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Abstract. Three-dimensional (3D) radiative transfer effects are a major source of retrieval errors in satellite-based optical re-

mote sensing of clouds. In this study, we present two retrieval methods based on deep learning. We use deep neural networks

(DNNs) to retrieve multipixel estimates of cloud optical thickness and column-mean cloud droplet effective radius simultane-

ously from multispectral, multipixel radiances. Cloud field data are obtained from large-eddy simulations, and a 3D radiative

transfer model is employed to simulate upward radiances from clouds. The cloud and radiance data are used to train and test the5

DNNs. The proposed DNN-based retrieval is shown to be more accurate than the existing look-up table approach that assumes

plane-parallel, homogeneous clouds. By using convolutional layers, the DNN method estimates cloud properties robustly, even

for optically thick clouds, and can correct the 3D radiative transfer effects that would otherwise affect the radiance values.

1 Introduction

Clouds play an important role in determining the radiation budget of the Earth. To understand how, it is necessary to know10

about the global distribution of cloud properties such as optical thickness (COT) and cloud droplet effective radius (CDER).

These particular cloud properties are retrieved globally by optical remote sensing from various satellites. A standard method for

COT and CDER retrieval is the bi-spectral method that is used to produce the Moderate Resolution Imaging Spectroradiometer

(MODIS) cloud product (Nakajima and King, 1990; Platnick et al., 2003). This method uses solar reflection measurements at

two wavelengths, one with and the other without absorption by water droplets. The nonabsorbing wavelength is selected in15

the visible or near-infrared part of the spectrum, whereas the absorbing one is in the shortwave infrared (SWIR) part, typically

around 1.6, 2.1, or 3.7 µm. The method is based on the independent pixel approximation (IPA) assuming plane-parallel,

homogeneous cloud for each pixel of the satellite image, whereas the observed cloud radiances result from three-dimensional

(3D) radiative transfer in the cloud field. The radiances are influenced by horizontal and vertical inhomogeneities within clouds,

as well as to the horizontal radiative transport that occurs in an inhomogeneous cloud field. Previous studies have pointed20

out that cloud inhomogeneities and 3D radiative effects produce large errors in the retrieved cloud properties (Iwabuchi and

Hayasaka, 2002, 2003; Zhang and Platnick, 2011; Zhang et al., 2012). Studies using observational data have confirmed the

dependency of such retrieval errors on both the cloud state and the sun–cloud–satellite viewing geometry (Liang et al., 2009;

Liang and Girolamo, 2013; Grosvenor and Wood, 2014).

1

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-154
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 30 June 2017
c© Author(s) 2017. CC BY 3.0 License.



Satellite image data with relatively coarse resolution does not contain sufficient information about in-pixel inhomogeneity.

Although statistical bias correction is possible (Iwabuchi and Hayasaka, 2002), it is still difficult to perform error correction

on each pixel, especially if unresolved in-pixel inhomogeneity is the major source of error. For finer-resolution imagery, by

contrast, retrieval errors from inter-pixel horizontal radiative transport become more important. The radiance observed at each

pixel is determined by the spatial arrangement of cloud water in the target pixel and its neighbors. This necessitates consid-5

eration of the adjacent cloud effects when estimating the cloud properties at the target pixel. Iwabuchi and Hayasaka (2003)

attempted to correct the horizontal transport effect by using multispectral, multipixel radiances to retrieve COT and CDER.

They fitted a polynomial function of the multispectral radiances at the target and adjacent pixels to the IPA radiances at the

target pixel. Because 3D radiative effects differ for COT and CDER, Iwabuchi and Hayasaka (2003) had to construct different

sets of numerous fitting coefficients for COT and CDER, which was an obstacle to generalizing their algorithm.10

To consider adjacency effects in a generalized manner, neural networks (NNs) (also known as multilayer perceptrons) are

useful, as they have been used in cloud detection and retrieval. Minnis et al. (2016) used an NN recently to estimate the COT

of ice clouds from MODIS multispectral infrared radiances. Using an NN is considered a better way to achieve high accuracy

when accounting for 3D radiative effects in the retrieval of cloud properties, because doing so creates a more complex problem.

Some studies have already proposed such applications to the problem of 3D clouds. Faure et al. (2001, 2002) showed the15

feasibility of using NNs to retrieve cloud properties (i.e., mean optical thickness, mean effective radius, fractional cloud cover,

and subpixel-scale cloud inhomogeneity) from multispectral and multipixel radiance data at wavelengths of 0.64, 1.6, 2.2,

and 3.7 µm and a horizontal resolution of 0.8 km × 0.8 km. Their results show that NN retrieval can be improved by using

the radiances of adjacent pixels. Cornet et al. (2004) also showed the feasibility of using NNs to retrieve cloud properties

(i.e., mean optical thickness, mean effective radius, fractional cloud cover, inhomogeneity parameters of optical thickness and20

effective radius, and cloud-top temperature) from multispectral and multiscale radiance data. They used horizontal resolutions

of 0.25 km × 0.25 km at wavelengths of 0.544, 1.6, and 2.15 µm and 1 km × 1 km at wavelengths of 0.544, 1.6, 2.15, 3.65,

and 10.8 µm.

More recently, the deep learning (a kind of machine-learning techniques), which uses deep neural networks (DNNs), has

become a useful tool in various applications. Deep learning involves training a DNN that has three or more layers with a25

network structure that is more complex than that used previously. An advantage of deep learning is automatic feature extraction:

features are extracted hierarchically, thereby extending applicability to more complex problems. A DNN is more suitable

for approximating complex nonlinear functions of many variables because the ability to approximate a function is generally

improved by using a deeper NN. Recent advances in computer technology, such as multicore central processing units (CPUs)

and general-purpose graphics processing units (GPGPUs), have facilitated calculations involving the large training datasets30

that are required for DNNs. In addition, a number of DNN optimization algorithms have been proposed in the past few years.

The present study is aimed at using a DNN approach to retrieve the COT and CDER of inhomogeneous clouds, and at

testing the feasibility of a multispectral, multipixel approach based on DNNs. For training and testing, we use 3D cloud-

field data generated by large-eddy simulation (LES) and radiances generated by a 3D radiative transfer model. The outline

of this paper is as follows. Section 2 explains the cloud-field data and radiative-transfer simulations that are used to generate35
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the training and test datasets. Section 3 describes the designs and configurations of our DNNs and the preprocessing methods.

Section 4 presents results of performance comparisons for cloud retrieval using DNNs, IPA, and a simple NN. Finally, Section 5

concludes the paper with a discussion on the merits of DNN-based cloud retrieval.

2 Data

2.1 SCALE-LES cloud-field data5

Three-dimensional cloud-field data are generated using an LES model known as SCALE-LES (Sato et al., 2014, 2015;

Nishizawa et al., 2015). The double-moment bulk scheme is used for the cloud microphysics. The cloud liquid-water mass

mixing ratio and number density are obtained at each grid point in the domain. Figure 1 shows examples of such cloud-field

data for two types of boundary-layer cloud: closed-cell and open-cell. These cloud types are simulated for polluted (closed) and

clean (open) aerosol conditions (Sato et al., 2014). Clouds are optically thick in the closed case, whereas they are optically thin10

with large precipitation rates in the open case. Each case consists of 60 time steps at 1-min intervals. The CDER is calculated

as

re =
1
χ

(
3
4π

LWC
ρbN

) 1
3

, (1)

where χ is a constant depending on width of the droplet size distribution, LWC is the liquid water content, ρb is the density of

water, and N is the droplet number density.15

As shown in Fig. 1, the extinction coefficient and CDER in both cases tend to increase with height from the cloud base

toward the cloud top, although the IPA retrieval assumes a homogeneous cloud. The CDER has a particularly inhomogeneous

vertical structure in the closed-cell case. In the open-cell case, the CDER spatial variability is high in general, particularly

so in the uppermost core parts of cells. In this study, the column-mean LWC and number density are used to calculate the

column-mean effective radius Re, which is defined as20

Re =
1
χ

(
3
4π
〈LWC〉
ρb 〈N〉

) 1
3

, (2)

where 〈.〉 denotes the column mean. Note the similarity between the definition of Re in Eq. (2) and that of re in Eq. (1). The

Re is considered as droplet size representative for each cloud column, and retrieval performance of Re will be discussed in

Section 4.

Figure 2 shows temporal variations of (a) the domain-mean COT, (b) the domain-mean column-mean CDER, (c) the cloud25

fraction, and (d) the inhomogeneity index H . Throughout this paper, we take the COT to be that at a wavelength of 0.55 µm.

The horizontal inhomogeneity index H is defined as

H =
σ2
τ

τ2 , (3)

where στ is the standard deviation of the COT and τ is the mean COT. The coefficient of COT variation,
√
H , has been used

often in previous studies (Szczap et al., 2000; Liang et al., 2009; Liang and Girolamo, 2013). Clouds in the closed-cell case are30
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optically thick and horizontally homogeneous, covering almost the entire sky and giving a high cloud fraction. Therefore, as can

be seen in Fig. 2(a, b), the domain-averaged COT and CDER remain almost constant over the entire period. In contrast, clouds

in the open-cell case are distributed sparsely, meaning that the inhomogeneity indexH is larger than that in the closed-cell case

and increases gradually over time. The domain-averaged CDER is larger in the open-cell case than it is in the closed-cell case.

2.2 Radiative transfer simulations5

A Monte Carlo 3D radiative transfer model known as MCARaTS (Monte Carlo Radiative Transfer Simulator; Iwabuchi (2006))

is used to simulate the cloud radiances. The radiances reflected in the zenith direction are calculated for solar zenith angles

(SZAs) of 20◦ and 60◦ at wavelengths of 0.86, 1.64, 2.13, and 3.75 µm. The aerosol optical properties are derived using

the one-dimensional RSTAR6b radiative transfer code (Nakajima and Tanaka, 1986, 1988). The aerosol optical thickness is

assumed to be 0.2, and the rural aerosol model is used (Hänel, 1976). A correlated k-distribution is used for gaseous absorption10

by H2O, CO2, O3, N2O, CO, CH4, and O2 molecules (Sekiguchi and Nakajima, 2008). Rayleigh scattering by air molecules

is included in the scattering process. The particle size distribution of water cloud droplets is expressed as a log-normal volume

(V ) distribution

dV
dlnr

= C exp

[
−1

2

(
lnr− lnrmod

lns

)2
]
, (4)

where r is the particle radius, C is the maximum value of the volume distribution at mode radius rmod, and s is the width of15

the distribution. In this study, we assume s= 1.5. The CDER re is related to rmod by re = rmod exp(−1/2× (lns)2). The χ

parameter in Eqs. (1) and (2) is determined as χ= rvol/re = exp(− ln2 s) = 0.84, where rvol is the volume mean radius. The

scattering properties of water cloud droplets are calculated using the Lorenz–Mie theory (Bohren and Huffman, 1983). For

simplicity, the underlying surface is approximated as black.

3 Method20

3.1 Design and configuration of DNNs

Each layer in the DNNs consists of multiple network units, each of which receives input signals from the previous layer,

computes a weighted sum and add a bias, as follows:

x=
∑

k

wkx
′
k + b, (5)

where x′k is the kth input signal, wk is the corresponding weight, and b is the bias. The weights and bias are determined in the25

training stage. The result x is usually transformed by a function known as the activation function to obtain an output signal. In

this study, we use a rectified linear function (Nair and Hinton, 2010) defined as

f(x) = max(0,x) (6)
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for the activation function. Of the various activation functions used for NNs, this rectified linear function is relatively simple,

leads to good learning efficiency, and is the one used most commonly in recent DNN applications.

The DNNs used in this study are designed to estimate COT and column-mean CDER simultaneously at multiple pixels from

multipixel, multispectral radiances. This is a unique point compared to previous studies. Larger input and output vectors allow

more degrees of freedom for the features to be learned in the DNNs. Two types of DNN were constructed:5

1. DNN-2r (with IPA retrieval and two wavelengths) that corrects IPA retrievals based on 0.86 and 2.13 µm radiances using

the radiances at those same wavelengths (0.86 and 2.13 µm);

2. DNN-4w (with four wavelengths) that uses the so-called convolutional layer and retrieves cloud properties directly from

the radiances at 0.86, 1.64, 2.13, and 3.75 µm.

The DNN-2r network is designed to correct the IPA retrieval of COT and CDER that originated from multispectral radiances.10

The elements of the DNN-2r input vector are the radiances at wavelengths of 0.86 and 2.13 µm, and the COT and CDER

estimated by the IPA retrieval for 10 × 10 pixels at 280-m resolution. Thus, the input vector has 400 = (10 × 10 × (2 +2))

elements. Figure 3 shows the DNN-2r structure schematically; the COT and CDER distributions are estimated at 8 × 8 pixels

at the center of the input field, and the output vector has 128 = (8 × 8 × 2) elements. The DNN-2r network consists of several

fully connected layers in which each unit is connected with all units in the previous layer. The final part of DNN-2r consists of15

two independent groups of layers that finally estimate the COT and CDER. As in the residual network designed by He et al.

(2015), the DNN-2r network has what are known as shortcuts, which allow residuals to be learned. The NN should be trained

to predict the correction terms that are added to the data from the shortcut path. Such shortcuts facilitate machine learning,

even in cases with many NN layers. In this way, the DNN-2r network can be considered a way to correct the IPA retrievals.

The DNN-4w structure is shown schematically in Fig. 4. The input comprises radiance distributions at four wavelengths20

(0.86, 1.64, 2.13, and 3.75 µm) and 10 × 10 pixels of 280-m resolution. Thus, the input vector has 400 = (10 × 10 × 4)

elements. Unlike in DNN-2r, the COT and CDER distributions in DNN-4w are predicted at the center of 6 × 6 pixels of

the input field, and the output vector has 72 = (6 × 6 × 2) elements. As well as shortcuts, the DNN-4w network has two

convolutional layers that consist of units that compute the convolutions. In the first convolutional layer, convolutions operate

on 5 × 5 pixels surrounding the center pixel, with 100 different profiles of filter weight for each wavelength. The number25

of filters is a product of the numbers of input channels (wavelengths) and output channels. There are 400 filters in the first

convolutional layer because the number of input wavelengths is 4 and that of output channels is 100. A convolutional signal

xm of the mth output channel at a pixel is represented as

xm =
∑

l

∑

k

wk,l,mx
′
k,l,m + bm, (7)

where x′k,l,m and wk,l,m are the input signal and the corresponding filter weight for the kth pixel (the target or a adjacent30

pixel) and lth input channel. The summation over k in Eq. (7) operates not all but only for the target pixel and adjacent

pixels. As shown in Fig. 4, the activation function is and is not applied to the signal xm in the first and second, respectively,

convolutional layer. Unlike a fully connected layer, a convolutional layer has the following two characteristics: 1) the input
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and output signals of a convolutional layer are sparsely connected, and 2) the filter profiles are defined independently for

input channels (wavelengths) but are shared among all pixels; the filter profile does not depend on pixel location in the input

image. A convolutional NN can detect a specific pattern in an image and is commonly used with high performance in image

recognition. In the problem with which the present study is concerned, we expect that using a convolutional layer will allow

the DNN to learn patterns that characterize the 3D radiative effects among the target pixel and those adjacent to it. We expect5

the DNN-4w network firstly to correct the 3D radiative transfer effects and then to transform the signals to COT and CDER

with the possibility of additional corrections of the 3D effect in this latter part.

Chainer, an NN framework developed by Tokui et al. (2015), is used to construct the DNNs. Chainer is used in a wide

variety of research fields because it covers common functions and algorithms for constructing DNNs and provides easy access

to efficient GPU-based computation. In the training, the DNN parameters are optimized to minimize the loss function, which10

is the sum of the squared residuals between the DNN output and ideal data in the training dataset. For this optimization, we

use the Adam (Adaptive moment estimation; Kingma and Ba (2014)) algorithm, which automatically determines the learning

rate at each training step using the mean and variance of the loss function.

An NN is expected to deliver meaningful and accurate retrievals for the dataset that it was trained on. However, in some cases,

the NN can be overfitted to the training dataset, thereby losing its ability to generalize and performing appreciably poorer for15

other data. Such overfitting is a serious problem in NNs. In the present study, we use the dropout technique (Srivastava et al.,

2014) to overcome this problem. The dropout technique removes randomly selected units from the NN at each step in the

training stage, decreasing the number of degrees of freedom of the NN and avoiding overfitting. An NN trained with dropout

can work like ensemble estimation that uses many different NNs that were trained independently. Dropout results in better

performance and is widely used in many applications.20

3.2 Generation of the training and test datasets

A training dataset is necessary for machine learning. In this study, the training dataset is generated as follows. The zenith

radiances are calculated using MCARaTS with 105 model photons incident on each pixel, which results in Monte Carlo noise

of approximately 1%. Such noise can be interpreted as measurement noise in the present problem. From two cases of SCALE-

LES cloud-field data, 1,977,440 samples are chosen randomly for the training datasets. As shown in Fig. 2, the 25th to 75th25

percentile ranges for COT are 0–5 and 11–15 for the open- and closed-cell cases, respectively. With a DNN, a variety of

training data is important for better generalization performance. To increase the variety of the COT training data, one half was

generated from original cloud data, whereas the other half was generated from artificially modified cloud fields in which the

cloud extinction coefficients were multiplied by numbers chosen randomly from the range 0.5–1.5.

To construct an efficient DNN, it is worth investigating the relationships between the input and output variables. In the DNN30

preprocessing, the cloud properties are transformed using

F (τ) =
(1− g)τ

1 + (1− g)τ , (8)

G(re) =
√
re, (9)
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where g is the asymmetry parameter. As a representative value for water droplets, we set g = 0.86 for preprocessing purposes

only. After the above transformations, all the DNN input and output data, including the radiances and cloud properties, are

normalized as

z′i,j =
zi,j − zj
σj

, (10)

where zi,j is the jth element of an input or output vector in the ith sample, and zj and σj are the mean and standard deviation,5

respectively, of the jth element over the all samples. This is referred to as z-score normalization and is known to improve the

efficiency of a DNN (Kotsiantis et al., 2006; Nawi et al., 2013).

The test dataset used for evaluation should be independent of the training dataset. In the present study, we generate the test

datasets in the same way as we do the training dataset, but with different random selections. The test datasets include 10,000

samples.10

4 Results

In this section, we illustrate the ability of DNNs to retrieve cloud properties and we compare this with the corresponding

abilities of existing methods. Values of COT and CDER are retrieved from test datasets by using DNNs and IPA. The retrieved

values are compared to the true values in the test datasets, and the retrieval errors at each pixel are evaluated. In the IPA retrieval,

COT and CDER are estimated from look-up tables of radiances at the wavelengths of 0.86 and 2.13 µm. These wavelengths15

are used in the MODIS product for retrieving cloud properties over oceans (Platnick et al., 2003). Also in the IPA retrieval, the

lower and upper limits for COT are zero and 150, respectively, and those for CDER are zero and 55 µm, respectively. If any

radiance strays beyond the associated range defined by the look-up tables, the COT/CDER value is forced to be the lower or

upper limit, as appropriate.

4.1 Retrieval results for DNN-2r and DNN-4w20

Figure 5 shows examples of the IPA and DNN-4w retrieval results for an open-cell case with a SZA of 60◦. Cross sections

taken at y = 14.56 km are shown in Fig. 6 with additional DNN-2r retrieval results. The sunny (left-hand) side of the COT

fluctuation peak is directly illuminated by the Sun. For pixels on that side, the radiances calculated by 3D radiative transfer

are brightened (illuminating effect), which results in the overestimation (resp. underestimation) of IPA retrievals of COT (resp.

CDER). For pixels on the opposite (right-hand) side, the radiances are darkened (shadowing effect) and IPA retrieval of COT25

(resp. CDER) is underestimated (resp. overestimated). These illuminating and shadowing effects have considerable influence

on the IPA retrieval. A phase lag appears in the IPA-retrieved horizontal COT distribution because of this illuminating and

shadowing; the IPA error in the COT is particularly large for optically thick parts. In contrast, the DNN retrieves COT values

that are close to the true values assumed in this test, successfully correcting the phase lag. However, minor errors are still

present in the DNN-retrieved COT.30
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As for the retrieved values of CDER, the DNN ones are obviously better than the IPA ones. The CDER is noticeably

overestimated at pixels for which the shadowing effect decreases the radiance, a fact that we attribute to the strong nonlinear

dependence of CDER on radiance. As a result, a positive bias appears in the IPA-retrieved CDER, which also shows an

appreciable fluctuation at small horizontal scales because SWIR radiances are sensitive to cloud-top variability at such scales.

In contrast, the DNN-retrieved CDER is generally highly accurate, although small-scale fluctuations of CDER are not very5

well reproduced.

The COT and CDER retrieval errors are evaluated for all the test datasets, and the mean and standard deviation of the

relative errors are calculated in bins that are equally spaced in the logarithm of COT and CDER. The results are evaluated

using 360,000 pixels for each SZA. In Fig. 7, the IPA and DNN-4w relative errors are plotted against the true COT and CDER

values. The IPA-retrieved COT error and its standard deviation are particularly large for a SZA of 60◦, at which the radiative10

roughening causes the 3D radiance to deviate from the IPA radiance. Both the COT and CDER retrieval errors are reduced

considerably by using the DNN, which suggests that the DNN is well trained to correct the 3D radiative transfer effects. The

DNN mean bias errors are generally closer to zero than are the IPA ones. Compared to the IPA, the DNN retrieves COT better,

even at optically very thick pixels. In particular, the COT error is markedly reduced for true COT values greater than 5 and for

an SZA of 60◦. At pixels with small COT (1 or less), the DNN overestimates COT, although the errors are still smaller than15

those for IPA retrieval.

The DNN also yields better CDER retrievals than does the IPA, with much smaller variability of CDER errors. For SZAs of

20◦ and 60◦, the IPA-retrieved CDER tends to be overestimated over almost the entire range of CDER. The IPA retrieval shows

a particularly large bias when the true CDER is small, although very few data are available for CDER values less than 15 µm,

as shown in Fig. 2. This overestimation of CDER can be partly attributed to the neglect of vertical inhomogeneity in the IPA20

retrieval. The reflected SWIR radiances (2.13 µm) give information about the cloud microphysical status only near the cloud

top (Platnick, 2000), and the IPA-retrieved CDER is associated primarily with the CDER near the cloud top (Nakajima et al.,

2010; Zhang et al., 2012; Nagao et al., 2013). IPA-retrieved CDER thus tends to be larger than column-mean CDER, whereas

DNNs are by design trained to estimate the column-mean CDER. However, overestimation of CDER in the IPA retrieval is

mainly observed at the shadowed pixels, as shown in Figs. 5 and 6. The IPA retrieval also shows large values of standard25

deviation of the relative errors, particularly for small values of CDER. Figures 5(a) and 5(b) show that the CDER tends to be

smaller at pixels with small COT. A small radiance perturbation due to 3D effects may result in a large error in the retrieved

CDER because of the weaker sensitivity of SWIR radiance to CDER in cases of small COT. However, the DNN-retrieved

values of column-mean CDER are close to the true values.

Figure 8 shows selected examples of the trained (5× 5)-pixel filters of the first convolutional layer used in DNN-4w for a30

SZA of 60◦. Only 16 of 100 filters are shown here, and each filter weight can be either positive or negative. The patterns in some

filters are nearly symmetrical around the center pixel with various spatial profiles, which suggests that they extract features that

characterize the relationship between the center pixel and those adjacent to it. For example, isotropic smoothing and second-

order central difference operators have such a symmetrical pattern. Also, several filters have higher weights in pixels along

the solar azimuth direction, which suggest a feature related to the solar direct beam that operates along that direction. In our35
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design of DNN-4w, different filters operate at each wavelength independently, whereas most of the obtained filters show strong

correlations among wavelengths. These patterns suggest that the combination of filter patterns in the DNN works to correct 3D

radiative effects to recover the information about local cloud properties. However, it is difficult at present to understand which

combinations of filter patterns perform such corrections in the DNN, or indeed how they do so.

4.2 Comparison with previous work using a neural network5

It is of interest to compare the performance of our present DNN with that of the NN used previously by Faure et al. (2001).

Originally, this NN had two hidden layers with 10 units each. However, in this comparison, we construct an NN with 512 units

in each layer to allow more degrees of freedom. The NN inputs for the present study are the radiances at four wavelengths

(0.86, 1.64, 2.13, and 3.75 µm) at the target pixel and eight adjacent pixels, as in Faure et al. (2001), and the outputs are COT

and CDER.10

Figure 9 shows comparisons of the NN and our DNNs. For a SZA of 20◦, the COT is well retrieved for true COTs of 10–50

for both the NN and DNNs. When the true COT is less than 10, the COT values from the NN and DNN-4w retrievals are

overestimated more for optically thinner clouds, although DNN-2r gives better estimates. The COT estimated by the NN tends

to be underestimated when the true COT is larger than 50, whereas DNN-2r and DNN-4w yield better retrievals in this range.

For an SZA of 60◦, the DNN retrievals of COT are generally better than the NN retrievals. The COT retrievals by the NN tend15

to be overestimated (resp. underestimated) for optically thin (resp. thick) clouds. This suggests that 3D radiative effects with

low sun are not well modeled in the current NN because it uses only 3 × 3 pixels, whereas the DNNs use 10 × 10 pixels.

Moreover, the multiple convolutional layers in the DNNs are more powerful for representing the complex 3D radiative effects

compared to the layers in the NN. In general, the DNN-2r retrievals show large error variability, with the largest standard

deviation among the three methods. The CDER is well retrieved by all three methods (NN and DNNs) when the true CDER is20

larger than 10 µm, although overestimating smaller CDERs is common among the three methods.

5 Conclusions

In this study, the feasibility of a multispectral, multipixel approach to retrieving COT and CDER using a deep learning technique

has been investigated. Two types of DNN were constructed: 1) DNN-2r that corrects IPA retrievals using the reflectances at

two wavelengths, and 2) DNN-4w that uses convolutional layers and retrieves cloud properties directly from the reflectances at25

four wavelengths. Both DNNs retrieve multipixel estimates of COT and CDER simultaneously from multispectral, multipixel

radiances. The DNNs were trained and evaluated by using SCALE-LES cloud-field data whose horizontal resolution was

280 m. Both DNNs outperformed IPA-based retrieval in relation to accuracy, and showed better ability to represent 3D radiative

effects compared to that of an NN used in previous work. The CDER retrievals of both DNNs were considerably better than

the corresponding IPA retrieval. Whereas the IPA retrieval appreciably overestimated the CDER at pixels that were affected30

by shadowing, the DNNs successfully corrected such 3D effects. The DNN-4w network was generally more accurate than

the DNN-2r network. Information that was lost in the IPA retrieval when the radiances came from look-up tables made for
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plane-parallel clouds limited the ability of the DNN-2r network to correct those retrievals sufficiently well. In contrast, the

DNN-4w network does not use IPA retrieval in its input, and therefore is more robust at retrieving cloud properties. In addition,

multipixel information and convolutional layers were shown to be efficient in improving cloud retrievals with 3D radiative

effects taken into account.

In the DNN-4w that we tested, we excluded 3D radiative transfer effects that occurred at horizontal scales greater than5

approximately 1.5 km (5 pixels). In addition, we considered cloud thickness of only less than 0.9 km, as shown in Fig. 1.

Therefore, it would be interesting to test the sensitivity and performance of the algorithm for input vectors for wider areas (more

pixels) of cloud. This is because 3D radiative transfer effects are known to operate on horizontal scales that are determined

mainly by cloud thickness and solar zenith angle (Marshak and Davis, 2005). In the future, the application of DNNs to cloud

remote sensing is expected to become more common. However, using DNNs with actual satellite data will require training for10

various types of cloud. Incorporating more parameters (e.g., sun–cloud–satellite geometry, surface albedo, aerosols, spectral

and spatial specifications of sensors) into the method will also be necessary to handle the complexities of such measurement

data.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of cloud properties in (a,c,e) closed-cell and (b,d,f) open-cell cases, taken from the 30th timestep of SCALE-LES

simulation data. (a,b) Horizontal distributions of COT, (c,d) vertical cross sections of extinction coefficients, and (e,f) vertical cross sections

of CDER.
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Figure 2. Temporal variations of (a) COT, (b) column-mean CDER, (c) cloud fraction, and (d) inhomogeneity index H . Solid lines shows

mean values, and dashed lines show the 25th and 75th percentiles. The cloud fraction and H are computed for pixels with COT > 0.3.
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Radiances
(10 × 10 × 2)

Estimated properties
(10 × 10 × 2)

fully-connected (8 × 8 × 2)

Estimated properties
(8 × 8 × 2)

+

fully-connected (1024) fully-connected (1024)

fully-connected (1024) fully-connected (1024)

fully-connected (8 × 8 × 2) fully-connected (8 × 8 × 2)

+ +

fully-connected
(COT; 8 × 8)

fully-connected
(CDER; 8 × 8)

Figure 3. Structure of the DNN-2r network. Blue rectangles denote fully-connected layers, and a red rectangle denotes the addition of two

vectors. A gray background indicates that the layer use the activation function. The numbers of units in each layer are shown in parentheses.
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Radiances (10 × 10 × 4)

Radiances (6 × 6 × 4)

convolutional (5 × 5, 100)

convolutional (1 × 1, 4)

+

fully-connected (1024) fully-connected (1024)

fully-connected
(COT; 6 × 6)

fully-connected
(CDER; 6 × 6)

Figure 4. The same as Fig. 3 but for the DNN-4w network. Yellow rectangles denote the convolutional layers, for which the numbers in

parentheses denote the filter size and the number of output channels. The number of filters is determined by multiplying the numbers of input

and output channels.
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(a)	 (b)	

(c)	 (d)	

(e)	 (f)	

Figure 5. Examples of estimated (a,c,e) COT and (b,d,f) CDER of IPA and DNN retrievals for a view zenith angle of 0◦. The sun is located

on the left-hand side with an SZA of 60◦. (a,b) True (reference) values of COT and CDER, (c,d) IPA retrievals, and (e,f) DNN-4w retrievals.
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Figure 6. Examples of horizontal distribution of estimated (a) COT and (b) CDER by the IPA and DNNs at y = 14.56 km in Fig. 5. The sun

is located on the left-hand side with an SZA of 60◦.
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Figure 7. Comparison of retrieval errors of DNN-4w and IPA for SZAs of (a,b) 20◦ and (c,d) 60◦. The horizontal axes show the true values

of either COT or column-mean CDER. The vertical axes show the relative error of the estimated cloud property. The solid and dashed lines

denote mean errors and means plus/minus standard deviations of error, respectively.
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Figure 8. Selected examples of the filter for 5 × 5 pixels at each wavelength in the first convolutional layer in DNN-4w. Only 16 of 100

filters for each wavelength are shown here. The color shade denotes the filter weight. The sunlight is from the left.
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Figure 9. The same as Fig. 7 but for an NN and our DNNs. The solid lines show mean errors, and the shades denote regions of means

plus/minus standard deviations.
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