending angle observationswith

a reference data set.
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Figure 1. Deviation statistics induced by simulated refractivity fluctuations: refractivity structure constantC2

N (z) profile (left) and associated

difference statistics of ECMWF profiles with and without fluctuations superposed, for bending angle as function of impact altitude (middle)

and refractivity as function of altitude (right), where mean difference (red), standard deviation (green) and the difference-ensemble spread

(horizontal bars at vertical levels) are shown. COSMIC event geomentry and concurrent ECWMF analysis fields from the 15th day of every

month of year 2008 were used to produce the statistics.

In this study, introducing a first reliable BLB model version, the observations are from the COSMIC mission and the refer-

ence data set consists of gridded fields of meteorological variables from ECMWF. The ECMWF data have their own systematic

uncertainty, which is taken into account by letting these uncertainties flow into the estimated residual systematic uncertainty of

bending angle profiles after BLB correction (Sect. 2.5).

The BLB model is formulated as follows. We used a set of COSMICbending angle observations, including 24 representative5

days from year 2008. We adopted the 15th and 16th day of every month, amounting in total to about 54000 RO events. We

used the corresponding ECMWF fields as basis for obtaining the"true" reference bending angles. To this end, we employed the

Wave Optics Propagator (WOP) (Gorbunov, 2011) to generate the bending angle profiles from the ECMWF refractivity fields.

We then performed a regression of the differences of observed and reference bending angles in the lower troposphere with

respect to the chosen adaptive functions (Sect. 2.4). The adaptive functions are formulated in terms of predictors, which are10

evaluated from objective characteristics of every RO event, without using the reference data (Sect. 2.3). These ingredients allow

for the derivation of regression coefficients, which upon their estimation complete the BLB model then ready to be applied

based on predictors from a given RO event.

Because we need to derive the regression model for widely diverse BLB behavior, we start with very general regression

relations. Consider two series of random variables, vectorxi and scalar seriesyi, where the lower indexi enumerates the15
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Figure 2. Deviation statistics obtained for real RO data: difference statistics of COSMIC profiles including real fluctuations relative to

ECWMF profiles without fluctuations, for bending angle as function of impact altitude (left column) and refractivity as function of altitude

(right column), with same style of panels as for the difference statistics inFig.
✿✿✿✿✿

Figure
✿

1. Results for low latitudes (top), mid latitudes (middle),

and high latitudes (bottom) are shown, for COSMIC events and concurrent ECWMF analysis fields from the 15th day of every month of year

2008.
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Figure 3. Deviation statistics obtained for real RO data: latitude-longitude map ofinversion
✿✿✿✿✿✿✿

differencestatistics of COSMIC observations

relative to ECWMF profiles without fluctuations, for refractivity at
✿✿

an altitude of 0.6km. Results are shown for COSMIC events and

concurrent ECWMF analysis fields from the 1st, 11th, and 21th day of every month of year 2008.

realizations. We will term the components ofxi predictors, because we approximate the random variablesyi as a linear

combination of pre-defined adaptive functionsϕj of xi. The number of predictors, and of associated adaptive functions,

is much smaller than the number of realizations (differenceprofiles of observed and reference bending angles in the lower

troposphere). We write the over-determined system of equations,

yi =
∑

j

αjϕj (xi)≡
∑

j

αjKij , (1)5

Kij = ϕj (xi) , (2)

or in the vector form,

y = K̂α. (3)

This system has a pseudo-inverse solution, i.e., the vectorα that minimizes the discrepancy
(

y− K̂α

)T (

y− K̂α

)

=min (4)10

is obtained as the least-squares solution of this overdetermined problem in the form

α=
(

K̂
T
K̂
)

−1

K̂
T
y. (5)
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Now consider a numerical estimation ofα that allows for an evaluation readily augmentable in terms of number of realizations

and adaptive functions. Preparing the quadratic form

B̂ = K̂
T
K̂, (6)

Bij =
∑

k

KkiKkj =
∑

k

KkiKkj =
∑

k

ϕi (xk)ϕ
j (xk), (7)

we have available matrix̂B as a square symmetric matrix that can be evaluated by the summation over any existing set of5

realizations ofxi. Similarly, using the transform

z = K̂y, (8)

zi =
∑

j

Kijyj =
∑

j

ϕi (xj)yj , (9)

we have available vectorz as a vector that can also be evaluated by the summation over any existing set of realizations ofxi

andyi. Finally, it is straightforward in this formulation to obtain the regression coefficients from10

α= B̂
−1

z. (10)

For convenience, matrix̂B and vectorz can be redefined in terms of averaging over the ensemble of realizations. DenotingN

the number of realizations, this is performed by dividing both B̂ andz by N ,

Bij =
1

N

∑

k

ϕi (xk)ϕ
j (xk) =

〈

ϕiϕj
〉

, (11)

zi =
1

N

∑

j

ϕi (xj)yj =
〈

ϕiy
〉

. (12)15

Practically, normalization can also be an issue, dependingon the number of adaptive functions. If their number is as high as

about 200 such as in our study (Sect. 2.4) then even a small change of the normalization factor is raised to the 200th power when

evaluating the matrix determinant. This may result in overflow or underflow in the matrix inversion. Therefore, the numerical

algorithm requires accurate tuning of the normalization factor in order to ensure a stable and robust inversion of matrix B̂.

After having solved for the regression coefficient vectorα it can be used within Eq. 3, which then serves as the BLB model20

applicable to any given RO event. It will provide the estimated bending angle BLB profiley for the RO event when its predictors

are used to specify the model matrix̂K.

2.3 Predictors for the Model’s Adaptive Functions

Here we consider the predictors that we may reasonably choose. Besides predictors depending on RO event altitude and latitude

(discussed separately below) we adopt the following four predictors that are derived from observational RO data, all asfunction25

of impact parameterp within the lower troposphere (below an impact altitude of 4.5 km): 1) bending angleǫ(p), 2) bending

angle standard deviationδǫ(p), 3) normalized CT amplitudeACT (p), and 4) CT amplitude fluctuation indexβ (p). Bending
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Figure 4. Scatter plot of fluctuation-affected bending angle profiles (x-axis) from ECMWF-based simulations with refractivity fluctuations

superposed (left) and from COSMIC observations (right), respectively, versus reference bending angle profiles (y-axis) from ECMWF sim-

ulations without refractivity fluctuations superposed. COSMIC events and concurrent ECWMF analysis fields from the 15th and 16th day of

every month of year 2008 were used for these example results.

angle standard deviation is the bending angle standard error estimate based on radio-holographic analysis (Gorbunov et al.,

2006). The CT amplitude (Gorbunov, 2002; Gorbunov and Lauritsen, 2004) is the normalized the energy distribution over rays

in the impact parameter space. We use the CT amplitude normalized in such a way that it should equal unity in vacuum. The

CT amplitude fluctuation indexβ (p) is defined as,

β (p) = Ŝβ

(

(

ACT (p)− ŜACT (p)
)2

)

, (13)5

whereŜβ is a smoothing operator (lowpass filter) for which we use a 2 kmsmoothing width.

Figure 4 shows the scatter plot of fluctuation-affected bending angles versus reference bending angles for the fluctuation-

model simulations (like forFig.1
✿✿✿✿✿

Figure
✿✿

1) and the COSMIC observations (like forFig.2
✿✿✿✿✿

Figure
✿✿

2). In both cases the asymmetry

with respect to the diagonal is visible (fluctuation-affected bending angles tentatively smaller than reference ones). This indi-

cates that the bending angle itself can serve as one meaningful predictor of (negative) boundary layer biases.10

Figure 5 shows scatter plots of the difference of fluctuation-affected and reference bending angle profiles versus bending an-

gle standard deviation (top), normalized CT amplitude (middle), and CT amplitude fluctuation index (bottom), for simulations

(left) and COSMIC observations (right).

Comparing the behavior of these predictors, their correlation with the bending angle difference is clearly more salient in the

simulations but some smaller asymmetry can also be noticed for the COSMIC observation differences. We therefore kept all15

four predictors in this study and left possible further reduction of these predictors (and associated adaptive functions) to future

fine-tuning of the BLB model regression. An important conclusion from these comparisons is that the fluctuation model alone

does not explain the patterns observed in the real observations. However, the role of this model is to help finding reasonable

9



Figure 5. Scatter plot of the the difference of fluctuation-effected and reference bending angle profiles (x-axis), for ECMWF simulations with

refractivity fluctuations superposed (left column) and COSMIC observations (right column), respectively, versus the predictor variables (y-

axis) bending angle standard deviation (top), normalized CT amplitude (middle), and CT amplitude fluctuation index (bottom). The reference

bending angles are from ECWMF simulations without refractivity fluctuations superposed. The same ECWMF fields and COSMIC data as

for Fig.
✿✿✿✿✿

Figure
✿

4 were used.
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predictors. The further bias correction procedure is only based on the predictors that can be readily derived from observations,

rather than on the fluctuation model.

In addition to these four predictors we utilize the RO event coordinates impact altitudez and latitudeλ, wherez = p−

RLC −Ugeoid, with RLC the local radius of curvature andUgeoid the geoid undulation applying to the event location. We use

the impact altitudez directly and in form of the following six trigonometric functions ofz,5

sin

(

2πn
z− zmin

zmax − zmin

)

,cos

(

2πn
z− zmin

zmax − zmin

)

,n= 1...3, (14)

wherezmin andzmax are the limits of impact altitude wherein the BLB profiles areevaluated (equal to 1.5 km and 4.5 km).

Latitudeλ is used in form of another six trigonometric functions ofλ,

sin(nλ) ,cos(nλ) ,n= 1...3. (15)

Altogether we therefore useNp = 17 predictors, including impact altitude, the four observation-derived predictors, six func-10

tions of impact altitude, and six functions of latitude.
✿✿✿✿

This
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿

predictors
✿✿✿✿✿✿✿

exceeds
✿✿✿✿

that
✿✿

in
✿✿✿✿✿✿✿

radiation
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿✿

schemes,

✿✿✿✿✿

where
✿✿✿

6–8
✿✿✿✿✿

ones
✿✿

are
✿✿✿✿✿✿✿✿

typically
✿✿✿✿

used
✿

(e.g., Zhu et al., 2014)
✿

.

2.4 Construction of the Model’s Adaptive Functions

General adaptive functions as we use here are constructed inform of different degrees of the predictors and their cross-products,

from degree zero, which produces unity, up to some maximum degreeDp,15

{

ϕj (x)
}

=
{

1,
(

xi
)γ
,

(

xi1
)γ1

(

xi2
)γ2

}

, (16)

1≤ i≤Np, 1≤ γ ≤Dp, (17)

1≤ i1 < i2 ≤Np, 1≤ γ1 + γ2 ≤Dp, γ1,2 > 0. (18)

We use a maximum degree ofDp = 3 and apply some additional constraints in order to reduce thenumber of adaptive functions.

For the six trigonometric functions of impact altitude (Eq.14) it is not allowed to take their degrees beyond degree 1 andtheir20

cross-products as these will not be linearly independent from other trigonometric functions of the impact altitude. The same

applies to the six trigonometric functions of latitude (Eq.15) for which we therefore also disregard degrees beyond degree 1

and cross-products.

For our choice ofDp = 3 we thus obtainNf = 214 adaptive functions. To understand this number, consider different degrees

of predictors. There is one 0-degree function (unity). There are 17 functions of degree 1 (the 17 predictors). There are6× (6+25

5)+6×5+(5×4)/2+5 = 111 functions of degree 2. There are2×6×5+5+5×4 = 85 functions of degree 3. Therefore, we

arrive in total at1+17+111+85 = 214 adaptive functions, which provide the needed flexibility for the highly variable BLB

profile behavior while still allowing for a robust estimation of the regression coefficients. If future fine-tuning of theregression

model would reduce the number of predictors, the number of adaptive functions would reduce accordingly.

11



2.5 Simple Residual Systematic Uncertainty Model

As described in Sect. 2.2, after obtaining the regression coefficient vector (Eq. 10) we can use it within the regression model

(Eq. 3), which then serves as the BLB model applicable to any given RO event. It provides the bending angle BLB model

profile for the RO event,δαBLB(z), based on its predictors depending on location (impact altitude, latitude) and bending angle

and CT amplitude characteristics (Sect. 2.3).5

Given this basis, we define a simple intial systematic uncertainty model for the BLB-corrected bending angle profiles of

the lower troposphere,us
δα,BLB

(z), which consists of two components: 1.) an estimated "lower bound" ECWMF reference

field-induced systematic uncertainty,us
refEC

, that accounts for the uncertainty from using the ECMWF analysis fields as the

regression reference which have their own (small) systematic deviations from the "truth", and 2.) an estimated residual bias

uncertainty after BLB correction by subtracting the BLB model profile,us
resBLB

, since the empirical-statistical BLB regression10

model can never fully fit the individual bias situation of an RO event.

From experience with estimated biases of ECWMF analysis fields in other studies (e.g., Li et al., 2013, 2015;

Scherllin-Pirscher et al., 2017; Li et al., 2017) we formulate the model for the ECMWF reference field-induced systematic

uncertainty profileus
refEC

(z) as a fractional model (fus
refEC

(z)) with a linear increase downward over the lower troposphere

towards the surface,15

100 ·
us
refEC

(z)

αrefEC(z)
= fus

refEC(z) = fus
refEC,zmin ·

(zmax − z)

(zmax − zmin)
, (19)

whereαrefEC(z) is the ECMWF reference bending angle profile,zmin andzmax are the limits of impact altitude (set to 1.5 km

and 5.0 km), andfus
refEC,zmin

is the fractional uncertainty atzmin empirically set to 0.25 %. For perspective, the bending angle

uncertainties obtained this way correspond in terms of temperature to uncertainties from about 0.2 K near 4 km impact altitude

to 0.6 K near the surface (for details on uncertainty relations among RO-derived variables seeandand(Scherllin-Pirscher et al.,20

2011b, 2017)
✿✿✿

and
✿

references therein).

The estimated residual bias uncertainty profile after BLB correction is formulated from experience with other bias correc-

tions, such as sampling bias correction (e.g., Scherllin-Pirscher et al., 2011a, 2017), and based on BLB correction performance

results with test ensembles during this study, in a straightforward fractional form,

us
resBLB(z) = rresBLB · δαBLB(z), (20)25

whererresBLB is the systematic uncertainty reduction factor empirically set to 0.2, i.e., expressing that due to the BLB correc-

tion the bias in the bending angle profile is reduced by a factor of five.

For the estimated residual systematic uncertainty finally attributed to the BLB-corrected lower tropospheric bendingangle

at any impact altitude we then simply adopt the larger one of the two uncertainties,

us
δα,BLB(z) = Ŝus (Max(us

resBLB (z) ,us
refEC (z))) , (21)30

implementing the "lower bound uncertainty" role ofus
refEC

in case the estimated residual bias uncertaintyus
resBLB

of individual

RO events according to Eq. 20 is occasionally very small.Ŝus is a smoothing operator (lowpass filter) with a 0.4 km filter width

12



that we use to ensure adequate smoothness of the resultingus
δα,BLB

(z) profile also over those altitude levels where the two

uncertainty components cross in their magnitude.

3 Wave-Optical Propagation of Systematic and Random Uncertainties

The propagation of systematic and random uncertainties through the wave optical retrieval chain was investigated by

Gorbunov and Kirchengast (2015), where a simple approximation was derived and verified based on numerical simulations (as5

summarized in Sect. 1). The approximation considers the excess phase as function of time,Ψ(t), and its systematic ("small-

scale") and random ("large-scale") uncertainties,Σ1 (t) andΣ2 (t), respectively. The uncertainty in the impact parameter space

(Gorbunov and Lauritsen, 2004) is then evaluated asΣ̃1,2 (p) = Σ1,2 (t(p)), wheret(p) is the time of observation of the ray

with impact parameterp.

Practically the application of this approximation was shown by Gorbunov and Kirchengast (2015) to work well for propa-10

gating random uncertainties (covariance matrices), whilein sensitivity tests and evaluations for this study we foundthat it does

not work sufficiently well for propagating systematic uncertainties, due to the large-scale nature of such (increment)profiles

not transforming smoothly under FIO operations (Gorbunov and Lauritsen, 2004). Similarly, given the BLB and residual sys-

tematic uncertainty model being formulated in terms of bending angle, their inverse transformation into the equivalent excess

phase bias and uncertainty proves to be not straightforwardeither.15

The reason and underlying problem is that the perturbation of the excess phase due to superimposing the systematic un-

certainty of the bending angle is not smooth. The variation of the bending angle profile in each realization results in different

phase perturbation corresponding to a different ray manifold with a different caustic structure. Therefore, the excess phase

perturbation has a complicated non-linear relation with the phase (eikonal) uncertainty in impact parameter space, and this

perturbation corresponds to a complicated coherent signalbeing a superposition of multiple signals corresponding todifferent20

rays.

To overcome this difficulty, we do apply the linearized approximation only for the propagation of random uncertainty,

i.e., the covariance propagation according to Gorbunov andKirchengast (2015); Eqs. (29) and (30) therein. This is applied

within the rOPS wave-optical retrieval, for both GNSS frequencies, right after the bending angle profiles themselves have

been retrieved by the (forward) FIO in CT2 implementation (Gorbunov and Lauritsen, 2004; Gorbunov, 2011). The BLB and25

estimated systematic uncertainty propagation is then computed, in a consistent way for bending angles and excess phases, with

a perturbation approach in a three-step sequence as follows.

First, the BLB profile and its estimated systematic uncertainty profile after BLB subtraction are computed according to

Sect. 2.5 for the lower tropospheric bending angle profile atthe L1 frequency, for the location and characteristics (i.e., the

applicable predictors) of the given RO event. It is not computed for the second (L2) frequency, since the L2 profiles are30

generally more noisy (making BLB estimation difficult) and anyway not further used at impact altitudes below 5 km. Below this

level, where the neutral atmospheric excess phase always exceeds several hundreds of meters, the dual-frequency ionospheric

correction rather always uses L1–L2 difference bending angles extrapolated from above (Schwarz et al., 2017b), avoiding

13



noise amplification and mitigating potentially adverse effects on top-of-boundary-layer (TBL) estimates recently pointed out

by Sokolovskiy et al. (2016).

Second, the BLB-corrected L1 bending angle profile, and thisprofile perturbed by the estimated systematic uncertainty

profile, are each projected back to excess phase by applying the inverse FIO approach recently introduced by Gorbunov (2016).

This provides the BLB-corrected L1 excess phase profile and,from the difference of the two back-projected profiles, the5

estimated systematic excess phase uncertainty profile pertaining to it. The latter BLB-related systematic uncertainty is then

added (in a root-mean-square sense) to the basic systematicexcess phase uncertainty available from the raw processingtowards

excess phase (Innerkofler et al., 2016), yielding the total estimated systematic excess phase uncertainty profile.

Third, the BLB-corrected L1 excess phase profile, and this profile perturbed by the total estimated systematic uncertainty

profile, are processed again through the standard (forward)FIO CT2-wave-optics retrieval in order to obtain a BLB-corrected10

retrieved bending angle profile, for consistency check withthe orginal BLB-corrected bending angle profile, as well as the total

estimated systematic bending angle uncertainty profile, from the difference of the two CT2-retrieved bending angle profiles.

The systematic bending angle uncertainty profile at the second (F2) frequency is finally obtained from processing also the L2

excess phase profile perturbed by its associated systematicuncertainty through the wave-optics retrieval and estimating it from

the difference of the resulting perturbed bending angle profile to the one originally retrieved from the unperturbed L2 excess15

phase.

Despite of the complexities from the non-liniearites involved, we obtain in this way a conistent set of excess phase and

bending angle profiles together with their estimated systematic and random uncertainties, which are BLB-corrected at the L1

frequency in the lower troposphere. The extra computational expense for the uncertainty propagation due to the non-linearity is

reasonably limited to one additional forward and inverse FIO operation at L1 frequency, required for the perturbation approach20

to systematic uncertainty propagation. This is similar to the uncertainty propagation work ofandSchwarz et al. (2017a, b),

where the perturbation approach is also needed in a small number of steps (during geometric-optics bending angle retrieval

and dry-air temperature retrieval) for the systematic uncertainty propagation.

4 Results

Here we evaluate the consistency of the BLB-corrected bending angles and their asssociated retrieved refractivities from either25

using the original BLB-corrected bending angles directly or from using the BLB-corrected retrieved bending angles, i.e., those

from first back-projecting the original bending angles to obtain BLB-corrected excess phases and then retrieving the bending

angles again. This provides a basic validation of our procedure as described in Sect. 3; for limiting the extent of this paper the

detailed inspection and validation of the uncertainty propagation itself is left for a follow-on study.

We investigated the BLB-correction of an independent ensemble of COSMIC-retrieved bending angles employing our BLB30

model, as in Sect. 2.1 using ECWMF analysis fields as reference. Figure 6 shows the COSMIC-ECMWF difference statistics

of bending angles (left) and refractivities (right) after bending angle BLB correction. These statistics were evaluated for a set of

12 days of COSMIC data from year 2008, including the 17th day of every month, amounting in total to about 26000 RO events.
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This implies that these COSMIC and ECMWF ensembles of profilesare independent from the ones used in the derivation of

the BLB model regression coefficients (the 15th and 16th day of every month; cf. Sect. 2.1).

Cross-checking these results with results from COSMIC and ECMWF ensembles using the 16th day of every month (not

separately shown), we find them practically indistinguishable in terms of their difference statistics. This indicatesthe statistical

homogeneity of the data sets and the robustness of the BLB model. Furthermore, from comparingFig.6 with Fig.
✿✿✿✿✿

Figure
✿✿

6
✿✿✿✿

with5

✿✿✿✿✿

Figure
✿

2, it is clear that the BLB correction achieves a substantialdecrease of the boundary layer biases, by about a factor of

five, consistent with the systematic uncertainty reductionfactorrresBLB = 0.2 (Eq. 20). Immediately above the boundary layer,

above about 2 km altitude, the BLB-corrected profiles possibly contains slightly increased uncertainty, at small magnitude,

which is accounted for by the reference field-induced "lowerbound" uncertaintyus
refEC

(Eq. 19) included in the systematic

uncertainty model up to 5 km impact altitude. This may be improved in the future by further refined BLB model design.10

Figure 7 shows the COSMIC-ECMWF difference statistics of bending angles (left) and refractivities (right) based on the

BLB-corrected retrieved bending angles, i.e., those from first back-projecting the original bending angles by the inverse FIO to

obtain BLB-corrected excess phases and then retrieving thebending angles again. Except for about the lowest half-kilometer

above surface where there is possibly some degradation, theresults are found very close to those shown inFig.
✿✿✿✿✿

Figure
✿

6 for

the original BLB-corrected bending angles. This indicatesthe basic validity and robustness of our approach to transfer the15

BLB-corrected bending angles to BLB-corrected excess phases (and via perturbation approach also the associated systematic

uncertainties). Future more detailed inspection of the full uncertainty propagation approach according to Sect. 3 will consolidate

this encouraging initial validation.

Fig.
✿✿✿✿✿

Figure
✿

8 presents a latitude-longitude map of COSMIC–ECMWF difference at a height of 0.6km in terms of systematic

relative refractivity deviation,afterthebiascorrection
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿✿✿

Figure
✿✿

3
✿✿✿

but
✿✿✿✿

after
✿✿✿

the
✿✿✿✿

BLB
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

underlying20

✿✿✿✿✿✿

bending
✿✿✿✿✿✿

angles. This plotindicate
✿✿✿✿✿✿✿

indicatesthat, although the overall average bias is minimized, thereare somelocal
✿✿✿✿✿✿✿

regional

maxima and minimacorresponding.
✿✿✿✿✿✿

Some
✿✿

of
✿✿✿✿✿

them
✿✿✿✿✿✿✿✿✿

correspond
✿

to the areas with a sharp marine boundary layer (Xie et al.,

2006, 2010; Gorbunov, 2014)andto somecontinents.,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

negative
✿✿✿✿

bias
✿

is
✿✿✿✿✿✿✿

reduced
✿✿✿

but
✿✿✿✿

still
✿✿✿✿✿✿✿

remains.
✿✿✿✿✿

Other
✿✿✿✿✿✿✿

regions
✿✿✿✿

with

✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿

deviations
✿✿✿

are
✿✿✿✿✿✿✿

located
✿✿✿✿✿

above
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿

Africa
✿✿✿✿

and
✿✿✿✿✿✿✿✿

Australia,
✿✿✿✿✿

where
✿✿✿✿✿

there
✿✿

is
✿

a
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿✿✿✿✿✿✿

over-correction.
✿✿✿✿

The
✿✿✿✿

latter
✿✿✿✿✿✿✿

regions

✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿

terrain
✿✿✿✿

type,
✿✿✿✿

i.e.,
✿✿✿

dry
✿✿✿✿✿✿

desert
✿✿✿✿✿

areas.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

indicates
✿✿✿

the
✿✿✿✿

need
✿✿✿

for
✿✿✿✿✿✿

refined
✿✿✿✿✿✿✿✿✿

predictors,
✿✿✿✿✿✿

taking
✿✿✿✿

into
✿✿✿✿✿✿✿

account25

✿✿✿✿

such
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿

effects,
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿

mitigate
✿✿

in
✿

a
✿✿✿✿

next
✿✿✿✿

step
✿✿✿✿

these
✿✿✿✿✿

more
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿

biases.

5 Conclusions

In this study we developed a regression-based approach for modeling and propagating atmospheric boundary layer biases

(BLBs) and associated (residual) systematic uncertainties within the wave-optical retrieval chain of the reference occultation

processing system (rOPS), a new RO processing system with integrated uncertainty propagaqtion that focuses on calibra-30

tion/validation and climate applications.

Currently, there is no a quantitative physical model describing BLB in RO data, although there was a series of studies

discussing different mechanisms resulting in BLB. The starting point encouraging and informing our BLB model design was
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Figure 6. Deviation statistics based on original BLB-corrected bending angles: difference statistics of COSMIC profiles relative to ECWMF

reference profiles, with same layout of panels as forFig.
✿✿✿✿

Figure
✿

2, for bending angle as function of impact altitude (left column) and refractivity

as function of altitude (right column). Results for low latitudes (top), mid latitudes (middle), and high latitudes (bottom) are shown, based on

COSMIC data from the 17th day of every month of year 2008 and concurrent ECMWF analysis fields.

fluctuation-based explanatory modeling of the well known "negative refractivity bias" problem in the boundary layer. We
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Figure 7. Deviation statistics based on BLB-corrected retrieved bending angles (after back-projection of original BLB-corrected bending

angles to excess phases and in turn retrieving the bending angles again):COSMIC-ECMWF difference statistics with the same layout and

using the same COSMIC and ECMWF data as forFig.
✿✿✿✿✿

Figure
✿

6.

showed that it is possible to achieve a reasonable agreementwith observed bending angle and refractivity biases by modeling

fluctuation statistics consistent with reasonable tropospheric profiles of the refractivity structure constantC2

N (z).
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Figure 8. Deviation statistics based on original BLB-corrected bending angles:: latitude-longitude map ofinversion
✿✿✿✿✿✿✿

difference
✿

statistics

of COSMIC observations relative to ECWMF profiles without fluctuations, for refractivity at
✿✿

an
✿

altitude of 0.6km. Results are shown for

COSMIC events and concurrent ECWMF analysis fields from the 1st, 11th, and 21th day of every month of year 2008.

Based on this understanding we can robustly assume that reliable modeling of the bending angle BLB, and subsequent use

of the model for BLB correction, will also effectively mitigate biases in the retrieved refractivity profiles and further-derived

atmospheric profiles. However, given the highly variable refractivity fluctuations affecting individual RO events in reality,

which implies a complex dependence of the bending angle BLB on the location and the data characteristics of individual RO

profiles, we found it needed to implement a BLB model with a very flexible functional behavior in order to reliably serve its5

purpose.

We therefore have chosen a versatile empirical regression modeling approach and found suitable predictors of the BLB in

lower tropospheric bending angle, including: bending angle and its standard deviation, CT amplitude and its fluctuation index,

impact altitude and its trigonometric functions, and trigonometric functions of latitude. Degrees and cross-products of these

predictors were used to form a set of flexible adaptive functions that served as basis for the BLB model, which was then10

obtained by regression to a large ensemble of COSMIC and ECMWFprofile differences. Also a simple (residual) systematic

uncertainty model was formulated, applying to the bending angles after BLB correction. For any given RO event, the BLB

model profile can be computed based on the predictors that purely depend on the event location and the characteristics of the

bending angle and CT amplitude profiles.
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Together with the linearized wave-optics (random) uncertainty propagation approach described by

Gorbunov and Kirchengast (2015) we used the new approach to formulate the algorithmic sequence for wave-optical

retrieval of bending angles from excess phases including consistent BLB correction and associated random and systematic

unceratainty propagation. Evaluating the consistency of the BLB-corrected bending angles and their asssociated retrieved

refractivities we achieved a successful basic validation of the new procedure: we found that the BLB correction delivers5

a substantial decrease of the boundary layer biases, by about a factor of five, consistent with our initial model of residual

systematic uncertainty.

Our bias model uses ECMWF fields as a reference, therefore, it involves the biases that are imminent to ECMWF model.

However, the same approach can be applied together with an independent estimate of the ECMWF biases. In this study, we

assumed that ECMWF biases form a small fraction of the observed systematic COSMIC–EMCWF differences.10

These results are encouraging for follow-on work in the nearfuture that can provide a refined BLB model design and a de-

tailed inspection and validation of the complete wave-optical retrieval and uncertainty propoagation as introduced in this study.

In this way, the rOPS geometric-optical bending angle retrievals (Schwarz et al., 2017b), generally available reliably from the

middle troposphere upwards, can be complemented and merged, from the upper troposphere downwards, with these wave-

optical bending angle retrievals. Jointly this provides high quality of the RO data and their integrated uncertainty estimates15

from the stratosphere down close to the surface.

6 Code availability

The code used in this study does not belong to the public domain and cannot be distributed.

7 Data availability

COSMIC radio occultation data are freely available. To get access to them, it is necessary to sign up at the website of the20

CDAAC: http://cdaac-www.cosmic.ucar.edu/cdaac/ (follow the "Sign up" link for further details). ECMWF analyses are not

free products and can only be obtained subject to licensing conditions depending on country and other factors. Information

about ECMWF datasets and availability from the archive is provided at http://www.ecmwf.int/en/forecasts/accessing-forecasts;

the commercial catalogue can be found at http://www.ecmwf.int/en/forecasts/datasets/catalogue-ecmwf-real-time-products.
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