

1 Characterization of the Particle Emission from Ships Operating at 2 Sea Using Unmanned Aerial Vehicles

3 Tommaso F. Villa¹, Reece Brown¹, E. Rohan Jayaratne¹, L. Felipe Gonzalez², Lidia Morawska¹, Zoran
4 D. Ristovski^{1*}

5 ¹ International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology (QUT), 2 George St,
6 Brisbane QLD 4000

7 ² Australian Research Centre for Aerospace Automation (ARCAA), Queensland University of Technology (QUT), 2 George
8 St, Brisbane QLD 4000

9 Correspondence to: Zoran D. Ristovski (z.ristovski@qut.edu.au)

10 **Abstract.** This research demonstrates the use of an unmanned aerial vehicle (UAV) to characterize the gaseous (CO₂) and
11 particle (10 - 500 nm) emissions of a ship at sea. The field study was part of the research voyage “The Great Barrier Reef as
12 a significant source of climatically relevant aerosol particles” on-board the RV Investigator around the Australian Great
13 Barrier Reef. Measurements of the RV Investigator exhaust plume were carried out while the ship was operating at sea, at a
14 steady engine load of 30%.

15 The UAV system was flown autonomously using several different programmed paths. These incorporated different altitudes
16 and distances behind the ship in order to investigate the optimal position to capture the ship plume. Five flights were
17 performed, providing a total of 27 horizontal transects perpendicular to the ship exhaust plume. Results show that the most
18 appropriate altitude and distance to effectively capture the plume was 25 m above sea level and 20 m downwind.

19 Particle number (PN) emission factors (EF) were calculated in terms of number of particles emitted (#) per weight of fuel
20 consumed (Kg fuel). Fuel consumption was calculated using the simultaneous measurements of plume CO₂ concentration.

21 Calculated EF_{PN} were between 9.19×10^{14} and $5.15 \times 10^{15} \text{ #.Kg}_{\text{fuel}}^{-1}$. These values are in line with those reported in the
22 literature for ship emissions ranging from $0.2 \text{ to } 6.2 \times 10^{16} \text{ #.Kg}_{\text{fuel}}^{-1}$ to $6.2 \times 10^{16} \text{ #.Kg}_{\text{fuel}}^{-1}$.

23 This UAV system successfully assessed ship emissions to derive emission factors (EFs) under real world conditions. This is
24 significant as, for the first time, it provides a reliable, inexpensive and accessible way to assess and potentially regulate ship
25 emissions.

26 1. Introduction

27 Shipping is the most significant contributor to international freight, with almost 80% of the worldwide merchandise trade by
28 volume transported by ships in 2015 (UNCTAD 2015). Emissions from this transportation mode are a significant contributor
29 to air pollution, both locally and globally. Ships are a major pollutant source in areas surrounding harbours (Viana,
30 Hammingh et al. 2014), with over 70% of emissions reaching 400 km inland (Fuglestvedt, Berntsen et al. 2009). In 2012
31 exhaust from diesel engines, the predominant source of ship power, was classified as a group 1 carcinogen by the
32 International Agency for Research on Cancer (IARC). In 2007, pollution from ship exhaust was found to be responsible for
33 approximately 60,000 cardiopulmonary and lung cancer deaths worldwide annually (Corbett, Winebrake et al. 2007). Such
34 emissions are also a strong climate forcing agent, contributing to global warming through the absorbance of solar and
35 terrestrial radiation (Lack, Cappa et al. 2011, Hallquist, Fridell et al. 2013, Winnes, Moldanová et al. 2016).

36 Despite these findings, emissions from shipping have consistently been subject to less regulation than those of land-based
37 transport with ship emissions in international waters remaining one of the least regulated parts of the global transportation
38 system (Streets, Carmichael et al. 1997, Cooper 2001, Corbett and Farrell 2002, Corbett and Koehler 2003, Cooper 2005,
39 Eyring, Köhler et al. 2005, USEPA-OTAC 2012). Currently, no specific restrictions for ship-emitted particulate matter (PM)

40 exist, with the only regulated pollutants being NO_x and SO₂. The International Maritime Organization (IMO) recently
41 revised the regulation of these gaseous pollutants through the Annex VI of the International Convention for the Prevention of
42 Pollution from Ships – the Marine Pollution Convention (MARPOL). The IMO expected that these regulations would lead to
43 an indirect decrease in particle number (PN) concentration due to the reduction of NO_x emissions and the use of fuel with
44 lower sulphur content [14]. However, it has been found that the use of some low sulphur fuels lead to increased PN
45 concentrations at lower engine loads (Anderson et al., 2015), which stresses the importance for regulation specifically
46 addressing particulate matter (PM).

47 The majority of emitted PM is in the ultrafine size range, < 0.1 μm , which have been demonstrated to have a particularly
48 significant impact on health and the environment (WHO 2013). However, due to the lack in regulation, ultrafine particles, in
49 terms of PN concentration, emitted from ships have remained unassessed in real world conditions. Quantifying PN
50 concentration is critical to improve our understanding of shipping's impact on health and climate (Cooper 2001, Isakson,
51 Persson et al. 2001, Corbett and Farrell 2002, Chen, Huey et al. 2005, Corbett, Winebrake et al. 2007, Williams, Lerner et al.
52 2009, Ristovski, Miljevic et al. 2012, Blasco, Duran-Grados et al. 2014, Anderson, Salo et al. 2015, Mueller, Jakobi et al.
53 2015, Reda, Schnelle-Kreis et al. 2015). To achieve this, wide-scale evaluation of ship emission factors (EFs) is necessary.
54 EFs are commonly expressed as the amount of pollutant (x) emitted per unit mass of fuel consumed g(x). (Kg fuel)⁻¹.
55 Different methods have been used to investigate ship EFs, including laboratory test-bench studies, on-board measurements,
56 and measurement of ship emission plumes.

57 Test-bench studies (Kasper, Aufdenblatten et al. 2007, Petzold, Hasselbach et al. 2008, Petzold, Weingartner et al. 2010,
58 Anderson, Salo et al. 2015, Mueller, Jakobi et al. 2015, Reda, Schnelle-Kreis et al. 2015) have been used to characterize
59 emissions from different engines at various loads in laboratory conditions. However, engine performance and emissions have
60 been shown to be different in real world operations when compared to laboratory studies. This calls for measurements of
61 ship emissions in-situ to collect reliable data for EF calculations (Agrawal, Malloy et al. 2008, Murphy, Agrawal et al. 2009,
62 Blasco, Duran-Grados et al. 2014). To date, only a few studies have been undertaken on-board ships to calculate real
63 emission factors (Hallquist, Fridell et al. 2013, Juwono, Johnson et al. 2013). This is attributed to the prohibitive costs and
64 time commitments of setting up and maintaining on-board measurement equipment on commercial ships. Airborne ship
65 plume measurements (Sinha, Hobbs et al. 2003, Lack, Lerner et al. 2008, Lack, Corbett et al. 2009, Berg, Mellqvist et al.
66 2012, Balzani Lööv, Alfoldy et al. 2014, Beecken, Mellqvist et al. 2014, Cappa, Williams et al. 2014, Pirjola, Pajunoja et al.
67 2014, Schreier, Peters et al. 2015, Westerlund, Hallquist et al. 2015) offer an alternative method of in-situ measurements
68 without requiring on-board monitoring stations. In the past the cost, the significant difficulties in deployment of these
69 systems, and the risk for manned aircrafts have limited their feasibility. However, this has recently changed with the rapid
70 advances being made in commercially available Unmanned Aerial Vehicle (UAV) technology.

71 Hexacopter UAVs have seen a wide scale increase in industry and research applications due to their ease of use and
72 comparatively low cost (Gonzalez, Castro et al. 2011, Malaver Rojas, Gonzalez et al. 2015, Brady, Stokes et al. 2016). Used
73 in conjunction with air monitoring equipment, these systems provide, for the first time, the ability to perform relatively
74 simplistic and cost-effective airborne measurements of ship emissions. However, to date no studies have reported the use of
75 a UAV system capable of collecting data to calculate the EF of PN concentration for ships at sea.

76 This research utilized a customized hexacopter UAV carrying instruments for PN concentration and CO₂ measurements to
77 derive EF_{PN} . The UAV system was deployed from the RV Investigator research vessel while at sea. Autonomous
78 measurements of the RV investigators exhaust plume were taken over several flights at various altitudes and distances from
79 the ship. Data collected was used to optimize the sampling flight path and successfully quantify the RV investigators EF for
80 PN concentration.

81 **2. Methodology and Measurement system**

82 Measurements were conducted as part of the research voyage “The Great Barrier Reef as a significant source of climatically
83 relevant aerosol particles” aboard the RV Investigator research vessel over a two day period of the 13 and 14 October 2016
84 (day 1 and day 2). Measurements of PN and CO₂ concentration emitted by the RV Investigator were taken using a PN and
85 CO₂ monitor mounted on a customized DJI EVO S800 hexacopter UAV (DJI 2014).

86 **2.1. The RV Investigator and the voyage**

87 The RV Investigator is an ocean research vessel configured to enable a wide range of atmospheric, biological, goescience
88 and oceanographic research. The vessel is 94 m long, has a gross weight of 6,082 tons, a fuel capacity of 700 tons of ultra-
89 low sulphur diesel fuel. It is powered by three 9 cylinder 3000 kW MaK diesel engines, each coupled to a 690V AC
90 Generator. Ship propulsion is achieved using two 2600 kW L3 AC reversible propulsion motors powered by these
91 generators. The RV Investigator can host up to 30 crew members and 35 researchers for a maximum voyage period of 60
92 days with at a maximum cruising speed of 12 knots.

93 A suite of instrumentation for atmospheric research is available on the RV Investigator. This includes a radar system capable
94 of collecting weather information within a 150 km radius of the vessel, and instruments measuring: sunlight parameters;
95 aerosol composition, particle concentration and size distributions; cloud condensation nuclei; gas concentrations; and various
96 other components of the atmosphere. These instruments are housed inside two dedicated on-board laboratories for aerosol
97 and for atmospheric chemistry research. An atmospheric aerosol sample is continuously drawn into the laboratories for
98 analysis through a specialized inlet fitted to the foremast of the ship. Of particular interest to this study, the ship contains a
99 PICARRO (PICARRO Inc., Santa Clara, California, USA) G2401 analyser (Inc. 2017) that continuously measures CO₂, CO,
100 H₂O and CH₄. It has an operation range between 0-1000 ppm and a parts-per-billion sensitivity (ppb) for CO₂.

101 The two day UAV measurement study was possible as part of the RV Investigator voyage “The Great Barrier Reef as a
102 significant source of climatically relevant aerosol particles”, which started in Brisbane on the 28th of September 2016. The
103 ship was used as both: a floating platform to allow launch and recovery of the UAV system; and as the source of an exhaust
104 plume measured by the UAV system for EF calculation. During a several day stationary period on the Great Barrier Reef off
105 the coast of Australia, it was possible to measure the ship plume under stable real world conditions over two consecutive
106 days. One of the three ship engines was maintained at a steady engine load of 25 – 30 % of the maximum engine power
107 during all measurements.

108 **2.2. UAV system**

109 Measurements of PN and CO₂ concentrations in the ship plume were performed using two commercial sensors mounted on-
110 board a hexacopter UAV. The UAV used (Figure 1) is a composite material S800 EVO manufactured by DJI (DJI 2014).
111 The UAV is 800 mm wide and 320 mm in height, with an unloaded weight of 3.7 kg. Minimum and maximum take-off
112 weights are 6.7 kg and 8 kg, respectively. The UAV contains a 16000 mAh LiPo 6 cell battery, which provides a hover time
113 of approximately 20 min when operating at minimum take-off weight. The telemetry range of the UAV is 2 km, which was
114 adequate to cover the desired sampling area (See Figure 2).

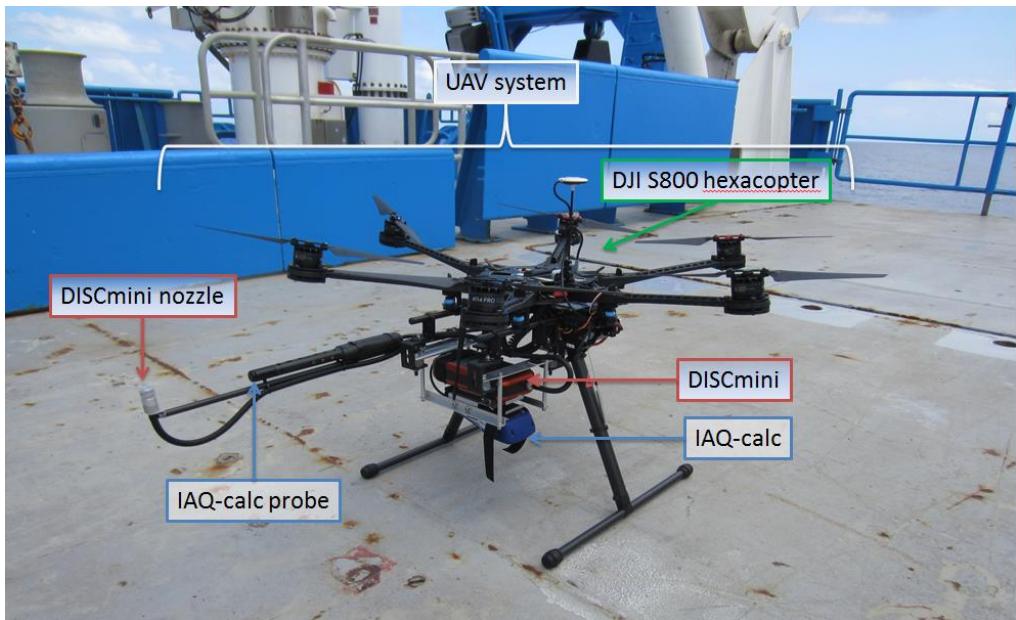
115 The payload consisted of a PN concentration and a CO₂ monitor mounted on-board underneath the UAV. Careful placement
116 of the payload was required to prevent flight issues caused by an altered centre of gravity. Also included was a carbon fibber
117 rod, which extended outward horizontally from the UAV. The sampling lines for the monitors were attached to the end of
118 this rod to ensure that measurements were not affected by the downwash of the UAV rotors. The total weight of the payload
119 was (1.2 kg), which allowed the UAV system to fly for 12-15 min before landing at the home point (A) (See Figure 2).

120 The S800 was used in conjunction with the DJI Wookong autopilot. The software provides an intuitive and easy to use
121 interface where autonomous flight paths can be planned, saved, and uploaded into the UAV. In addition to this, the ground

122 station allows for continuous, real-time monitoring of the status of the UAV during operation; which includes its longitude,
123 latitude, altitude, waypoint tolerance and airspeed.

124 The DJI S800 was chosen for this study because it is designed to operate under the 20 kg all up weight (AUW) class of
125 UAV. This reduces operational costs and avoid subjection to the tighter regulations of larger platforms. Small UAV cannot
126 be operated above any person, or closer than 30 m of populated areas, houses and people. Furthermore, current Civil
127 Aviation Safety Australia (CASA) regulations restrict the use of small UAV (2 and 20 kg) to visual line-of-sight daylight
128 operation, with a maximum altitude of approximately 120 m and within a radius of 3 nmi of an airport. UAVs in this
129 category are not permitted for research unless the research institution has been granted a permit exception. These exceptions
130 can be granted if the institution in question has or collaborates with an UAV operation team who must have: an experienced
131 UAV pilot who is also radio controller specialist; a license for commercial UAV operation; and appropriate liability
132 insurance (NPRM 1309OS - Remotely Piloted Aircraft Systems)Queensland University of Technology (QUT) has an
133 unmanned operator certificate and four pilots who have UAV controller licenses.

134 **2.2.1. Instrumentation**


135 **2.2.1.1. Instrumentation for PN concentration**

136 This study measured PN concentration using a Mini Diffusion Size Classifier (DISCmini), developed by the University of
137 Applied Sciences, Windisch, Switzerland (Fierz, Burtscher et al. 2008). The DISCmini is a portable monitor used to measure
138 concentration of particles in the 10-500 nm diameter size range, with a time resolution of up to 1s (1 Hz). It can measure PN
139 concentrations between 10^3 and 10^6 N/cm³. Measurement accuracy is dependent upon the particle shape, size distribution,
140 and number concentration. The advantages of using the DISCmini are its relatively small dimensions (180 x 90 x 40 mm),
141 low weight (640 g, 780 g with the sampling probe, Figure 1) and long battery life of up to 8 hrs. These
142 characteristics allow it to be easily integrated on the UAV.

143 **2.2.1.2. Instrumentation for CO₂ concentration measurements**

144 A TSI (TSI, Shoreview, Minnesota, United States) IAQ-calc 7545 model was chosen to measure CO₂ concentrations. Its
145 sensor is based on a dual-wavelength NDIR (non-dispersive infrared) with a sensitivity range between 0 to 5,000 ppm and an
146 accuracy of $\pm 3.0\%$ of reading or ± 50 ppm (whichever is greater). The measurement resolution is 1 ppm with a maximum
147 time resolution of 1s. Similar to the DISCmini, the advantages of using the IAQ-calc are: its small dimensions (178 x 84 x 44
148 mm); low weight (270 g, with batteries, significantly lower than the DISCmini), and a battery life of 10 hours.

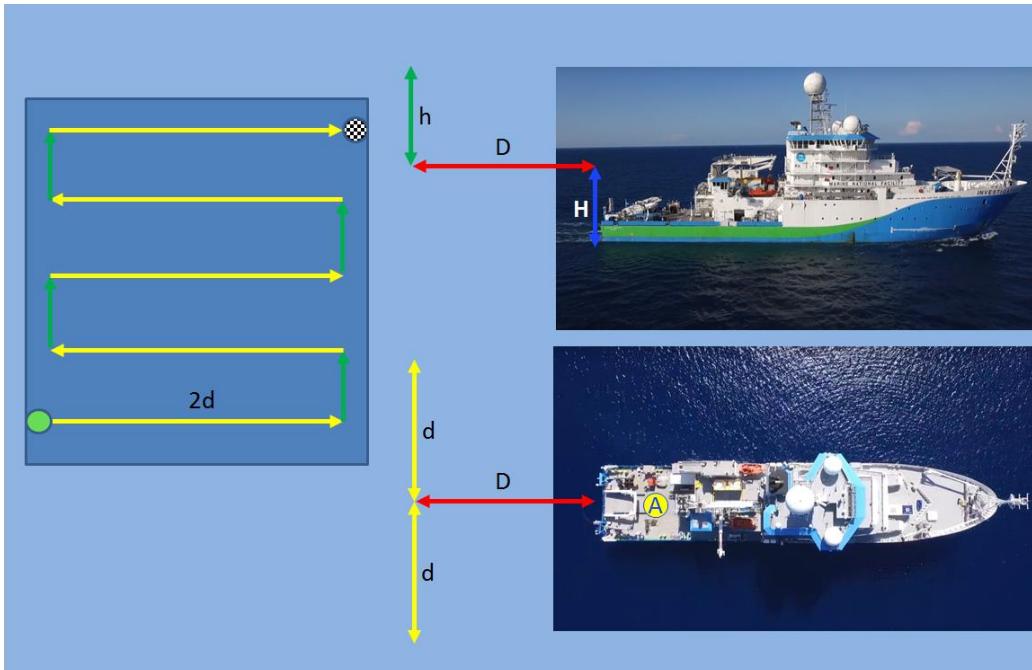
149 The readings of the IAQ-clac for CO₂ were compared with those measured by the on-board PICARRO G2401 analyser.
150 Both the DISCmini and the IAQ-calc were tested and calibrated in the laboratory prior to the commencement of the
151 measurements (Figure S1 in the Supplementary Material). All data were logged with a 1 s time interval.

152

153 **Figure 1. The UAV system with the on-board instrumentation: the DISCmini and the IAQ-calc.**

154

155 **2.3. Meteorological data**


156 Meteorological data (including air temperature, relative humidity, atmospheric pressure, wind speed and direction) were
 157 recorded by the RV Investigators on-board instrumentation during the entire voyage with a 60 s time interval, 24/h a day.

158 **2.4. Study design**

159 During the two measurement days of this study, the vessel was heading into the wind whilst idling the UAV missions at sea.
 160 This positioning caused the exhaust plume to extend downwind, directly behind the ship. The UAV system was launched off
 161 the back deck, autonomously sampling at varying altitudes and distances into the downwind plume. Flight speed of the UAV
 162 was 1.5 m/s, the minimum for the S800.

163 Day 1 was used to optimise the study design, focusing on finding the flight path most suitable to capture the ship plume.
 164 Figure 2 shows the programmed flight path, which consisted of a continuous flight beginning at a distance (D) and from an
 165 altitude (H) above the surface. Point A, located on the back deck of the RV Investigator, represents the 'home point'. In
 166 UAV terminology this refers to the position where the UAV system takes off and lands. The UAV system was programmed
 167 to move horizontally by a distance (2d), perpendicular to the ship, then climb vertically for 10 m (h) before flying in the
 168 opposite horizontal direction for the same distance (2d). The UAV was then programmed to climb another 10 m (h) before
 169 repeating this pattern until the UAV reached an altitude of 65 m above the ocean. During day 1, the UAV system followed
 170 three different flight paths, each one with both a different distance D behind the ship (20, 50 and 100 m), and a different
 171 horizontal distance 2d (50, 100 and 150 m).

172 The optimised flight path for day 2 started 20 m behind the ship and 25 m above the surface, with no altitude variation. The
 173 UAV path was limited to a continuous horizontal flight of 50 m (2d) at steady speed of 2 m s^{-1} . This path and flying speed
 174 allowed up to 4 horizontal transects to capture the ship plume.

175

176 **Figure 2. Flight path used to capture the plume: H - height from the ocean, D – distance behind the ship to the flight beginning**
 177 **point, h – rising altitude after the horizontal transect, 2d – full length of the horizontal transect**

178 **2.5. Experimental procedure**

179 The UAV can fly either manually or autonomously. As a safety precaution, every take-off and landing was performed using
 180 the manual flight mode. Once in the air, the UAV was switched to autonomous flight mode, allowing the platform to follow
 181 the pre-programmed flight path discussed in the previous section. The flight path consisted of waypoints, which are three-
 182 dimensional GPS points that dictate the position of the UAV along the flight path. The waypoints and flight plans for each
 183 flight were programmed using the aforementioned DJI Wookong ground station software. The DISCmini and the IAQ-calc
 184 were fitted on the underside of the UAV at the beginning of each measuring day. Five flights were performed across the two
 185 measurement days, providing a total of 27 horizontal transects perpendicular to the ship's exhaust plume.

186 **2.6. Emission factors**

187 The calculation of an emission factor for particle number concentration (EF_{PN}) from the collected ship plume measurements
 188 was performed using Eq. (1). This method has previously been used for ship (Westerlund, Hallquist et al. 2015), road vehicle
 189 (Hak, Hallquist et al. 2009) and aircraft (Mazaheri, Johnson et al. 2009) emissions. The measured values of PN concentration
 190 were related to the amount of fuel consumed by the engine in question through the use of the simultaneous measurements of
 191 CO_2 concentration taken by the UAV. This was achieved by using a published value for a ship emission factor of CO_2
 192 (EF_{gas}) of $3.2 \text{ Kg CO}_2 (\text{Kg fuel})^{-1}$ (Hobbs, Garrett et al. 2000, Hallquist, Fridell et al. 2013) .

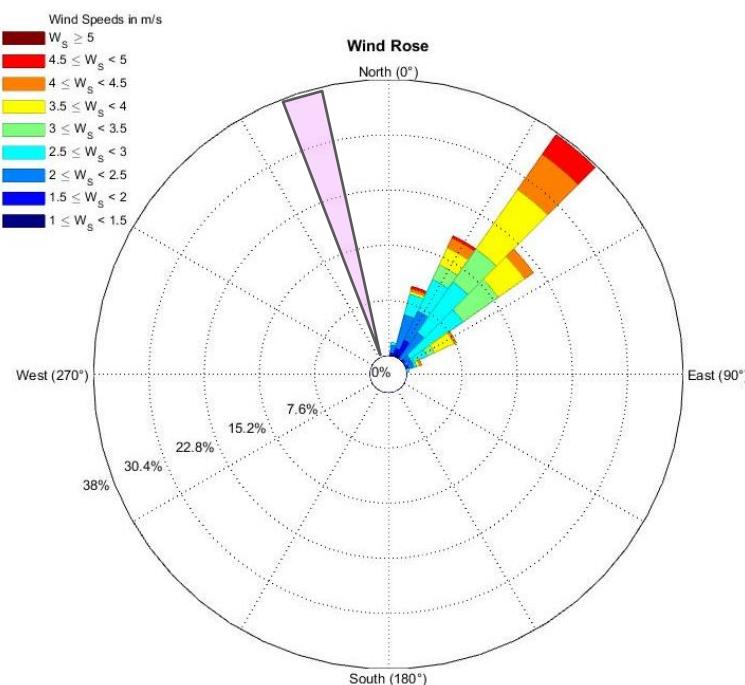
193 Eq.(1).

$$194 EF_{PN} = \frac{\Delta PN}{\Delta gas} \times EF_{gas} \quad (1)$$

195 The ΔPN and Δgas in Eq. (1) represent the maximum particle concentration change above background in the measured
 196 particle number and CO_2 concentrations, respectively. The DISCmini measurements were corrected against a reference CPC.
 197 For each transect data series of PNC and CO_2 , the averaged background concentration were subtracted from the peak data
 198 corresponding to measurements inside the plume. The corrected peak data series were then fit with a Gaussian curve using
 199 the inbuilt Matlab curve fitting application. The least absolute residuals (LAR) condition was used as this most closely fits

200 the curve to the highest magnitude data points in the series. The maximum peak height of the fitted Gaussian curves were
201 used as ΔPNC and ΔCO_2 in the calculation of emission factors for each transect.

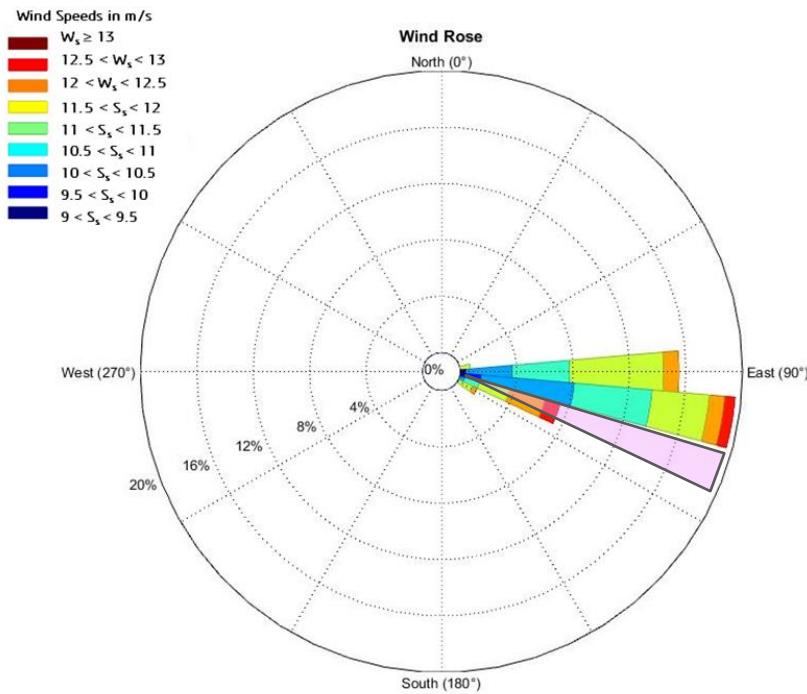
202 **3. Results and Discussion**


203 **3.1. Meteorological and Investigator data**

204 Wind conditions were very stable during both day 1 and day 2, following one main pattern for the entire flight time. The
205 wind speed ranged from 3 - 13 m s⁻¹. The wind direction was predominantly from the NE during day 1 and ESE during day
206 2.

207 The wind rose graphs in Figure 3a and 3b illustrate the wind data recorded with the on-board weather instrumentation during
208 all horizontal transects flown during day 1 and 2 respectively. The prevalent wind direction was ESE, which corresponded to
209 the heading of the RV Investigator (indicated by the rose triangle).

210 The wind direction changed occasionally to E during the flight, causing the UAV to fail to capture the RV Investigator
211 plume during some transects. As a result, 2 of the 8 horizontal transects collected on day 2 were excluded from the analysis.


212

213

214 **Figure 3a – Wind rose showing wind speed and direction during day 1. Rose triangle shows RV Investigator direction during the**
215 **measurements.**

216

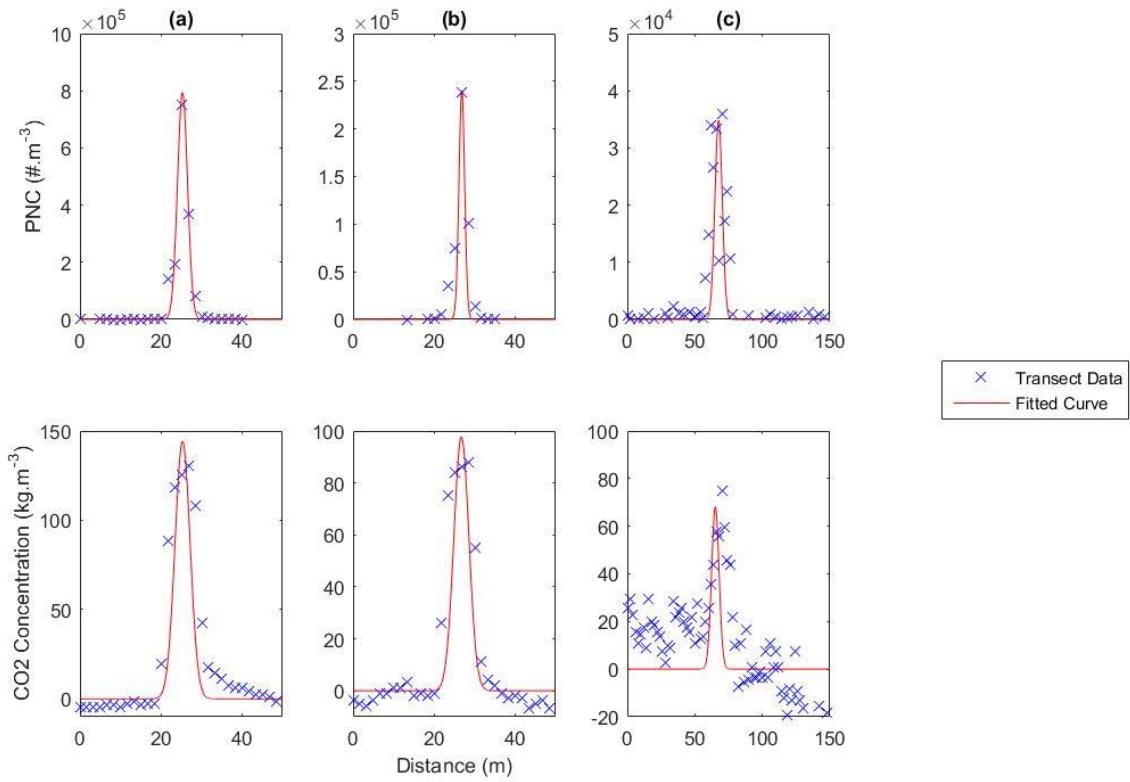
217

218 Figure 3b – Wind rose showing wind speed and direction during day 2 optimized flight. Rose triangle shows RV Investigator
 219 direction during the measurements.

220 **3.2. UAV system horizontal transects inside and outside the plume**

221 The UAV system acquired data for a total of 27 horizontal transects for day 1 and day 2. Data were collected at altitudes
 222 between 25 m and 65 m above the water surface. During day 1 the plume was captured once when the UAV was at 25 m
 223 altitude and 20 m downwind of the ship; and again at both 25 and 35 m altitude 100 m downwind of the ship. These
 224 observations lead to the optimized flight used on day 2, which started downwind at 25 m above the surface and 20 m behind
 225 the ship. On day 2 the UAV system successfully captured the plume during 6 of the 8 transects performed. Across the two
 226 days this lead to a total of 9 transects that captured the plume and which have been considered for discussion, shown in
 227 Table 1.

228


Measuring day	Altitude	Distance behind the Investigator	Number of transects
Day 1	25 m	20 m	1
*Day 1	25 m	100 m	1
Day 1	35 m	100 m	1
Day 2	25 m	20 m	6

229
 230 Table 1 – Specifications of the transects considered for the data analysis. The (*) indicates the transect of Day 1 of which PN
 231 concentration and CO₂ profiles are presented in Figure 4.

232

233 Figure 4 shows the PN concentration and CO₂ profiles, collected during two (a; b) transects on day 2, and (c) during one
 234 transect of day 1 (Spec. in Table 1, Day1*).

235 The PN concentration profiles for the (a) and (b) transects in Figure 4 show that the concentration varied by five orders of
 236 magnitude between the outside and inside the plume, while the CO₂ profiles show an increase up to 140 ppm above the
 237 background.
 238 The profiles in (c) show that the PN concentration was four orders of magnitude greater inside the plume at 100 m behind the
 239 ship and that the CO₂ concentration was up to 70 ppm higher inside the plume.

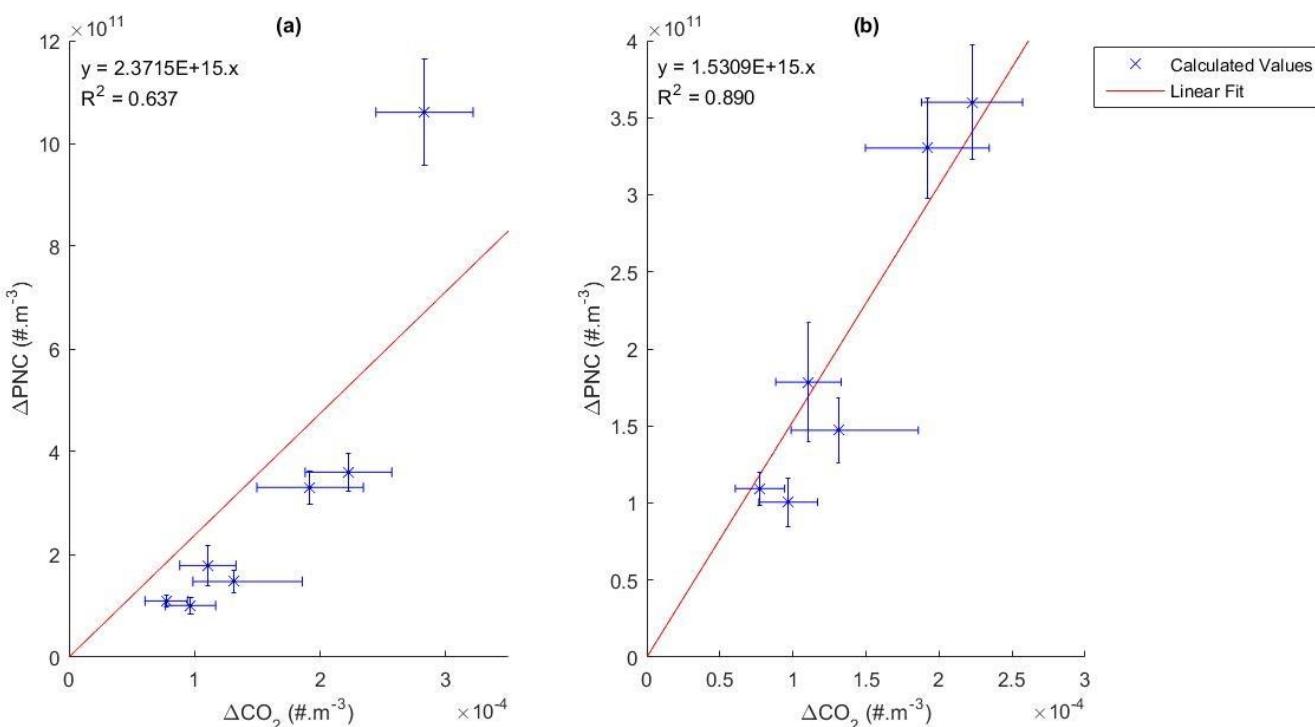
240
 241 **Figure 4 – (a) and (b) show the measured PN and CO₂ concentration profiles and fitted Gaussian curves for two different transects**
 242 **20 m behind the ship 25 m above the surface during day 2. (c) shows the PN and CO₂ concentration profiles and fitted Gaussian**
 243 **curves collected during flight 3 of day 1 at 100 m behind the ship, 25 m above the surface.**

244
 245 Figure 4 (a) and (b) both show transects at 25 m altitude and 20 m behind the ship. Both the PN concentration and CO₂
 246 measurements show clear, single peaks as the UAV crosses the plume. As a consequence, these transects show a good fit
 247 with the corresponding Gaussian distribution curves with R² values of above 0.9 for both PNC and C02. In contrast Figure 4
 248 (c) shows substantially less defined, wider peaks with lower pollutant concentrations. This is attributed to a difference in
 249 flight paths, with Figure 4 (c) representing data from a transect 100 m behind the ship. The additional time between emission
 250 and sampling has allowed the plume to broaden, become less homogenous, and take on a skewed cross-section. This results
 251 in a significantly lower R² value for the fitted Gaussian curves, with a value of 0.4998 for the C02 data in this transect.
 252 Therefore, whilst the 100 m transect does provide more data points inside the plume, the randomized variations inside the
 253 plume lead to less accurate calculations of emission factors.

254 Of further note in Figure 4, the maximum PN concentrations measured in (a) ($7.5 \times 10^5 \text{ #.cm}^{-3}$) is approximately three times
 255 greater than those in (b) ($2.4 \times 10^5 \text{ #.cm}^{-3}$) and the CO₂ concentrations in (a) are 43 ppm greater than (b). The transect flight
 256 plan and ship engine load remained constant throughout these measurements. The variations between (a) and (b) are
 257 attributed to several factors which reduce the effectiveness of the UAV transect for capturing the plume. Slight changes in
 258 ambient conditions such as temperature, wind direction and intensity will alter the path of the plume as it moves away from
 259 the ship. The UAVs automated flight path cannot account for these variations. Therefore, the degree to which the UAV

260 enters the plume, and thus the concentrations it measures, will be different on each transect. Both CO₂ and PN concentration
 261 measurements will be similarly affected by this variance. However, differences in instrument response rates in conjunction
 262 with these variances will be one of the major contributors to variations in calculated emission factors.

263 **3.3. PN Emission Factors**


264 Table 2 shows the distance and altitude of each transect, the R² values of the fitted Gaussian curves for PNC and CO₂ data,
 265 the calculated values of ΔPNC and ΔCO₂, and the calculated EF_{PN}.

Day	Dist/Alt (m)	R ² _{PNC}	R ² _{CO₂}	ΔPNC (#.m ⁻³)	ΔCO ₂ (kg.m ⁻³)	EF _{PN} (#.kg _{fuel} ⁻¹)
1	100/25	0.9586	0.4998	5.05E+11	9.35E-05	1.73E+16
	100/35	0.4767	0.8967	4.8E+10	1.34E-04	1.15E+15
	20/25	0.9856	0.8915	1.09E+11	7.74E-05	4.52E+15
2	20/25	0.9842	0.9518	1.06E+12	2.83E-04	1.20E+16
	20/25	0.9852	0.8838	3.3E+11	1.92E-04	5.51E+15
	20/25	0.9489	0.9246	1.78E+11	1.11E-04	5.16E+15
	20/25	0.9721	0.8965	3.6E+11	2.23E-04	5.18E+15
	20/25	0.9508	0.8473	1.47E+11	1.31E-04	3.59E+15
	20/25	0.8517	0.6743	1.01E+11	9.68E-05	3.32E+15

266
 267 **Table 2 – Transect flight days and details, R² values for the Gaussian curve fits to both PNC and CO₂ data, ΔPNC and ΔCO₂
 268 concentration emission/rate of the RV Investigator, and calculated Emission Factors for PN.**

269

270 The calculated EF_{PN} values for the RV Investigator ranged from 1.15 x 10¹⁵ to 1.73 x 10¹⁶ #.Kg_{fuel}⁻¹. The two 100 m transects
 271 provided the worst Gaussian fits as well as the highest and lowest calculated emission factors. This indicates that it is
 272 important to filter out transects with data which does not fit the expected Gaussian distribution suitably as they can generate
 273 significant error. To this end, the 100 m transects were excluded from further analysis. ΔPNC and ΔCO₂ values for
 274 remaining transects were plotted against each other as shown in Figure 5.

275

276 **Figure 5 –(a) ΔPNC against ΔCO_2 with 95% confidence interval for the six transects considered for the data analysis. (b) ΔPNC**
277 **against ΔCO_2 with 95% confidence interval with the removal of the outlier transect from the first flight of day 2**

278

279 Figure 5 (a) and (b) show the plots of the remaining transects ΔPNC against ΔCO_2 with and without the values of the first
280 flight of day 2. This transect represents a clear outlier in the linear trend, with the R^2 value of the linear fit increasing from
281 0.637 to 0.890 with its exclusion. Furthermore, whilst the linear fit falls within the confidence interval of only one point in
282 (a), it falls within all data points confidence intervals in (b). This occurs despite both R^2 values for the fitted Gaussians of this
283 transect being very high ($R^2_{PNC} = 0.9842$, $R^2_{CO_2} = 0.9518$). This highlights a limitation with this methodology which can be
284 best observed in the difference between Figure 4 (a) and (b). The combination of UAV velocity, sampling rate and response
285 time of the DISCmini results in the PNC transect data having only one data point defining the peak height of the transect.
286 Relying on a single sample point leads to the potential for random instrumentation effects heavily biasing results in a way
287 which does not strongly impact the R^2 values of Gaussian fits used to identify successful transects. Therefore, it is unclear
288 whether this is a variation in the ship emissions or an instrumentation error.

289 The slope and standard error of the linear fit for Figure 4 (a) was input unto Equation 1 to calculate an overall emission
290 factor of $7.6 \pm 1.4 \times 10^{15} \text{ #.kg}_{fuel}^{-1}$. As presented in Table 3, this value is comparable with those reported in the literature for
291 cruise and cargo ship plumes; which range from 0.2×10^{16} to $6.2 \times 10^{16} \text{ #.Kg}_{fuel}^{-1}$. (Sinha, Hobbs et al. 2003, Lack, Corbett et
292 al. 2009, Jonsson, Westerlund et al. 2011, Lack, Cappa et al. 2011, Alfoldy, Lööv et al. 2013, Juwono, Johnson et al. 2013,
293 Beecken, Mellqvist et al. 2014, Pirjola, Pajunoja et al. 2014, Westerlund, Hallquist et al. 2015).

294

Reference	Platform	EFPN (#.kg _{fuel} ⁻¹)	Number of ships	Location
This Study	UAV	$7.6 \pm 1.4 \times 10^{15}$	1	Open Water
Westerlund et al. (2015)	Land Based	$2.35 \pm 0.20 \times 10^{16}$	154	Harbor, Ship Channel
Beecken et al. (2014)	Airborne	$1.8 \pm 1.3 \times 10^{16}$	174	Open Water
Pirjola et al. (2014)	Land Based	0.32×10^{16}	11	Harbor, Ship Channel
Alfoldy et al (2013)	Land Based	0.8×10^{16}	497	Harbor
Juwono et al. (2012)	On Board	0.22×10^{16}	2	Harbor, Ship Channel
Jonsson et al. (2011)	Land Based	$2.55 \pm 0.11 \times 10^{16}$	734	Harbor
Lack et al. (2009)	Ship	$0.71 \pm 0.55 \times 10^{16} (>13\text{nm})^*$ $1.27 \pm 0.95 \times 10^{16} (>5\text{nm})^{**}$	172 165	Open Water, Shipping Channel
Lack et al. (2011)	Airborne	$1.0 \pm 0.2 \times 10^{16}$	1	Open Water
Sinha et al. (2003)	Airborne	$6.2 \pm 0.6 \times 10^{16}$	2	Open Water

296 **Table 3 – Comparison of the Emission Factor for the RV Investigator found in this study with other relevant values found in**
297 **literature. * PN_{EF} for particles above 13nm. ** PN_{EF} for particles above 5nm.**

298 The calculated EF_{PN} for the Investigator was lower compared to those reported by Beecken et al. (Beecken, Mellqvist et al.
299 2014) for passenger ships while accelerating ($0.91 \pm 0.18 \times 10^{16} \text{ #.Kg}_{fuel}^{-1}$). However, the RV Investigator measurements
300 were undertaken whilst its engine was under 30% load. Accelerating ships will typically be under higher engine loads and
301 hence have a correspondingly higher EF_{PN} (Westerlund, Hallquist et al. 2015), which explains part of this discrepancy.
302 Furthermore, the RV Investigator has high efficiency engines and utilizes ultra-low sulphur diesel fuel. Studies have shown
303 that similar diesel engines burning fuel of this type have lower EF_{PN} than the same engine with higher sulphur content diesel
304 (Chu-Van, Ristovski et al. 2017). Similar quality fuels used in the ground transport industry have yielded similar values of

305 EF_{PN} , ranging from 4.8×10^{14} (25% engine load) to $7.2 \times 10^{15} \text{ #.Kg}_{fuel}^{-1}$ (Jayaratne, Ristovski et al.
306 2009).

307 **3.4. Instrumentation Limitations**

308 Lightweight UAVs present an opportunity to achieve aerial measurements at significantly less upfront and operational costs
309 than fixed wing and manned aerial vehicles. Lightweight UAVs can be deployed faster with limited or no required launch
310 and landing area compared to their manned and fixed wing counterparts. Yet, their primary disadvantage, particularly in this
311 application, is a severely limited payload weight. To overcome this limitation, this project used the lightweight and portable
312 DICSmini and IAQ-calc sensors. However, these instruments have lower sensitivities and greater uncertainties when
313 compared to a high accuracy CPC and CO₂ monitor for measurements, which can influence results.

314 The DISCmini has a manufacturer listed measurement cut-off size of 10 nm. A previous study listed in Table 3 (Lack,
315 Corbett et al. 2009) shows that the cut-off size of instruments used to measure PNC is directly linked to the value of EF_{PN} ,
316 with the measured EF_{PN} doubling when the cut-off size is changed from 13 nm to 5 nm due to the large number of particles
317 in this size range. This may have been another contributing factor to the EF_{PN} measured in this study being in the lower end
318 of measured values in literature.

319 The two 100m transects were not accounted for in the final calculation of EF_{PN} due to their poor Gaussian curve fits. Whilst
320 this has been attributed to the skewing of the plume at this distance, the limitations of the instrumentation could also have
321 contributed. The lower concentrations of CO₂ at this distance result in the difference above background inside the plume
322 being the same order of magnitude as the manufacturer specified error margin. Hence, the variability in the plume either side
323 of the central peak as shown in figure 4 (c) could be due in part to instrumentation error.

324 Calibrations of sensors in this study were performed by comparison with reference instruments for ambient measurements at
325 sea. Ideally, calibration should be performed with in-plume measurements, however it was not possible to access the plume
326 with reference instrumentation on board the ship. Whilst this study provides a successful proof of concept with consistent
327 results over multiple days and flights, a validation study is needed. This should include independent measurements of EF_{PN}
328 using other established methodologies to ascertain more precise correction factors and uncertainties.

329 **4. Summary and conclusion**

330 The UAV system used in this study successfully measured PN and CO₂ concentrations from the exhaust plume of the RV
331 Investigator whilst operating at sea. Several different flight paths were tested and an optimal transect flying perpendicular to
332 the plume at a distance of 20 meters from the ship was adopted. The EF_{PN} calculated for the RV investigator $7.6 \pm 1.4 \times 10^{15}$
333 #.kg_{fuel}^{-1} at a constant 30% engine load. This EF_{PN} was in agreement with values reported in literature, indicating this novel
334 UAV system has potential for EF_{PN} quantification pending further evaluation.

335 In comparison with other methods, the UAV system presented provides a cost effective and accessible solution for the rapid
336 measurement and quantification of ship emissions. Its ability for deployment both in harbour and at sea, coupled with the
337 possibility of altering its flight path to account for variances in wind conditions; gives this UAV system a distinct advantage
338 over ground based and manned aerial vehicles. Furthermore, the UAV can sample considerably closer to the plume emission
339 source than other methodologies, providing higher concentration measurements for the calculation of EF_{PN} .

340 Whilst further validation is necessary, results present here indicate that this UAV system has the potential to be used a low
341 cost tool for quantification of ultrafine particle emission factors from commercial shipping. This is critical to improve our

342 understanding of shipping's impact on climate and health. Furthermore, with PN emissions become of ever increasing
343 interest, it will both inform regulatory bodies, and provide them with the tools to monitor emissions in harbours and at sea.

344 **4.1. Recommendations**

345 The potential of this UAV system extend far beyond what is described here. This study is intended as both: a proof of
346 concept; and to provide useful information both for the future of this project, as well as any other UAV sampling systems
347 being developed. The most significant improvement to the method described would be the use a UAV with a lower
348 minimum airspeed. This would allow for more data points per transect and would minimize the impact potential outliers in
349 instrumentation data. Other related improvements to this include: the use of different sensors with higher response rates; and
350 One method to achieve this would be to find an optimal transect distance which provides the broadest plume cross-section,
351 without the plume becoming distorted and impacting accuracy.

352 Further optimization of the transect approach is also possible. After location of the plume the system could be set to make
353 several repeat passes across the plume in rapid succession to increase the sample size. Another alternative would involve the
354 UAV hovering inside the plume over a period of time collecting a continuous series of measurements from the centre of the
355 plume. These methods would both require real time sensor feedback to the UAV pilot and potentially adaptive autonomous
356 controls to achieve a suitable result. This methodology could also be expanded to measure other important ship emission
357 factors, including NO_x and volatile organic compounds (VOCs).

358 **Acknowledgements**

359 The authors would like to acknowledge the ARCAA Operations Team (Dirk Lessner, Gavin Broadbent) who operated the
360 Unmanned Aerial Vehicle (S800). This research was supported by the Australian Research Council Discovery Grant
361 DP150101649 and the Marine National Facility. The authors would like to thank the Captain and the crew of the RV
362 Investigator as well as the on board MNF support staff as without their support and effort this research would not have been
363 possible.

364 **Reference**

365 Agrawal, H., et al. (2008). "In-use gaseous and particulate matter emissions from a modern ocean going container vessel." *Atmospheric
366 Environment* **42**(21): 5504-5510.

367 Alföldy, B., et al. (2013). "Measurements of air pollution emission factors for marine transportation in SECA." *Atmos. Meas. Tech.* **6**(7):
368 1777-1791.

369 Anderson, M., et al. (2015). "Characterization of particles from a marine engine operating at low loads." *Atmospheric Environment* **101**:
370 65-71.

371 Balzani Lööv, J. M., et al. (2014). "Field test of available methods to measure remotely SO_x and NO_x emissions from ships." *Atmospheric
372 Measurement Techniques* **7**(8): 2597-2613.

373 Beecken, J., et al. (2014). "Airborne emission measurements of SO₂, NO_x and particles from individual ships using a sniffer technique." *Atmospheric
374 Measurement Techniques* **7**(7): 1957-1968.

375 Beecken, J., et al. (2014). "Airborne emission measurements of SO₂, NO_x and particles from individual ships using a sniffer technique." *Atmos. Meas. Tech.* **7**(7): 1957-1968.

377 Berg, N., et al. (2012). "Ship emissions of SO₂ and NO₂: DOAS measurements from airborne platforms." *Atmospheric Measurement
378 Techniques* **5**(5): 1085-1098.

379 Blasco, J., et al. (2014). "Towards an integrated environmental risk assessment of emissions from ships' propulsion systems." *Environment
380 International* **66**: 44-47.

381 Brady, J. M., et al. (2016). "Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration
382 Measurements." *Environmental Science & Technology* **50**(3): 1376-1383.

383 Cappa, C. D., et al. (2014). "A case study into the measurement of ship emissions from plume intercepts of the NOAA ship Miller
384 Freeman." *Atmos. Chem. Phys.* **14**(3): 1337-1352.

385 Chen, G., et al. (2005). "An investigation of the chemistry of ship emission plumes during ITCT 2002." *Journal of Geophysical Research: Atmospheres* **110**(D10): D10S90.

386 Chu-Van, T., et al. (2017). "On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating
387 conditions." *Environmental Pollution*.

388 Cooper, D. A. (2001). "Exhaust emissions from high speed passenger ferries." *Atmospheric Environment* **35**(24): 4189-4200.

389 Cooper, D. A. (2005). "HCB, PCB, PCDD and PCDF emissions from ships." *Atmospheric Environment* **39**(27): 4901-4912.

390 Corbett, J. J. and A. Farrell (2002). "Mitigating air pollution impacts of passenger ferries." *Transportation Research Part D: Transport and
391 Environment* **7**(3): 197-211.

392 Corbett, J. J. and H. W. Koehler (2003). "Updated emissions from ocean shipping." *Journal of Geophysical Research: Atmospheres*
393 **108**(D20): 4650.

394 Corbett, J. J., et al. (2007). "Mortality from Ship Emissions: A Global Assessment." *Environmental Science & Technology* **41**(24): 8512-
395 8518.

396 Corbett, J. J., et al. (2007). "Mortality from Ship Emissions: A Global Assessment." *Environmental Scinece & Technology* **41**(24): 8512-
397 8518.

398 DJI (2014). "DJI S800-evo." from <http://www.dji.com/product/spreading-wings-s800-evo>.

399 Eyring, V., et al. (2005). "Emissions from international shipping: 1. The last 50 years." *Journal of Geophysical Research: Atmospheres*
400 **110**(D17): D17305.

401 Fierz, M., et al. (2008). Field measurement of particle size and number concentration with the Diffusion Size Classifier (DiSC), SAE
402 Technical Paper.

403 Fuglestvedt, J., et al. (2009). "Shipping Emissions: From Cooling to Warming of Climate—and Reducing Impacts on Health." *Environmental
404 Science & Technology* **43**(24): 9057-9062.

405 Gonzalez, F., et al. (2011). "Development of an autonomous unmanned aerial system to collect time-stamped samples from the atmosphere
406 and localize potential pathogen sources." *Journal of Field Robotics* **28**(6): 961-976.

407 Hak, C. S., et al. (2009). "A new approach to in-situ determination of roadside particle emission factors of individual vehicles under
408 conventional driving conditions." *Atmospheric Environment* **43**(15): 2481-2488.

409 Hallquist, Å. M., et al. (2013). "Onboard Measurements of Nanoparticles from a SCR-Equipped Marine Diesel Engine." *Environmental
410 Science & Technology* **47**(2): 773-780.

411 Hallquist, Å. M., et al. (2013). "Onboard Measurements of Nanoparticles from a SCR-Equipped Marine Diesel Engine." *Environmental
412 Science & Technology* **47**(2): 773-780.

413 Hobbs, P. V., et al. (2000). "Emissions from ships with respect to their effects on clouds." *Journal of the atmospheric sciences* **57**(16):
414 2570-2590.

415 Inc., P. (2017). Picarro G2401 Analyzer.

416 Isakson, J., et al. (2001). "Identification and assessment of ship emissions and their effects in the harbour of Göteborg, Sweden." *Atmospheric Environment* **35**(21): 3659-3666.

417 Jayaratne, E. R., et al. (2009). "Particle and gaseous emissions from compressed natural gas and ultralow sulphur diesel-fuelled buses at
418 four steady engine loads." *Science of The Total Environment* **407**(8): 2845-2852.

419 Jonsson, Å. M., et al. (2011). "Size-resolved particle emission factors for individual ships." *Geophysical Research Letters* **38**(13): n/a-n/a.

420 Juwono, A. M., et al. (2013). "Investigation of the airborne submicrometer particles emitted by dredging vessels using a plume capture
421 method." *Atmospheric Environment* **73**(0): 112-123.

422 Kasper, A., et al. (2007). "Particulate Emissions from a Low-Speed Marine Diesel Engine." *Aerosol Science and Technology* **41**(1): 24-32.

423 Lack, D., et al. (2008). "Light absorbing carbon emissions from commercial shipping." *Geophysical Research Letters* **35**(13): L13815.

424 Lack, D. A., et al. (2011). "Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and
425 Air Quality." *Environmental Science & Technology* **45**(20): 9052-9060.

428 Lack, D. A., et al. (2009). "Particulate emissions from commercial shipping: Chemical, physical, and optical properties." *Journal of*
429 *Geophysical Research: Atmospheres* **114**(D7): D00F04.

430 Lack, D. A., et al. (2009). "Particulate emissions from commercial shipping: Chemical, physical, and optical properties." *Journal of*
431 *Geophysical Research: Atmospheres* **114**(D7): n/a-n/a.

432 Malaver Rojas, J. A., et al. (2015). Design and flight testing of an integrated solar powered UAV and WSN for greenhouse gas monitoring
433 emissions in agricultural farms. *International Conference on Intelligent Robots and Systems*, Big Sky, Montana, USA, 2015 IEEE/RSJ,
434 IEEE.

435 Mazaheri, M., et al. (2009). "Particle and Gaseous Emissions from Commercial Aircraft at Each Stage of the Landing and Takeoff Cycle." *Environmental Science & Technology* **43**(2): 441-446.

436 Mueller, L., et al. (2015). "Characteristics and temporal evolution of particulate emissions from a ship diesel engine." *Applied Energy* **155**:
437 204-217.

438 Murphy, S., et al. (2009). "Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship
439 at sea." *Environmental Science and Technology* **43**(13): 4626-4640.

440 Petzold, A., et al. (2008). "Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and
441 atmospheric lifetime in the marine boundary layer." *Atmospheric Chemistry and Physics* **8**(9): 2387-2403.

442 Petzold, A., et al. (2010). "Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine
443 diesel engine at various load conditions." *Environmental Science and Technology* **44**(10): 3800-3805.

444 Pirjola, L., et al. (2014). "Mobile measurements of ship emissions in two harbour areas in Finland." *Atmospheric Measurement Techniques*
445 **7**(1): 149-161.

446 Pirjola, L., et al. (2014). "Mobile measurements of ship emissions in two harbour areas in Finland." *Atmos. Meas. Tech.* **7**(1): 149-161.

447 Reda, A. A., et al. (2015). "Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil
448 operation." *Atmospheric Environment* **112**(0): 370-380.

449 Ristovski, Z. D., et al. (2012). "Respiratory health effects of diesel particulate matter." *Respirology* **17**(2): 201-212.

450 Schreier, S. F., et al. (2015). "Ship-based MAX-DOAS measurements of tropospheric NO₂ and SO₂ in the South China and Sulu Sea."
451 *Atmospheric Environment* **102**(0): 331-343.

452 Sinha, P., et al. (2003). "Emissions of trace gases and particles from two ships in the southern Atlantic Ocean." *Atmospheric Environment*
453 **37**(15): 2139-2148.

454 Streets, D. G., et al. (1997). "Sulfur dioxide emissions and sulfur deposition from international shipping in Asian waters." *Atmospheric*
455 *Environment* **31**(10): 1573-1582.

456 UNCTAD (2015). "Review of Maritime Transport 2015." United Nations Conference on Trade and Development UNCTAD.

457 USEPA-OTAC (2012). "USEPA-OTAC, 2012. <http://www.epa.gov/otaq/oceanvessels.htm#regs>, Ocean Vessels and Large Ships. US
458 Environmental Protection Agency, Office-of-Transportation-and-Air-Quality. ."

459 Viana, M., et al. (2014). "Impact of maritime transport emissions on coastal air quality in Europe." *Atmospheric Environment* **90**(0): 96-
460 105.

461 Westerlund, J., et al. (2015). "Characterization of fleet emissions from ships through multi-individual determination of size-resolved
462 particle emissions in a coastal area." *Atmospheric Environment* **112**(0): 159-166.

463 WHO (2013). Review of evidence on health aspects of air pollution

464 Williams, E. J., et al. (2009). "Emissions of NO_x, SO₂, CO, and HCHO from commercial marine shipping during Texas Air Quality Study
465 (TexAQS) 2006." *Journal of Geophysical Research: Atmospheres* **114**(D21): D21306.

466 Winnes, H., et al. (2016). "On-board measurements of particle emissions from marine engines using fuels with different sulphur content."
467 Proceedings of the Institution of Mechanical Engineers Part M: *Journal of Engineering for the Maritime Environment* **230**(1): 45-54.

468