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Abstract. In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric

measurements – combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization – is described.

The algorithm – which is an extension of a scheme previously designed for ground-based retrievals – is applied to measurements

from the Research Scanning Polarimeter (RSP) onboard the NASA ER-2 aircraft. A neural network, trained on a large dataset

of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are5

subsequently used as first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately

retrieving aerosol optical thickness, fine mode effective radius and aerosol layer height from RSP data. Among the advantages

of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the

number of converging retrievals.

1 Introduction10

Multiangular, multispectral measurements of intensity and linear polarization parameters of scattered Solar radiation are a use-

ful tool for the characterization of atmospheric aerosols (Mishchenko and Travis, 1997; Hasekamp and Landgraf, 2007). The

recognition of this has led to the development of a number of remote sensing instruments with spectropolarimetric capabil-

ity (Kokhanovsky et al., 2015). The Polarization and Directionality of the Earth’s Reflectance (POLDER)-1,2 and 3 satellite

instruments (Deschamps et al., 1994), mounted onboard the Japanese satellite Advanced Earth Observing Satellite (ADEOS)15

and on the French satellite Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations

from a Lidar (PARASOL), have so far been the only instruments to perform in-orbit multiangle spectropolarimetric measure-

ments. Decommissioned in 2013, POLDER-3 will be followed by the Multi-viewing Multi-channel Multi-polarization Imaging

(3MI) instrument (Marbach et al., 2013), expected for launch onboard the EUMETSAT MetOp-SG satellite in 2021. While

no satellite multiangle spectropolarimeters are currently operating, research is being carried out in the development of inno-20

vative spectropolarimetric instruments, which are currently operated on aircrafts, in view of future satellite missions. These

include the Research Scanning Polarimeter (RSP, Cairns et al., 1999), the Airborne Multi-angle SpectroPolarimetric Imager
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(AirMSPI, Diner et al., 2013), and the Dutch instrument SPEX (van Amerongen et al., 2016). Additional spectropolarimetric

missions under development are the CubeSat HyperAngular Rainbow Polarimeter (HARP) mission (Martins et al., 2014) and

the Ukrainian project Aerosol-UA (Milinevsky et al., 2016).

The aerosol properties are retrieved from multiangle spectropolarimetric measurements by comparing such measurements

to forward model simulations. Retrieval methods developed so far include lookup-tables (LUTs, Deuzé et al., 2000, 2001)5

and iterative methods based on accurate forward modeling (Waquet et al., 2009; Dubovik et al., 2011; Hasekamp et al., 2011;

Knobelspiesse et al., 2011; Wu et al., 2015). In most of these methods a LUT is used to generate a first guess for the retrieved

quantities, and an iterative algorithm (e.g. maximum a posteriori, Phillips-Tikhonov regularization) is then used in order to

generate solutions that fit the measurements better than the first guess.

In an experiment performed on ground-based spectropolarimetric measurements, it has been shown (Di Noia et al., 2015) that10

the final result of an iterative aerosol retrieval may depend on the choice of the first guess, and that replacing a LUT-based first

guess with a neural network algorithm may be beneficial for the algorithm convergence and computation time, as it is relatively

simple to design neural networks that provide quicker and more accurate first guess retrievals than reasonably sized LUTs

with a modest computational effort. Extending this approach to aircraft and satellite measurements is possible, in principle,

once a method is devised for taking the variability of the observation geometry into account when a training set for the neural15

network is generated. This problem is less important – possibly absent – when working with ground-based observations. In

such case, in fact, care may be taken so that a spectropolarimeter is operated only in the principal plane and at a predefined set

of viewing angles. In this way, the solar zenith angle is the only variable determining the measurement geometry, and this can

be easily taken into account in the neural network design process. When dealing with an airborne or satellite instrument, it is

not possible to assume that the observation geometry will always be the same. This is especially true for instruments that have20

a swath (e.g., POLDER, AirMSPI), in which each pixel is observed at a different set of viewing zenith and azimuth angles,

whereas instruments that do not possess a swath, such as RSP, represent a situation of intermediate complexity. While it is safe

to assume that an RSP measurement is always made at the same set of viewing zenith angles, the azimuth angles at which

the scene is observed will be variable, and this needs to be taken into account when designing a neural network algorithm for

processing this type of measurements.25

In this paper we show an application of neural network retrievals to RSP measurements. We trained a neural network on

a large set of simulated RSP measurements generated for a large number of combinations of aerosol and surface parameters

and observation geometries. We then used the neural network retrievals as first guess for an iterative algorithm based on the

Phillips-Tikhonov method, described in Wu et al. (2015), to perform aerosol retrievals from RSP measurements acquired during

the Polarimeter Definition Experiment (PODEX) and Studies of Emission and Atmospheric Composition, Clouds and Climate30

Coupling by Regional Surveys (SEAC4RS) measurement campaigns.

This paper is structured as follows. In Section 2 a brief description of the RSP instrument is given. In Section 3 some

theoretical background is given on the use of neural networks as parameter estimation methods. Section 4 describes the design

of the neural network algorithm for RSP and its validation on synthetic data. Section 5 describes the application of the Phillips-

Tikhonov algorithm with neural-network-based initialization to a sample of synthetic data. In Section 6 the results of the35
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application of the algorithm to real RSP measurements are discussed. In particular, the results of comparisons between RSP

retrievals and correlative data from the Aerosol Robotic Network (AERONET, Holben et al., 1998) and from the Cloud Physics

Lidar (CPL, McGill et al., 2002) are presented. Finally, in Section 7 conclusions are drawn.

2 The NASA Research Scanning Polarimeter

The Research Scanning Polarimeter (RSP) is an airborne multi-angle spectropolarimeter initially designed as a prototype for5

the Aerosol Polarimeter Sensor (APS) to be launched on the Glory satellite mission (Mishchenko et al., 2007) in 2011, aimed

at observing aerosols and clouds with an unprecedented accuracy by measuring intensity and linear polarization parameters

of backscattered sunlight at a very high number of viewing angles (approximately 250) and in nine spectral bands (from 410

nm to 2250 nm). While the APS instrument has ultimately not reached its orbit as a consequence of the failure of the Glory

satellite launch, the RSP instrument is still being operated onboard the NASA ER-2 high altitude aircraft. RSP performs its10

measurements at 152 viewing angles, at the same nine spectral bands as APS (410, 470, 550, 670, 865, 960, 1590, 1880 and

2250 nm). The bands from 410 to 875 nm are particularly sensitive to aerosols. The 960 nm and 1880 nm channels are used to

characterize water vapour and cirrus clouds respectively, whereas the 1590 and 2250 nm channels can be used to characterize

land surface and coarse mode aerosols (Wu et al., 2015). RSP can cover an angular range going from −60◦ to 60◦ with respect

to the aircraft vertical, where the minus sign indicates viewing directions pointed aftward with respect to the aircraft. However,15

because of the position of the instrument with respect to the aircraft, part the forward viewing directions from 40◦ to 60◦ are

blocked by the aircraft body. The ground pixel size of an RSP measurement at nadir is 277 m. The radiometric uncertainty of

RSP measurements is approximately 2% and its polarimetric uncertainty is around 0.5% (Cairns et al., 1999).

3 Neural network retrievals and their relationship to conventional retrievals

The retrieval of a vector of geophysical parameters x (state vector) from a vector of measurements y relies on the assumption20

that the measurements are related to the state vector by means of a forward model y = F (x,b)+ε, where F is a vector-valued

deterministic function, b is a vector of parameters of F that are not included in x (e.g., observation angles, non retrieved

meteorological variables, etc.), and ε is the measurement noise, which is often treated as a multivariate Gaussian variable with

zero mean and covariance matrix Sε.

The conventional way of retrieving x from y consists in finding the value of x that yields the best agreement between y25

and F (x,b). To this aim, a cost function depending on the discrepancy between y and F (x,b) is defined and minimized with

respect to x. Because of the presence of measurement noise, the cost function is usually minimized in the least square sense.

Furthermore, given the nonuniqueness of the solution due to the fact that F is – in most cases – not a biunivocal relationship,

the cost function may contain some regularization terms chosen in such a way to penalize solutions that are unphysical or

unlikely (Rodgers, 2000). In general, the solution to a retrieval problem can be chosen as30

x̂= argmin
x
J(x,y,b,c) (1)
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where J is the chosen cost function and c is a vector of parameters of the cost function (e.g., regularization parameters,

regularization matrix, a priori error, etc.).

An alternative approach to the retrieval is based on the fact that, because of noise and nonuniqueness, an inverse relationship

between x and y can be defined only in a statistical sense, and the conditional expectation E[x|y,b] can be used as an estimator

for x. Such conditional expectation is a function of y and b, but its functional form is not known in advance. However, under5

the reasonable assumption that such a function is smooth, it can be estimated by collecting a number of coincidences between

x, y and b (e.g., by multiple runs of a forward model), and using them to fit some smooth function g(y,b,w), where w is

a set of parameters of the chosen function g that must be determined during the fitting phase. If it reasonable to assume that

the sought relationship is linear, the problem simply reduces to a linear regression of x on y and b, an approach that is quite

common – for instance – in atmospheric profile retrievals from infrared and microwave measurements (Smith et al., 1970;10

Jackson et al., 2006). If, instead, a linear relationship between E[x|y,b] and the other quantities cannot be assumed, a more

general form for g must be chosen. For this purpose, neural network models are usually a good choice, for at least two reasons:

(i) neural network functions with at least a nonlinear hidden layer can approximate any continuous function on a compact set

to an arbitrary accuracy (Hornik et al., 1989; Leshno et al., 1993); (ii) as the dimension of the training set tends to infinity,

a neural network trained with the sum of squares error cost function tends to approximate the conditional expectation of the15

target quantity given the input vector, provided that the training samples are independent and identically distributed (Bishop,

1995a).

The latter concept can be used as a guiding principle when deciding which quantities should be used as inputs to a neural net-

work method aimed at retrieving a certain set of geophysical parameters. These quantities do not only include the measurement

vector y, but they also include the known parameters b affecting the value of y. For instance, in the case of a spectropolari-20

metric retrieval, y is a vector of reflectances and degrees of linear polarization (or eventually polarized reflectances, or Stokes

parameters) measured at a number of angles and wavelengths. The value of each measurement is not only affected by the

geophysical parameters we are trying to retrieve, but is also affected by quantities such as the solar zenith angle, the viewing

zenith angle and the relative azimuth angle (or, equivalently, the scattering angle). When the goal is to design a neural network

capable of working for several combinations of these parameters, they should in principle be used as input quantities for the25

network. Formally, in this way the training set will be a sample drawn from the joint probability distribution of y and b, and

the neural network retrieval will actually be a nonlinear regression of the state vector x on y and b.

Several examples of application of neural networks in parameter retrieval algorithms from remotely sensed measurements

exist (Krasnopolsky, 2007). The advantages of neural networks over traditional linear regression in statistical retrievals are

discussed in Del Frate and Schiavon (1998a, b). Applications to aerosol retrievals are presented, for instance, in Radosavljevic30

et al. (2010), Taylor et al. (2014), and Chimot et al. (2017).
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4 Neural network retrieval scheme for RSP: Design and performance on synthetic data

The procedure followed in the neural network retrieval scheme builds further on the work described in Di Noia et al. (2015)

for groundSPEX measurements. The main differences are that surface properties and additional aerosol parameters (fine and

coarse mode effective variance, fraction of spherical particles for coarse mode, aerosol layer height) have been included in the

retrieval state vector, and the variability of RSP observing conditions has been taken into account in the input vector.5

As mentioned in Section 2, the viewing zenith angle (VZA) range of RSP measurements goes from 60◦ aftward to 40◦

forward. This asymmetry is due to the blockage of part of the forward viewing directions by the ER-2 aircraft structure. In

order to simplify the generation of a training set for the neural network scheme, we decided to use a symmetrical VZA range,

going from 40◦ aftward to 40◦ forward. The remaining part of the VZA range is used, instead, in the iterative retrieval that uses

the neural network output as first guess, as explained in Section 6. As for the relative azimuth angles of RSP measurements we10

have assumed that, for each multiangular observation, the measurements at forward-viewing angles are made with a common

relative azimuth angle ϕ and the corresponding aftward-viewing measurements are made at an angle ϕ+ 180◦ (see Fig. 1),

with ϕ depending on the particular flight leg. We observed from real data that this is a good approximation for most RSP

measurements. As a result of this assumption, the scalar value ϕ is the only variable we used in order to characterize the RSP

viewing geometry in the neural network input vector. In order to avoid the issue of characterizing water-vapour absorption in15

the training set, we only used the first five RSP channels (410, 470, 550, 670, 865 nm). We assumed the “Ross Thick - Li

Sparse reciprocal combination”, hereinafter referred to as “Ross-Li model” (Maignan et al., 2004, and references therein), for

the surface bidirectional reflectance distribution function (BRDF) and the model by Maignan et al. (2009) for the bidirectional

polarization distribution function (BPDF).

In the Ross-Li model, the surface BRDF R is expressed by means of the following linear combination (Lucht et al., 2000):20

R(θs,θv,ϕ,λ) = fiso(λ) + fvol(λ)Kvol(θs,θv,ϕ) + fgeo(λ)Kgeo(θs,θv,ϕ) (2)

where λ is the wavelength, θs and θv are the solar and viewing zenith angles respectively, and ϕ is the relative azimuth angle.

In Eq. (2), Kvol and Kgeo are the “Ross Thick” and “Li Sparse” kernels respectively. These are functions of the viewing

and solar geometry describing the angular dependence of the surface reflectance and are controlled by the Leaf Area Index

(LAI) of the underlying vegetation and by the surface roughness, respectively (Roujean et al., 1992; Wanner et al., 1995). The25

wavelength-dependent coefficients fvol and fgeo determine the relative weight of the two kernels, whereas the coefficient fiso

is an additional term describing isotropic scattering, i.e. scattering with a directionally constant amplitude.

In the Maignan model, the polarized reflectance Rp of a surface is expressed by the equation

Rp(θs,θv,ϕ) =
Ce−νe−tan(Θ/2)Fp(

Θ
2 ,n)

4(cosθs + cosθv)
(3)

where Θ is the scattering angle, Fp is a function of the scattering angle and of the refractive index n (Maignan et al., 2009),30

and C and ν are two fitting parameters.
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Figure 1. Idealized viewing geometry assumed to model the angular dependence of RSP measurements. Each dot in the polar plot represents

a single angular measurement. Forward-viewing measurements are represented in red, aftward-viewing measurements in blue.

The neural network retrieves 20 quantities, 12 describing aerosols and 8 describing surface properties. The retrieved aerosol

parameters are effective radius, effective variance, complex refractive index (assumed wavelength-independent) and aerosol

optical thickness (AOT) at 550 nm for fine and coarse mode, fraction of spherical particles (FSP) for the coarse mode and

aerosol layer height, defined as the peak height of an assumed Gaussian aerosol profile. The fine mode FSP and the full width

at half maximum (FWHM) of the aerosol profile are not retrieved, but are kept fixed at 100% and 2 km respectively. The5

retrieved surface parameters are the fiso coefficient of Eq. (2) at each of the 5 input wavelengths, the “Ross Thick” and “Li

Sparse” coefficients fvol and fgeo (assumed wavelength-independent), and the C parameter of the Maignan et al. (2009) BPDF

model described in Eq. (3), whereas the ν parameter of the Maignan model has been set to 0.1. The input quantities of the neural

network are the reflectance and the degree of linear polarization (DoLP) measured at 33 angles (from 0◦ to 40◦ with a step of

2.5◦ forward and aftward) and at the 5 wavelengths mentioned above, plus the solar zenith angle, the relative azimuth angle10

ϕ described above and the surface pressure. The radiance and DoLP measurements have been compressed using a principal

component analysis (PCA) as explained in Di Noia et al. (2015). 23 principal components have been retained for radiance and

33 for DoLP.

Approximately one million data have been used to train the neural network. The data have been created by generating

random combinations of the 20 retrieved quantities, solar zenith angle, relative azimuth angle and surface pressure and using15

such combinations as inputs for radiative transfer simulations, using a radiative transfer model described in Hasekamp and

Landgraf (2002, 2005). During the training process, the synthetic measurements have been perturbed with additive Gaussian

6



Figure 2. Histograms of the statistical distribution of fine and coarse mode AOT and effective radius used to generate the training dataset.

noise with zero mean and standard deviation of 2% for reflectance and 0.2% for DoLP, respectively. The angular correlation of

noise in RSP measurements (Knobelspiesse et al., 2012) has not been taken into account.

In order to generate as realistic as possible statistical distributions for most of the quantities to be retrieved, we have generated

global datasets of fine and coarse mode AOT and effective radius by collecting data from all the AERONET stations located

over land, and we have randomly sampled the MODIS MCD43C3 product (Schaaf and Wang, 2015) in order to generate a5

global dataset for the fiso coefficient in Eq. (2). For all the other parameters we have assumed a uniform statistical distribution.

The main features (maximum, minimum, mean and standard deviation and type of distribution) of the statistical distributions

of all the aerosol and surface parameters used to generate the training set are summarized in Table 1. The distributions of

fine and coarse mode AOT and effective radius and those of the fiso coefficient at RSP wavelengths are indicated in the table

with the term “empirical”. Histograms of such empirical distributions are shown in Figures 2 and 3 for aerosol and surface10

parameters, respectively. It must be noted that the fiso coefficients at the five RSP wavelengths are not statistically independent.

Their correlation matrix is also plotted in Figure 3. The choice of keeping the spectral correlation of fiso during the sampling of

the MODIS dataset was made consciously, with the aim of introducing a constraint in the neural network retrieval. In addition

to the quantities listed in Table 1, also solar zenith angle, relative azimuth angle and surface pressure for the radiative transfer

simulations have been chosen randomly, by assuming uniform distributions in the intervals 20◦-85◦, 0◦-60◦ and 850-1050 hPa15

respectively. A constant flight altitude of 19 km has been assumed in the simulations, as the actual flight altitude of the ER-2

aircraft hosting RSP is usually not far from this value.
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Figure 3. Histograms of the statistical distribution of the fiso coefficient in the Ross-Li model at all the wavelengths used to generate the

training dataset, and correlation matrix between the values of the coefficient at the used wavelengths.
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Table 1. Details of the statistical distributions of the aerosol and surface parameters used to generate the training dataset. Please refer to

Figures 2 and 3 for the histograms of the distributions indicated as “empirical”.

Parameter Min Max Mean Std dev. Distribution

Eff. radius (µm) – fine 0.05 0.46 0.15 0.04 Empirical

Eff. variance – fine 0.1 0.3 0.2 0.06 Uniform

Refr. index (real) – fine 1.3 1.7 1.49 0.10 Uniform

Log. refr. index (im.) – fine −11.5 −0.5 −5.75 3.03 Uniform

AOT (550 nm) – fine 0.0 4.58 0.13 0.18 Empirical

Eff. radius (µm) – coarse 0.92 6.12 2.16 0.45 Empirical

Eff. variance – coarse 0.4 0.6 0.5 0.06 Uniform

Refr. index (real) – coarse 1.3 1.7 1.49 0.1 Uniform

Log. refr. index (im.) – coarse −11.5 −0.5 −5.75 3.03 Uniform

AOT (550 nm) – coarse 0.0 3.95 0.06 0.11 Empirical

Spherical fraction – coarse 0.0 1.0 0.5 0.29 Uniform

Aerosol layer height (m) 250.0 8000.0 4125.0 2237.84 Uniform

Li-Sparse BRDF parameter 0.0 0.25 0.12 0.07 Uniform

Ross-Thick BRDF parameter 0.0 1.5 0.75 0.43 Uniform

Maignan BPDF parameter 0.02 10.0 4.83 2.86 Uniform

Isotropic scatt. coeff. (410 nm) 0.0 0.89 0.04 0.04 Empirical

Isotropic scatt. coeff. (470 nm) 0.0 0.90 0.07 0.05 Empirical

Isotropic scatt. coeff. (550 nm) 0.0 0.90 0.11 0.07 Empirical

Isotropic scatt. coeff. (670 nm) 0.0 0.87 0.16 0.11 Empirical

Isotropic scatt. coeff. (865 nm) 0.0 0.80 0.28 0.11 Empirical

The adopted neural network model is a multilayer perceptron (Werbos, 1974) with three hidden layers of 40 neurons each,

same as the groundSPEX network presented in Di Noia et al. (2015), and the training has been carried out using the standard

backpropagation algorithm (Rumelhart et al., 1986) regularized through learning rate annealing (Bös and Amari, 1999) and

noise injection during training (Bishop, 1995b).

The trained neural network has been tested on about 2× 105 random simulated data not included in the training dataset. In5

Table 2 the mean error (bias), the root mean square (RMS) error, the mean absolute error (MAE) and the Pearson correlation

coefficient are reported for each of the retrieved aerosol and surface parameters. The statistics for the fine mode microphysical

parameters are computed on the test data for which the fine mode AOT was larger than 0.1, and the same holds for the coarse

mode parameters. The aerosol layer height error statistics are computed only on the cases with total (fine + coarse mode)

AOT larger than 0.1. Fine mode AOT and effective radius appear to be the most accurately retrieved aerosol parameters. Good10

accuracies are also observed for coarse mode AOT and for aerosol layer height. Also the surface parameters are generally well

retrieved. The retrieval accuracy for fiso is of about 0.01, which is not sufficient for land application but appears to be within
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Table 2. Error statistics on the aerosol and surface parameters retrieved by the neural network, computed on a set of data not used during the

training phase.

Parameter Bias RMSE MAE Corr.

Eff. radius (µm) – fine −0.002 0.02 0.013 0.86

Eff. variance – fine −0.005 0.04 0.036 0.63

Refr. index (real) – fine 0.006 0.06 0.043 0.84

Refr. index (im.) – fine −0.006 0.05 0.023 0.89

AOT (550 nm) – fine −0.003 0.07 0.029 0.93

Eff. radius (µm) – coarse −0.043 0.45 0.364 0.13

Eff. variance – coarse −0.001 0.06 0.050 0.02

Refr. index (real) – coarse 0.009 0.08 0.061 0.71

Refr. index (im.) – coarse −0.022 0.09 0.038 0.63

AOT (550 nm) – coarse −0.008 0.06 0.030 0.82

Spherical fraction – coarse −0.016 0.25 0.207 0.50

Aerosol layer height (m) 42.424 1225.19 963.06 0.84

Li-Sparse BRDF parameter −0.002 0.02 0.015 0.95

Ross-Thick BRDF parameter −0.008 0.13 0.079 0.96

Maignan BPDF parameter −0.086 0.79 0.46 0.96

Isotropic scatt. coeff. (410 nm) −0.001 0.01 0.006 0.96

Isotropic scatt. coeff. (470 nm) −0.001 0.01 0.006 0.98

Isotropic scatt. coeff.(550 nm) −0.001 0.02 0.009 0.98

Isotropic scatt. coeff. (670 nm) −0.001 0.02 0.010 0.99

Isotropic scatt. coeff.(865 nm) −0.001 0.02 0.014 0.98

the requirements for use in climate models (Wang et al., 2004; He et al., 2014, and references therein). Coarse mode effective

radius and effective variance appear to be the most problematic parameters, and it can be said that no retrieval capability is

displayed by the neural network for these two parameters. In general, the retrieval accuracy for coarse mode aerosol parameters

seems worse than for fine mode parameters. This is possibly due to the particular choice of the statistical distribution of the

training data, where coarse mode dominated scenarios are underrepresented with respect to fine mode dominated cases. The5

prevalence of cases with a small total aerosol load in the training set also explains the good retrieval capability of the neural

network for surface BRDF and BPDF parameters.

Scatter plots of the fine and coarse mode AOT and of the fine mode effective radius are shown in Figures 4 and 5. Figure

6 shows scatter plots of an average between fine and coarse mode complex refractive index weighted by the AOTs of the two

modes. The plots are computed including data with total AOT larger than 0.1. Figures 7 and 8 show scatter plots of retrieved10

versus true BRDF and BPDF parameters and fiso coefficients at all wavelengths, respectively.
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Figure 4. Neural network retrieved versus true fine and coarse mode AOT from synthetic test data.
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Figure 5. Neural network retrieved versus true fine mode effective radius from synthetic test data. Only cases with fine mode AOT larger

than 0.1.
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Figure 6. Neural network retrieved versus true real and imaginary part of the refractive index, weighted by mode AOT. Synthetic data. Only

cases with total AOT larger than 0.1
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Figure 7. Neural network retrieved versus true Ross-Thick and Li-Sparse BRDF parameters and Maignan BPDF parameter from synthetic

test data.
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Figure 8. Neural network retrieved versus true fiso coefficients from synthetic test data, at the five wavelengths considered in this study.
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5 Use of the neural network outputs in a Phillips-Tikhonov retrieval scheme

The Phillips-Tikhonov retrieval scheme performs an iterative minimization of the following cost function:

C(x) = [y−F (x)]TS−1
ε [y−F (x)] + γ(x−xa)H(x−xa) (4)

In Eq. (4), x is the state vector, xa is an a priori state vector, y is the measurement vector, F (x) is the simulated measurement

vector corresponding to the state x, Sε is the measurement error covariance matrix, H is a regularization matrix and γ is5

a regularization parameter, which is determined using the L-curve method (Hansen and O’Leary, 1993). The metric used to

evaluate the convergence of a Phillips-Tikhonov retrieval is the so-called goodness-of-fit parameter

χ2 =
1

m

m∑
i=1

[yi−Fi(x)]2

σ2
i

(5)

where m is the dimension of the measurement vector, yi and Fi(x) are the i-th components of y and F (x) respectively, and

σi is the standard deviation of the measurement error for yi (i= 1, . . . ,m). We empirically found that a retrieval can be said to10

have converged successfully if it achieves a goodness-of-fit parameter smaller than 2.

In order to test the effect of updating the neural network retrievals through a Phillips-Tikhonov iterative scheme, we applied

the combined algorithm to a sample of 5000 data, randomly picked from the approximately 2×105 data used to test the neural

network alone. The choice of using a subset of the data was made because applying the combined retrieval to the entire test

dataset would have required a much longer processing time. Out of the 5000 synthetic retrievals, 4798 converged to a χ215

parameter smaller than 2.

The statistics of the comparison between the neural network retrieval and the combined neural network-Phillips-Tikhonov

retrieval are shown in Table 3. It can be seen that the combined retrieval produces an appreciable improvement over the neural

network retrieval on parameters such as the AOT, the single scattering albedo (SSA) and the fiso coefficients especially at the

three shortest wavelengths. For these parameters, a reduction in the RMS error by almost a factor two is observed. A noticeable20

improvement in the correlation coefficient is present for the fine mode effective radius and the coarse mode FSP. For parameters

such as aerosol refractive indices and aerosol layer height the improvement brought by the Phillips-Tikhonov retrieval appears

less significant. Plots of retrieved versus true fine and coarse mode AOT, SSA and aerosol layer height are shown in Fig. 9 as

examples.
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Table 3. RMS error and correlation coefficient between true and retrieved parameters for the neural network retrieval alone (NN) and for the

combined NN-Phillips-Tikhonov algorithm (NN+PT).

NN NN+PT

Parameter RMSE Corr. RMSE Corr.

Eff. radius (µm) – fine 0.018 0.86 0.013 0.93

Eff. variance – fine 0.047 0.59 0.044 0.67

Refr. index (real) – fine 0.059 0.83 0.050 0.88

Refr. index (im.) – fine 0.054 0.89 0.053 0.90

AOT (550 nm) – fine 0.062 0.94 0.032 0.98

Eff. radius (µm) – coarse 0.440 0.07 0.447 0.42

Eff. variance – coarse 0.056 0.09 0.091 0.14

Refr. index (real) – coarse 0.083 0.69 0.074 0.76

Refr. index (im.) – coarse 0.093 0.66 0.091 0.67

AOT (550 nm) – coarse 0.057 0.82 0.039 0.92

Spherical fraction – coarse 0.254 0.46 0.230 0.62

Aerosol layer height (m) 1217.82 0.84 1135.06 0.86

SSA (410 nm) 0.054 0.94 0.034 0.97

Li-Sparse BRDF parameter 0.027 0.93 0.021 0.96

Ross-Thick BRDF parameter 0.137 0.95 0.101 0.97

Maignan BPDF parameter 0.843 0.96 0.597 0.98

Isotropic scatt. coeff. (410 nm) 0.010 0.96 0.005 0.99

Isotropic scatt. coeff. (470 nm) 0.010 0.98 0.006 0.99

Isotropic scatt. coeff.(550 nm) 0.014 0.98 0.008 0.99

Isotropic scatt. coeff. (670 nm) 0.017 0.99 0.011 0.99

Isotropic scatt. coeff.(865 nm) 0.022 0.99 0.016 0.99
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Figure 9. Plots of retrieved versus true fine mode AOT (upper left panel), coarse mode AOT (upper right), SSA at 410 nm (lower left) and

aerosol layer height (lower right) for the neural network (NN) and the Phillips-Tikhonov algorithm using the neural network results as first

guess (NN+PT), on a sample of 4798 synthetic test cases. Statistics are given in Table 3.
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Figure 10. Map of the RSP data used in this study. The red thin lines indicate RSP flights, the red crosses indicate the availability of CPL

data and the blue triangles indicate the locations of the AERONET stations.

6 Application to RSP measurements

The neural network scheme described in Section 4 has been used as initial guess for a Phillips-Tikhonov retrieval scheme

described in Wu et al. (2015) in order to process a collection of RSP measurements carried out during the PODEX and

SEAC4RS campaigns which took place in 2012 and 2013 over several areas of the United States and part of Canada. A total of

7770 measurements have been collected, and the data of 36 AERONET stations have been used for validation. Furthermore,5

data from the Cloud and Physics Lidar (CPL, McGill et al., 2002), hosted on the NASA ER-2 aircraft together with RSP, have

been used to validate aerosol layer height retrievals and to perform cloud screening. A map of the considered flights and of the

AERONET stations used for validation is shown in Fig. 10 and the full list of AERONET stations providing validation data is

given in Table 4.

In order to reduce the angular oscillations in RSP measurements due to imperfect coregistration, two pre-processing steps10

have been applied to RSP measurements before the application of the retrieval algorithm. First, the measurements have been

averaged over a 5 km box, as in Wu et al. (2015). Second, each horizontally averaged multiangular RSP measurement has

been convolved with a moving-average Blackman filter of length 5. As explained in Section 3, only the measurements made at

VZAs between 40◦ aftward and 40◦ forward have been used as input for the neural network. The measurement vector for the

Phillips-Tikhonov retrieval described in Section 5, instead, covers the entire VZA range of RSP. The Phillips-Tikhonov scheme15

uses 9 viewing angles, selected on a measurement-by-measurement basis in order to cover a scattering angle range that is as

broad as possible, thereby maximizing the sensitivity of the spectropolarimetric measurements to the aerosol properties (Wu

et al., 2015).

For the purpose of validating AOT retrievals, we considered each RSP measurement as co-located with an AERONET

measurement if the distance between RSP and AERONET was not larger than 5 km and the measurements were taken no20
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Table 4. List of the AERONET stations used for validation in this study.

Station name Lat. Lon.

Baskin 32.28 -91.74

Bozeman 45.66 -111.04

Caldwell Parish HS 32.06 -92.10

CART Site 36.61 -97.49

DRAGON Aldine 29.90 -95.33

DRAGON Arvin 35.24 -118.79

DRAGON Bakersfield 35.33 -119.00

DRAGON Channel View 29.80 -95.13

DRAGON Clinton 29.73 -95.26

DRAGON Clovis 36.82 -119.72

DRAGON Conroe 30.35 -95.43

DRAGON Corcoran 36.10 -119.57

DRAGON Deer Park 29.67 -95.13

DRAGON Drummond 36.71 -119.74

DRAGON Garland 36.78 -119.77

DRAGON Hanford 36.32 -119.64

DRAGON Huron 36.21 -120.11

DRAGON Madera City 36.95 -120.03

DRAGON ManvelCroix 29.52 -95.39

DRAGON NW Harris Co. 30.04 -95.67

DRAGON Parlier 36.60 -119.50

DRAGON Porterville 36.03 -119.06

DRAGON Shafter 35.50 -119.27

DRAGON Tranquility 36.63 -120.38

DRAGON UH W Liberty 30.06 -94.98

DRAGON Visalia 36.31 -119.39

DRAGON West Houston 29.83 -95.66

Fresno-2 36.78 -119.77

IMPROVE-MammothCave 37.13 -86.15

Leland HS 33.40 -90.89

Mingo 36.97 -90.14

Railroad Valley 38.50 -115.96

SEARCH Centreville 32.90 -87.25

SEARCH Centreville2 32.90 -87.25

Univ. of Houston 29.72 -95.34

Upper Buffalo 35.83 -93.20
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Figure 11. Histogram of the goodness-of-fit parameter (χ2) of all the available retrievals.

longer than 1 hour apart. For validation of aerosol properties other than AOT we had to relax the co-location criterion by

allowing for a threshold of 20 km in distance and one day in time. This was necessary in order to ensure the availability of an

adequate number of data points. Additional criteria imposed for validation were the following: (i) minimum scattering angle

of RSP measurements not larger than 85◦; (ii) only RSP measurements flagged as cloud-free from CPL (cloud flag equal to 0)

were considered; (iii) thresholds on AOT (explained later in this section) were applied when validating aerosol properties other5

than the AOT. Out of the original dataset consisting of 7770 measurements, 2327 measurements satisfied the screening criteria

(i) and (ii).

In total we found 95 AOT retrievals fulfilling the co-location criteria with distance threshold set to 5 km and 825 retrievals

with the looser threshold of 20 km. 25 co-located retrievals satisfied the goodness-of-fit criterion mentioned earlier in this

section (χ2 < 2) with 5 km threshold, whereas 103 retrievals met the same criterion with the 20 km threshold. The total10

number of converging retrievals (i.e., including non co-located retrievals) was 223 out of the 2327 retrievals satisfying the

criteria mentioned above on CPL cloud flag and minimum scattering angle. Thus, to summarize, approximately 10% of the

retrievals achieved a χ2 smaller than 2. A histogram of the χ2 of all the retrievals is shown in Fig. 11. Approximately 75% of

the retrievals reached a χ2 less than 10, which is the convergence threshold used in Wu et al. (2015). Retrievals with a larger

χ2, which form the tail of the distribution, are probably due to measurements still affected by angular oscillations after the15

filtering described earlier in this section.

Scatter plots of the retrieved AOTs versus those provided by the AERONET Level 2 product based on the direct-sun algo-

rithm (Holben et al., 1998) at four AERONET wavelengths are shown in Fig. 12. The results of the neural network alone as

well as those of the Phillips-Tikhonov retrieval scheme are shown. The RMS errors of neural network retrievals range between

approximately 0.04 at 870 nm and 0.07 at 440 nm. The application of the Phillips-Tikhonov retrievals brings the RMS error20

down to about 0.045 at all wavelengths (see Table 6). Looking at the plots, it appears that the Phillips-Tikhonov retrieval brings

an improvement over the neural network retrieval in cases with AOT at 440 nm around 0.3 and larger. The neural network
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Figure 12. RSP versus AERONET total AOT at the four AERONET wavelengths lying inside the spectral range of the RSP measurements

used in this study. Black crosses: neural network retrievals. Red crosses: Phillips-Tikhonov with neural network first guess. Statistics shown

in Table 6.

Table 5. RMS difference between RSP and AERONET in the AOTs retrieved using the Phillips-Tikhonov scheme initialized by neural

network at four wavelengths, as a function of the maximum tolerated distance for co-location.

Max. distance N. data 440 nm 500 nm 675 nm 870 nm

5 km 25 0.044 0.044 0.045 0.045

10 km 46 0.047 0.047 0.051 0.052

15 km 71 0.067 0.068 0.070 0.069

20 km 103 0.071 0.072 0.074 0.074

seems to underestimate the AOT in these cases, whereas the Phillips-Tikhonov seems to bring the retrieved values closer to the

AERONET values. It is worthwhile to note that the error statistics seem to depend critically on the distance threshold chosen

for co-location, as shown in Table 5, from which a steady increase in the RMS error is evident as the co-location criterion is

relaxed.

A comparison between RSP and AERONET 440-675 nm Ångström exponents, restricted to cases with retrieved AOT at5

440 nm larger than 0.1, is shown in Fig. 13. From the figure it is evident that RSP retrieves systematically lower Ångström

22



Figure 13. RSP versus AERONET 440-675 nm Ångström exponent. Black crosses: neural network retrievals. Red crosses: Phillips-Tikhonov

with neural network first guess. Statistics shown in Table 6.

exponents than indicated by AERONET, which means that our retrieval algorithm may have a tendency to overestimate the

size of aerosol particles.

A good agreement between RSP and AERONET is observed for the fine mode effective radius derived from the Level 2

almucantar product (Dubovik and King, 2000; Dubovik et al., 2000). The results of the comparison – which is limited to cases

with retrieved AOT at 440 nm larger than 0.2 – are shown in Fig. 14. The RMS errors are slightly lower than 0.03 µm for both5

the neural network retrieval and the final retrieval. As mentioned before, the presence of an additional filter on AOT required

us to relax the co-location distance to 20 km in order to obtain a reasonable amount of data points. For this co-location criterion

we obtained 46 data points, whereas adopting a stricter criterion of 10 km the number of data would drastically drop to 16.

Comparisons for complex refractive index and SSA are not shown because no AERONET data points satisfying the quality

assurance criteria for Level 2 products (Holben et al., 2006) were found.10

A comparison between the retrieved aerosol layer heights and CPL measurements has been made by taking into account

all the cases in which the retrieved AOT at 440 nm was larger than 0.1. In Fig. 15 a plot of retrieved aerosol heights versus

coincident CPL measurements is shown, with 141 coincident retrievals that passed the convergence and the other screening

criteria. It is possible to see that the neural network retrievals alone are already in good agreement with the CPL, with a RMS

error around 1670 m and a correlation coefficient of 0.76. No clear improvement is observed over the neural network retrieval15

after the Phillips-Tikhonov algorithm is applied. On the contrary, a slight degradation of the validation statistics is observed

(RMS difference around 1735 m and correlation coefficient around 0.75), but it is doubtful that these differences bear any

statistical significance. The results of the comparison seem also consistent with those shown in Wu et al. (2016), where an

iterative algorithm with multiple LUT-based initialization was adopted.

The full statistics regarding bias, RMS error and correlation coefficient for the comparisons shown in Figs. 12 to 15 are20

shown in Table 6.
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Figure 14. RSP versus AERONET fine mode effective radius. Black crosses: neural network retrievals. Red crosses: Phillips-Tikhonov with

neural network first guess. Statistics shown in Table 6.

Figure 15. RSP versus CPL aerosol layer height. Black crosses: neural network retrievals. Red crosses: Phillips-Tikhonov with neural

network first guess. Statistics shown in Table 6.
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Table 6. Error statistics from the comparisons shown in Figs. 12 to 15. for the neural network(NN) and for the Phillips-Tikhonov retrieval

initialized using the neural network (NN+PT).

NN NN+PT

Parameter N.data Bias RMSE Corr. Bias RMSE Corr.

AOT (440 nm) 25 −0.02 0.07 0.51 0.01 0.04 0.82

AOT (500 nm) 25 −0.01 0.06 0.48 0.02 0.04 0.80

AOT (675 nm) 25 0.01 0.05 0.35 0.02 0.04 0.69

AOT (870 nm) 25 0.01 0.04 0.18 0.02 0.04 0.50

Ångström exp. (440-675 nm) 20 −0.50 0.68 0.11 −0.44 0.61 0.14

Fine mode eff. radius [µm] 46 −0.02 0.03 0.66 −0.01 0.03 0.76

Aerosol layer height [km] 141 0.45 1.67 0.76 0.58 1.73 0.75

Compared to the traditional algorithm initialized by a LUT (Hasekamp et al., 2011; Wu et al., 2015), the algorithm initialized

by means of the neural network is characterized by a larger number of converging retrievals and a lower processing time. By

applying the LUT-based algorithm to the dataset using in this study we obtained in total 47 converging retrievals (223 with

the neural network). The time required in order to process the entire dataset can be reduced by roughly a factor 2 when using

the neural network algorithm to provide the first guess. The differences in the retrieved aerosol parameters between the LUT-5

based algorithm and the NN-based do not seem significant. The same tendency to overestimate coarse mode aerosol loads is

also observed in LUT-based retrievals. Plots of retrieved versus AERONET (or CPL) aerosol parameters for the LUT-based

algorithm are given in the supplementary material.

7 Conclusions

In this paper we have demonstrated the application of neural networks to aerosol retrievals from the RSP instrument. First,10

we trained a neural network to retrieve aerosol and surface properties from simulated multiangle spectropolarimetric mea-

surements, with an observation geometry that simulates that of RSP. Then we have applied the neural network to real RSP

measurements carried out over the United States in 2012 and 2013, and we have used the neural network retrieval as first guess

for an iterative algorithm based on the Phillips-Tikhonov method.

In order to assess the quality of our retrievals, we compared the retrieved aerosol parameters and aerosol layer heights to15

co-located AERONET and CPL lidar measurements, respectively. We observed good retrieval capability for AOT (although

with a possible overestimation of the coarse mode), fine mode effective radius and aerosol layer height. A comparison of the

retrieval results with those obtained using an iterative algorithm initialized using a LUT confirms the finding that replacing the

LUT with a neural network generally leads to a higher number of converging retrievals and to a reduced processing time.

Out of 2327 RSP measurements which passed screening criteria based on scattering angle and cloudiness, the application of20

the combined neural network / Phillips-Tikhonov scheme led to 223 retrievals which converged to a goodness-of-fit indicator
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lower than 2. 47 converging retrievals were obtained, instead, using the previous version of the retrieval scheme, in which

a LUT was used instead of the neural network to provide the first guess for the Phillips-Tikhonov algorithm. Thus, even

with the neural network / Phillips-Tikhonov retrieval scheme, about 10% of the retrievals satisfied the convergence criterion,

which, in absolute terms, is a relatively low percentage. This behaviour may be due to several factors, ranging from residual

co-registration errors in RSP to inadequacies in the assumptions in the surface model.5

Training a neural network algorithm for multi-parameter aerosol retrievals from airborne or satellite multi-angle spectropo-

larimetric measurements remains challenging. In our case, for example, the use of a training set encompassing mostly fine

mode dominated cases with moderate to low aerosol loads resulted in better retrieval capabilities for the fine mode aerosol

parameters than for the coarse mode parameters, and in good retrieval capabilities for all the surface parameters. Choosing a

mixture of training cases for a single neural network that allows to achieve equal performances for all the aerosol and surface10

parameters on fine mode as well as on coarse mode dominated situations, or with low as well as with high aerosol loads, may be

a challenging task. A possible improvement over the present work may involve training multiple neural networks, each cover-

ing a certain range of situations, with possibly an additional neural network that performs a preliminary classification, thereby

deciding which of the lower level networks should be used for retrieval. Approaches of this kind have been already applied to

simple inverse scattering problems involving spheres and spheroids (Ulanowski et al., 1998; Berdnik et al., 2004), and may be15

as well investigated – with due adaptations – for more complex retrievals. The aforementioned approach may be also useful

for extending the method presented in this paper to multi-angle spectropolarimeters in which the angular dependence of the

measurements is more complicated, such as POLDER, AirMSPi and the forthcoming 3MI, where it is not possible to assume

that all the measurements are made at the same relative azimuth angle apart from shifts of 180◦.
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