The paper is revised and improved. The authors responded to all comments. The only remaining comment/question is about the height interval of interest $40-80 \mathrm{~km}$.

From current author's response:
In real data the corrected bending angles increase rapidly towards the surface. This means that the impact of any residual error becomes less insignificant below approximately 40 km . Furthermore, the VK94 correction assumes that the ray impact parameter/tangent height is below the ionosphere (i.e. the electron density is zero). Consequently, the main area of interest for estimation is between 40 and 80 km .

While both statements are correct, none of them explains whether GPS RO ionosperecorrected (to 1 st and 2 nd orders) bending angles are useful for detection of climate signals at 80 km .

In [Danzer et al., 2013] (cited in the paper), there is a reference to [Ringer and Healy, 2008] (not cited in the paper). A decadal climate trend, projected into bending angle space, was estimated as 1.2 and 4 mcrad at heights 30 and 26 km . At those heights, the mean bending angle should be about 300-600mcrad. At 80 km , the mean bending angle should be about 0.5 mcrad . What is an expected magnitude of climate trendin the bending angle space at 80 km ? Can it be detectable with GPS RO even with the 2 nd order correction of large-scale ionospheric effects?

I am not requesting response to this question at this time, by leaving it at the discretion of the authors.

I recommend the paper for publication.

