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Abstract. Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term sta-

ble data sets, and are globally available as a continuous record since 2001. Essential climate variables for the thermodynamic

state of the free atmosphere, such as pressure, temperature and tropospheric water vapor profiles (involving background infor-

mation), can be derived from these records, which therefore have the potential to serve as climate benchmark data. However,

to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and5

traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Pro-

cessing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty

propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from

excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error

correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the ba-10

sic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte-Carlo

ensemble methods. The algorithm performance is demonstrated using test-day ensembles of simulated data as well as real RO

event data from the satellite missions CHAMP, COSMIC, and MetOp. The results of the Monte-Carlo validation show that

our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results

from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the15

other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole

RO retrieval chain for the benefit of climate monitoring and other applications.

1 Introduction

Observation systems of the free atmosphere, focusing on the range from the top of the atmospheric boundary layer upwards,

were historically designed for weather research and forecasting purposes. They have considerable shortcomings when looking20

at them from a climate monitoring perspective (Karl et al., 1995) and so the related global climate monitoring infrastructure

remains fragile and incomplete until today (Bojinski et al., 2014). The Global Climate Observing System (GCOS) aims to

improve the observational foundation for the climate sciences (GCOS, 2015). For this purpose the establishment of climate

benchmark data records is essential. To qualify as climate benchmark, records need to be 1. of global coverage, 2. of high
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accuracy, 3. long-term stable, 4. tested for systematic errors on-orbit, 5. tied to irrefutable standards, and they need to 6.

measure Essential Climate Variables (ECVs) (NRC, 2007; GCOS, 2015).

Based on the quality and abundance of Global Navigation Satellite System (GNSS) signal sources, in particular from the

Global Positioning System (GPS) so far, the GNSS radio occultation (RO) observation record is globally available (continu-

ously since 2001), long-term stable (due to the so-called self-calibration and high signal stability during the event), and highly5

accurate (accuracy traceable to the SI second). Due to the self-calibrating property, the accuracy is also ensured on-orbit,

i. e., there is no need for calibration or bias correction in post-processing on ground (Leroy et al., 2006). The basic RO ex-

cess phase data can therefore serve as a Fundamental Climate Data Record (FCDR) as defined by GCOS (2010). From this

FCDR with its unique properties, ECVs—in particular the thermodynamic ECVs pressure, temperature and humidity in the

free atmosphere—can be derived using an RO retrieval chain.10

In order to reliably serve as climate benchmark data record however, the retrieved ECV profiles and their claimed accuracy—

expressed by the uncertainties provided— need to be traceable back to the (small) uncertainties of the FCDR and in turn to the

raw data. This requires that 1. the RO retrieval is highly accurate and avoids any undue amplification of uncertainties associated

with the quantities in the FCDR and that 2. the uncertainties are propagated through the entire retrieval chain, from the raw

data to the ECV profiles, duly accounting for relevant side influences such as from background information. Developed at the15

Wegener Center of the University of Graz (WEGC), together with international partners, the Reference Occultation Processing

System (rOPS) (Kirchengast et al., 2015) aims to establish such a fully traceable RO processing for the first time (Kirchengast

et al., 2016a, b).

In Figure 1 the basic steps of the RO retrieval chain in the rOPS, i.e., the precise orbit determination (POD) and excess phase

processing (labeled ’L1a’ in Figure 1), the subsequent atmospheric bending angle retrieval (’L1b’), the refractivity and dry-air20

retrieval (’L2a’), and the moist air retrieval (’L2b’) are sketched.

Kursinski et al. (1997), and more recently Hajj et al. (2002), Anthes (2011) and Steiner et al. (2011) provided detailed

introductions and reviews of the RO technique and its applications in meteorology and climate. Ho et al. (2012) and Steiner

et al. (2013) included comparative current RO retrieval chain descriptions of leading international RO processing centers, which

all do not yet include uncertainty propagation. Empirical error (uncertainty) estimates computed statistically from retrieved RO25

atmospheric profiles and climatologies have been derived by Kuo et al. (2004), Steiner and Kirchengast (2005) and Scherllin-

Pirscher et al. (2011a, b, 2017), the latter with a focus on climate uses also providing simple analytical error models. These

studies and many others have described the RO retrieval chain in detail and have shown the high accuracy and quality of RO

data, particularly in the upper troposphere and lower stratosphere region.

The aim of the integrated uncertainty propagation in the rOPS is to eventually propagate uncertainties along this entire30

retrieval chain from the raw measurement data to the ECVs (Kirchengast et al., 2016a, b), whereby the implementation of

the rOPS uncertainty propagation occurs in the sequential blocks illustrated in Figure 1. The L2a processing and uncertainty

propagation from atmospheric bending angle to dry-air profiles has already been introduced by Schwarz et al. (2017) [SKS2017

hereafter].
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This study is a direct complement to the work in SKS2017. Using the same propagation and validation methods as ap-

plied in SKS2017, it focuses on the uncertainty propagation from excess phase to atmospheric bending angle profiles, i.e.,

the L1b processing. As in SKS2017, random uncertainties are propagated using covariance propagation (CP) and validated

using Monte-Carlo ensemble methods (MC). As in the L2a processor, we also propagate (conservative bound) estimates for

systematic uncertainties along the retrieval chain of the L1b processor. Additionally, correlation length profiles and resolution5

profiles are provided.

Uncertainty propagation as covariance propagation from excess phase to bending angle profiles has been outlined and

demonstrated in a basic form, by Syndergaard (1999) and Rieder and Kirchengast (2001), but not been implemented yet in

processing center retrieval chains and applied to real RO data. As visible in Figure 1, the L1b processor consists of three major

retrieval parts, which are expanded into detailed substructure in Figure 2. We propagate estimated random uncertainties from10

excess phase profiles to Doppler shift profiles (Section (1) in Figure 2), further to geometric-optics (GO) bending angle profiles,

merged with wave-optics (WO) bending angle profiles (2), and finally to atmospheric bending angle profiles (3), using a full

CP approach. In combination with the definitions of the main operators and variables in Table 1, and of the vertical grid and

coordinate variables in Table 2, Figure 2 provides a concise overview on the detailed workflow of the L1b processor.

Uncertainty propagation for the WO bending angle retrieval has been implemented and demonstrated for simulated events15

by Gorbunov and Kirchengast (2015), estimation of random and systematic uncertainties for real events including boundary

layer bias correction is introduced by Gorbunov and Kirchengast (2017).

Other on-going rOPS retrieval advancements relevant to this study are the inclusion of the high altitude initialization al-

gorithm, introduced by Li et al. (2013, 2015), in the L2a processor and the reduction of remaining higher-order ionospheric

effects in the retrieved bending angle profiles of the L1b processor (based on work by Syndergaard (2000), Liu et al. (2015),20

Healy and Culverwell (2015) and Danzer et al. (2013, 2015)). Furthermore, the precise orbit determination (POD) of the RO

receiver satellite and the excess phase processing, also including the associated uncertainty propagation, are part of on-going

work (Innerkofler et al., 2017).

Finally, related work and manuscript preparation on a new moist air retrieval algorithm (L2b) and corresponding L2b uncer-

tainty propagation is on-going (Li et al., 2017; Kirchengast et al., 2017a).25

The paper is structured as follows. In section 2 we introduce the uncertainty estimation, propagation and validation methods

and the data sources and preparation. In Section 3, with the help of an example RO event, the uncertainty propagation se-

quence is introduced. In Section 4 we present the results from the MC validation of the CP uncertainty estimates. In Section 5

the performance of the algorithm is then evaluated using test-day ensembles with real data from the RO missions CHAlleng-

ing Minisatellite Payload (CHAMP) (Wickert et al., 2001), FORMOSAT-3 Constellation Observing System for Meteorology,30

Ionosphere, and Climate (COSMIC) (Anthes et al., 2008), and Meteorological Operational Satellite A (MetOp) (Luntama

et al., 2008), and with simulated data approximating characteristics of the Meteorological Operational Satellite A (Luntama

et al., 2008) [simMetOp data hereafter]. We close with conclusions and outlook in section 6. A detailed description of the

implemented uncertainty propagation algorithms can be found in Appendix A.
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2 Methods and Data

2.1 Methods

We follow the Guide to the expression of Uncertainty in Measurement (JCGM, 2008a, b, 2011) [GUM hereafter] and aim

to follow terminology as provided by the International Vocabulary of Metrology (JCGM, 2012), a terminology also adopted

by the GUM. SKS2017 provides a more thorough introduction, including the motivation for using the respective uncertainty5

estimation, propagation and validation methods; we refer the closely interested reader to this companion (open access) work

and provide the essential methods needed more in summarized form below.

We categorize uncertainties into estimated random uncertainties and estimated systematic uncertainties. Effects of unpre-

dictable or stochastic temporal and spatial variations in repeated observations, like effects from fluctuations in the atmosphere

or the thermal noise of the receiver system, could in principle be estimated by ensemble statistics from multiple RO events.10

However, since such effects are essentially stationary in a statistical sense, we can estimate their statistics also from individual

RO event data, given their high noise-resolving sampling rate. These effects are included in the estimated random uncertainties.

Systematic effects (biases), which can not be quantified using statistical data analysis based on just one individual RO profile,

are estimated and corrected for when known, as recommended by the GUM. The remaining residual biases are assumed to stay

within a (conservative) bound estimate, which we refer to as estimated systematic uncertainty and by which we aim to provide15

at least 90 % likelihood coverage (confidence) that residual biases stay within the plus/minus envelope range of this uncertainty.

Depending on their nature, components of the systematic uncertainty that we need to estimate can be fundamentally sys-

tematic across different RO events, a subtype we term estimated basic systematic uncertainties, or appear systematic just for

individual RO events, a second subtype that we term estimated apparent systematic uncertainties. It is important to distinguish

these two subtypes, since the apparent systematic uncertainties will essentially behave as random uncertainties in ensemble-20

averaging over many RO events, such as when generating climatologies, while the basic systematic ones will not average out

and therefore fundamentally limit the (absolute) accuracy of ensemble averages such as climatologies.

Since the noise-type effects giving rise to short range-correlated random uncertainties can be considered uncorrelated to

the bias-type effects inducing long range-correlated apparent systematic uncertainties, and since both are uncorrelated to basic

systematic uncertainties, it is insightful and possible with due care to estimate and propagate each of these uncertainties25

independently.

As for the L2a processor (SKS2017), the operators of the L1b processor (i.e., the boldfaced Items 1.2, 1.4, 2.1, 2.7, 2.9, 3.1,

3.5 in Figure 2) qualify as explicit, multivariate, linear measurement models, as defined in the GUM, with correlated input

quantities. They can therefore be formulated as

Y = AXY ·X, (1)30

where the input quantityX and output quantity Y are rank-1 vectors (profiles) of random variables, which we call state profiles.

According to the GUM, their random uncertainties can be propagated using

CY = E[Y Y T] = E[(AXYX)(AXYX)T] = AXYE[XXT](AXY)T = AXYCX(AXY)T, (2)
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when the uncertainties are normally distributed. This assumption is reasonably justified, since the receiving system noise (i.e.,

thermal noise and residual clock estimation noise) and the ionospheric noise (from scintillations induced by ionospheric irregu-

larities) are essentially normally distributed overall (Kursinski et al., 1997; Syndergaard, 1999; Gorbunov, 2002b; Sokolovskiy

et al., 2009). These noise sources are the main contribution to the random uncertainties in the excess phase profiles feeding

into the L1b processor.5

CX and CY are the covariance matrices of the input and output variables, respectively, and AXY is the linear (or linearized)

operator connecting X and Y . Equation 3 formulates how the covariance matrix CX is calculated from random uncertainty

estimates urX and the correlation matrix RX ,

CX,ij = urX,i ·urX,j ·RX,ij . (3)

As a key variable characterizing RX , correlation length profiles lX are estimated from the correlation functions assembled10

in RX . The used algorithm estimates lX by searching for the distances downward and upward of the correlation functions’

main peak at which the correlation function has dropped to to a value of 1/e (≈ 0.378). The adopted correlation length estimate

is the arithmetic mean of these two upward and downward estimates (as the peak may be somewhat asymmetric). Additionally

the correlation length is constrained by the data domain, i.e., the correlation length can never be larger than the profiles’ vertical

range.15

Since the covariance propagation of random uncertainties requires extensive matrix multiplications for each measurement

model along the entire retrieval chain, we also tested simpler variance propagation, for which correlations are ignored; Ap-

pendix B summarizes the relevant algorithms. However, as shown in Section 4, variance propagation unduly overestimates

random uncertainties so that covariance propagation is required.

When the operator is linear, as is the case for the applicable L1b operators, estimated systematic uncertainties can be20

propagated by application of the state retrieval operator on the estimated systematic input uncertainty

usY = AXY · (X +usX)−Y = AXY·X + AXY·usX −Y = Y + AXY·usX − Y = AXY ·usX , (4)

where usX and usY are the rank-1 systematic uncertainty profiles of the input and output variables.

In addition to random uncertainties, systematic uncertainties and the correlation length, we also estimate resolution profiles

wX as context information along with the provided random uncertainty profiles (necessary, e.g., because smoothing can de-25

crease random uncertainties, while making resolution coarser). This is enabled by careful selection and formulation of lowpass

filter operations, in particular explicit filter cutoff frequency specification as the main driver of the resolution remaining after

lowpass filtering.

We note that the (half-)Fresnel-scale physical resolution often ascribed to RO bending angle profiles retrieved by geometric-

optics methods (e.g., Kursinski et al., 1997; Gorbunov et al., 2004) will generally be somewhat coarser than the filter limited30

resolution estimated here. This is intentional to maximize available information in the bending angle profiles provided by the

L1b processor. In the rOPS, on input to the L2a processor and before high altitude initialization by statistical optimization, the

resolution of all profiles is brought to a common altitude-dependent resolution, which reflects the half-Fresnel-scale (SKS2017).
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2.2 Data Sources and Preparation

The input variables needed for the L1b uncertainty propagation, visible in Figure 2 and defined in Table 1, are the retrieved

excess phase profiles Lr,k(t) and the associated systematic uncertainty profiles usLr,k(t), random uncertainty profiles urLr,k(t)

and correlation matrices RLr,k, as well as the orbit positions and velocities of receiver and transmitter satellite, rR(t), vR(t),

rT(t), vT(t), and their (systematic) uncertainties, usrR(t), usvR(t), usrT(t), usvT(t). For due limitation of depth of workflow5

detail in Figure 2 we do not separately show the propagation of the basic and apparent systematic uncertainties as they are

both identically propagated through the operator chain shown for usLr,k(t). All variables are provided on the time grid t with

elements ti, at fs = 50Hz sampling rate, and for the two GPS carrier frequencies fTk, with k ∈ {1,2}, fT1 = 1.57542 GHz

and fT2 = 1.22760GHz.

We used excess phase state profiles Lr,k(t) and the orbit state profiles rR(t), vR(t), rT(t), vT(t) from 15th July 2008 as10

test-day ensemble. For CHAMP, COSMIC, and MetOp, orbit state and excess phase profiles were provided by the COSMIC

Data Analysis and Archiving Center (CDAAC) of the University Corporation for Atmospheric Research (UCAR), Boulder,

Colorado. The End-to-End GNSS Occultation Performance Simulation and Processing System (EGOPS) (Fritzer et al., 2009)

was used for generating the simulated MetOp orbit state and excess phase profiles with realistic receiver noise (simMetOp).

Figure 3 shows Lr,k(t) in (a), usLr,k(t) in (b), urLr,k(t) in (c) and RLr,k in terms of representative correlation functions in (d)15

and (e), for a typical COSMIC RO event of the test-day ensemble from 15th July 2008 (example case).

Exploiting the linearity of the (linearized) retrieval operators, the so-called baseband-approach (Kirchengast et al., 2016a) is

applied throughout the rOPS. Hereby a zero-order model profile is subtracted from the input state profile and only the remaining

delta-profile is processed through the operator. After application of the operator, the zero-order model profile of the output state

profile is added back to the resulting delta-profile. This approach effectively avoids biases from numerical operations on (near-20

)exponentially varying RO profiles, since the model profiles that we derive from short-range (24 h) forecasts of the European

Centre for Medium-Range Weather Forecasts (ECMWF) skilfully subtract the (near-)exponential variation. The remaining

increment profiles that we need to treat numerically then appear to be very linear and with low dynamical range, which leads

to very low residual numerical errors of operators such as filters and derivatives.

The model profiles used as zero-order states in the retrieval, i.e., Lm, Dm and αm (cf. Table 1), were created from European25

Centre for Medium-Range Weather Forecasts (ECMWF) short-range (24h) forecast refractivity fields, accurately forward

modeled to bending angle (αm), Doppler shift (Dm) and excess phase (Lm) profiles, co-located to the latitude, longitude and

time of the respective RO event processed in the rOPS. The ECMWF fields used have a horizontal resolution of about 300km

(triangular truncation T42)—which corresponds to the approximate horizontal resolution of RO profiles (e.g., Kursinski et al.,

1997)—and are available at 91 vertical levels (L91).30

ECMWF fields were chosen for their proven leading quality (Untch et al., 2006; Bauer et al., 2015) and thus high suitability

for serving as zero-order state profiles; any other reasonable model profiles could be used as well since the retrieval results

negligibly depend on the exactly chosen zero-order model profiles. For comparison we plotted Lm(t) for the COSMIC example
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case into Figure 3a, which demonstrates that the ECMWF short-range forecast lies very close to Lr1(t) and Lr2(t) and thus

suits well as model profile.

While in future the excess phase random and systematic uncertainty profiles will be more rigorously estimated by the rOPS

L1a processor (Innerkofler et al., 2017) and provided as input to the L1b processor, they had to be estimated for this study from

existing excess phase profiles with realistic noise (we chose UCAR/CDAAC ones) and simplified modeling. To this end, each5

estimated random uncertainty profile urLr,k(t) was estimated based on the noise of the respective retrieved excess phase profile

Lr,k(t). The noise was determined following the estimation scheme for bending angle observation errors described by Li et al.

(2015), Section 2.2 therein; so we just briefly summarize how we used it here.

First, for both, the retrieved profile Lr,k and for the model profile Lm, the mean over all grid points between 60 and 70km

was determined. Then Lm was offset-corrected towards Lr,k by subtracting the difference of these two means from Lm, giving10

the offset-corrected model profile Lm̃. Next, the delta-profile δLrm̃,k = Lr,k −Lm̃ was calculated. After smoothing δLrm̃,k

with a 10km moving average boxcar filter, the smoothed profile was subtracted from δLrm̃,k again, to get δδLrm̃,k, the random

noise profile component of Lr,k isolated in this way. Finally, the estimated random uncertainty was determined as

urLr,ik =

√√√√√ i+M/2∑
j=i−M/2

δδL2
rm̃,jk , (5)

where M is the number of grid points equivalent to a window width of 10km. To avoid boundary effects of the filter, urLr,k was15

only determined up to zaTop−5km, and down to zaGradr at 30km. It was constantly extended at the upper end and extended

by a linear gradient below zaGradr, using (in units [m])

urLr,ik = urLr,k(zaGradr) +
zaGradr− za,i

3· 106
, (6)

for all elements of urLr,k(t) below zaGradr, roughly following estimates of ESA/EUMETSAT (1998) and the overall behavior

of estimates from real excess phase profiles (the latter became too vulnerable to biases and fluctuations to continue using them20

below 30 km).

Since the noise components responsible for the random uncertainty at excess phase level are essentially uncorrelated at

a sampling rate of 50Hz (Syndergaard, 1999; Hajj et al., 2002), the correlation matrix RLr is set to unity in the diagonal

and to zero outside (i.e., a Kronecker-δ assignment) for both channels. In case the future excess phase data from the rOPS

L1a processor exhibit non-negligible correlations for some data from some of the RO missions, we will account for these25

correlations in RLr, since our L1b algorithm (Section 3) is prepared for full covariance propagation. The elements of the

covariance matrix CLr are hence (Item 1.1 in Figure 2),

CLr,ijk = urLr,ik ·urLr,jk ·RLr,ijk = urLr,ik ·urLr,jk · δij . (7)

For the MC validation of the CP, error profile realizations εrLr were superimposed onto simulated ’true’ excess phase profiles

LT
r,k(t). As source for LT

r,k we used an EGOPS-simulated ’error-free’ CHAMP event from August 8th, 2008 (i.e., no receiver30
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system errors superimposed). Using an ’error-free’ profile as basis, the particular simulated profile just serving as a represen-

tative RO profile to illustrate the MC validation, allows us to strictly ensure the consistency of the random uncertainty of the

input profile with the ensemble of superimposed error profile realizations.

To create the error profiles, a representative ur,STD
Lr uncertainty profile was selected from a COSMIC ensemble of uncertainty

profiles, created according to Equations 5 and 6. The error profile realizations are random draws from a distribution charac-5

terized by these uncertainties, again assuming that RLr,ij = δij , i.e., that there are no correlations between the individual grid

levels (Item (a) in Figure 2; Figure 3f). The same standard profile ur,STD
Lr was used as input for the CP to which the MC results

are then compared. This MC validation method applied to test the rOPS L1b uncertainty propagation steps is essentially the

same as in SKS2017, and described therein in more detail.

The estimated systematic uncertainty usLr,k was determined based on a simple model roughly following error estimates from10

ESA/EUMETSAT (1998), with constant uncertainty from 80km down to zaGrads at 8km, and a linear uncertainty gradient in

the troposphere; as noted above this simplified modeling will be replaced in future by realistic uncertainty estimates received

as L1b retrieval input from the L1a processor (Innerkofler et al., 2017).

The constant usLr,k above zaGrads is 0.1mm for k = 1 and 0.2mm for k = 2 for MetOp and simMetOp. This uncertainty is

interpreted as an estimated basic systematic uncertainty, i.e., as a lower-bound estimate of available accuracy.15

For CHAMP and COSMIC we set usLr,1 = 0.2mm and usLr,2 = 0.4mm, to roughly reflect the fact that these RO receivers

are lower-cost instruments with lower gain, and thus somewhat lower tracking performance, than the GPS receiver GRAS on

MetOp (e.g., Luntama et al., 2008; Angerer et al., 2017). From zaGrads downwards, usLr,k (in units [m]) increases by

usLr,ik = usLr,k(zaGrads) +
zaGrads− za,i

3 · 107
. (8)

In order to avoid a sharp kink in the urLr,k profiles at zaGradr, and in the usLr,k profiles at zaGrads, a 2km-width moving average20

boxcar filter was applied to smooth these simple uncertainty models around these transition altitudes (for the example profile

usLr is visible in Figure 3b).

The orbit position and velocity uncertainties of the transmitter and the receiver satellites show little variation within the short

duration of an individual RO event of about 45 sec to 2 min (Innerkofler et al., 2017) and can be assumed to be constant biases.

They are thus counted to the systematic uncertainties, more precisely the apparent systematic uncertainties, since the actual25

values of the orbit-borne biases will generally change in a pseudo-random manner from event to event.

We set the transmitter position and velocity uncertainties to usrT = 3cm and usvT = 0.01mms−1, consistent with accuracies

for GPS orbits available from GNSS orbit providers like the International GNSS Service (IGS). The receiver position and

velocity uncertainties, usrR = 5cm and usvR = 0.05mms−1 for CHAMP and MetOp, are adopted four times smaller than those

for COSMIC with usrR = 20cm and usvR = 0.2mms−1, as found by ongoing rOPS-related POD studies (Innerkofler et al.,30

2017), consistent with previous literature (e.g., Montenbruck et al., 2009; Schreiner et al., 2010).
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3 Algorithm Sequence and Example Results

In this Section the L1b uncertainty propagation algorithm sequence is introduced. We illustrate the effects of the algorithm on

the main uncertainty variables by way of the COSMIC example case already used for Figure 3.

For each L1b retrieval step, i.e., segments (1), (2), and (3) in Figure 2, the results for the principal variables are shown in Fig-

ures 4 to 8. These variables are the state profilesXr (withXr ∈ {LF,k(t),Dr,k(t),αG,k(t),αG,k(za),αM,k(za),αF,k(za),αr(za)}),5

the estimated systematic uncertainty profiles usXr, the estimated random uncertainty profiles urXr, representative correlation

functions RXr,i (with i such that za,i ∈ {10km,30km,50km,70km}), and the correlation length profiles lXr and resolution

profiles wXr. Along with the dual-frequency state profiles we also show the collocated forward modeled short-range forecast

profiles, i.e., model profiles Xm with Xm ∈ {Lm,Dm,αm} for comparison.

A concise definition of the variables involved is provided in Table 1, as introduced above. The summary description in10

this section is complemented by a complete step-by-step description of the algorithm along the entire L1b retrieval chain in

Appendix A, which is organized for convenience into the same sequence of subsections.

To simplify the notation in the description we suppress index k whenever steps are applied in an identical way to the data

of both GNSS L-band channels with frequencies fT1 and fT2. Only if the two channels are treated differently, such as in

Section 3.3, the index is considered again. For conciseness we also do not illustrate both the estimated basic and estimated15

apparent systematic uncertainty but rather the total estimated systematic uncertainty as the overall result.

3.1 Doppler Shift Retrieval

3.1.1 Basic Lowpass Filtering

A Blackman-Windowed-Sinc (BWS) lowpass filter with a filter cutoff frequency fc = 2.5Hz (boxcar-equivalent filter width

of 0.2s) (Item 1.2 in Figure 2) is applied onto the excess phase profile Lr(t), before the Doppler differentiation (Item 1.420

in Figure 2), to avoid an amplification of high-frequency noise in the phase profile by the derivative operation. This filter

suppresses the noise and consequentially the filtered excess phase profile LF(t), shown in Figure 4a, is expected to have

random uncertainties urLF of smaller magnitude, but correlated over the length of the filter-window. The uncertainties obtained

through the implemented algorithm confirm these expectations, i.e., random uncertainty profiles in Figure 4c are less than a

third in magnitude of those in Figure 3c, and Figures 4d-e show how the correlation functions widened and the correlation25

length/vertical resolution reaches ∼0.5km/∼0.6km above about 30km impact altitude (Figure 4f).

The random uncertainty propagation algorithm, i.e., the covariance propagation from CLr to CLF is described by Equa-

tion A6 and Item 1.3 in Figure 2, and justified by Equation 2. To obtain urLF and RLF, we use Equations A7 and A8.

To propagate the estimated systematic uncertainty usLr, which characterizes long-range-correlated offsets or biases, we use

the same BWS filter as for the state profile, i.e., making use of Equation 4. Because the input uncertainty profile usLr is chosen30

to be constant down to zaGrads, the filter has little effect, and usLF, shown in Figure 4b, is essentially equal to usLr, shown in

Figure 3b.
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The resolution profile wLr is determined by the filter-width according to Equations A11 and A13. After the BWS filtering,

the resolution is roughly equal to the correlation length lLF, amounting to ∼0.6km above about 30km impact altitude and

becoming finer downwards due to the increasing refraction (Figure 4f).

3.1.2 Doppler Shift Derivation

The next step is a five-point differentiation operation (Item 1.4 in Figure 2) used to calculate the Doppler shift profile Dr(t)5

from the filtered excess phase profile LF(t). The resulting dual-frequency Doppler shift profiles are plotted along with the

model profile Dm(t) in Figure 5a for the example case.

As for the filtered excess phase, we apply CP (Equation A18, Item 1.5 in Figure 2) to first calculate the covariance matrix

CDr and then extract urDr (shown in Figure 5c) and RDr (Figures 5d and 5e) from it. The choice of the x-axis range shows the

random uncertianties increased, but the differentiation actually does increase relative random uncertainties (relative to the state10

profile). It also causes anti-correlation with neighbouring elements, as visualized by the negative side-peaks of the correlation

functions in Figures 5d and 5e. The correlation length lDr (of the main correlation function peak) decreases accordingly (now

smaller than 0.3km throughout), because the correlation functions fall off steeper on both sides of the main peak (Figure 5f).

For calculating the estimated systematic uncertainty we use the state operator, i.e., we just differentiate usLF and get usDr

(shown in Figure 5b). With the current illustrative choice of input uncertainties the systematic uncertainty of the Doppler15

shift profile is zero above the transition to the troposphere, where the estimated systematic uncertainty of the excess phase is

assumed constant; in the troposphere a Doppler shift offset of ∼ 0.02mm s−1 occurs.

The resolution profilewDr shows that the vertical resolution stays unaffected by this operator (cf. Figures 5f and 4f), because

the BWS filter width of the preceding lowpass filtering (intentionally) stretched beyond the five neighboring points involved in

the differentiation.20

3.2 Bending Angle Retrieval

3.2.1 GO Bending Angle Retrieval

The next operator is the geometric-optics (GO) bending angle retrieval in which retrieved GO bending angle profiles αG(t) are

calculated from Doppler shift profiles Dr(t) and the orbit position and velocity vectors rT(t), rR(t), vT(t), vR(t) (Item 2.1

in Figure 2) and then interpolated to the (common monotonic) impact altitude grid za (Item 2.6 in Figure 2).25

Figure 6a shows retrieved αG profiles together with the model profile αm. The mildly non-linear, implicit-type bending

angle retrieval operator needs to be solved iteratively, and requires linearization for both random and systematic uncertainty

propagation, as described in detail in Appendix A (Section A2). Because this retrieval step is performed level by level, keeping

levels independent, the GO bending angle retrieval leaves correlation functions and resolution unchanged (cf. Figures 6d-f and

5d-f).30
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The estimated random uncertainties urαG, as shown in Figure 6c, now increase more strongly in the lower stratosphere and

troposphere (to about 40 to 50µrad near 10km), because they are depending on the vertical gradient of the impact parameter

at, which is increasingly larger towards lower altitudes from the increasing refraction.

The main contributions to the estimated systematic uncertainty usαG are induced by systematic uncertainties in orbit velocity

and position of the transmitter and the receiver satellite (details in Section A2), which in total amount to about 0.05µrad5

(Figure 6b). Compared to this magnitude, the systematic uncertainty contributed by the Doppler shift uncertainty is very small.

3.2.2 WO Bending Angle Retrieval

Due to strong refractivity gradients and multipath effects, the GO bending angle retrieval can be inadequate in the troposphere,

and therefore wave-optics (WO) algorithms are applied to reconstruct the geometric optical ray structure of the wave field (e.g.,

Gorbunov, 2002a; Gorbunov and Lauritsen, 2004).10

In the rOPS, along with the WO bending angle profile αW(za), the systematic uncertainty profile usαW, the random uncer-

tainty profile urαW, the correlation matrix RαW, and the resolution profile wαW are retrieved (Item 2.7 in Figure 2).

The WO bending angle retrieval algorithm used is a canonical transform (CT2) algorithm (Gorbunov et al., 2004) and the

associated uncertainty propagation algorithm is not described here, but separately by Gorbunov and Kirchengast (2015, 2017).

The WO retrieval and uncertainty propagation results are supplied up to 20km impact altitude by the WO algorithms.15

3.2.3 Merging of GO and WO Bending Angle Profiles

In the rOPS bending angle retrieval the results from the WO retrieval, αW, are merged with GO retrieval results, αG, at

around a transition altitude zGW
a in a transition range zGW

a ±∆zGW
a , to get merged profiles αM (Item 2.9 in Figure 2). The

determination of the transition altitude and the merging algorithm are described in Appendix A (Section A2.3). We use a

specialized covariance propagation to propagate the GO and WO uncertainties, expressed by the covariance matrices CαG20

and CαW, to properly obtain the covariance matrix of the merged bending angle CαM (Equations A37 and A38, Item 2.10 in

Figure 2).

Because the rOPS implementation of the WO uncertainty propagation (Gorbunov and Kirchengast, 2017) was still in test

phase and not yet available for integration into the simulations here, all examples in this study are GO-only, i.e., only the GO

retrieval is performed. Results for αM are thus unchanged from those shown in Figure 6 and not separately illustrated.25

In order to nevertheless test and validate the uncertainty propagation of the merging algorithm, WO retrieval results were

artificially substituted by GO retrieval results (and consequently random uncertainties were assumed to be correlated rather

than uncorrelated) for the MC validation (Section 4).

In order to nevertheless test and validate the uncertainty propagation of the merging algorithm, WO retrieval results were

artificially substituted by the GO results for the MC validation (Section 4), i.e., GO was used as proxy for WO since reasonably30

capturing expected WO variability as indicated by tests of Gorbunov and Kirchengast (2017).
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3.3 Atmospheric Bending Angle Derivation

3.3.1 Adaptive Lowpass Filtering and Minor Channel Extrapolation

To prepare the merged bending angle profiles αM,k for the ionospheric correction they are first filtered by another BWS filter

operation (Item 3.1 in Figure 2) in order to ensure adequately smoothed bending angle profiles αF,k, with k ∈ {1,2}.
The chosen filter cutoff-frequency for k = 1 is fc1 = 2.5Hz, same as the basic filtering (Section 3.1.1), just to ensure clear-5

ness of any higher-frequency effects from operators after the initial excess phase filtering (e.g., from Doppler shift derivation

that induces short-range anti-correlation effects). For k = 2, the cutoff-frequency fc2 is set noise- dependent, between 2.5 and

0.5Hz (boxcar equivalent width of 0.2 to 1.0s). In events in which the αF2 profile does not reach down as far as αF1, it is

extrapolated down to the bottom of αF1, zaBot. The results for the filtered bending angle state profiles αF,k are displayed in

Figure 7a, together with the associated model bending angle profile αm. The filter has considerably reduced the noise of the10

profile, particularly for αF2, where a cutoff frequency fc2 = 10/7Hz appears to have been selected in this example case.

The relevant covariance-propagated random uncertainties urαF,k are shown in Figure 7c (blue and red), illustrating the

reduced noise, especially for αF2. In return, the peaks of the correlation functions broaden (cf. Figure 7d-e and 6d-e), with

correlation lengths lαF,k at near 0.4km for αF1 and above 0.5km for αF2 (Figure 7f).

The estimated systematic uncertainty remains largely unchanged (Figure 7b) due to its smooth character.15

The resolution of the filtered bending angle profiles (according to Equations A11 and A13) is determined by the cutoff-

frequencies fc,k of the BWS filters. In the example case it is therefore essentially unchanged for αF1, while significantly

decreased for αF2 (cf. Figure 7f and 6f) since fc2 = 10/7Hz. That is, the resolutionwαF2 in the upper stratosphere for example,

where the vertical scanning velocity of this RO event is about 3.2kms−1, is near 1.1km (Figure 7f).

3.3.2 Ionospheric Correction20

The final step of the L1b processor is the ionospheric correction (Item 3.5 in Figure 2). The atmospheric bending angle αr is

obtained by applying a linear dual-frequency combination of αF1 and αF2, such that ionospheric effects are largely removed

(details are described in Section A3). The final retrieved atmospheric bending angle αr of the example case is shown in

Figure 8a. The propagation results for the estimated random uncertainty are shown in Figure 8c. The linear combination of the

ionospheric correction amplifies noise and urαr is therefore considerably larger than urαF1 and urαF2 (cf. Figure 8c and 7c).25

Figure 8d shows how the correlation functions—as obtained through covariance propagation—are combining the character-

istics of the correlation functions from the two matrices RαF1 and RαF2, with essentially inheriting the αF1 behavior, since

the αF2 influence into the ionospheric correction is comparatively minor (see Section A3).

The residual higher order ionospheric effects are accounted for by a ’conservative best-guess’ value (0.05µrad, reflecting

results of Liu et al. (2015) and Danzer et al. (2013, 2015)) and added (in root-mean-square form) to the systematic uncertainty30

profile usαr, leading to a total estimated systematic uncertainty in this example case of ∼ 0.07µrad (Figure 8b). Within this

uncertainty, the one dominating component from orbit uncertainties (∼ 0.05µrad, cf. Figure 6b) can be considered an apparent

systematic uncertainty that will essentially average out in ensemble-averaging (e.g., climatologies) while the other dominating
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component from residual higher-order ionospheric biases (also estimated∼ 0.05µrad as noted above) can be considered a basic

systematic uncertainty. For the latter it is therefore useful and prepared for in the rOPS—in line with GUM recommendations

and as discussed in the introductory Section 1—to correct for the quantifiable part of it in the future so that the total basic

systematic uncertainty may be mitigated down to the ∼ 0.01µrad level.

The resolution profile wαr of the retrieved bending angle (Figure 8f) is dominated by the contribution of αF1 that strongly5

dominates (intentionally by construction) the ionospheric correction results in terms of the small-scale bending angle variabil-

ity. Similar as for the correlation length profile lαr it is therefore very close to wαF1 and only slightly larger.

4 Algorithm Validation

The GUM advises to use a Monte-Carlo (MC) method for uncertainty propagation if the retrieval operators do not fulfill the

criteria for a GUM-type CP. In our case the MC method is put to another beneficial use, to validate the results of the CP, as10

recommended by JCGM (2011).

For the validation of the covariance propagation by the MC method, we sampled the input excess phase profile random error

distribution, statistically described by

CMC
Lr = ur,STD

Lr,i ·u
r,STD
Lr,j · δij , (9)

by a large number M of draws LT
r + εrLr,j (with j ∈ {1, ...,M} and M = 1000). For each of these M profile realizations, the15

state retrieval is run through the L1b retrieval chain, to give M realizations of the output variable Xj (with Xj ∈ {LF,kj(t),

Dr,kj(t),αG,kj(za),αF,kj(za),αr,j(za)} and k ∈ {1,2}). From these individual realizations the mean profiles XMC, and the

covariance matrices CMC
X ,

CMC
X =

1

M − 1
[(X1−XMC)(X1−XMC)T + ...+ (XM −XMC)(XM −XMC)T )], (10)

are calculated (Items b-g in Figure 2). Using the same input profile and uncertainty information as used to specify the MC runs20

(described in Section 2.2), the retrieval is then also run with covariance-based uncertainty propagation and the resulting CP-

propagated covariance matrices CCP
X are compared to the MC-derived matrices CMC

X . In order to be able to attribute potential

changes between CP and MC covariance matrices better, we decompose CX into urX and RX (Equations A7 and A8), and

compare them separately.

Figure 9 shows the different steps along the retrieval chain from LF,k(t) to Dr,k(t), αG,k(za), αF,k(za), and αr(za) in the25

rows, for k = 1 (GPS fT1 frequency) in the left column and for k = 2 (GPS fT2 frequency) in the middle column. The right

column shows multiple representative correlation functions, from near 10km to near 70km. Due to the limited number of MC

draws, the MC results (black lines) show some jitter both in the estimated random uncertainty and in the correlation functions.

Since the purpose of the MC results is only to demonstrate the correctness of the CP result, we can disregard this behavior.

Figures 9a (light blue) and 9b (orange) show the random uncertainties urLr,1 and urLr,2 respectively, which characterize the30

input distribution and from which the random error profiles εrLr,j are drawn. They also show the CP results for the random
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uncertainty urLF1 (dark blue in Figure 9a) and urLF2 (red in Figure 9b), compared to the MC propagated random uncertainties

(black).

The CP and MC lines match very well and show that the implemented CP algorithm delivers correct results for the basic

filtering step. For fT2, the MC uncertainties do not reach down as far as the CP uncertainties, because the shortest of all

draws of the large ensemble of size M determines how far down the recombined MC covariance matrix (Equation 10) reaches.5

Figure 9c compares CP correlation functions RLF,i1 (blue) and RLF,i2 (red) to the corresponding MC correlation functions

(black dashed).

Also the CP and MC correlation functions agree well. Both capture the narrow peak, broadened by the BWS filter. Again the

MC correlation functions fluctuate around zero left and right of the peak, from the finite ensemble size, but it is obvious that

the CP delivers the correct off-peak results (i.e., zero; the off-peak elements outside the BWS filter window must nominally be10

zero). The MC validation (black) of urDr1 (Figure 9d), urDr2 (Figure 9e) and RDr,i (Figure 9f, blue and red) demonstrates that

the CP through the Doppler shift derivation performs correctly as well.

The next row, Figures 9g to 9i show the results for the GO bending angle αG(za), i.e., after the interpolation of all quantities

to the (common monotonic) impact altitude grid za. For comparison, in Figures 9a to 9f, all quantities have been computed on

the common time grid (’setting time’ relative to time zero at 80km altitude) with 50Hz sampling rate; and the corresponding15

impact altitude of the ’true’ profile LT
r is shown for additional convenience on the RHS axis. In Figures 9g to 9o, these bending

angle quantities have been computed on the impact altitude grid; in these cases therefore the corresponding setting time of the

’true’ profile is shown for additional convenience on the RHS axis.

The results for the filtered bending angle αF follow in Figures 9j to 9l. Also here the MC results match the CP result well.

Due to the lower BWS cutoff-frequency for αF2, now urαF2 is smaller than urαF1, even though urαG2 was larger than urαG1.20

Correspondingly the peak of the correlation functions RαF,i2 widened more than those of RαF,i1 (cf. Figure 9l and 9i).

Finally, Figures 9m to 9o show the CP results for retrieved atmospheric bending angle αr, where Figure 9n is included as a

special cross-comparision in case only variance propagation would be used instead of CP. Figures 9m and 9o confirm that CP

results are also correct for this final L1b variable, both in terms of random uncertainty and correlation functions.

In order to demonstrate that a full CP is necessary to propagate random uncertainties correctly, we also calculated random25

uncertainties urαr based on mere variance propagation (VP) from αG to αr for comparison. A description of this VP algorithm

(i.e., only diagonal elements of the covariance matrices are considered) is provided in Appendix B. Figure 9n clearly shows that

VP would overestimate random uncertainties in αr considerably, pointing to the importance of the complete CP implementation

in the L1b retrieval chain, even though the correlation lengths involved in the processing steps are rather small.

5 Performance Demonstration30

To statistically evaluate the performance of the new L1b uncertainty propagation algorithm, we also processed a complete

test-day of real (CHAMP, COSMIC, MetOp) and simulated (simMetOp) data from GNSS RO satellite missions. Figure 10

shows the results for estimated systematic and random uncertainty profiles, as well as correlation length and resolution profiles
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for filtered excess phase profiles LF,1. Figure 11 subsequently illustrates the ensemble mean of the same variables for LF1,

Dr1, αG1 and αr for the test-day ensemble. In Figure 10 we also co-illustrate the number of events processed for each of the

RO missions (middle column).

About 5% of the total number of processed profiles for each mission have been discarded, because they were detected as

outliers based on the magnitude of their random uncertainty profiles (these outliers are not included in the number of profiles5

shown). All profiles are shown as function of impact altitude, because each of the profiles in the ensembles needed to be

interpolated to the same (standard) impact altitude grid, to orderly calculate their mean profiles.

Figure 10a shows urLF1 and usLF1 for all ∼100 CHAMP events. It is visible (also in Figures 10d and 10g) that the random

uncertainty is estimated based on excess phase noise between 30 and 75km and synthetically extended above and below, as

described in Section 2.2. For the large majority of events, urLF1 lies between about 0.5 and 3mm in the range between 30km10

and 75km. Note that these results show the random uncertainties after the application of the basic BWS filter (Section 3.1.1),

but the input uncertainties urLr1 are of similar shape (though larger in magnitude).

Figure 10b shows that the correlation length profiles of the CHAMP ensemble (gray) and its ensemble mean (yellow) are of

relatively constant magnitude from 35 to 80km, but then get smaller downward, because the RO event’s scan velocity decreases

(see Equation A13). Since the BWS filter determines the vertical resolution and the correlation length at the same time, the15

resolution profiles wLF1 (Figure 10c) are quite similar to the correlation length profiles lLF1 (Figure 10b).

The number-of-events profile shows that most CHAMP events end between 5 and 12km (Figure 10b, black). This is because

the GO profiles illustrated here are cut off right at the lower end of the GO-WO transition range at zGW
a −∆zGW

a (cf. Table 2).

Compared to CHAMP, the mean random uncertainty urLF1 (Figure 10d) for the ∼1500 events of the COSMIC ensemble is

smaller, particularly above 30km, indicating the improved data quality of this later mission. The mean of the correlation length20

profiles lLF1 (Figure 10e) is higher than for CHAMP (Figure 10b) and correspondingly the resolution of the COSMIC profiles

also somewhat coarser (Figure 10f and 10c). The cutoff-frequency and sampling rate—and thus the resolution in time—is set

to be the same in the rOPS, irrespective of the missions; these differences hence are due to the different vertical scan velocities

of the missions induced by the differences in orbit altitudes (CHAMP ∼400km, COSMIC ∼700km).

For the real MetOp data (available here as dataset from UCAR/CDAAC, as for CHAMP and COSMC), urLF1 appears25

similar to COSMIC (cf. Figures 10d, g) while for simMetOp (with best possible simulated GRAS-type receiver noise) it is

clearly smaller than for COSMIC. From 35 to 80km the mean random uncertainty profile for simMetOp stays below 1mm

(Figure 10j). Three individual profiles exhibit comparatively high uncertainties of larger than 2mm within about 40 to 55km,

however, reflecting that the simMetOp error simulations are capable to partly generate higher-noise profiles of the type more

frequently seen in the real MetOp data (Figure 10g).30

On the other hand, the average correlation length/resolution profile of the ∼500 real MetOp and ∼700 simMetOp ensemble

members is very similar, driven by the orbit being essentially the same for the real data and the simulations (Figures 10h, i,

k, l). Compared to COSMIC (Figures 10e, f), the correlation length and resolution are again somewhat larger/coarser, due to

an even somewhat higher scan velocity of the MetOp satellite (∼820km orbit altitude). The systematic uncertainty usLF1, just
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co-illustrated for completeness in Figures 10a, d, g, j, is almost left unchanged by the BWS filter and is essentially equal to the

preset input uncertainty for all three missions (Section 2.2).

Figure 11 shows how the usLF1, urLF1, lLF1 and wLF1 profiles are on average affected by the uncertainty propagation. The

color code for the different satellite missions is the same as in Figure 10. The propagation effects visible are similar to those

already seen in Figures 3 to 8. The Doppler shift derivation increases the relative uncertainties and reduces correlation length5

(of the main peak), while the resolution stays the same (Figure 11d-f). The GO bending angle retrieval leaves correlation length

and resolution unchanged, while random uncertainties increase strongly in the lower stratosphere and troposphere due to the

increasing refractive effects (Figure 11g-i).

Finally, the BWS filtering before the ionospheric correction decreases random uncertainties and increases correlation length,

and resolution somewhat. However, the linear combination of the two bending angle profiles αF1 and αF2 then increases the10

random uncertainty again (cf. Figures 11j and 11g). The adaptive minor channel cutoff-frequency fc2 for the relatively noisy

CHAMP profiles is generally lower than for the other two missions, and the filter effect is therefore stronger for CHAMP

(indicated by the larger lαr in Figure 11k)

The estimated systematic uncertainty of the atmospheric bending angle usαr, indicated for completeness in Figure 11 (left

column, enflated by a factor of 10 in (a) and 100 in (d, g, j) for somewhat better visibility), stays below 0.1µrad for all three15

missions.

6 Conclusions

In order to deliver climate benchmark datasets it is essential to integrate uncertainty propagation in RO retrievals. In this

study we presented the uncertainty propagation algorithm chain from excess phase profiles to atmospheric bending angle

profiles (L1b processing), as newly implemented in the rOPS at the WEGC. Along with the basic profiles retrieval, we provide20

estimates for systematic and random uncertainties, error correlation matrices and vertical resolution profiles, which is unique

amongst all existing RO processing systems so far (Ho et al., 2012; Steiner et al., 2013).

We validated the implemented algorithm via comparison to Monte-Carlo sample propagation results and demonstrated the

performance of the algorithm using real data ensembles. We find close agreement between the implemented covariance prop-

agation of random uncertainties and the Monte-Carlo validation runs, verifying the correctness of the implemented algorithm.25

The test-day ensembles for three different missions (CHAMP, COSMIC, MetOp) show reliable, robust and consistent results

that provide valuable insight and understanding of retrieval chain details.

Together with the integration of the uncertainty propagation algorithm from atmospheric bending angle profiles to dry-air

profiles (L2a processing) presented by Schwarz et al. (2017), the rOPS can now provide estimates of systematic and random

uncertainty profiles, of error correlation matrices and resolution, and of observation-to-background weighting ratio profiles30

from excess phase to dry-air profiles.
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The next step towards the final atmospheric profiles, currently ongoing, is the introduction of integrated uncertainty prop-

agation for the moist-air retrieval (L2b processing). Implementation of uncertainty propagation for the wave-optics bending

angle retrieval and for the orbit determination and excess phase processing (L1a processing) is on-going as well.

Once completed, the full rOPS retrieval chain will run with integrated uncertainty estimation, a major step towards climate

benchmark data provision, and beneficial for the wide diversity of uses in atmospheric and climate science and applications.5

Appendix A: Algorithm Description

In this Appendix the rOPS L1b uncertainty propagation algorithm is introduced, following the L1b retrieval chain (Figure 2;

Section 3) step by step, starting with excess phase profile Lr as input and proceeding to LF, Dr, αG, αM, αF and finally

αr. The relevant variable definitions and symbol explanations are summarized in Tables 1 and 2. A fully detailed algorithmic

description is provided by Kirchengast et al. (2017b).10

If not stated otherwise, elements of the vector-type vertical profiles are addressed using subscript i (with i ∈ {1,2, ...,N}),
and optionally j (with j ∈ {1,2, ...,N}), running from top downward towards the bottom of the profile, where N is the number

of vertical grid levels. Until the interpolation of all quantities to the common monotonic impact altitude grid za, all quantities

are provided on an equidistant 50Hz time grid t with grid-points ti.

All steps in Sections A1 and A2 are applied to each of the GNSS transmitter channels’ carrier frequencies fTk, as also15

indicated by the index k in Figure 2. In the notation of these sections we therefore suppress the index k for the convenience of

simplified readability. Also for conciseness we write the estimated systematic uncertainty equations only for the total systematic

uncertainties us and briefly address the type of the relevant components (whether basic systematic uncertainty ub or apparent

systematic uncertainty ua) in the surrounding text.

A1 Doppler Shift Retrieval20

A1.1 Basic Lowpass Filtering

The Doppler differentiation (Item 1.4 in Figure 2) would potentially amplify high-frequency noise in the excess phase profiles.

To avoid this amplification, a Blackman-Windowed-Sinc (BWS) lowpass filter (e.g., Smith, 1999) is applied onto the excess

phase profiles first (Item 1.2 in Figure 2).

For this basic filtering the relative cutoff-frequency fc/fs is set to 0.05, equivalent to fc = 2.5Hz, 21 grid points, or a cutoff-25

period τc = 1/fc = 0.4s, for the standard sampling rate fs of 50Hz used for all RO profiles in the L1b processor of the rOPS.

The corresponding sample width of the Blackman window M̃ (with samples m ∈ {0, ...,M}) is set to M̃ = 2 · fs/fc, yielding

41 grid points. This ensures a reliable filter performance, also allowing to robustly quantify the vertical resolution of the filtered

data.

With such a design, the BWS lowpass filter combines efficient removal of high frequency noise with a narrow smoothing30

window. The BWS filter thus achieves a better smoothing effect, while keeping a higher resolution wLF than a simple moving
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average Boxcar (BC) filter. Based on a time segment of a few seconds of the excess phase delta-profile of the COSMIC example

event (also used for Figures 3 to 8), Figure A1 illustrates how the BWS filter compares to Boxcar filters of 11 and 21 grid points.

The corresponding filter functions are displayed in Figure A1a, while Figure A1b compares the filter results.

It is clearly seen that the smoothing window width of the BWS filter best corresponds to an 11 point boxcar filter (confirmed

nummerically by minimization of the sum of squared differences between Boxcar and BWS filter result) while giving consid-5

erably better filtering results (as for example visible between 31.5s and 32.0s, where the 11 points Boxcar filter zigzags around

the BWS result). The effective filter width of the BWS filter, which we also term ’boxcar-equivalent width’, is therefore its full

width at half maximum (see Figure A1a), corresponding to M̃/4 + 1 samples with our design.

The actually used sample widthM of the BWS filter is equal to M̃ , except that it decreases at the top and bottom of the profile

such that it does not reach beyond the first/last element of the vector to be filtered. At the ith grid point (with i ∈ {1,2, ...,N},10

and N being the profile length in grid points), the filterwidth M is thus

M =


M̃ for M̃/2< i < N − M̃/2

2i− 1 for 1≤ i≤ M̃/2

2(N − i) + 1 for N − M̃/2< i < N

. (A1)

The state profile of the filtered phase LF is obtained using the ’baseband approach’ (Kirchengast et al., 2016a), i.e., by

first subtracting a zero-order model profile Lm and applying the filter only to the delta-profile δLrm = Lr−Lm (with the

model profile being adequately smooth over the scale of the filter window width). This approach efficiently mitigates residual15

numerical biases. After the application of the BWS filter, the model profile is added back again. We express the BWS filter as

a linear matrix operator ABWS and get (Item 1.2 in Figure 2)

LFi = Lmi +

N∑
j=0

ABWS
ij · δLrmj , (A2)

for the filtered excess phase, where j ∈ {1,2, ...,N}. The band matrix operator ABWS has elements

ABWS
ij =

0 for j < i−M/2 and for j > i+M/2

wj−i+M/2 for i−M/2< j < i+M/2
. (A3)20

The central filter weightw0+M/2 at j = i is the (M/2)th filter-element (according to the definition of the BWS weights below),

therefore its index is M/2. With m= j− i+M/2 (and therefore 0≤m≤M ), each single BWS weight is calculated using

wm =
wraw,m∑M
m=0wraw,m

(A4)

and

wraw,m =


sin(2πfc/fs(m−M/2))

m−M/2

[
0.42− 0.5cos

(
2π mM

)
+ 0.08cos

(
4π mM

)]
for m 6=M/2

2πfc/fs for m=M/2
. (A5)25
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The estimated random uncertainty is then propagated by covariance propagation (Item 1.3 in Figure 2),

CLF = ABWS ·CLr · (ABWS)T. (A6)

The random uncertainty profile urLF and the error correlation matrixRLF are not needed for the subsequent random uncertainty

propagation, but are calculated from CLF for being available for the L1b output, using

urLF,i =
√
CLF,ii (A7)5

and

RLF,ij =
CLF,ij

urLF,iu
r
LF,j

. (A8)

The correlation length profile lLr has elements

lLr,i =
dz

dt

∣∣∣∣
i

· |ti− t(RLF,ij = 1/e)| (A9)

computed upward and downward from the main peak of the correlation function and then averaged. Here dz/dt is the scan10

velocity profile, obtained from using the msl altitude grid zt calculated as part of the forward modeling towards Lm at the

corresponding time grid t (cf. Table 2).

We note that after the L2a refractivity retrieval also the msl altitude grid consistent with the retrieved refractivity profile

could be used (as described by SKS2017, Appendix A therein), from a repeated forward modeling. The difference for the

scan velocity estimate is found very small, however, since the forward-modeled zt based on co-located refractivity profiles15

from ECMWF short-range forecast fields is already sufficiently reliable and this also keeps the L1b processor as a decoupled

predecessor of the L2a processor.

For the estimated systematic uncertainty, interpreted as a basic systematic uncertainty (Section 2.2), we apply the same

lowpass filter as used for the state profile (Item 1.2 in Figure 2), but with no zero-order profile subtracted, i.e.,

usLFi =

N∑
j=0

ABWS
ij ·usLrj . (A10)20

The resolution in time of LF and its uncertainties, τBW, is the Boxcar-equivalent width (cf. Figure A1a) determined by the

cutoff-frequency fc of the BWS Filter,

τLF ≈
1

fc + ∆fc/2
≈ 1

2fc
, (A11)

with our design choice M̃ = 2(fs/fc) and using that the BWS filter stopband-to-passband transition width is (Smith, 1999)

∆fc ≈
4fs

M̃
. (A12)25

Given fc = 2.5Hz, this results in an effective resolution τLF = 0.2s and corresponds to the resolution obtained when applying

a 11pts boxcar filter as explained at the beginning of this section above. The filter window inter-comparison in Figure A1a also

illustrates this, because the full width at half maximum of the 2.5Hz - 41pts BWS filter is 11pts.
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This resolution in time can finally be converted to the vertical (msl altitude) resolution in space

wLF,i =
dz

dt

∣∣∣∣
i

· τLF, (A13)

where, as for the correlation length estimation (Equation A9), the scan velocity profile is employed to convert from the time

domain to msl altitude domain.

A1.2 Doppler Shift Derivation5

After the application of the BWS filter to the excess phase profiles Lr (for both carrier frequencies of the given GNSS system),

the state profile of the Doppler is derived from the filtered phase profiles LF (Item 1.4 in Figure 2). To minimize systematic

errors from the numerical differentiation to negligible magnitude, the model profile Lm is again subtracted from the filtered

phase profile,

δLFm = LF−Lm, (A14)10

and the resulting delta-profile δLFm is then differentiated. After the derivative, the zero-order Doppler shift model profile Dm

is added (the latter also available from the forward modeling, in a form strictly consistent with the excess phase model profile

Lm).

Based on careful tests of different formulations, we use a five-point derivative scheme. The discretization of this five-point

derivative δDrm,i is given by15

δDrm,i =
dδLFm(t)

dt

∣∣∣∣
i

=
−δLFm,i−2 + 8δLFm,i−1− 8δLFm,i+1 + δLFm,i+2

−ti−2 + 8ti−1− 8ti+1 + ti+2
, (A15)

for each of the frequencies (e.g., Syndergaard, 1999). This can be expressed in matrix form as

Dr,i =Dm,i + δDrm,i =Dm,i +

N∑
j=1

AL2D
ij · δLFm,j , (A16)

using matrix operator AL2D with

AL2D =
1

12∆t



−18 24 −6 0 0 0 0 0

−6 0 −6 0 0 0
. . . 0 0

−1 8 0 −8 1 0 0 0

0 −1 8 0 −8 1
. . . 0 0

. . . . . . . . . . . .

0 0 0 0 0 0
. . . −8 1

0 0 0 0 0 0 0 −6

0 0 0 0 0 0 24 −18



, (A17)20

where ∆t= ti+1− ti, being 0.02s in our case of fs = 50Hz.
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The estimated random uncertainty can then be propagated (Item 1.5 in Figure 2) using

CD = AL2D ·CLF · (AL2D)T. (A18)

The covariance matrix is again (cf. Equations A7 and A8) decomposed into estimated random uncertainties and error corre-

lation matrix (Item 2.2 in Figure 2) using

urDr,i =
√
CDr,ii (A19)5

and

RDr,ij =
CDr,ij

urDr,iu
r
Dr,j

. (A20)

For the estimated systematic uncertainty, further on interpreted as basic systematic uncertainty (cf. Equation A10), we apply

the derivative operator (Item 1.4 in Figure 2) to the systematic uncertainties, with no zero-order profile subtracted, i.e.,

usDr,i =

N∑
j=1

AL2D
ij ·usLF,j . (A21)10

The resolution remains unaffected by the Doppler shift derivation, since the five-point sample width of the derivative operator

is fully within the eleven-point effective filter width (stopband) of the BWS filter applied before, so that τDr = τLF and wDr =

wLF.

A2 Bending Angle Retrieval

A2.1 GO Bending Angle Retrieval15

From the Doppler shift state profile Dr (again for both frequencies of the given GNSS system) we can derive the impact

parameter profile at and geometric-optics (GO) bending angle profile αG (Item 2.1 in Figure 2) using first the geometric

relation

Dr,i = [vR,i cos(φR,i)− vT,i cos(φT,i)]− ṙRT,i, (A22)

where20

φR,i = ηR,i− arcsin

(
at,i
rR,i

)
, (A23)

and

φT,i = (π− ηT,i)− arcsin

(
at,i
rT,i

)
(A24)

for each individual level of the time grid ti, in order to determine at from sequential application to all levels (Kursinski

et al., 1997; Syndergaard, 1999). Here vR,i := |vR,i| is the receiver velocity, rR,i := |rR,i| the receiver radial position, ηR,i25
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the angle between the receiver velocity and position vectors, φR,i then the angle between the receiver velocity and raypath

vectors (and all these equivalently for the transmitter), and ṙRT,i :=
∣∣∣d(rT−rR)

dt

∣∣∣
i

is the time-derivative of the distance between

the transmitter and the receiver at time ti, i.e., the ’kinematic straight-line Doppler shift’ to be subtracted in Equation A22 to

match the (excess) Doppler shift Dr,i induced by the atmosphere (and ionosphere).

Based on at, the elements of the GO bending angle profile αG are subsequently calculated using another geometrical relation,5

αG,i = θRT,i− arccos

(
at,i
rR,i

)
− arccos

(
at,i
rT,i

)
, (A25)

where θRT,i is the opening angle between the transmitter and receiver position vectors. Syndergaard (1999), Figure 1.5 therein,

provides an illustration of the relevant geometry.

All the variables in Equations A22–A25 are defined in the occultation plane spanned by the receiver and transmitter posi-10

tion vectors after oblateness correction (Syndergaard, 1998), i.e., after they have been transformed to originate in the Earth

ellipsoid’s center of local curvature in the occultation plane at the mean tangent point (MTP) location of the RO event. The

MTP location is defined as the geodetic (geographic) location on the WGS84 ellipsoid, where the straight-line path between

transmitter and receiver touches this ellipsoid, i.e., where the straight-line tangent height is zero. This can be computed with

very high accuracy at the sub-meter level (see Scherllin-Pirscher et al. (2017) for more details on the geolocation accuracy of15

RO). Using the MTP location’s center of local curvature rather than in the Earth’s center of mass as the origin is essential to

ensure that the assumption of spherical symmetry, implicit in Equations A22 to A25, is accurately valid geometrically.

The impact parameter retrieval is solved iteratively, because it is impossible to rearrange Equations A22 to A24 into an

explicit expression for the retrieval of the impact parameter; but it is mildly non-linear and converges fast, in particular if the

initial guess for at,i is estimated from the previous level (starting at the top level with the straight-line impact parameter).20

After the GO bending angle retrieval, the bending angles of all GNSS frequencies are interpolated to a common monotonic

impact altitude grid za (Item 2.6 in Figure 2), based on the monotonically sorted impact parameter grid of the leading channel,

at1 (i.e., k = 1).

For each element of za we get (Item 2.3 in Figure 2)

za,i = at,j1−hG−RC, (A26)25

where j is the index of the elements of the sorted impact parameter grid at1. hG is the geoid undulation (see Scherllin-Pirscher

et al. (2017) for a detailed discussion of its use in RO analysis), and RC is the local radius of curvature of the RO event.

Because the impact parameter is only implicitly expressed in Equations A22–A24, but GUM-type uncertainty propagation

along Equations 2 and 4 requires an explicit measurement model, we make use of a linearization of the bending angle retrieval.

We use the approach described by Melbourne et al. (1994), and applied to uncertainty propagation by Syndergaard (1999), for30

the propagation of the estimated random uncertainty from Doppler shift Dr to GO bending angle αG (Item 2.5 in Figure 2).
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This linearization establishes a direct relation between random uncertainties of the Doppler shift urDr, and the uncertainties

of the bending angle urαG, using

urαG(t),i ≈ −
(

daSL

dt

)−1
∣∣∣∣∣
i

urDr(t),i, (A27)

where aSL is the straight-line impact parameter. These bending angle uncertainties urαG are relative to the time grid as inde-

pendent coordinate. To get the desired uncertainties with respect to the impact altitude grid za (introduced in Equation A26),5

the uncertainties of the impact altitude za need to be transferred to the bending angle, so that the za grid can subsequently be

considered free of error. Syndergaard (1999) showed that this can be done by replacing Equation A27 with

urαG(za),i ≈ −
(

daT
t

dt

)−1
∣∣∣∣∣
i

urDr(t),i, (A28)

where aT
t is the ’true’ impact parameter. We use the forward-modeled impact parameter atm instead (i.e., adopt atm = aT

t ) and

accept the additional error thus incurred, assuming it is smaller than the 2% relative error due to the linearization estimated by10

Melbourne et al. (1994). This is a reasonable assumption given the high quality of our forward-modeled profiles derived from

ECMWF short-range forecast refractivity fields.

As a consequence we have to accept that the overall inaccuracy of our random uncertainty estimate cannot be brought

below 2%. Therefore, to ensure that our simplified estimate does not underestimate the real uncertainty, we account for the

linearization error by multiplying a factor fuαlin = 1.02 to the uncertainty of the retrieved GO bending angle15

urαG,i = fuαlin ·urαG(za),i. (A29)

In this way we acknowledge that although the calculation of the state of the bending angle does not make use of the lin-

earization, and therefore the linearization does not increase the uncertainty of the state profile, it may increase the error in the

uncertainty estimate itself.

Finally, the urαG profile is also interpolated to the common monotonic impact altitude grid za.20

In the GO approximation, the bending angle values at each grid point only depend on the Doppler shift values of the same grid

points, i.e., the existing correlations between the errors at different levels are left unchanged, i.e., RαG =RDr. The covariance

matrix can hence be calculated by recombining the Doppler shift correlation matrix with the propagated uncertainties (Item

2.8 in Figure 2),

CαG,ij = urαG,i ·urαG,j ·RDr,ij. (A30)25

For the propagation of the estimated systematic uncertainty (Item 2.4 in Figure 2) three types of potential systematic errors

adding to the impact parameter uncertainty usat, and consequentially the bending angle uncertainty usαG, are taken into account.

Systematic errors in the Doppler shift, i.e., usDr, systematic errors in the velocities of the satellites, i.e., usvR and usvT , and

systematic errors in the positions of the satellites, i.e., usrR and usrT . The latter two orbit-borne types are interpreted as apparent

systematic uncertainties (Section 2.2) while the excess phase-borne uncertainty usDr is a basic systematic uncertainty.30
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For the propagation of these estimated systematic uncertainties to usαG, Equations A22–A24 are linearized around the re-

trieved state quantities (serving as zero-order state) and no terms higher than first-order are kept. Then φR and φT in Equa-

tion A22 are substituted by the linearized versions of Equations A23 and A24 and the resulting equation is solved (level by

level) for the impact parameter at,i = f(Dr,i, rR,i, rT,i,vR,i,vT,i), with i= 1,2, ...,N . Adopting the first-order deviations to

represent the estimated systematic uncertainties we obtain5

usat,i =
1

kat,i

√
(usDr,i)

2 + (kvR,i ·usvR,i)
2 + (krR,i ·usrR,i)2 + (kvT,i ·usvT,i)

2 + (krT,i ·usrT,i)2, (A31)

where

kat,i :=
∂Dr

∂φR

∣∣∣∣
i

· ∂φR

∂at

∣∣∣∣
i

+
∂Dr

∂φT

∣∣∣∣
i

· ∂φT

∂at

∣∣∣∣
i

=−vR,i · sinφRi ·
1√

r2
R,i− a2

t,i

− vT,i · sinφTi
1√

r2
T,i− a2

t,i

, (A32)

kvR,i := −∂Dr

∂vR

∣∣∣∣
i

=−cosφRi,

kvT,i := −∂Dr

∂vT

∣∣∣∣
i

=−cosφTi,10

krR,i :=
∂Dr

∂φR

∣∣∣∣
i

· ∂φR

∂rR

∣∣∣∣
i

=
vR,i · sinφRi · at,i
rR,i

√
r2
R,i− a2

t,i

,

krT,i :=
∂Dr

∂φT

∣∣∣∣
i

· ∂φT

∂rT

∣∣∣∣
i

=
vT,i · sinφTi · at,i
rT,i

√
r2
T,i− a2

t,i

.

A number of simplifications have been made to arrive at this result. First, the last term in Equation A22 is disregarded since

errors in the positions are assumed to be constant with respect to the short time duration of an RO event; remaining errors

∆ṙRT after taking the derivative are therefore of higher order. Next, orbit position and velocity uncertainties are both assumed15

to be constant within the short duration of an event and the velocity uncertainties obtained are interpreted as uncertainties along

the direction of the velocity vector. Consequentially, the uncertainty is also projected along with the vector into the raypath

direction. A more conservative estimation (that we consider overly conservative in context) would interpret the uncertainties

as ellipsoids at the velocity vectors’ heads, and would hence take the full magnitude of the uncertainties along the raypath

direction (without projection).20

Furthermore, since all error sources (the processing of the occultation tracking data and the POD for transmitter and receiver)

are essentially independent from each other, the different input uncertainties are assumed to be uncorrelated. Finally, we

reasonably assumed the errors of the angle between the position and velocity vectors (η) to be negligible (usη ≈ 0) for the

purpose here, for both the transmitter and receiver.

In order to finally derive the systematic uncertainty of the bending angle from the impact parameter’s uncertainty, we con-25

tinue with a linearization of Equation A25 and arrive at

usαG,i =
√

(usθRT,i)
2 + (kat,i ·usat,i)2 + (krR,i ·usrR,i)2 + (krT,i ·usrT,i)2, (A33)
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where

kat,i :=
∂α

∂at

∣∣∣∣
i

=
1√

r2
R,i + a2

t,i

+
1√

r2
T,i + a2

t,i

, (A34)

krR,i :=
∂α

∂rR

∣∣∣∣
i

=− at,i

rR,i

√
r2
R,i− a2

t,i

,

krT,i :=
∂α

∂rT

∣∣∣∣
i

=− at,i

rT,i

√
r2
T,i− a2

t,i

.

In practice we separately calculate the basic and apparent systematic uncertainty estimates (ubαG from the first RHS terms in5

Equations A31 and A33, uaαG from the orbit-borne terms) and afterwards obtain usαG as a combined result, in order to enable

separate propagation in subsequent processing steps.

The resolution profile remains unaffected by the bending angle retrieval, since the level-by-level approach of the algorithm

does not create extra correlation and further vertical smoothing, so that ταG = τDr and wαG = wDr.

A2.2 WO Bending Angle Retrieval10

After the GO bending angle, the wave-optics (WO) bending angle state profile αW(za) is retrieved (Item 2.7 in Figure 2) from

excess phase profile Lr(t) (and its uncertainties) and the amplitude profileAr(t) (and uncertainties) in a WO retrieval following

Gorbunov and Kirchengast (2015, 2017). Along with the state profile, the systematic uncertainty profile usαW, the covariance

matrix CαW, and the resolution profile wαW are derived.

The covariance matrix CαW is then decomposed to random uncertainty profile urαW and correlation matrixRαW in the same15

form as done above for CDr (Equations A19 and A20) and CLF (Equations A7 and A8). The estimated systematic uncertainty

usαW is composed of a basic systematic uncertainty ubαW, propagated through the wave-optical retrieval from the excess phase

uncertainty usLr, and an apparent systematic uncertainty uaαW, estimated in the lower troposphere as residual bias uncertainty

of a regression-based boundary layer bias correction (Gorbunov and Kirchengast, 2017).

The WO bending angle retrieval algorithm and the associated uncertainty propagation algorithm are not explicitly described20

here; the reader is referred to Gorbunov and Kirchengast (2015) and Gorbunov and Kirchengast (2017). However, we have

prepared the merging with the WO bending angle variables (they will be actually merged in when the WO tests within the

rOPS is complete), which is described next.

A2.3 Merging of GO and WO Bending Angle Profiles

The αW profile, prepared on the common grid za, and the αG profile are merged over an upper tropospheric transition range25

(Item 2.9 in Figure 2). The gradual transition, weighted by a symmetric half-sine function, has a defined impact altitude

transition of half-width ∆zGW
a = 2km around transition altitude zGW

a , allowed within 9km to 14km, estimated from αG data

quality. The resulting merged bending angle profile αM is

αM,i = γi ·αG,i + (1− γi) ·αW,i, (A35)
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where the weighting profile γ is formulated as

γi =


1 for za,i ≥ zGW

a + ∆zGW
a

0.5 ·
[
sin
(
π
2 ·

za,i−zGW
a

∆zGW
a

)
+ 1
]

for |za,i− zGW
a |<∆zGW

a

0 for za,i ≤ zGW
a −∆zGW

a .

(A36)

To determine the random uncertainties for the merged GO-WO input bending angle, we need to merge the covariance

matrices of both bending angles.

We can assume both incoming covariance matrices CαG and CαW are provided on the common monotonic target grid5

za (i.e., also the WO uncertainties and correlations are interpolated to this common grid before the merger). We further can

reasonably assume that there are no cross-correlations between GO and WO errors, given the very different retrieval schemes.

Based on this we can compose the covariance matrix of the merged bending angle profile, CαM (Item 2.10 in Figure 2) as

follows. Outside the merging zone (i.e., outside of zGW
a ±∆zGW

a ) we can assign

CαM,ij =



CαG,ij for zaTop>za,i>z
GW
a +∆zGW

a and zaTop>za,j>z
GW
a +∆zGW

a

CαW,ij for zGW
a −∆zGW

a >za,i>zaBot and zGW
a −∆zGW

a >za,j>zaBot

0 for zaTop>za,i>z
GW
a +∆zGW

a and zGW
a −∆zGW

a >za,j>zaBot

0 for zGW
a −∆zGW

a >za,i>zaBot and zaTop>za,j>z
GW
a +∆zGW

a

, (A37)10

while within the merging zone we can assign

CαM,ij = γiγjCαG,ij+(1−γi)(1−γj)CαW,ij , (A38)

wherein i is understood such that zGW
a +∆zGW

a >za,i>z
GW
a −∆zGW

a and j such that zaTop>za,j>zaBot.

Because of the symmetry of the covariance matrix, the covariance elements in the merging zone orthogonal to the one above,

i.e., for zGW
a +∆zGW

a >za,j>z
GW
a −∆zGW

a and zaTop>za,i>zaBot, are calculated according to the same formula.15

Due to the linear relation between αM, αG and αW, expressed by Equation A35, a bias usαG in the GO bending angle and a

bias usαW in the WO bending angle can be as well linearily combined and we can compute the estimated systematic uncertainty

of the merged bending angle usαM according to (Item 2.9 in Figure 2)

usαM,i = γi ·usαG,i + (1− γi) ·usαW,i. (A39)

In practice this formulation is again applied separately for the basic and apparent systematic uncertainty estimates, afterwards20

obtaining the usαM profile as a combined result, in order to allow separate propagation in subsequent processing steps.

The resolution profile of the bending angle, wαM, is equal to the GO resolution wαG above zGW
a + ∆zGW

a , equal to the the

WO resolution wαW below zGW
a −∆zGW

a and has a transition with transition weight γi in between, again following the linear

formulation such as in Equations A35 and A39.

Because the integration and testing of the uncertainty propagation through the rOPS WO bending angle retrieval is currently25

still ongoing, as noted in Section A2.2 above, the examples shown in this study are all GO-only, i.e., only the GO retrieval is

performed. The merging algorithm as described is ready to include the WO bending angles, however.
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A3 Atmospheric Bending Angle Derivation

In order to retrieve the atmospheric bending angle profile αr, ionospheric effects need to be corrected for, using the retrieved

bending angles from each transmitter frequency channel. Since the only GNSS constellation currently used for RO is the

GPS—except for recent initial data from the Chinese GNOS instrument using BeiDou signals (Liao et al., 2016; Bai et al.,

2017)—the data characteristics of the GPS case (with k ∈ {1,2}, fT1 = 1.57542 GHz, and fT2 = 1.22760 GHz) are in the5

prime focus of this section.

This concerns in particular special provisions for the minor (L2) channel noise filtering and its tropospheric extrapolation.

In general the algorithms are applicable for any of the available GNSS systems, however; if the minor channel (fT2) delivers

similar data quality as the major one (fT1), the special provisions for the former will practically take no effect.

A3.1 Adaptive Lowpass Filtering and Minor Channel Extrapolation10

Before applying the dual-frequency ionospheric correction, the merged bending angle state profiles αM,k(za) at the common

za grid are filtered with further BWS lowpass filter operations and the minor channel is extrapolated.

For αM1 the filter is set to the same cutoff-frequency as the basic BWS filter preceeding the Doppler derivation (i.e., fc1 =

2.5Hz), ensuring a reliable reference resolution and basic smoothness of the whole merged profile. For filtering of αM2 a

(GPS L2) noise-minimization algorithm is used, following the approach of Sokolovskiy et al. (2009) for optimal filtering for15

ionospheric correction. We search for minimized noise employing a flexible cutoff-frequency fc2 ∈ {2.5Hz,2Hz,10/7Hz,

1Hz,5/7Hz,0.5Hz}, corresponding to using cutoff-periods τc2 from 0.4s to 2s and sample widths of M = 40 to M = 200

(on BWS filter design details see Section A1.1).

We adopt that cutoff-frequency fc2 for αM2 filtering that minimizes the noise fluctuations of the ionosphere-corrected at-

mospheric bending angle delta-profile δαfc2rm (za) = αfc2r (za)−αm(za) when evaluated over the mesospheric altitude range20

between 50km and 70km (similar to the functional minimization of Sokolovskiy et al. (2009); Eq. 4 therein). At these high

altitudes the residual atmospheric mean signal after subtraction of the forward-modeled signal αm(za) is very small (< 0.03–

0.3µrad) and therefore the noise level representative for the given RO event is well quantifiable.

The weight-matrix of the BWS filter, ABWS
k , is determined for both frequencies analogously to Equations A3 to A5. Using

the baseband approach with model profile αm to create the delta-profile δαMm with elements25

δαMmi,k = αMi,k −αmi, (A40)

the filtered bending angle is then (Item 3.1 in Figure 2)

αFi,k = αmi +

N∑
j=0

ABWS
ij,k · δαMmj,k, (A41)

where i, j ∈ {1,2, ...,N} and k ∈ {1,2}.
Due to the stronger power of the L1 signal for (most of) the GPS satellites, the GPS signals of both frequencies are not of30

the same quality and the L2 data (for those satellites where encrypted and hence power-degraded L2 signals are transmitted)

27



do not reach down as far as the L1 data (i.e., zaBot2 > zaBot1). If due to this reason αF2 does not reach down as far as αF1 and

zaBot2 ≤ zaBot2Max (with zaBot2Max currently set to 15 km), a tropospheric bending angle extrapolation (TBAE) is applied in

order to artificially extend αM2 to also reach down to zaBot1 (Item 3.3 in Figure 2).

Briefly summarized, this TBAE is currrently implemented as follows. A linear gradient profile for the difference profile be-

tween the two bending angles, αF12 = (αF1−αF2), is estimated by a least squares fit over a sufficiently wide impact altitude5

range from zaBot2 upward (as wide as the extrapolation range, at least 10 km). This gradient profile is then linearly extended

down to zaBot1 and subtracted from αF1, to obtain the extrapolated part of αF2 from zaBot2 to zaBot1. If zaBot2 > zaBot2Max

then no TBAE is performed since the extrapolation range is considered too large. Details are provided by Kirchengast et al.

(2017b), where the most recent version of the atmospheric bending angle derivation is described that includes this αF12 ex-

trapolation in a further advanced form.10

For the propagation of the estimated random uncertainty we get (Item 3.2 in Figure 2),

CαF,k = ABWS
k ·CαM,k · (ABWS

k )T, (A42)

for the bending angle error covariance matrices of the leading (k = 1) and minor (k = 2) channel.

In case a TBAE is applied to αF2, the random uncertainty of αF2 below zaBot2 is equal to the one of αF1, because the noise

is “copied” from αF1 since the linear gradient profile from fitting αF12 is noise-free. As a consequence, in these cases, we set15

the matrix elements of CαF2 to (Item 3.4 in Figure 2)

CαF2,ij =



CαF2,ij for zaTop>za,i>zaBot2 and zaTop>za,j>zaBot2

CαF1,ij for zaBot2>za,i>zaBot1 and zaBot2>za,j>zaBot1

0 for zaBot2>za,i>zaBot1 and zaTop>za,j>zaBot2

0 and zaTop>za,i>zaBot2 for zaBot2>za,j>zaBot1

. (A43)

CαF1 and CαF2 can then be decomposed as needed into urαF1, RαF1, and urαF2, RαF2, respectively. Kirchengast et al. (2017b)

describe the most recent version consistent with a further advanced form of the TBAE, where the separate assignments accord-

ing to Equation A43 are no longer needed.20

The estimated systematic uncertainties usαM,k (in practice the basic and apparent systematic uncertainty estimates separately)

are filtered with the same filter settings as for the state profiles (Item 3.1 in Figure 2) and are thus obtained in the form

usαFi,k =

N∑
j=0

ABWS
ij,k ·usαMj,k. (A44)

Since these are smooth profiles they are marginally changed by this lowpass filtering. The systematic uncertainty component

contributed by the TBAE to the estimated systematic uncertainty is added after the ionospheric correction (see next subsection).25

As for the basic lowpass filtering of excess phases (Section A1.1), the resolution profiles of the filtered bending angles wαF1

and wαF2 are determined by the cutoff-frequencies fc1 and fc2 of the BWS filters, following Equations A11 and A13.
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A3.2 Ionospheric Correction

Based on the filtered and sometimes extrapolated state profiles αF1 and αF2, the ionospheric refractive effects are corrected

for by the standard dual-frequency correction of bending angles (Vorob’ev and Krasil’nikova, 1994) used in the fT1–fT2

difference-profile form (Sokolovskiy et al., 2009) (Item 3.5 in Figure 2). For the elements of the retrieved atmospheric bending

angle profile αr we thus get5

αr,i = αF1,i + γfT12 · δαF12,i, (A45)

where

δαF12,i = αF1,i−αF2,i, (A46)

and

γfT12 =
f2

T2

f2
T1− f2

T2

. (A47)10

Propagated through the operator of the ionospheric correction (Equation A45, currently used here in the classical form

with fT1 and fT2 terms) the estimated random uncertainty of the resulting atmospheric bending angle, expressed by the error

covariance matrix Cαr (Item 3.6 in Figure 2), is obtained as

Cαr = (1 + γfT12)2CαF1 + γ2
fT12CαF2. (A48)

Cαr can then also be decomposed into urαr and Rαr with the usual equations (cf., e.g., Equations A19 and A20).15

Equation A45 is as well applied to propagate the estimated systematic uncertainty (in practice the basic and apparent sys-

tematic uncertainty estimates separately) through the ionospheric correction using (Item 3.5 in Figure 2)

usαr,i = usαF1,i + γfT12 · (usαF1,i−usαF2,i), (A49)

where it is assumed that the systematic errors in αF1 and αF2 are positively correlated, i.e., have the same sign, and the

associated uncertainty estimates are hence subtracted from one another (as the bending angles are in Equation A46). This20

assumption is reasonable, since the same sources of non-ionospheric systematic effects apply to both frequency channels

(Doppler shift, orbit velocity, and orbit position uncertainties).

In case of TBAE, Equation A49 needs to be supplemented below zaBot2, since additional uncertainties usα2TE arise from the

errors made in the fitting parameters and in the extrapolation model (linear extrapolation) of the TBAE. Hence, for the range

zaBot2 > za,i ≥ zaBot1,25

usαr,i = usαr(zaBot2) +usα2TE,i, (A50)

with usα2TE being the conservative estimate for additional (apparent) systematic uncertainty within the extrapolated impact

altitude range. We set usα2TE to zero at zaBot2 and linearly increase it from there downwards with a gradient of 1µrad per
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10km (an experience based best guess; cf. Scherllin-Pirscher et al. (2011b, a), who also address aspects of such tropospheric

extrapolation in their discussions of error sources). It is interpreted as an apparent systematic uncertainty estimate, since due

to the linear fit-based TBAE construction its event-to-event bias character will be essentially random (Scherllin-Pirscher et al.,

2011b).

Also, the ionospheric correction currently applied in the rOPS is just a first-order correction, which will leave higher-order5

residual ionospheric errors in αr (e.g., Syndergaard, 2000; Danzer et al., 2013; Liu et al., 2013, 2015; Healy and Culverwell,

2015). The uncertainty from higher-order residual ionospheric biases (RIB), usRIB, is therefore added to the propagated (basic)

systematic uncertainty. usRIB is interpreted as basic systematic uncertainty, since the higher-order ionospheric residuals may not

vanish in ensemble-of-events averaging. The other non-ionospheric sources of systematic errors and the RIBs can be reasonably

assumed to be uncorrelated. The total estimated systematic uncertainty of the retrieved atmospheric bending angle αr hence is10

usαr,i :=
√

(usαr,i)
2 + (usRIB)2. (A51)

Based on previous studies (e.g., Liu et al., 2013, 2015; Danzer et al., 2013, 2015), usRIB is taken to be constant along the

entire profile, and is estimated to amount to 0.05µrad. These last two components, usα2TE and usRIB, are indicated as Item 3.7

in Figure 2. It is clear that this initial systematic uncertainty estimation can be significantly improved by future dedicated work

on better quantifying and (if suitable) correcting for the systematic uncertainty components.15

The resolution of the retrieved bending angle, wαr, essentially corresponds to the higher resolution of the two bending angle

profiles αF1 and αF2, and thus generally closely matches wαF1 in most cases. As a simple but robust and suitable estimate,

assuming that the resolutions of αr and αF1 scale in the same way as the correlation lengths lαr and lαF1 (derived from Rαr

and RαF1 as described for RLF in Equation A9), we compute wαr as

wαr,i =
lαr,i

lαF1,i
·wαF1,i. (A52)20

In concluding we note that the atmospheric bending angle derivation algorithms used in this study, i.e., the adaptive filtering,

TBAE, and ionospheric correction parts as described in this section, have recently received further advancement towards a form

fully based on the combination of αF1 and the difference-profile αF12 (rather than of αF1 and αF2), more aligned with the

concept of Sokolovskiy et al. (2009). A detailed description of this most recent version is found in Kirchengast et al. (2017b).

Appendix B: Variance Propagation for Comparison25

The full covariance propagation applied to propagate random uncertainties requires numerically ‘expensive’ matrix operations

and therefore considerable efforts were made to seize opportunities for reducing the number of numerical operations (e.g., by

only calculating with those elements of the band-matrix ABWS which lie within the width of the filter window).

However, as demonstrated in Section 4, simplification to a mere variance propagation (i.e., only considering the diagonal

elements of the covariance matrices) is not reasonably possible because it leads to an unacceptable overestimation of random30

uncertainties. This overestimation occurs since the influence of the covariance elements—and thus for example the partially

compensating impact of the negative side-peaks in the correlation functions—is disregarded.
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Here we state the two equations used to obtain the variances-only propagation results shown for comparison purposes in

Figure 9: the estimated random uncertainty was propagated through the BWS filter using

(urαFi,k)2 =

N∑
j=0

(ABWS
ij,k )2 · (urαMj,k)2, (B1)

and subsequently through the ionospheric correction using

(urαr,i)
2 = (1 + γfT12)2 · (urαF1,i)

2 + γ2
fT12 · (urαF2,i)

2. (B2)5
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Figure 1. Schematic view of the main processors of the retrieval chain in the rOPS (L1a, L1b highlighted, L2a, L2b) and the main operators

of the L1b processor (1, 2, 3), which are in the focus of this study.
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Table 1. Principal variables for the rOPS L1b uncertainty propagation.

Variable Unit Description

Xr U state profile of retrieved excess phase/filtered excess phase/retrieved Doppler

shift/retrieved geometric optics bending angle/merged GO WO bending

angle/filtered bending angle/retrieved bending angle, with Xr ∈ {Lr,k(t),

LF,k(t),Dr,k(t),αG,k(t),αG,k(za),αM,k(za),αF,k(za),αr(za)}, k ∈ {1,2}

(frequencies fT1, fT2) and unit U ∈ {m,m,ms−1,rad,rad,rad,rad,rad},

comprising elements Xr,i.

usX U estimated systematic uncertainty profile ofX (withX and U as defined above),

comprising elements usX,i (including estimated basic and estimated apparent

systematic uncertainties, ubX,i and uaX,i).

urX U estimated random uncertainty profile of X (with X and U as defined above),

comprising elements urX,i, .

RX 1 error correlation matrix of X (with X as defined above), comprising elements

RX,ij .

CX U2 error covariance matrix of X (with X and U as defined above), comprising

elements CX,ij = urX,i ·urX,j ·RX,ij .

lX m correlation length profile of X (with X as defined above), comprising elements

lX,i.

τX s resolution profile of X (with X as defined above) in time domain, comprising

elements τX,i.

wX m resolution profile of X (with X as defined above) in altitude domain (along

impact altitude), comprising elements wX,i.

Xm U model excess phase/Doppler shift/bending angle profiles based on forward

modeling of co-located refractivity profiles from ECMWF short-range forecast

fields, with Xm ∈ {Lm(t),Dm(t),αm(za)} and U ∈ {m,ms−1,rad}, com-

prising elements Xm,i.

xS U profiles of cartesian position/velocity vectors of the receiving/transmitting satel-

lite relative to the center of refraction, with xS ∈ {rT(t),rR(t),vT(t),vR(t)}

and unit U ∈ {m,m,ms−1,ms−1}, comprising elements xS,i.

usxS U estimated (systematic) uncertainty profiles of xS (with xS and U as defined

above), comprising elements usxS,i.

ABWS 1 BWS filter matrix operator, comprising the blackman windowed-sinc (BWS)

lowpass filter weights (normalized filter functions) in form of a band matrix.

AL2D s−1 Doppler differentiation matrix operator, transforming the filtered excess phase

profile to the Doppler shift profile.
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Table 2. Vertical grids, coordinate variables, and specific settings for the rOPS L1b processing system

Variable Unit Description

fT Hz transmitter signal carrier frequency, with elements fTk (for GPS transmitters

k ∈ {1,2} denoting the L-band frequencies fT1 = 1.57542GHz and fT2 =

1.22760GHz).

fs Hz measurement sampling frequency (also called sampling rate); 50Hz is generally

used for the input excess phase profiles.

fc Hz Blackman Windowed-Sinc (BWS) lowpass filter cutoff-frequency; set to 2.5Hz

(but noise-dependent for the fT(1)2 filtering for ionospheric correction, with

fc(1)2 ∈ {2.5Hz,2Hz,10/7Hz,1Hz,5/7Hz,0.5Hz}).

t s time grid of the measurements at sampling rate fs, with elements ti, i ∈

{1,2, ...N}, where N is the number of grid points of the RO profile.

at m impact parameter grid corresponding to time grid t.

za m common monotonic impact altitude grid, calculated from sorted impact param-

eters at,i of the leading channel (fT1) bending angle, via za,i = at,i−hG−RC.

Used as standard vertical grid after interpolation of all dependent quantities to

za.

zt m msl altitude grid corresponding to time grid t, obtained as part of the forward

modeling towards αm, Dm, and Lm (cf. Table 1).

zaTop m impact altitude of the top of the RO profile, can lie between 70km and 80km.

zaBot m impact altitude of the bottom of the RO profile, can lie between 25km and

the Earth’s surface. It can be different for the different GNSS frequencies (i.e.,

zaBot,k, for k ∈ {1,2}).

zGW
a m impact altitude at the center of the sinusoidal transition range of half-width

∆zGW
a between the GO and WO bending angle profiles; zGW

a can lie within

9km and 14km, depending on GO bending angle data quality.

∆zGW
a m impact altitude transition half-width of the half-sine-weighted transition be-

tween the GO and WO bending angle profile. Set to 2km.

zaGradr m impact altitude at the lower end of the excess phase uncertainty estimation range

used in this study, below which the estimated random uncertainties are extended

by a linear gradient. Set to 30km.

zaGrads m impact altitude at the lower end of the range with constant excess phase sys-

tematic uncertainty used in this study, below which the estimated systematic

uncertainties continue with a linear gradient. Set to 8km.
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Figure 2. Detailed workflow for state retrieval and uncertainty propagation of the main L1b operators from excess phase to atmospheric

bending angle profiles (1)-(3) and of the subroutines used in the MC testing framework (a)-(g). The mathematical notation, including all

symbols, is introduced in Tables 1 and 2.
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Figure 3. Input profiles of retrieved excess phase Lr (with model profile Lm for comparison) in (a), estimated systematic uncertainty profiles

usLr in (b), estimated random uncertainty profiles urLr in (c), representative correlation functions RLr,i (at 10, 30, 50 and 70km) in (d) and

(e), and correlation length lLr (solid) and resolution profiles wLr (dotted) in (f), which are set zero for these initial essentially uncorrelated

input data. All profiles are shown for both GPS carrier frequencies fT1 (blue) and fT2 (red).
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Figure 4. Results for filtered excess phase profiles LF (with model profile Lm for comparison) in (a), estimated systematic uncertainty

profiles usLF in (b), estimated random uncertainty profiles urLF in (c), representative correlation functions RLF,i (at 10, 30, 50 and 70km)

in (d) and (e), and correlation length lLF (solid) and resolution profiles wLF (dotted) in (f). All profiles are shown for both GPS carrier

frequencies fT1 (blue) and fT2 (red).
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Figure 5. Results for retrieved Doppler shift profiles Dr (with model profile Dm for comparison) in (a), estimated systematic uncertainty

profiles usDr in (b), estimated random uncertainty profiles urDr in (c), representative correlation functions RDr,i (at 10, 30, 50 and 70km) in

(d) and (e), and correlation length lDr (solid) and resolution profiles wDr (dotted, estimated for main peak) in (f). All profiles are shown for

both GPS carrier frequencies fT1 (blue) and fT2 (red).
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Figure 6. Results for geometric optics bending angle profiles αG (with model profile αm for comparison) in (a), estimated systematic

uncertainty profiles usαG in (b), estimated random uncertainty profiles urαG in (c), representative correlation functions RαG,i (at 10, 30, 50

and 70km) in (d) and (e), and correlation length lαG (solid) and resolution profile wαG (dotted, estimated for main peak) in (f). All profiles

are shown for both GPS carrier frequencies fT1 (blue) and fT2 (red); in panels (b) and (f) both profiles are essentially identical (so that blue

shadows the red color).
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Figure 7. Results for filtered bending angle profiles αF (with model profile αm for comparison) in (a), systematic uncertainty profiles usαF in

(b), random uncertainty profiles urαF in (c), representative correlation functionsRαF,i (at 10, 30, 50 and 70km) in (d) and (e), and correlation

length lαF (solid) and resolution profileswαF (dotted, estimated for main peak) in (f). All profiles are shown for both GPS carrier frequencies

fT1 (blue) and fT2 (red).
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Figure 8. Results for atmospheric bending angle profile αr (with model profile αm for comparison) in (a), systematic uncertainty profile

usαr in (b), random uncertainty profile urαr in (c), representative correlation functions Rαr,i (at 10, 30, 50 and 70km) in (d), and correlation

length lαr (solid) and resolution profile wαr (dotted, estimated for main peak) in (f).
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Figure 9. Results from the validation of CP covariance matrices CCP
Lr (’CP’) by MC covariance matrices CMC

Lr (’MC’) (first four rows): The

consecutive retrieval steps are shown for LF (a-c; in a-b also for Lr) and Dr (d-f) relative to setting time t, and for αG (g-i) and αF (j-l)

relative to impact altitude za. The left column shows estimated random uncertainties for fT1 (CP in blue, MC in black, in (a) urLr1 in light

blue), the middle column for fT2 (CP in red, MC in black, in (b) urLr2 in orange), the right column representative correlation functions at 60,

36, 12km for fT1 (CP in blue, MC in black), and 72, 48, 24 km for fT2 (CP in red, MC in black). The last row (m-o) shows CP (blue) and

MC (black) results for estimated αr random uncertainties (m) and representative correlation functions at 72, 60, 48, 36, 24 and 13km (o), as

well as variance propagation (’VP’) results (light blue) for αr in (n). 46



Figure 10. Uncertainty propagation results for real data ensembles from July 15th 2008, for the filtered excess phase profile LF1 of the

leading channel (fT1, GPS L1 frequency). Left column: Estimated random urLF1 (heavy) and systematic usLF1 (light) uncertainty profiles of

each ensemble member (gray), and the ensemble mean (color) for CHAMP (a), COSMIC (d), MetOp (g) and simMetOp (j). Middle column:

Correlation length profiles lLF1 of each ensemble member (gray), the ensemble mean (color) and the ensemble size profile (black, scale at

upper axis) for CHAMP (b), COSMIC (e), MetOp (h) and simMetOp (k). Right column: Estimated resolution profile wLF1 of each ensemble

member (gray) and the ensemble mean (color) for CHAMP (c), COSMIC (f), MetOp (i) and simMetOp (l).
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Figure 11. Uncertainty propagation results for real data ensembles from July 15th 2008 for output profiles of the leading channel (fT1,

GPS L1 frequency). The first row shows results for LF1 (a-c), the second for Dr1 (d-f), the third for αG1 (g-i), and the fourth for αr (j-l).

The different ensemble mean profiles are shown in colors (CHAMP (yellow), COSMIC (orange), MetOp (red) and simMetOp (violet)). Left

column: Mean random uncertainty urXr (heavy) and mean systematic uncertainty usXr (light) profiles (panels a, d, g, j); the latter shown as

10×usLF1 (in a) and 100×usXr (in d, g, j) for enabling visibility of these small quantities. Middle column: Correlation length profiles lXr

(panels b, e, h, k). Right column: Vertical resolution profiles wXr (panels c, f, i, l).
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Figure A1. Comparison of the Blackman windowed-sinc (BWS) lowpass filter and boxcar (BC) filters based on a representative segment

(between 30.3 and 32.7s) of the excess phase profile Lr1 of the COSMIC example event. Panel (a): Filter functions for the BWS filter with

fc = 2.5Hz and M = 41pts (’BWS’, red) and boxcar filters with M = 21pts (’BC21’, green) and with M = 11pts (’BC11’, blue), around

the central value of the segment (31.5s). Panel (b): Filter effects on the excess phase profile Lr1 from running the filters over the segment.

Shown are the unfiltered excess phase delta profile (’δLrm’, light gray), the BWS filtered profile with fc = 2.5Hz andM = 41pts (’δLBWS
Fm ’,

red), and the Boxcar filtered profiles with M = 21pts (’δLBC21
Fm ’, green) and M = 11pts (’δLBC11

Fm ’, blue), respectively.
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