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Abstract. Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term sta-
ble data sets, and are globally available as a continuous record since 2001. Essential climate variables for the thermodynamic
state of the free atmosphere, such as pressure, temperature and tropospheric water vapor profiles (involving background infor-
mation), can be derived from these records, which therefore have the potential to serve as climate benchmark data. However,
to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and
traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Pro-
cessing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty
propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from
excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error
correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the ba-
sic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte-Carlo
ensemble methods. The algorithm performance is demonstrated using test-day ensembles of simulated data as well as real RO
event data from the satellite missions CHAMP, COSMIC, and MetOp. The results of the Monte-Carlo validation show that
our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results
from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the
other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole

RO retrieval chain for the benefit of climate monitoring and other applications.

1 Introduction

Observation systems of the free atmosphere, focusing on the range from the top of the atmospheric boundary layer upwards,
were historically designed for weather research and forecasting purposes. They have considerable shortcomings when looking
at them from a climate monitoring perspective (Karl et al., 1995) and so the related global climate monitoring infrastructure
remains fragile and incomplete until today (Bojinski et al., 2014). The Global Climate Observing System (GCOS) aims to
improve the observational foundation for the climate sciences (GCOS, 2015). For this purpose the establishment of climate

benchmark data records is essential. To qualify as climate benchmark, records need to be 1. of global coverage, 2. of high
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accuracy, 3. long-term stable, 4. tested for systematic errors on-orbit, 5. tied to irrefutable standards, and they need to 6.
measure Essential Climate Variables (ECVs) (NRC, 2007; GCOS, 2015).

Based on the quality and abundance of Global Navigation Satellite System (GNSS) signal sources, in particular from the
Global Positioning System (GPS) so far, the GNSS radio occultation (RO) observation record is globally available (continu-
ously since 2001), long-term stable (due to the so-called self-calibration and high signal stability during the event), and highly
accurate (accuracy traceable to the SI second). Due to the self-calibrating property, the accuracy is also ensured on-orbit,
i. e., there is no need for calibration or bias correction in post-processing on ground (Leroy et al., 2006). The basic RO ex-
cess phase data can therefore serve as a Fundamental Climate Data Record (FCDR) as defined by GCOS (2010). From this
FCDR with its unique properties, ECVs—in particular the thermodynamic ECVs pressure, temperature and humidity in the
free atmosphere—can be derived using an RO retrieval chain.

In order to reliably serve as climate benchmark data record however, the retrieved ECV profiles and their claimed accuracy—
expressed by the uncertainties provided— need to be traceable back to the (small) uncertainties of the FCDR and in turn to the
raw data. This requires that 1. the RO retrieval is highly accurate and avoids any undue amplification of uncertainties associated
with the quantities in the FCDR and that 2. the uncertainties are propagated through the entire retrieval chain, from the raw
data to the ECV profiles, duly accounting for relevant side influences such as from background information. Developed at the
Wegener Center of the University of Graz (WEGC), together with international partners, the Reference Occultation Processing
System (rOPS) (Kirchengast et al., 2015) aims to establish such a fully traceable RO processing for the first time (Kirchengast
et al., 2016a, b).

In Figure 1 the basic steps of the RO retrieval chain in the rOPS, i.e., the precise orbit determination (POD) and excess phase
processing (labeled "L1a’ in Figure 1), the subsequent atmospheric bending angle retrieval ("L1b’), the refractivity and dry-air
retrieval ("L2a’), and the moist air retrieval ("L2b’) are sketched.

Kursinski et al. (1997), and more recently Hajj et al. (2002), Anthes (2011) and Steiner et al. (2011) provided detailed
introductions and reviews of the RO technique and its applications in meteorology and climate. Ho et al. (2012) and Steiner
et al. (2013) included comparative current RO retrieval chain descriptions of leading international RO processing centers, which
all do not yet include uncertainty propagation. Empirical error (uncertainty) estimates computed statistically from retrieved RO
atmospheric profiles and climatologies have been derived by Kuo et al. (2004), Steiner and Kirchengast (2005) and Scherllin-
Pirscher et al. (2011a, b, 2017), the latter with a focus on climate uses also providing simple analytical error models. These
studies and many others have described the RO retrieval chain in detail and have shown the high accuracy and quality of RO
data, particularly in the upper troposphere and lower stratosphere region.

The aim of the integrated uncertainty propagation in the rOPS is to eventually propagate uncertainties along this entire
retrieval chain from the raw measurement data to the ECVs (Kirchengast et al., 2016a, b), whereby the implementation of
the rOPS uncertainty propagation occurs in the sequential blocks illustrated in Figure 1. The L2a processing and uncertainty
propagation from atmospheric bending angle to dry-air profiles has already been introduced by Schwarz et al. (2017) [SKS2017

hereafter].
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This study is a direct complement to the work in SKS2017. Using the same propagation and validation methods as ap-
plied in SKS2017, it focuses on the uncertainty propagation from excess phase to atmospheric bending angle profiles, i.e.,
the L1b processing. As in SKS2017, random uncertainties are propagated using covariance propagation (CP) and validated
using Monte-Carlo ensemble methods (MC). As in the L2a processor, we also propagate (conservative bound) estimates for
systematic uncertainties along the retrieval chain of the L1b processor. Additionally, correlation length profiles and resolution
profiles are provided.

Uncertainty propagation as covariance propagation from excess phase to bending angle profiles has been outlined and
demonstrated in a basic form, by Syndergaard (1999) and Rieder and Kirchengast (2001), but not been implemented yet in
processing center retrieval chains and applied to real RO data. As visible in Figure 1, the L1b processor consists of three major
retrieval parts, which are expanded into detailed substructure in Figure 2. We propagate estimated random uncertainties from
excess phase profiles to Doppler shift profiles (Section (1) in Figure 2), further to geometric-optics (GO) bending angle profiles,
merged with wave-optics (WO) bending angle profiles (2), and finally to atmospheric bending angle profiles (3), using a full
CP approach. In combination with the definitions of the main operators and variables in Table 1, and of the vertical grid and
coordinate variables in Table 2, Figure 2 provides a concise overview on the detailed workflow of the L1b processor.

Uncertainty propagation for the WO bending angle retrieval has been implemented and demonstrated for simulated events
by Gorbunov and Kirchengast (2015), estimation of random and systematic uncertainties for real events including boundary
layer bias correction is introduced by Gorbunov and Kirchengast (2017).

Other on-going rOPS retrieval advancements relevant to this study are the inclusion of the high altitude initialization al-
gorithm, introduced by Li et al. (2013, 2015), in the L2a processor and the reduction of remaining higher-order ionospheric
effects in the retrieved bending angle profiles of the L1b processor (based on work by Syndergaard (2000), Liu et al. (2015),
Healy and Culverwell (2015) and Danzer et al. (2013, 2015)). Furthermore, the precise orbit determination (POD) of the RO
receiver satellite and the excess phase processing, also including the associated uncertainty propagation, are part of on-going
work (Innerkofler et al., 2017).

Finally, related work and manuscript preparation on a new moist air retrieval algorithm (L2b) and corresponding L2b uncer-
tainty propagation is on-going (Li et al., 2017; Kirchengast et al., 2017a).

The paper is structured as follows. In section 2 we introduce the uncertainty estimation, propagation and validation methods
and the data sources and preparation. In Section 3, with the help of an example RO event, the uncertainty propagation se-
quence is introduced. In Section 4 we present the results from the MC validation of the CP uncertainty estimates. In Section 5
the performance of the algorithm is then evaluated using test-day ensembles with real data from the RO missions CHAlleng-
ing Minisatellite Payload (CHAMP) (Wickert et al., 2001), FORMOSAT-3 Constellation Observing System for Meteorology,
Ionosphere, and Climate (COSMIC) (Anthes et al., 2008), and Meteorological Operational Satellite A (MetOp) (Luntama
et al., 2008), and with simulated data approximating characteristics of the Meteorological Operational Satellite A (Luntama
et al., 2008) [simMetOp data hereafter]. We close with conclusions and outlook in section 6. A detailed description of the

implemented uncertainty propagation algorithms can be found in Appendix A.
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2 Methods and Data
2.1 Methods

We follow the Guide to the expression of Uncertainty in Measurement (JCGM, 2008a, b, 2011) [GUM hereafter] and aim
to follow terminology as provided by the International Vocabulary of Metrology (JCGM, 2012), a terminology also adopted
by the GUM. SKS2017 provides a more thorough introduction, including the motivation for using the respective uncertainty
estimation, propagation and validation methods; we refer the closely interested reader to this companion (open access) work
and provide the essential methods needed more in summarized form below.

We categorize uncertainties into estimated random uncertainties and estimated systematic uncertainties. Effects of unpre-
dictable or stochastic temporal and spatial variations in repeated observations, like effects from fluctuations in the atmosphere
or the thermal noise of the receiver system, could in principle be estimated by ensemble statistics from multiple RO events.
However, since such effects are essentially stationary in a statistical sense, we can estimate their statistics also from individual
RO event data, given their high noise-resolving sampling rate. These effects are included in the estimated random uncertainties.

Systematic effects (biases), which can not be quantified using statistical data analysis based on just one individual RO profile,
are estimated and corrected for when known, as recommended by the GUM. The remaining residual biases are assumed to stay
within a (conservative) bound estimate, which we refer to as estimated systematic uncertainty and by which we aim to provide
at least 90 % likelihood coverage (confidence) that residual biases stay within the plus/minus envelope range of this uncertainty.

Depending on their nature, components of the systematic uncertainty that we need to estimate can be fundamentally sys-
tematic across different RO events, a subtype we term estimated basic systematic uncertainties, or appear systematic just for
individual RO events, a second subtype that we term estimated apparent systematic uncertainties. It is important to distinguish
these two subtypes, since the apparent systematic uncertainties will essentially behave as random uncertainties in ensemble-
averaging over many RO events, such as when generating climatologies, while the basic systematic ones will not average out
and therefore fundamentally limit the (absolute) accuracy of ensemble averages such as climatologies.

Since the noise-type effects giving rise to short range-correlated random uncertainties can be considered uncorrelated to
the bias-type effects inducing long range-correlated apparent systematic uncertainties, and since both are uncorrelated to basic
systematic uncertainties, it is insightful and possible with due care to estimate and propagate each of these uncertainties
independently.

As for the L.2a processor (SKS2017), the operators of the L1b processor (i.e., the boldfaced Items 1.2, 1.4, 2.1,2.7,2.9, 3.1,
3.5 in Figure 2) qualify as explicit, multivariate, linear measurement models, as defined in the GUM, with correlated input

quantities. They can therefore be formulated as
Yy = AXY . X, (1)

where the input quantity X and output quantity Y are rank-1 vectors (profiles) of random variables, which we call state profiles.

According to the GUM, their random uncertainties can be propagated using

Cy =E[YYT] = E[(AXY X)(AXY X)T] = AXYE[X X T)|(AXY)T = AXYCx (AX)T, 2)
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when the uncertainties are normally distributed. This assumption is reasonably justified, since the receiving system noise (i.e.,
thermal noise and residual clock estimation noise) and the ionospheric noise (from scintillations induced by ionospheric irregu-
larities) are essentially normally distributed overall (Kursinski et al., 1997; Syndergaard, 1999; Gorbunov, 2002b; Sokolovskiy
et al., 2009). These noise sources are the main contribution to the random uncertainties in the excess phase profiles feeding
into the L1b processor.

Cx and Cy are the covariance matrices of the input and output variables, respectively, and AXY is the linear (or linearized)
operator connecting X and Y. Equation 3 formulates how the covariance matrix Cx is calculated from random uncertainty

estimates u’y and the correlation matrix Ry,
T I
Cxij =ux,; ux ; Rxj. 3

As a key variable characterizing R x, correlation length profiles [x are estimated from the correlation functions assembled
in Rx. The used algorithm estimates [ x by searching for the distances downward and upward of the correlation functions’
main peak at which the correlation function has dropped to to a value of 1 /e (& 0.378). The adopted correlation length estimate
is the arithmetic mean of these two upward and downward estimates (as the peak may be somewhat asymmetric). Additionally
the correlation length is constrained by the data domain, i.e., the correlation length can never be larger than the profiles’ vertical
range.

Since the covariance propagation of random uncertainties requires extensive matrix multiplications for each measurement
model along the entire retrieval chain, we also tested simpler variance propagation, for which correlations are ignored; Ap-
pendix B summarizes the relevant algorithms. However, as shown in Section 4, variance propagation unduly overestimates
random uncertainties so that covariance propagation is required.

When the operator is linear, as is the case for the applicable L1b operators, estimated systematic uncertainties can be

propagated by application of the state retrieval operator on the estimated systematic input uncertainty
uy = A (X uf) -V =AY X + Ak Y =Y + Ay - Y = AN g, 4)

where u% and u$, are the rank-1 systematic uncertainty profiles of the input and output variables.

In addition to random uncertainties, systematic uncertainties and the correlation length, we also estimate resolution profiles
wx as context information along with the provided random uncertainty profiles (necessary, e.g., because smoothing can de-
crease random uncertainties, while making resolution coarser). This is enabled by careful selection and formulation of lowpass
filter operations, in particular explicit filter cutoff frequency specification as the main driver of the resolution remaining after
lowpass filtering.

We note that the (half-)Fresnel-scale physical resolution often ascribed to RO bending angle profiles retrieved by geometric-
optics methods (e.g., Kursinski et al., 1997; Gorbunov et al., 2004) will generally be somewhat coarser than the filter limited
resolution estimated here. This is intentional to maximize available information in the bending angle profiles provided by the
L1b processor. In the rOPS, on input to the L2a processor and before high altitude initialization by statistical optimization, the

resolution of all profiles is brought to a common altitude-dependent resolution, which reflects the half-Fresnel-scale (SKS2017).
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2.2 Data Sources and Preparation

The input variables needed for the L.1b uncertainty propagation, visible in Figure 2 and defined in Table 1, are the retrieved
excess phase profiles L, ;(¢) and the associated systematic uncertainty profiles uf, ; (¢), random uncertainty profiles uf, ; (t)
and correlation matrices R, x, as well as the orbit positions and velocities of receiver and transmitter satellite, g (t), vr(t),
rr(t), v7(t), and their (systematic) uncertainties, uiy (t), uir (), uip(t), ui(t). For due limitation of depth of workflow
detail in Figure 2 we do not separately show the propagation of the basic and apparent systematic uncertainties as they are
both identically propagated through the operator chain shown for uj, 1 (t). All variables are provided on the time grid ¢ with
elements t;, at f; = 50Hz sampling rate, and for the two GPS carrier frequencies fry, with k € {1,2}, fr1 = 1.57542 GHz
and fro = 1.22760GHz.

We used excess phase state profiles L, x(t) and the orbit state profiles g (¢), vr(t), 7r(t), v (t) from 15 July 2008 as
test-day ensemble. For CHAMP, COSMIC, and MetOp, orbit state and excess phase profiles were provided by the COSMIC
Data Analysis and Archiving Center (CDAAC) of the University Corporation for Atmospheric Research (UCAR), Boulder,
Colorado. The End-to-End GNSS Occultation Performance Simulation and Processing System (EGOPS) (Fritzer et al., 2009)
was used for generating the simulated MetOp orbit state and excess phase profiles with realistic receiver noise (simMetOp).
Figure 3 shows L, ;(t) in (a), ug,. x(t) in (b), uf, (1) in (c) and Rz, j in terms of representative correlation functions in (d)
and (e), for a typical COSMIC RO event of the test-day ensemble from 15" July 2008 (example case).

Exploiting the linearity of the (linearized) retrieval operators, the so-called baseband-approach (Kirchengast et al., 2016a) is
applied throughout the rOPS. Hereby a zero-order model profile is subtracted from the input state profile and only the remaining
delta-profile is processed through the operator. After application of the operator, the zero-order model profile of the output state
profile is added back to the resulting delta-profile. This approach effectively avoids biases from numerical operations on (near-
Jexponentially varying RO profiles, since the model profiles that we derive from short-range (24 h) forecasts of the European
Centre for Medium-Range Weather Forecasts (ECMWF) skilfully subtract the (near-)exponential variation. The remaining
increment profiles that we need to treat numerically then appear to be very linear and with low dynamical range, which leads
to very low residual numerical errors of operators such as filters and derivatives.

The model profiles used as zero-order states in the retrieval, i.e., Ly,, Dy, and oy, (cf. Table 1), were created from European
Centre for Medium-Range Weather Forecasts (ECMWF) short-range (24h) forecast refractivity fields, accurately forward
modeled to bending angle (o, ), Doppler shift (D,,,) and excess phase (L.,) profiles, co-located to the latitude, longitude and
time of the respective RO event processed in the rOPS. The ECMWEF fields used have a horizontal resolution of about 300km
(triangular truncation T42)—which corresponds to the approximate horizontal resolution of RO profiles (e.g., Kursinski et al.,
1997)—and are available at 91 vertical levels (L91).

ECMWEF fields were chosen for their proven leading quality (Untch et al., 2006; Bauer et al., 2015) and thus high suitability
for serving as zero-order state profiles; any other reasonable model profiles could be used as well since the retrieval results

negligibly depend on the exactly chosen zero-order model profiles. For comparison we plotted L, (¢) for the COSMIC example
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case into Figure 3a, which demonstrates that the ECMWF short-range forecast lies very close to L,1(t) and L,o(¢) and thus
suits well as model profile.

While in future the excess phase random and systematic uncertainty profiles will be more rigorously estimated by the rOPS
L1a processor (Innerkofler et al., 2017) and provided as input to the L1b processor, they had to be estimated for this study from
existing excess phase profiles with realistic noise (we chose UCAR/CDAAC ones) and simplified modeling. To this end, each
estimated random uncertainty profile u7 . . (t) was estimated based on the noise of the respective retrieved excess phase profile
L, 1 (t). The noise was determined following the estimation scheme for bending angle observation errors described by Li et al.
(2015), Section 2.2 therein; so we just briefly summarize how we used it here.

First, for both, the retrieved profile L, ;, and for the model profile L,,, the mean over all grid points between 60 and 70km
was determined. Then L,,, was offset-corrected towards L, j, by subtracting the difference of these two means from L, giving
the offset-corrected model profile L. Next, the delta-profile 0 Ly = Ly 1, — Lw was calculated. After smoothing 6 Ly
with a 10km moving average boxcar filter, the smoothed profile was subtracted from 0 L, 5 again, to get 66 Ly k., the random

noise profile component of L, j, isolated in this way. Finally, the estimated random uncertainty was determined as

i+M/2
ULy ik = Z 55L$rh,jk ) ®)
j=i—M/2
where M is the number of grid points equivalent to a window width of 10km. To avoid boundary effects of the filter, u},, , was
only determined up to z,Top —5km, and down t0 ZGradr at 30km. It was constantly extended at the upper end and extended
by a linear gradient below z,Gradr, using (in units [m])

ZaGradr — Za,i

3.106 7 (6)

r .
ULy ik = qu,k(ZaGradr) +

for all elements of uTLr’ & () below z,Gradr, roughly following estimates of ESA/EUMETSAT (1998) and the overall behavior
of estimates from real excess phase profiles (the latter became too vulnerable to biases and fluctuations to continue using them
below 30 km).

Since the noise components responsible for the random uncertainty at excess phase level are essentially uncorrelated at
a sampling rate of 50Hz (Syndergaard, 1999; Hajj et al., 2002), the correlation matrix R, is set to unity in the diagonal
and to zero outside (i.e., a Kronecker- assignment) for both channels. In case the future excess phase data from the rOPS
L1la processor exhibit non-negligible correlations for some data from some of the RO missions, we will account for these
correlations in Ry, since our L1b algorithm (Section 3) is prepared for full covariance propagation. The elements of the

covariance matrix Cyp,, are hence (Item 1.1 in Figure 2),
_ ks ks . _ ks . i . .
Clrijk = Urr,ik " ULr,jk “Riprijr = Urr,ik " ULr,jk dij- (N

For the MC validation of the CP, error profile realizations €} . were superimposed onto simulated "true’ excess phase profiles

sz(t). As source for sz we used an EGOPS-simulated "error-free” CHAMP event from August 8th, 2008 (i.e., no receiver
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system errors superimposed). Using an ’error-free’ profile as basis, the particular simulated profile just serving as a represen-
tative RO profile to illustrate the MC validation, allows us to strictly ensure the consistency of the random uncertainty of the
input profile with the ensemble of superimposed error profile realizations.

To create the error profiles, a representative uzrs D uncertainty profile was selected from a COSMIC ensemble of uncertainty
profiles, created according to Equations 5 and 6. The error profile realizations are random draws from a distribution charac-
terized by these uncertainties, again assuming that Ry, ;; = d;5, i.e., that there are no correlations between the individual grid
levels (Item (a) in Figure 2; Figure 3f). The same standard profile uTLrS TP was used as input for the CP to which the MC results
are then compared. This MC validation method applied to test the rOPS L1b uncertainty propagation steps is essentially the
same as in SKS2017, and described therein in more detail.

The estimated systematic uncertainty uy, , was determined based on a simple model roughly following error estimates from
ESA/EUMETSAT (1998), with constant uncertainty from 80km down to z,Grads at 8km, and a linear uncertainty gradient in
the troposphere; as noted above this simplified modeling will be replaced in future by realistic uncertainty estimates received
as L1b retrieval input from the L1a processor (Innerkofler et al., 2017).

The constant u7, , above ZGrads is 0.1 mm for k=1 and 0.2mm for k£ = 2 for MetOp and simMetOp. This uncertainty is
interpreted as an estimated basic systematic uncertainty, i.e., as a lower-bound estimate of available accuracy.

For CHAMP and COSMIC we set uj, ; = 0.2mm and uj, , = 0.4mm, to roughly reflect the fact that these RO receivers
are lower-cost instruments with lower gain, and thus somewhat lower tracking performance, than the GPS receiver GRAS on
MetOp (e.g., Luntama et al., 2008; Angerer et al., 2017). From z,Graqs downwards, uin ;. (in units [m]) increases by

ZaGrads — a,i

3-107 ®

s )
U’Lr,ik = uzr,k(ZaGrads) +

In order to avoid a sharp kink in the uTLr, i, profiles at 2,qradr, and in the uin i profiles at 2,Grads, @ 2km-width moving average
boxcar filter was applied to smooth these simple uncertainty models around these transition altitudes (for the example profile
u}, is visible in Figure 3b).

The orbit position and velocity uncertainties of the transmitter and the receiver satellites show little variation within the short
duration of an individual RO event of about 45 sec to 2 min (Innerkofler et al., 2017) and can be assumed to be constant biases.
They are thus counted to the systematic uncertainties, more precisely the apparent systematic uncertainties, since the actual
values of the orbit-borne biases will generally change in a pseudo-random manner from event to event.

L consistent with accuracies

We set the transmitter position and velocity uncertainties to u. = 3cm and u; . = 0.01 mms™—
for GPS orbits available from GNSS orbit providers like the International GNSS Service (IGS). The receiver position and
velocity uncertainties, uSy = 5cm and u$y = 0.05mms ™! for CHAMP and MetOp, are adopted four times smaller than those
for COSMIC with uy =20cm and u$g = 0.2mms™', as found by ongoing rOPS-related POD studies (Innerkofler et al.,

2017), consistent with previous literature (e.g., Montenbruck et al., 2009; Schreiner et al., 2010).
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3 Algorithm Sequence and Example Results

In this Section the L1b uncertainty propagation algorithm sequence is introduced. We illustrate the effects of the algorithm on
the main uncertainty variables by way of the COSMIC example case already used for Figure 3.

For each L1b retrieval step, i.e., segments (1), (2), and (3) in Figure 2, the results for the principal variables are shown in Fig-

ures 4 to 8. These variables are the state profiles X, (with X, € {Lp (%), Dy x(t),ac k(t), ac k(2a), oMk (2a)s 0F 1 (2a), 0 (24) 1),

the estimated systematic uncertainty profiles u%,, the estimated random uncertainty profiles v, representative correlation
functions Rx, ; (with ¢ such that z, ; € {10km,30km,50km,70km}), and the correlation length profiles [ x, and resolution
profiles wx . Along with the dual-frequency state profiles we also show the collocated forward modeled short-range forecast
profiles, i.e., model profiles X, with X, € {Ly,, Dy, auy } for comparison.

A concise definition of the variables involved is provided in Table 1, as introduced above. The summary description in
this section is complemented by a complete step-by-step description of the algorithm along the entire L1b retrieval chain in
Appendix A, which is organized for convenience into the same sequence of subsections.

To simplify the notation in the description we suppress index k whenever steps are applied in an identical way to the data
of both GNSS L-band channels with frequencies fr; and frs. Only if the two channels are treated differently, such as in
Section 3.3, the index is considered again. For conciseness we also do not illustrate both the estimated basic and estimated

apparent systematic uncertainty but rather the total estimated systematic uncertainty as the overall result.
3.1 Doppler Shift Retrieval
3.1.1 Basic Lowpass Filtering

A Blackman-Windowed-Sinc (BWS) lowpass filter with a filter cutoff frequency f. = 2.5Hz (boxcar-equivalent filter width
of 0.2s) (Item 1.2 in Figure 2) is applied onto the excess phase profile L,(t), before the Doppler differentiation (Item 1.4
in Figure 2), to avoid an amplification of high-frequency noise in the phase profile by the derivative operation. This filter
suppresses the noise and consequentially the filtered excess phase profile Ly (t), shown in Figure 4a, is expected to have
random uncertainties u}  of smaller magnitude, but correlated over the length of the filter-window. The uncertainties obtained
through the implemented algorithm confirm these expectations, i.e., random uncertainty profiles in Figure 4c are less than a
third in magnitude of those in Figure 3c, and Figures 4d-e show how the correlation functions widened and the correlation
length/vertical resolution reaches ~ 0.5 km/~ 0.6 km above about 30 km impact altitude (Figure 4f).

The random uncertainty propagation algorithm, i.e., the covariance propagation from Cy, to Cpr is described by Equa-
tion A6 and Item 1.3 in Figure 2, and justified by Equation 2. To obtain u7  and Rzr, we use Equations A7 and AS8.

To propagate the estimated systematic uncertainty u3 ., which characterizes long-range-correlated offsets or biases, we use
the same BWS filter as for the state profile, i.e., making use of Equation 4. Because the input uncertainty profile u . is chosen
to be constant down to z,arads, the filter has little effect, and u7 , shown in Figure 4b, is essentially equal to u7 ., shown in

Figure 3b.
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The resolution profile wy, is determined by the filter-width according to Equations A1l and A13. After the BWS filtering,
the resolution is roughly equal to the correlation length {;r, amounting to ~0.6km above about 30km impact altitude and

becoming finer downwards due to the increasing refraction (Figure 4f).
3.1.2 Doppler Shift Derivation

The next step is a five-point differentiation operation (Item 1.4 in Figure 2) used to calculate the Doppler shift profile D, ()
from the filtered excess phase profile Ly (t). The resulting dual-frequency Doppler shift profiles are plotted along with the
model profile Dy, (¢) in Figure 5a for the example case.

As for the filtered excess phase, we apply CP (Equation A18, Item 1.5 in Figure 2) to first calculate the covariance matrix
Cp, and then extract u';,, (shown in Figure 5c¢) and R p, (Figures 5d and 5e) from it. The choice of the x-axis range shows the
random uncertianties increased, but the differentiation actually does increase relative random uncertainties (relative to the state
profile). It also causes anti-correlation with neighbouring elements, as visualized by the negative side-peaks of the correlation
functions in Figures 5d and Se. The correlation length [, (of the main correlation function peak) decreases accordingly (now
smaller than 0.3km throughout), because the correlation functions fall off steeper on both sides of the main peak (Figure 5f).

For calculating the estimated systematic uncertainty we use the state operator, i.e., we just differentiate w7 and get u),
(shown in Figure 5b). With the current illustrative choice of input uncertainties the systematic uncertainty of the Doppler
shift profile is zero above the transition to the troposphere, where the estimated systematic uncertainty of the excess phase is
assumed constant; in the troposphere a Doppler shift offset of ~ 0.02mm s~ occurs.

The resolution profile wp, shows that the vertical resolution stays unaffected by this operator (cf. Figures 5f and 4f), because
the BWS filter width of the preceding lowpass filtering (intentionally) stretched beyond the five neighboring points involved in

the differentiation.
3.2 Bending Angle Retrieval
3.2.1 GO Bending Angle Retrieval

The next operator is the geometric-optics (GO) bending angle retrieval in which retrieved GO bending angle profiles o (t) are
calculated from Doppler shift profiles D, (t) and the orbit position and velocity vectors r1(t), rg(t), vr(t), vr(t) (Item 2.1
in Figure 2) and then interpolated to the (common monotonic) impact altitude grid z,, (Item 2.6 in Figure 2).

Figure 6a shows retrieved aq profiles together with the model profile ay,. The mildly non-linear, implicit-type bending
angle retrieval operator needs to be solved iteratively, and requires linearization for both random and systematic uncertainty
propagation, as described in detail in Appendix A (Section A2). Because this retrieval step is performed level by level, keeping
levels independent, the GO bending angle retrieval leaves correlation functions and resolution unchanged (cf. Figures 6d-f and

5d-f).
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The estimated random uncertainties u],, as shown in Figure 6c, now increase more strongly in the lower stratosphere and
troposphere (to about 40 to 50 urad near 10km), because they are depending on the vertical gradient of the impact parameter
at, which is increasingly larger towards lower altitudes from the increasing refraction.

The main contributions to the estimated systematic uncertainty u? . are induced by systematic uncertainties in orbit velocity
and position of the transmitter and the receiver satellite (details in Section A2), which in total amount to about 0.05 urad

(Figure 6b). Compared to this magnitude, the systematic uncertainty contributed by the Doppler shift uncertainty is very small.
3.2.2 WO Bending Angle Retrieval

Due to strong refractivity gradients and multipath effects, the GO bending angle retrieval can be inadequate in the troposphere,
and therefore wave-optics (WO) algorithms are applied to reconstruct the geometric optical ray structure of the wave field (e.g.,
Gorbunov, 2002a; Gorbunov and Lauritsen, 2004).

In the rOPS, along with the WO bending angle profile aw (z,), the systematic uncertainty profile u},, the random uncer-
tainty profile u,yy, the correlation matrix R,w, and the resolution profile w,w are retrieved (Item 2.7 in Figure 2).

The WO bending angle retrieval algorithm used is a canonical transform (CT2) algorithm (Gorbunov et al., 2004) and the
associated uncertainty propagation algorithm is not described here, but separately by Gorbunov and Kirchengast (2015, 2017).

The WO retrieval and uncertainty propagation results are supplied up to 20km impact altitude by the WO algorithms.
3.2.3 Merging of GO and WO Bending Angle Profiles

In the rOPS bending angle retrieval the results from the WO retrieval, ayy, are merged with GO retrieval results, ag, at
GW

SW in a transition range z$W 4+ A2SW to get merged profiles ayy (Item 2.9 in Figure 2). The

around a transition altitude 2
determination of the transition altitude and the merging algorithm are described in Appendix A (Section A2.3). We use a
specialized covariance propagation to propagate the GO and WO uncertainties, expressed by the covariance matrices C,g
and C,w, to properly obtain the covariance matrix of the merged bending angle C,\ (Equations A37 and A38, Item 2.10 in
Figure 2).

Because the rOPS implementation of the WO uncertainty propagation (Gorbunov and Kirchengast, 2017) was still in test
phase and not yet available for integration into the simulations here, all examples in this study are GO-only, i.e., only the GO
retrieval is performed. Results for ay are thus unchanged from those shown in Figure 6 and not separately illustrated.

In order to nevertheless test and validate the uncertainty propagation of the merging algorithm, WO retrieval results were
artificially substituted by GO retrieval results (and consequently random uncertainties were assumed to be correlated rather
than uncorrelated) for the MC validation (Section 4).

In order to nevertheless test and validate the uncertainty propagation of the merging algorithm, WO retrieval results were

artificially substituted by the GO results for the MC validation (Section 4), i.e., GO was used as proxy for WO since reasonably
capturing expected WO variability as indicated by tests of Gorbunov and Kirchengast (2017).
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3.3 Atmospheric Bending Angle Derivation
3.3.1 Adaptive Lowpass Filtering and Minor Channel Extrapolation

To prepare the merged bending angle profiles ayy,k for the ionospheric correction they are first filtered by another BWS filter
operation (Item 3.1 in Figure 2) in order to ensure adequately smoothed bending angle profiles ap i, with k € {1,2}.

The chosen filter cutoft-frequency for k =1 is f.; = 2.5Hz, same as the basic filtering (Section 3.1.1), just to ensure clear-
ness of any higher-frequency effects from operators after the initial excess phase filtering (e.g., from Doppler shift derivation
that induces short-range anti-correlation effects). For k£ = 2, the cutoff-frequency f. is set noise- dependent, between 2.5 and
0.5Hz (boxcar equivalent width of 0.2 to 1.0s). In events in which the aps profile does not reach down as far as apy, it is
extrapolated down to the bottom of ap1, 24Bot. The results for the filtered bending angle state profiles o j, are displayed in
Figure 7a, together with the associated model bending angle profile a.,. The filter has considerably reduced the noise of the
profile, particularly for ags, where a cutoff frequency f.o = 10/7Hz appears to have been selected in this example case.

The relevant covariance-propagated random uncertainties g, are shown in Figure 7¢ (blue and red), illustrating the
reduced noise, especially for aps. In return, the peaks of the correlation functions broaden (cf. Figure 7d-e and 6d-e), with
correlation lengths I, i at near 0.4km for ar; and above 0.5km for apo (Figure 7f).

The estimated systematic uncertainty remains largely unchanged (Figure 7b) due to its smooth character.

The resolution of the filtered bending angle profiles (according to Equations A1l and A13) is determined by the cutoff-
frequencies f. ; of the BWS filters. In the example case it is therefore essentially unchanged for ar;, while significantly
decreased for aps (cf. Figure 7f and 6f) since f.o = 10/7Hz. That is, the resolution w,r2 in the upper stratosphere for example,

where the vertical scanning velocity of this RO event is about 3.2kms ™1, is near 1.1km (Figure 7f).
3.3.2 Ionospheric Correction

The final step of the L1b processor is the ionospheric correction (Item 3.5 in Figure 2). The atmospheric bending angle «;. is
obtained by applying a linear dual-frequency combination of a1 and aps, such that ionospheric effects are largely removed
(details are described in Section A3). The final retrieved atmospheric bending angle a, of the example case is shown in
Figure 8a. The propagation results for the estimated random uncertainty are shown in Figure 8c. The linear combination of the
ionospheric correction amplifies noise and uy,, is therefore considerably larger than u ; and «] g, (cf. Figure 8c and 7c).

Figure 8d shows how the correlation functions—as obtained through covariance propagation—are combining the character-
istics of the correlation functions from the two matrices R,r1 and R,r2, With essentially inheriting the ayr; behavior, since
the aps influence into the ionospheric correction is comparatively minor (see Section A3).

The residual higher order ionospheric effects are accounted for by a ’conservative best-guess’ value (0.05 prad, reflecting

results of Liu et al. (2015) and Danzer et al. (2013, 2015)) and added (in root-mean-square form) to the systematic uncertainty

S
ar’

profile u? ., leading to a total estimated systematic uncertainty in this example case of ~ 0.07 yurad (Figure 8b). Within this
uncertainty, the one dominating component from orbit uncertainties (~ 0.05 prad, cf. Figure 6b) can be considered an apparent

systematic uncertainty that will essentially average out in ensemble-averaging (e.g., climatologies) while the other dominating
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component from residual higher-order ionospheric biases (also estimated ~ 0.05 prad as noted above) can be considered a basic
systematic uncertainty. For the latter it is therefore useful and prepared for in the rOPS—in line with GUM recommendations
and as discussed in the introductory Section 1—to correct for the quantifiable part of it in the future so that the total basic
systematic uncertainty may be mitigated down to the ~ 0.01 urad level.

The resolution profile w,, of the retrieved bending angle (Figure 8f) is dominated by the contribution of ap; that strongly
dominates (intentionally by construction) the ionospheric correction results in terms of the small-scale bending angle variabil-

ity. Similar as for the correlation length profile [, it is therefore very close to w,r1 and only slightly larger.

4 Algorithm Validation

The GUM advises to use a Monte-Carlo (MC) method for uncertainty propagation if the retrieval operators do not fulfill the
criteria for a GUM-type CP. In our case the MC method is put to another beneficial use, to validate the results of the CP, as
recommended by JCGM (2011).

For the validation of the covariance propagation by the MC method, we sampled the input excess phase profile random error

distribution, statistically described by

MC _ rSTD _rSTD .
Cro=up,; ~upy; -0, )

by a large number M of draws LT + €Lrj (with j € {1,..., M} and M = 1000). For each of these M profile realizations, the
state retrieval is run through the L1b retrieval chain, to give M realizations of the output variable X; (with X; € {Lp x;(t),
Dy ki (1), a6k (2a), aF kj(2a) r j(24) } and k € {1,2}). From these individual realizations the mean profiles X, and the
covariance matrices C%C,

1

CMC:
X T M-

(X1 — XMOY (X, — XMOT 4+ (X — XMOY (X — XMOTY), (10)

are calculated (Items b-g in Figure 2). Using the same input profile and uncertainty information as used to specify the MC runs
(described in Section 2.2), the retrieval is then also run with covariance-based uncertainty propagation and the resulting CP-
propagated covariance matrices C§ are compared to the MC-derived matrices C}/°. In order to be able to attribute potential
changes between CP and MC covariance matrices better, we decompose Cx into u'y and Rx (Equations A7 and A8), and
compare them separately.

Figure 9 shows the different steps along the retrieval chain from Ly (t) to Dy (), ag.x(%a), aF k(24), and a,(z,) in the
rows, for k =1 (GPS fr; frequency) in the left column and for £ = 2 (GPS fr9 frequency) in the middle column. The right
column shows multiple representative correlation functions, from near 10km to near 70km. Due to the limited number of MC
draws, the MC results (black lines) show some jitter both in the estimated random uncertainty and in the correlation functions.
Since the purpose of the MC results is only to demonstrate the correctness of the CP result, we can disregard this behavior.

Figures 9a (light blue) and 9b (orange) show the random uncertainties u7, ; and u7, , respectively, which characterize the

input distribution and from which the random error profiles €, ; are drawn. They also show the CP results for the random
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uncertainty u} , (dark blue in Figure 9a) and u7 i, (red in Figure 9b), compared to the MC propagated random uncertainties
(black).

The CP and MC lines match very well and show that the implemented CP algorithm delivers correct results for the basic
filtering step. For frs, the MC uncertainties do not reach down as far as the CP uncertainties, because the shortest of all
draws of the large ensemble of size M determines how far down the recombined MC covariance matrix (Equation 10) reaches.
Figure 9c compares CP correlation functions Ry ;1 (blue) and Rrr ;o (red) to the corresponding MC correlation functions
(black dashed).

Also the CP and MC correlation functions agree well. Both capture the narrow peak, broadened by the BWS filter. Again the
MC correlation functions fluctuate around zero left and right of the peak, from the finite ensemble size, but it is obvious that
the CP delivers the correct off-peak results (i.e., zero; the off-peak elements outside the BWS filter window must nominally be
zero). The MC validation (black) of u',,; (Figure 9d), u', ., (Figure 9¢) and Rp, ; (Figure 9f, blue and red) demonstrates that
the CP through the Doppler shift derivation performs correctly as well.

The next row, Figures 9¢g to 9i show the results for the GO bending angle o (z,,), i.€., after the interpolation of all quantities
to the (common monotonic) impact altitude grid z,. For comparison, in Figures 9a to 9f, all quantities have been computed on
the common time grid (’setting time’ relative to time zero at 80km altitude) with 50 Hz sampling rate; and the corresponding
impact altitude of the ’true’ profile LT is shown for additional convenience on the RHS axis. In Figures 9g to 9o, these bending
angle quantities have been computed on the impact altitude grid; in these cases therefore the corresponding setting time of the
"true’ profile is shown for additional convenience on the RHS axis.

The results for the filtered bending angle ar follow in Figures 9j to 91. Also here the MC results match the CP result well.
Due to the lower BWS cutoff-frequency for arz, now ul,, is smaller than u,,, even though u[, -, was larger than u, ;.
Correspondingly the peak of the correlation functions R, ;2> widened more than those of R, ;1 (cf. Figure 91 and 9i).

Finally, Figures 9m to 90 show the CP results for retrieved atmospheric bending angle o, where Figure 9n is included as a
special cross-comparision in case only variance propagation would be used instead of CP. Figures 9m and 90 confirm that CP
results are also correct for this final L1b variable, both in terms of random uncertainty and correlation functions.

In order to demonstrate that a full CP is necessary to propagate random uncertainties correctly, we also calculated random
uncertainties u.,,. based on mere variance propagation (VP) from a¢ to «, for comparison. A description of this VP algorithm
(i.e., only diagonal elements of the covariance matrices are considered) is provided in Appendix B. Figure 9n clearly shows that
VP would overestimate random uncertainties in «, considerably, pointing to the importance of the complete CP implementation

in the L1b retrieval chain, even though the correlation lengths involved in the processing steps are rather small.

5 Performance Demonstration

To statistically evaluate the performance of the new L1b uncertainty propagation algorithm, we also processed a complete
test-day of real (CHAMP, COSMIC, MetOp) and simulated (simMetOp) data from GNSS RO satellite missions. Figure 10

shows the results for estimated systematic and random uncertainty profiles, as well as correlation length and resolution profiles
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for filtered excess phase profiles Ly ;. Figure 11 subsequently illustrates the ensemble mean of the same variables for Lgq,
D,1, agi and «; for the test-day ensemble. In Figure 10 we also co-illustrate the number of events processed for each of the
RO missions (middle column).

About 5% of the total number of processed profiles for each mission have been discarded, because they were detected as
outliers based on the magnitude of their random uncertainty profiles (these outliers are not included in the number of profiles
shown). All profiles are shown as function of impact altitude, because each of the profiles in the ensembles needed to be
interpolated to the same (standard) impact altitude grid, to orderly calculate their mean profiles.

Figure 10a shows u »; and uj pq for all ~100 CHAMP events. It is visible (also in Figures 10d and 10g) that the random
uncertainty is estimated based on excess phase noise between 30 and 75km and synthetically extended above and below, as
described in Section 2.2. For the large majority of events, u’ ; lies between about 0.5 and 3mm in the range between 30km
and 75km. Note that these results show the random uncertainties after the application of the basic BWS filter (Section 3.1.1),
but the input uncertainties u7 ., are of similar shape (though larger in magnitude).

Figure 10b shows that the correlation length profiles of the CHAMP ensemble (gray) and its ensemble mean (yellow) are of
relatively constant magnitude from 35 to 80 km, but then get smaller downward, because the RO event’s scan velocity decreases
(see Equation A13). Since the BWS filter determines the vertical resolution and the correlation length at the same time, the
resolution profiles wrr; (Figure 10c) are quite similar to the correlation length profiles [pr; (Figure 10b).

The number-of-events profile shows that most CHAMP events end between 5 and 12km (Figure 10b, black). This is because
the GO profiles illustrated here are cut off right at the lower end of the GO-WO transition range at 25V — AzGW (cf. Table 2).

Compared to CHAMP, the mean random uncertainty v’ .; (Figure 10d) for the ~ 1500 events of the COSMIC ensemble is
smaller, particularly above 30km, indicating the improved data quality of this later mission. The mean of the correlation length
profiles I;r1 (Figure 10e) is higher than for CHAMP (Figure 10b) and correspondingly the resolution of the COSMIC profiles
also somewhat coarser (Figure 10f and 10c). The cutoff-frequency and sampling rate—and thus the resolution in time—is set
to be the same in the rOPS, irrespective of the missions; these differences hence are due to the different vertical scan velocities
of the missions induced by the differences in orbit altitudes (CHAMP ~400km, COSMIC ~ 700km).

For the real MetOp data (available here as dataset from UCAR/CDAAC, as for CHAMP and COSMC), u}, appears
similar to COSMIC (cf. Figures 10d, g) while for simMetOp (with best possible simulated GRAS-type receiver noise) it is
clearly smaller than for COSMIC. From 35 to 80km the mean random uncertainty profile for simMetOp stays below 1 mm
(Figure 10j). Three individual profiles exhibit comparatively high uncertainties of larger than 2 mm within about 40 to 55km,
however, reflecting that the simMetOp error simulations are capable to partly generate higher-noise profiles of the type more
frequently seen in the real MetOp data (Figure 10g).

On the other hand, the average correlation length/resolution profile of the ~ 500 real MetOp and ~ 700 simMetOp ensemble
members is very similar, driven by the orbit being essentially the same for the real data and the simulations (Figures 10h, i,
k, 1). Compared to COSMIC (Figures 10e, f), the correlation length and resolution are again somewhat larger/coarser, due to

an even somewhat higher scan velocity of the MetOp satellite (~ 820km orbit altitude). The systematic uncertainty w7 p;, just
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co-illustrated for completeness in Figures 10a, d, g, j, is almost left unchanged by the BWS filter and is essentially equal to the
preset input uncertainty for all three missions (Section 2.2).

Figure 11 shows how the uj py, ¥} g, {LF1 and wypp; profiles are on average affected by the uncertainty propagation. The
color code for the different satellite missions is the same as in Figure 10. The propagation effects visible are similar to those
already seen in Figures 3 to 8. The Doppler shift derivation increases the relative uncertainties and reduces correlation length
(of the main peak), while the resolution stays the same (Figure 11d-f). The GO bending angle retrieval leaves correlation length
and resolution unchanged, while random uncertainties increase strongly in the lower stratosphere and troposphere due to the
increasing refractive effects (Figure 11g-i).

Finally, the BWS filtering before the ionospheric correction decreases random uncertainties and increases correlation length,
and resolution somewhat. However, the linear combination of the two bending angle profiles ar; and ap2 then increases the
random uncertainty again (cf. Figures 11j and 11g). The adaptive minor channel cutoff-frequency f.o for the relatively noisy
CHAMP profiles is generally lower than for the other two missions, and the filter effect is therefore stronger for CHAMP
(indicated by the larger [, in Figure 11k)

S
ar’

The estimated systematic uncertainty of the atmospheric bending angle «? ., indicated for completeness in Figure 11 (left
column, enflated by a factor of 10 in (a) and 100 in (d, g, j) for somewhat better visibility), stays below 0.1 urad for all three

missions.

6 Conclusions

In order to deliver climate benchmark datasets it is essential to integrate uncertainty propagation in RO retrievals. In this
study we presented the uncertainty propagation algorithm chain from excess phase profiles to atmospheric bending angle
profiles (L1b processing), as newly implemented in the rOPS at the WEGC. Along with the basic profiles retrieval, we provide
estimates for systematic and random uncertainties, error correlation matrices and vertical resolution profiles, which is unique
amongst all existing RO processing systems so far (Ho et al., 2012; Steiner et al., 2013).

We validated the implemented algorithm via comparison to Monte-Carlo sample propagation results and demonstrated the
performance of the algorithm using real data ensembles. We find close agreement between the implemented covariance prop-
agation of random uncertainties and the Monte-Carlo validation runs, verifying the correctness of the implemented algorithm.
The test-day ensembles for three different missions (CHAMP, COSMIC, MetOp) show reliable, robust and consistent results
that provide valuable insight and understanding of retrieval chain details.

Together with the integration of the uncertainty propagation algorithm from atmospheric bending angle profiles to dry-air
profiles (L2a processing) presented by Schwarz et al. (2017), the rOPS can now provide estimates of systematic and random
uncertainty profiles, of error correlation matrices and resolution, and of observation-to-background weighting ratio profiles

from excess phase to dry-air profiles.
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The next step towards the final atmospheric profiles, currently ongoing, is the introduction of integrated uncertainty prop-
agation for the moist-air retrieval (L2b processing). Implementation of uncertainty propagation for the wave-optics bending
angle retrieval and for the orbit determination and excess phase processing (L1a processing) is on-going as well.

Once completed, the full rOPS retrieval chain will run with integrated uncertainty estimation, a major step towards climate

benchmark data provision, and beneficial for the wide diversity of uses in atmospheric and climate science and applications.

Appendix A: Algorithm Description

In this Appendix the rOPS L1b uncertainty propagation algorithm is introduced, following the L1b retrieval chain (Figure 2;
Section 3) step by step, starting with excess phase profile L, as input and proceeding to Ly, D, ag, anm, ap and finally
a,. The relevant variable definitions and symbol explanations are summarized in Tables 1 and 2. A fully detailed algorithmic
description is provided by Kirchengast et al. (2017b).

If not stated otherwise, elements of the vector-type vertical profiles are addressed using subscript ¢ (with ¢ € {1,2,..., N}),
and optionally j (with j € {1,2,..., N'}), running from top downward towards the bottom of the profile, where N is the number
of vertical grid levels. Until the interpolation of all quantities to the common monotonic impact altitude grid z,, all quantities
are provided on an equidistant 50 Hz time grid ¢ with grid-points ¢;.

All steps in Sections Al and A2 are applied to each of the GNSS transmitter channels’ carrier frequencies fry, as also
indicated by the index & in Figure 2. In the notation of these sections we therefore suppress the index k for the convenience of
simplified readability. Also for conciseness we write the estimated systematic uncertainty equations only for the total systematic
uncertainties «° and briefly address the type of the relevant components (whether basic systematic uncertainty u® or apparent

systematic uncertainty ©®) in the surrounding text.
Al Doppler Shift Retrieval
Al.1 Basic Lowpass Filtering

The Doppler differentiation (Item 1.4 in Figure 2) would potentially amplify high-frequency noise in the excess phase profiles.
To avoid this amplification, a Blackman-Windowed-Sinc (BWS) lowpass filter (e.g., Smith, 1999) is applied onto the excess
phase profiles first (Item 1.2 in Figure 2).

For this basic filtering the relative cutoff-frequency f./ fs is set to 0.05, equivalent to f. = 2.5Hz, 21 grid points, or a cutoff-
period 7. = 1/ f. = 0.4s, for the standard sampling rate f; of 50 Hz used for all RO profiles in the L1b processor of the rOPS.
The corresponding sample width of the Blackman window M (with samples m € {0,..., M}) is set to M=2-f, / fe, yielding
41 grid points. This ensures a reliable filter performance, also allowing to robustly quantify the vertical resolution of the filtered
data.

With such a design, the BWS lowpass filter combines efficient removal of high frequency noise with a narrow smoothing

window. The BWS filter thus achieves a better smoothing effect, while keeping a higher resolution wyr than a simple moving
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average Boxcar (BC) filter. Based on a time segment of a few seconds of the excess phase delta-profile of the COSMIC example
event (also used for Figures 3 to 8), Figure A1 illustrates how the BWS filter compares to Boxcar filters of 11 and 21 grid points.
The corresponding filter functions are displayed in Figure Ala, while Figure A1b compares the filter results.

It is clearly seen that the smoothing window width of the BWS filter best corresponds to an 11 point boxcar filter (confirmed
nummerically by minimization of the sum of squared differences between Boxcar and BWS filter result) while giving consid-
erably better filtering results (as for example visible between 31.5s and 32.0s, where the 11 points Boxcar filter zigzags around
the BWS result). The effective filter width of the BWS filter, which we also term *boxcar-equivalent width’, is therefore its full
width at half maximum (see Figure Ala), corresponding to M /4 + 1 samples with our design.

The actually used sample width M of the BWS filter is equal to M, except that it decreases at the top and bottom of the profile
such that it does not reach beyond the first/last element of the vector to be filtered. At the i*" grid point (with i € {1,2,..., N},
and N being the profile length in grid points), the filterwidth M is thus

M for M/2 <i< N — M/2
M=1q2i—1 for 1 <i< M/2 : (A1)
2(N—i)+1 forN—M/2<i<N
The state profile of the filtered phase Ly is obtained using the "baseband approach’ (Kirchengast et al., 2016a), i.e., by
first subtracting a zero-order model profile L,, and applying the filter only to the delta-profile 6 L,,, = L, — Ly, (with the
model profile being adequately smooth over the scale of the filter window width). This approach efficiently mitigates residual

numerical biases. After the application of the BWS filter, the model profile is added back again. We express the BWS filter as

a linear matrix operator ABWS and get (Item 1.2 in Figure 2)
N
Lyi=Luni+ Y ABWS §L..,;, (A2)
=0

for the filtered excess phase, where j € {1,2,..., N'}. The band matrix operator ABWS has elements

0 for j <i— M/2 and for j > i+ M/2
ABWS J / J /2, (A3)

The central filter weight wo a7/ at j = i is the (M/ 2)* filter-element (according to the definition of the BWS weights below),
therefore its index is M /2. With m = j — i + M /2 (and therefore 0 < m < M), each single BWS weight is calculated using

wraW m
Wm = 37— (A4)
3 o Wrawm
and
Si“(%f;l/f]\%;M/Q)) [0.42 — 0.5cos (2m%%) + 0.08cos (4 5+)|  for m £ M /2 45)
Wraw,m =

2rfe/ fs form:M/Q.
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The estimated random uncertainty is then propagated by covariance propagation (Item 1.3 in Figure 2),
CLF — ABWS . CLr A (ABWS)T. (A6)

The random uncertainty profile u’;  and the error correlation matrix Rz are not needed for the subsequent random uncertainty

propagation, but are calculated from C . for being available for the L1b output, using

urp; =V CLF,ii (A7)

and

Crr.i)
Rppij = —— 2t (A8)

Upp UL,
The correlation length profile [, has elements

dz

a . |th' — t(RLF,ij = 1/€)| (A9)

i

lpes =

computed upward and downward from the main peak of the correlation function and then averaged. Here dz/dt is the scan
velocity profile, obtained from using the msl altitude grid z; calculated as part of the forward modeling towards L., at the
corresponding time grid ¢ (cf. Table 2).

We note that after the L2a refractivity retrieval also the msl altitude grid consistent with the retrieved refractivity profile
could be used (as described by SKS2017, Appendix A therein), from a repeated forward modeling. The difference for the
scan velocity estimate is found very small, however, since the forward-modeled z; based on co-located refractivity profiles
from ECMWF short-range forecast fields is already sufficiently reliable and this also keeps the L1b processor as a decoupled
predecessor of the L.2a processor.

For the estimated systematic uncertainty, interpreted as a basic systematic uncertainty (Section?2.2), we apply the same

lowpass filter as used for the state profile (Item 1.2 in Figure 2), but with no zero-order profile subtracted, i.e.,
N
uim= Y AZYS up, . (A10)
j=0

The resolution in time of Ly and its uncertainties, g, is the Boxcar-equivalent width (cf. Figure Ala) determined by the
cutoff-frequency f. of the BWS Filter,
o+ 1
Tl Afe/2 T 2f
with our design choice M = 2(fs/ f.) and using that the BWS filter stopband-to-passband transition width is (Smith, 1999)

_Afs
Af. = = (A12)

TLF (All)

Given f, = 2.5Hz, this results in an effective resolution 77 = 0.2s and corresponds to the resolution obtained when applying
a 11 pts boxcar filter as explained at the beginning of this section above. The filter window inter-comparison in Figure Ala also

illustrates this, because the full width at half maximum of the 2.5Hz - 41 pts BWS filter is 11 pts.
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This resolution in time can finally be converted to the vertical (msl altitude) resolution in space

dz

== . Al3
ar |, TLF, (A13)

WLF,; =

where, as for the correlation length estimation (Equation A9), the scan velocity profile is employed to convert from the time

domain to msl altitude domain.
5 Al.2 Doppler Shift Derivation

After the application of the BWS filter to the excess phase profiles L, (for both carrier frequencies of the given GNSS system),
the state profile of the Doppler is derived from the filtered phase profiles Lr (Item 1.4 in Figure 2). To minimize systematic
errors from the numerical differentiation to negligible magnitude, the model profile L, is again subtracted from the filtered

phase profile,
10 5LFIII = LF - Lma (A14)

and the resulting delta-profile 6 Ly, is then differentiated. After the derivative, the zero-order Doppler shift model profile D,
is added (the latter also available from the forward modeling, in a form strictly consistent with the excess phase model profile
Ly).

Based on careful tests of different formulations, we use a five-point derivative scheme. The discretization of this five-point

15 derivative d D,y ; is given by

Dy s = ddLpm(t) _ —0Lpm,i—2+8LFm,i—1 — 80 Lrm,i+1 + 6 Lrm,it+2 7 (ALS)
’ dt : —ti_o+8ti—1 —8tiy1 +1liqo
for each of the frequencies (e.g., Syndergaard, 1999). This can be expressed in matrix form as
N
Dy =Dumi+0Dsmi =D+ Y AP 6Ly j, (A16)
j=1
using matrix operator A2P with
[ -18 24 6 0 0 0 0 0]
-6 0 -6 0 0 O 0 0
-1 8 0 -8 10 0 0
o0 AL2D _ ﬁ 0 il 8 .'0 -8 .'1 . -.O 0 ’ ALT)
0 0 -8 1
0 0 0 -6
. 0 0 0 0 0 O 24 18 |

where At =t;,1 —t;, being 0.02s in our case of fs = 50Hz.
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The estimated random uncertainty can then be propagated (Item 1.5 in Figure 2) using
Cp=AMP.Cpp- (AFD)T, (A18)

The covariance matrix is again (cf. Equations A7 and A8) decomposed into estimated random uncertainties and error corre-

lation matrix (Item 2.2 in Figure 2) using

upe; =/ Chrii (A19)

and

CDr,ij

Rpr 5= (A20)

rDr,iuBr, 7
For the estimated systematic uncertainty, further on interpreted as basic systematic uncertainty (cf. Equation A10), we apply
the derivative operator (Item 1.4 in Figure 2) to the systematic uncertainties, with no zero-order profile subtracted, i.e.,

N
Uy =Y APP ubp (A21)

j=1
The resolution remains unaffected by the Doppler shift derivation, since the five-point sample width of the derivative operator
is fully within the eleven-point effective filter width (stopband) of the BWS filter applied before, so that 7p, = 7or and wp, =

WLF.
A2 Bending Angle Retrieval
A2.1 GO Bending Angle Retrieval

From the Doppler shift state profile D, (again for both frequencies of the given GNSS system) we can derive the impact

parameter profile a; and geometric-optics (GO) bending angle profile ag (Item 2.1 in Figure 2) using first the geometric

relation

D, ; = [vr,icos(¢r,i) — vr,icos(¢T,i)] — TR, (A22)

where

®R,; = NR,; — arcsin < ae ) , (A23)
' i TR,i

and

¢r,i = (m—n1,) —arcsin < ti ) (A24)

T

for each individual level of the time grid ¢;, in order to determine a,; from sequential application to all levels (Kursinski

et al., 1997; Syndergaard, 1999). Here vg ; := |vR | is the receiver velocity, rg ; := |rg ;| the receiver radial position, ng ;
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the angle between the receiver velocity and position vectors, ¢r ; then the angle between the receiver velocity and raypath

d(rr—7R)

vectors (and all these equivalently for the transmitter), and /gy ; := ‘ .

is the time-derivative of the distance between
3

the transmitter and the receiver at time ¢;, i.e., the "kinematic straight-line Doppler shift’ to be subtracted in Equation A22 to
match the (excess) Doppler shift D, ; induced by the atmosphere (and ionosphere).

Based on a,, the elements of the GO bending angle profile ag are subsequently calculated using another geometrical relation,

Q¢ g Gt g
ag,i = Orr,; — arccos (rl) — arccos ( 2 ) , (A25)
R,i

T
where Orr ; is the opening angle between the transmitter and receiver position vectors. Syndergaard (1999), Figure 1.5 therein,
provides an illustration of the relevant geometry.

All the variables in Equations A22—-A25 are defined in the occultation plane spanned by the receiver and transmitter posi-
tion vectors after oblateness correction (Syndergaard, 1998), i.e., after they have been transformed to originate in the Earth
ellipsoid’s center of local curvature in the occultation plane at the mean tangent point (MTP) location of the RO event. The
MTP location is defined as the geodetic (geographic) location on the WGS84 ellipsoid, where the straight-line path between
transmitter and receiver touches this ellipsoid, i.e., where the straight-line tangent height is zero. This can be computed with
very high accuracy at the sub-meter level (see Scherllin-Pirscher et al. (2017) for more details on the geolocation accuracy of
RO). Using the MTP location’s center of local curvature rather than in the Earth’s center of mass as the origin is essential to
ensure that the assumption of spherical symmetry, implicit in Equations A22 to A25, is accurately valid geometrically.

The impact parameter retrieval is solved iteratively, because it is impossible to rearrange Equations A22 to A24 into an
explicit expression for the retrieval of the impact parameter; but it is mildly non-linear and converges fast, in particular if the
initial guess for a; ; is estimated from the previous level (starting at the top level with the straight-line impact parameter).

After the GO bending angle retrieval, the bending angles of all GNSS frequencies are interpolated to a common monotonic
impact altitude grid z, (Item 2.6 in Figure 2), based on the monotonically sorted impact parameter grid of the leading channel,
ay (e, k=1).

For each element of z, we get (Item 2.3 in Figure 2)
Za,4 = ayj1 —ha — Rc, (A26)

where j is the index of the elements of the sorted impact parameter grid a;;. hg is the geoid undulation (see Scherllin-Pirscher
et al. (2017) for a detailed discussion of its use in RO analysis), and R is the local radius of curvature of the RO event.
Because the impact parameter is only implicitly expressed in Equations A22—-A24, but GUM-type uncertainty propagation
along Equations 2 and 4 requires an explicit measurement model, we make use of a linearization of the bending angle retrieval.
We use the approach described by Melbourne et al. (1994), and applied to uncertainty propagation by Syndergaard (1999), for
the propagation of the estimated random uncertainty from Doppler shift D, to GO bending angle g (Item 2.5 in Figure 2).
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This linearization establishes a direct relation between random uncertainties of the Doppler shift u7,,, and the uncertainties

of the bending angle u,, using

r dCLSL -1 r
UaG(t),i = — <dt> UDr(t),i0 (A27)

where agy, is the straight-line impact parameter. These bending angle uncertainties u/ , are relative to the time grid as inde-
pendent coordinate. To get the desired uncertainties with respect to the impact altitude grid z, (introduced in Equation A26),
the uncertainties of the impact altitude z, need to be transferred to the bending angle, so that the z, grid can subsequently be

considered free of error. Syndergaard (1999) showed that this can be done by replacing Equation A27 with
, daf\ " ,
UaG(zq)i ~ ( d; > UDr(t),is (A28)

where a is the *true’ impact parameter. We use the forward-modeled impact parameter a;,, instead (i.e., adopt a;, = a} ) and
accept the additional error thus incurred, assuming it is smaller than the 2% relative error due to the linearization estimated by
Melbourne et al. (1994). This is a reasonable assumption given the high quality of our forward-modeled profiles derived from
ECMWEF short-range forecast refractivity fields.

As a consequence we have to accept that the overall inaccuracy of our random uncertainty estimate cannot be brought
below 2%. Therefore, to ensure that our simplified estimate does not underestimate the real uncertainty, we account for the

linearization error by multiplying a factor f,q4in = 1.02 to the uncertainty of the retrieved GO bending angle

ugG,i = fualin . uZG(Za),i' (A29)

In this way we acknowledge that although the calculation of the state of the bending angle does not make use of the lin-
earization, and therefore the linearization does not increase the uncertainty of the state profile, it may increase the error in the
uncertainty estimate itself.

Finally, the ul,, profile is also interpolated to the common monotonic impact altitude grid z,.

In the GO approximation, the bending angle values at each grid point only depend on the Doppler shift values of the same grid
points, i.e., the existing correlations between the errors at different levels are left unchanged, i.e., R,g = Rp;. The covariance
matrix can hence be calculated by recombining the Doppler shift correlation matrix with the propagated uncertainties (Item

2.8 in Figure 2),
Cac,ij = ugG,i ) uZG,j “Roprij- (A30)

For the propagation of the estimated systematic uncertainty (Item 2.4 in Figure 2) three types of potential systematic errors
adding to the impact parameter uncertainty «;,, and consequentially the bending angle uncertainty v’ , are taken into account.
Systematic errors in the Doppler shift, i.e., )., systematic errors in the velocities of the satellites, i.e., u;,» and uj -, and
systematic errors in the positions of the satellites, i.e., u;. , and u;.,.. The latter two orbit-borne types are interpreted as apparent

systematic uncertainties (Section 2.2) while the excess phase-borne uncertainty u7,, is a basic systematic uncertainty.
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For the propagation of these estimated systematic uncertainties to u.,, Equations A22-A24 are linearized around the re-
trieved state quantities (serving as zero-order state) and no terms higher than first-order are kept. Then ¢r and ¢ in Equa-
tion A22 are substituted by the linearized versions of Equations A23 and A24 and the resulting equation is solved (level by
level) for the impact parameter a; ; = f(Dy,i,7R.i,7T,i; UR,i,VUT,i), With ¢ =1,2,..., N. Adopting the first-order deviations to

represent the estimated systematic uncertainties we obtain

1
Ugy ;= ki\/(uSDr,i)Q + (kor,i - qu,i)z + (krr,i 'uiR,i)Q + (kvr,i - uf}T,i)2 + (krr,i - uf‘T,i)27 (A31)
at,t
where
0D, 0 0D, 0 . 1 . 1
kat,i i= 3 : ;)R + 3 . ;)T = —VR,i - SINPRj - ———= — VT ; - SINPT; —F—=, (A32)
Orli dal; orl; Oarl; TR~ ag ; h i~ af,i
0D,
kvr,i == — = —COS PRy,
8UR i
0D,
kyr,i == — = —cos Ty,
’ (%T i
0D, | O¢r UR,; - SINQR; - Qg
krr,i = 3 o = ,
Orli Orel; TR,iy/ T%{,i - a%,i
0D, | O¢r v, - Singr; - ay;
kpri = ) — 4
O¢r|; Orr|; TT g /r%ﬂ. — af,i

A number of simplifications have been made to arrive at this result. First, the last term in Equation A22 is disregarded since
errors in the positions are assumed to be constant with respect to the short time duration of an RO event; remaining errors
Argr after taking the derivative are therefore of higher order. Next, orbit position and velocity uncertainties are both assumed
to be constant within the short duration of an event and the velocity uncertainties obtained are interpreted as uncertainties along
the direction of the velocity vector. Consequentially, the uncertainty is also projected along with the vector into the raypath
direction. A more conservative estimation (that we consider overly conservative in context) would interpret the uncertainties
as ellipsoids at the velocity vectors’ heads, and would hence take the full magnitude of the uncertainties along the raypath
direction (without projection).

Furthermore, since all error sources (the processing of the occultation tracking data and the POD for transmitter and receiver)
are essentially independent from each other, the different input uncertainties are assumed to be uncorrelated. Finally, we
reasonably assumed the errors of the angle between the position and velocity vectors (1) to be negligible (u; ~ 0) for the
purpose here, for both the transmitter and receiver.

In order to finally derive the systematic uncertainty of the bending angle from the impact parameter’s uncertainty, we con-

tinue with a linearization of Equation A25 and arrive at

UpG,i = \/<u§RT,i)2 + (Rat,i - uge 1)* + (krryi - wig 1)? + (krry - wir )%, (A33)
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Oa 1 1
Fati = day|. = 2 + 2 2 (A34)
t
¢ \/TR,iJrat,i \/TT,iJrat,i
Oa Qi
b= | = e
Rli TR,i\/TR,i — Qi
i Oa Ay
rTi = 5| = F——.
orr |, R AP
T,i\/ T — Q¢4

In practice we separately calculate the basic and apparent systematic uncertainty estimates (ugG from the first RHS terms in
Equations A31 and A33, u from the orbit-borne terms) and afterwards obtain v}, as a combined result, in order to enable
separate propagation in subsequent processing steps.

The resolution profile remains unaffected by the bending angle retrieval, since the level-by-level approach of the algorithm

does not create extra correlation and further vertical smoothing, so that 7,q = Tp, and w,g = Wpr-
A2.2 WO Bending Angle Retrieval

After the GO bending angle, the wave-optics (WO) bending angle state profile crwy (2, ) is retrieved (Item 2.7 in Figure 2) from
excess phase profile L, (¢) (and its uncertainties) and the amplitude profile A, (¢) (and uncertainties) in a WO retrieval following
Gorbunov and Kirchengast (2015, 2017). Along with the state profile, the systematic uncertainty profile u];, the covariance
matrix C,w, and the resolution profile w,w are derived.

The covariance matrix C,w is then decomposed to random uncertainty profile u], 5 and correlation matrix R,w in the same
form as done above for Cp, (Equations A19 and A20) and Cr (Equations A7 and A8). The estimated systematic uncertainty
u?y is composed of a basic systematic uncertainty u” .y, propagated through the wave-optical retrieval from the excess phase
uncertainty u7 ., and an apparent systematic uncertainty u%;, estimated in the lower troposphere as residual bias uncertainty
of a regression-based boundary layer bias correction (Gorbunov and Kirchengast, 2017).

The WO bending angle retrieval algorithm and the associated uncertainty propagation algorithm are not explicitly described
here; the reader is referred to Gorbunov and Kirchengast (2015) and Gorbunov and Kirchengast (2017). However, we have
prepared the merging with the WO bending angle variables (they will be actually merged in when the WO tests within the

rOPS is complete), which is described next.
A2.3 Merging of GO and WO Bending Angle Profiles

The oy profile, prepared on the common grid z,, and the ag profile are merged over an upper tropospheric transition range
(Item 2.9 in Figure 2). The gradual transition, weighted by a symmetric half-sine function, has a defined impact altitude
transition of half-width Asz = 2km around transition altitude zgw, allowed within 9km to 14km, estimated from «q data

quality. The resulting merged bending angle profile ay; is

anM; =%i-0ci+ (1—v) - aw, (A35)
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where the weighting profile + is formulated as

1 for 2, ; > 28W + A2SW
__GW
Vi =40.5- [sin (g : %) + 1} for |z4,; — 28WV| < AZEW (A36)
0 for 2, ; < 28W — AZEW,

To determine the random uncertainties for the merged GO-WO input bending angle, we need to merge the covariance
matrices of both bending angles.

We can assume both incoming covariance matrices C,g and C,w are provided on the common monotonic target grid
z, (i.e., also the WO uncertainties and correlations are interpolated to this common grid before the merger). We further can
reasonably assume that there are no cross-correlations between GO and WO errors, given the very different retrieval schemes.
Based on this we can compose the covariance matrix of the merged bending angle profile, C,y (Item 2.10 in Figure 2) as

follows. Outside the merging zone (i.e., outside of 25V + A2GW) we can assign

Cacij  for 2amop > 24,i > 25V +Az8W and zymop > 245 > 25V +AZGW

Caw,i; for sz - Azgw > Za,i > ZaBot and zfﬁW — Azgw > Za,j > ZaBot
CaM,ij = , (A37)

0 for 2, Top > Za,i > z((fw +Asz and sz — Az((fw > Zq.j > ZaBot
0 for 25V - AzGW > Za,i > ZaBot and 2 Top > Za,j > 2GW L AZGW
while within the merging zone we can assign
Can,ij = %7 Caq,ij + (1 =) (1=7;)Caw,ij> (A38)

wherein 7 is understood such that zaGW +Az§w > Za,i > zSW — AZSW and j such that z,Top > 24, > ZaBot-

Because of the symmetry of the covariance matrix, the covariance elements in the merging zone orthogonal to the one above,
ie., for 2SW+A28W > 2, > 28W — A28W and z,1op > 24, > ZaBot, are calculated according to the same formula.

Due to the linear relation between any, ag and any, expressed by Equation A35, a bias u;, in the GO bending angle and a
bias u}yy in the WO bending angle can be as well linearily combined and we can compute the estimated systematic uncertainty

of the merged bending angle u?, according to (Item 2.9 in Figure 2)
Ut = Vi Uga, T (1= %) - ugw ;- (A39)

In practice this formulation is again applied separately for the basic and apparent systematic uncertainty estimates, afterwards
obtaining the u?, profile as a combined result, in order to allow separate propagation in subsequent processing steps.
The resolution profile of the bending angle, wa, is equal to the GO resolution waq above 25V + AzGW | equal to the the

WO resolution ww below z&W — AzGW

and has a transition with transition weight ; in between, again following the linear
formulation such as in Equations A35 and A39.

Because the integration and testing of the uncertainty propagation through the rOPS WO bending angle retrieval is currently
still ongoing, as noted in Section A2.2 above, the examples shown in this study are all GO-only, i.e., only the GO retrieval is

performed. The merging algorithm as described is ready to include the WO bending angles, however.
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A3 Atmospheric Bending Angle Derivation

In order to retrieve the atmospheric bending angle profile «,, ionospheric effects need to be corrected for, using the retrieved
bending angles from each transmitter frequency channel. Since the only GNSS constellation currently used for RO is the
GPS—except for recent initial data from the Chinese GNOS instrument using BeiDou signals (Liao et al., 2016; Bai et al.,
2017)—the data characteristics of the GPS case (with k € {1,2}, fr1 = 1.57542 GHz, and frs = 1.22760 GHz) are in the
prime focus of this section.

This concerns in particular special provisions for the minor (L2) channel noise filtering and its tropospheric extrapolation.
In general the algorithms are applicable for any of the available GNSS systems, however; if the minor channel (f12) delivers

similar data quality as the major one (fr1), the special provisions for the former will practically take no effect.
A3.1 Adaptive Lowpass Filtering and Minor Channel Extrapolation

Before applying the dual-frequency ionospheric correction, the merged bending angle state profiles a1 (2,) at the common
zq grid are filtered with further BWS lowpass filter operations and the minor channel is extrapolated.

For ayp; the filter is set to the same cutoff-frequency as the basic BWS filter preceeding the Doppler derivation (i.e., fo.1 =
2.5Hz), ensuring a reliable reference resolution and basic smoothness of the whole merged profile. For filtering of ape a
(GPS L2) noise-minimization algorithm is used, following the approach of Sokolovskiy et al. (2009) for optimal filtering for
ionospheric correction. We search for minimized noise employing a flexible cutoff-frequency fe.o € {2.5Hz,2Hz,10/7Hz,
1Hz,5/7Hz,0.5Hz}, corresponding to using cutoff-periods 7.5 from 0.4s to 2s and sample widths of M = 40 to M = 200
(on BWS filter design details see Section Al.1).

We adopt that cutoff-frequency f.o for aypo filtering that minimizes the noise fluctuations of the ionosphere-corrected at-
mospheric bending angle delta-profile 6o/ (z,) = o °?(24) — aum(24) When evaluated over the mesospheric altitude range
between 50km and 70km (similar to the functional minimization of Sokolovskiy et al. (2009); Eq. 4 therein). At these high
altitudes the residual atmospheric mean signal after subtraction of the forward-modeled signal ., (z) is very small (< 0.03—
0.3 prad) and therefore the noise level representative for the given RO event is well quantifiable.

The weight-matrix of the BWS filter, AEWS, is determined for both frequencies analogously to Equations A3 to A5. Using

the baseband approach with model profile o, to create the delta-profile danyy, with elements
dOMmi,k = OMi,k — Otmi) (A40)

the filtered bending angle is then (Item 3.1 in Figure 2)
N
ik = omi+ Y ADN 600 m;.k (A41)
j=0
where 7,7 € {1,2,...,N} and k € {1,2}.
Due to the stronger power of the L1 signal for (most of) the GPS satellites, the GPS signals of both frequencies are not of

the same quality and the L2 data (for those satellites where encrypted and hence power-degraded L2 signals are transmitted)
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do not reach down as far as the L1 data (i.e., z4Bot2 > ZaBot1)- If due to this reason apo does not reach down as far as apq and
ZaBot2 < ZaBoteMax (With ZgBotoMax currently set to 15km), a tropospheric bending angle extrapolation (TBAE) is applied in
order to artificially extend a2 to also reach down to z,pot1 (Item 3.3 in Figure 2).

Briefly summarized, this TBAE is currrently implemented as follows. A linear gradient profile for the difference profile be-
tween the two bending angles, ap12 = (p1 — ap2), is estimated by a least squares fit over a sufficiently wide impact altitude
range from z,pot2 Upward (as wide as the extrapolation range, at least 10 km). This gradient profile is then linearly extended
down to z,Bot1 and subtracted from oy, to obtain the extrapolated part of aps from 2,Bot2 t0 ZaBot1- If ZaBot2 > ZaBot2Max
then no TBAE is performed since the extrapolation range is considered too large. Details are provided by Kirchengast et al.
(2017b), where the most recent version of the atmospheric bending angle derivation is described that includes this api2 ex-
trapolation in a further advanced form.

For the propagation of the estimated random uncertainty we get (Item 3.2 in Figure 2),
Cars = AP Cane - (AT, (A42)

for the bending angle error covariance matrices of the leading (¥ = 1) and minor (k = 2) channel.
In case a TBAE is applied to ag2, the random uncertainty of aps below 2,42 1s equal to the one of ar, because the noise
is “copied” from ap; since the linear gradient profile from fitting api2 is noise-free. As a consequence, in these cases, we set

the matrix elements of C,p to (Item 3.4 in Figure 2)

CaFQ,ij for ZaTop > Za,i > ZgBot2 and ZaTop > Za,j > ZqBot2

CaFl,ij for ZaBot2 > Za,i > ZaBot1l and ZaBot2 > Za,j > ZqBotl
Carz2,i5 = . (A43)

0 for ZaBot2 > Za,i > ZaBot1l and ZaTop > Za,j > ZqBot2

0 and ZaTop = Za,i > ZaBot2 for z,Bot2 > Za,j > ZaBotl

C,r1 and C, 2 can then be decomposed as needed into 4., Rar1, and ul,zy, Rare, respectively. Kirchengast et al. (2017b)
describe the most recent version consistent with a further advanced form of the TBAE, where the separate assignments accord-
ing to Equation A43 are no longer needed.

The estimated systematic uncertainties u;,; , (in practice the basic and apparent systematic uncertainty estimates separately)

are filtered with the same filter settings as for the state profiles (Item 3.1 in Figure 2) and are thus obtained in the form

N
s _ BWS s
UaFik = ZAij,k U Mj, k- (A4d4)
j=0

Since these are smooth profiles they are marginally changed by this lowpass filtering. The systematic uncertainty component
contributed by the TBAE to the estimated systematic uncertainty is added after the ionospheric correction (see next subsection).
As for the basic lowpass filtering of excess phases (Section A1.1), the resolution profiles of the filtered bending angles w,r1

and w, 2 are determined by the cutoff-frequencies f.; and f.o of the BWS filters, following Equations A11 and A13.
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A3.2 Ionospheric Correction

Based on the filtered and sometimes extrapolated state profiles ap; and apo, the ionospheric refractive effects are corrected
for by the standard dual-frequency correction of bending angles (Vorob’ev and Krasil’nikova, 1994) used in the fri1—fro
difference-profile form (Sokolovskiy et al., 2009) (Item 3.5 in Figure 2). For the elements of the retrieved atmospheric bending

angle profile o, we thus get

Qi = QF1,i + Y5T12 - OOF12,4s (A45)
where
50‘F12,i = QF1,; — AF24, (A46)
and

2

VfT12 = 22 (A47)

Propagated through the operator of the ionospheric correction (Equation A45, currently used here in the classical form
with fr1 and fro terms) the estimated random uncertainty of the resulting atmospheric bending angle, expressed by the error

covariance matrix C,, (Item 3.6 in Figure 2), is obtained as
Cor = (1+7s112)? Cart + 72115 Cara. (A48)

C,r can then also be decomposed into «.,,. and R, with the usual equations (cf., e.g., Equations A19 and A20).
Equation A45 is as well applied to propagate the estimated systematic uncertainty (in practice the basic and apparent sys-

tematic uncertainty estimates separately) through the ionospheric correction using (Item 3.5 in Figure 2)

s s s s
Ugy i = Ugr1,i T7fT12 - (Uar1,i — Uara,i)s (A49)

where it is assumed that the systematic errors in ap; and apo are positively correlated, i.e., have the same sign, and the
associated uncertainty estimates are hence subtracted from one another (as the bending angles are in Equation A46). This
assumption is reasonable, since the same sources of non-ionospheric systematic effects apply to both frequency channels
(Doppler shift, orbit velocity, and orbit position uncertainties).

In case of TBAE, Equation A49 needs to be supplemented below z,Bot2, since additional uncertainties u; oy, arise from the
errors made in the fitting parameters and in the extrapolation model (linear extrapolation) of the TBAE. Hence, for the range

ZaBot2 > Za,i 2 ZaBot1s

Uim = ugzr(zaBOtQ) + u(SJZTE,iv (ASO)

with u 51 being the conservative estimate for additional (apparent) systematic uncertainty within the extrapolated impact

altitude range. We set u] 5 tO zero at z,pot2 and linearly increase it from there downwards with a gradient of 1 urad per
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10km (an experience based best guess; cf. Scherllin-Pirscher et al. (2011b, a), who also address aspects of such tropospheric
extrapolation in their discussions of error sources). It is interpreted as an apparent systematic uncertainty estimate, since due
to the linear fit-based TBAE construction its event-to-event bias character will be essentially random (Scherllin-Pirscher et al.,
2011b).

Also, the ionospheric correction currently applied in the rOPS is just a first-order correction, which will leave higher-order
residual ionospheric errors in o, (e.g., Syndergaard, 2000; Danzer et al., 2013; Liu et al., 2013, 2015; Healy and Culverwell,
2015). The uncertainty from higher-order residual ionospheric biases (RIB), ugp, is therefore added to the propagated (basic)
systematic uncertainty. ug is interpreted as basic systematic uncertainty, since the higher-order ionospheric residuals may not
vanish in ensemble-of-events averaging. The other non-ionospheric sources of systematic errors and the RIBs can be reasonably

assumed to be uncorrelated. The total estimated systematic uncertainty of the retrieved atmospheric bending angle a, hence is

War i =\ () + (up)* (AS1)

Based on previous studies (e.g., Liu et al., 2013, 2015; Danzer et al., 2013, 2015), ug;g is taken to be constant along the

entire profile, and is estimated to amount to 0.05 prad. These last two components, 12 oy and ugg, are indicated as Item 3.7
in Figure 2. It is clear that this initial systematic uncertainty estimation can be significantly improved by future dedicated work
on better quantifying and (if suitable) correcting for the systematic uncertainty components.

The resolution of the retrieved bending angle, w,,, essentially corresponds to the higher resolution of the two bending angle
profiles ap; and apo, and thus generally closely matches w1 in most cases. As a simple but robust and suitable estimate,
assuming that the resolutions of «, and ap; scale in the same way as the correlation lengths [/, and [,r; (derived from R,

and R, as described for Ry r in Equation A9), we compute w,,, as

War,i = lar’i *WaF1,i- (A52)
laF1,i

In concluding we note that the atmospheric bending angle derivation algorithms used in this study, i.e., the adaptive filtering,
TBAE, and ionospheric correction parts as described in this section, have recently received further advancement towards a form
fully based on the combination of ap; and the difference-profile apio (rather than of ap; and aps), more aligned with the

concept of Sokolovskiy et al. (2009). A detailed description of this most recent version is found in Kirchengast et al. (2017b).

Appendix B: Variance Propagation for Comparison

The full covariance propagation applied to propagate random uncertainties requires numerically ‘expensive’ matrix operations
and therefore considerable efforts were made to seize opportunities for reducing the number of numerical operations (e.g., by
only calculating with those elements of the band-matrix ABWS which lie within the width of the filter window).

However, as demonstrated in Section 4, simplification to a mere variance propagation (i.e., only considering the diagonal
elements of the covariance matrices) is not reasonably possible because it leads to an unacceptable overestimation of random
uncertainties. This overestimation occurs since the influence of the covariance elements—and thus for example the partially

compensating impact of the negative side-peaks in the correlation functions—is disregarded.
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Here we state the two equations used to obtain the variances-only propagation results shown for comparison purposes in

Figure 9: the estimated random uncertainty was propagated through the BWS filter using

N

BWS (u” )2
()/Fl k 7] k an,k' ’

]:0

and subsequently through the ionospheric correction using

(u;r,i)2 =(1 +’YfT12)2 : (UQF1,1')2 +’YJ%T12 : (ugFQ,i)z'

(BI)

(B2)
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Figure 1. Schematic view of the main processors of the retrieval chain in the rOPS (L1a, L1b highlighted, L.2a, L.2b) and the main operators

of the L1b processor (1, 2, 3), which are in the focus of this study.
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Table 1. Principal variables for the rOPS L1b uncertainty propagation.

Variable

Unit

Description

Xr

Ix

TX

U

U2

state profile of retrieved excess phase/filtered excess phase/retrieved Doppler
shift/retrieved geometric optics bending angle/merged GO WO bending
angle/filtered bending angle/retrieved bending angle, with X, € {L. x(t),
Ly i (t), Dri(t),ac,k(t),ac,k(za),anm,k(2a),0r,5(2a), 00 (2a) }, k € {1,2}
(frequencies fr1, fr2) and unit U € {m,m, ms™*, rad,rad,rad,rad,rad},
comprising elements X ;.

estimated systematic uncertainty profile of X (with X and U as defined above),
comprising elements u’% ; (including estimated basic and estimated apparent
systematic uncertainties, uf;(,i and u% ;).

estimated random uncertainty profile of X (with X and U as defined above),
comprising elements u ;, .

error correlation matrix of X (with X as defined above), comprising elements
Rx ij.

error covariance matrix of X (with X and U as defined above), comprising
elements C'x ;; = u&z -u&-’j -Rx ij.

correlation length profile of X (with X as defined above), comprising elements
Ix,i-

resolution profile of X (with X as defined above) in time domain, comprising
elements Tx ;.

resolution profile of X (with X as defined above) in altitude domain (along

impact altitude), comprising elements wx ;.

Ts

s
Ugs

model excess phase/Doppler shift/bending angle profiles based on forward
modeling of co-located refractivity profiles from ECMWF short-range forecast
fields, with X € {Lm(t), D (t),m(24)} and U € {m,ms™* rad}, com-
prising elements X, ;.

profiles of cartesian position/velocity vectors of the receiving/transmitting satel-
lite relative to the center of refraction, with s € {rr(t),rr(t),vr(t),vr(t)}

! ms™'}, comprising elements xs ;.

and unit U € {m, m, ms™
estimated (systematic) uncertainty profiles of xs (with s and U as defined

above), comprising elements ugs ;.

ABWS

ALQD

BWS filter matrix operator, comprising the blackman windowed-sinc (BWS)
lowpass filter weights (normalized filter functions) in form of a band matrix.
Doppler differentiation matrix operator, transforming the filtered excess phase

profile to the Doppler shift profile.
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Table 2. Vertical grids, coordinate variables, and specific settings for the rOPS L1b processing system

Variable Unit Description

fr Hz transmitter signal carrier frequency, with elements fr (for GPS transmitters
k € {1,2} denoting the L-band frequencies fri =1.57542GHz and fro =
1.22760 GHz).

fs Hz measurement sampling frequency (also called sampling rate); 50 Hz is generally
used for the input excess phase profiles.

fe Hz Blackman Windowed-Sinc (BWS) lowpass filter cutoff-frequency; set to 2.5 Hz
(but noise-dependent for the fr(1)2 filtering for ionospheric correction, with
fe(1)2 € {2.5Hz,2Hz,10/7Hz,1Hz,5/7Hz,0.5Hz}).

t S time grid of the measurements at sampling rate fs, with elements ¢;, i €
{1,2,...N}, where N is the number of grid points of the RO profile.

at m impact parameter grid corresponding to time grid ¢.

Za m common monotonic impact altitude grid, calculated from sorted impact param-
eters a¢; of the leading channel (fT1) bending angle, via z4,; = a¢,; —hc — Rc.
Used as standard vertical grid after interpolation of all dependent quantities to
Za-

2t m msl altitude grid corresponding to time grid ¢, obtained as part of the forward
modeling towards «,, Dy, and L, (cf. Table 1).

ZaTop m impact altitude of the top of the RO profile, can lie between 70km and 80km.

ZaBot m impact altitude of the bottom of the RO profile, can lie between 25km and
the Earth’s surface. It can be different for the different GNSS frequencies (i.e.,
ZaBot,k, for k € {1,2}).

28V m impact altitude at the center of the sinusoidal transition range of half-width
AzEW between the GO and WO bending angle profiles; z&W can lie within
9km and 14 km, depending on GO bending angle data quality.

AzEW m impact altitude transition half-width of the half-sine-weighted transition be-
tween the GO and WO bending angle profile. Set to 2km.

ZaGradr I impact altitude at the lower end of the excess phase uncertainty estimation range
used in this study, below which the estimated random uncertainties are extended
by a linear gradient. Set to 30km.

ZaGrads m impact altitude at the lower end of the range with constant excess phase sys-

tematic uncertainty used in this study, below which the estimated systematic

uncertainties continue with a linear gradient. Set to 8km.
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Figure 2. Detailed workflow for state retrieval and uncertainty propagation of the main L1b operators from excess phase to atmospheric

bending angle profiles (1)-(3) and of the subroutines used in the MC testing framework (a)-(g). The mathematical notation, including all

symbols, is introduced in Tables 1 and 2.
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Figure 3. Input profiles of retrieved excess phase L, (with model profile L., for comparison) in (a), estimated systematic uncertainty profiles
uZ, in (b), estimated random uncertainty profiles u7, in (c), representative correlation functions Ry ; (at 10, 30, 50 and 70km) in (d) and
(e), and correlation length I, (solid) and resolution profiles wr,, (dotted) in (f), which are set zero for these initial essentially uncorrelated

input data. All profiles are shown for both GPS carrier frequencies fri (blue) and fr2 (red).
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Figure 4. Results for filtered excess phase profiles Ly (with model profile L., for comparison) in (a), estimated systematic uncertainty
profiles u7y in (b), estimated random uncertainty profiles 7 in (c), representative correlation functions Rrr; (at 10, 30, 50 and 70km)
in (d) and (e), and correlation length [r (solid) and resolution profiles wrr (dotted) in (f). All profiles are shown for both GPS carrier

frequencies fri (blue) and fr2 (red).
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Figure 5. Results for retrieved Doppler shift profiles D, (with model profile D,, for comparison) in (a), estimated systematic uncertainty
profiles up, in (b), estimated random uncertainty profiles u’,,. in (c), representative correlation functions Rpy ; (at 10, 30, 50 and 70km) in
(d) and (e), and correlation length [ p, (solid) and resolution profiles wp, (dotted, estimated for main peak) in (f). All profiles are shown for

both GPS carrier frequencies fr1 (blue) and fr2 (red).
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Figure 6. Results for geometric optics bending angle profiles ac (with model profile o, for comparison) in (a), estimated systematic
uncertainty profiles u},q in (b), estimated random uncertainty profiles u, g in (c), representative correlation functions R.c,; (at 10, 30, 50
and 70km) in (d) and (e), and correlation length [, g (solid) and resolution profile wac (dotted, estimated for main peak) in (f). All profiles
are shown for both GPS carrier frequencies fr1 (blue) and fr2 (red); in panels (b) and (f) both profiles are essentially identical (so that blue

shadows the red color).
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Figure 7. Results for filtered bending angle profiles ar (with model profile au, for comparison) in (a), systematic uncertainty profiles u;,p in
(b), random uncertainty profiles u in (c), representative correlation functions Rar,; (at 10, 30, 50 and 70km) in (d) and (e), and correlation
length [, F (solid) and resolution profiles wqr (dotted, estimated for main peak) in (f). All profiles are shown for both GPS carrier frequencies
fr1 (blue) and fra (red).
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Figure 10. Uncertainty propagation results for real data ensembles from July 15*" 2008, for the filtered excess phase profile Ly; of the
leading channel (f11, GPS L1 frequency). Left column: Estimated random w7 p; (heavy) and systematic w7 g, (light) uncertainty profiles of
each ensemble member (gray), and the ensemble mean (color) for CHAMP (a), COSMIC (d), MetOp (g) and simMetOp (j). Middle column:
Correlation length profiles [rr1 of each ensemble member (gray), tl}ﬁensemblc mean (color) and the ensemble size profile (black, scale at
upper axis) for CHAMP (b), COSMIC (e), MetOp (h) and simMetOp (k). Right column: Estimated resolution profile wrr1 of each ensemble
member (gray) and the ensemble mean (color) for CHAMP (c¢), COSMIC (f), MetOp (i) and simMetOp (1).
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Figure 11. Uncertainty propagation results for real data ensembles from July 15t 2008 for output profiles of the leading channel (fr1,
GPS L1 frequency). The first row shows results for Ly, (a-c), the second for D;q (d-f), the third for aq:1 (g-i), and the fourth for a, (j-1).
The different ensemble mean profiles are shown in colors (CHAMP (yellow), COSMIC (orange), MetOp (red) and simMetOp (violet)). Left
column: Mean random uncertainty u’, (heavy) and mean systematic uncertainty u%, (light) profiles (panels a, d, g, j); the latter shown as
10 X u%p; (in a) and 100 X u%, (in d, g, j) for enabling visibility of these small quantities. Middle column: Correlation length profiles I x

(panels b, e, h, k). Right column: Vertical resolution profiles w x (pa‘ilsels c, f,1,1).
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Figure Al. Comparison of the Blackman windowed-sinc (BWS) lowpass filter and boxcar (BC) filters based on a representative segment
(between 30.3 and 32.7s) of the excess phase profile L,; of the COSMIC example event. Panel (a): Filter functions for the BWS filter with
fe=2.5Hz and M = 41pts CBWS’, red) and boxcar filters with M = 21 pts BC21’, green) and with M = 11pts CBC11’, blue), around
the central value of the segment (31.55). Panel (b): Filter effects on the excess phase profile L,; from running the filters over the segment.
Shown are the unfiltered excess phase delta profile ("6 Ly, light gray), the BWS filtered profile with f. = 2.5Hz and M = 41pts CSLEWVS",
red), and the Boxcar filtered profiles with M = 21 pts (S LEC?1”, green) and M = 11pts COLEC Dblue), respectively.
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