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Abstract. A neural network (NN)-based retrieval method to determine the snow ice water path (SIWP), liquid water path

(LWP), and integrated water vapor (IWV) from millimeter and sub-millimeter brightness temperatures, measured by using

airborne radiometers (ISMAR and MARSS), is presented. The NNs were trained by using atmospheric profiles from the ICON

numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer

Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median5

fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals.

The retrieval is offset free for SIWP > 0.01kg m−2, LWP > 0.1kg m−2 and IWV > 3kg m−2. The MFE of SIWP decreases

from 100% at SIWP = 0.01kg m−2 to 20% at SIWP = 1kg m−2 and the MFE of LWP from 100% at LWP = 0.05kg m−2

to 30% at LWP = 1kg m−2. The MFE of IWV for IWV > 3kg m−2 is 5% to 8%. The SIWP retrieval strongly benefits from

sub-millimeter channels, which reduce the MFE by a factor of two, compared to pure microwave retrievals. The IWV and10

the LWP retrieval also benefit from sub-millimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR

and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the

coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV

values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde

measurements shows an offset of 0.5kg m−2 and an rms difference of 0.8kg m−2, showing that the retrieval of IWV is highly15

effective even under cloudy conditions.

1 Introduction

Ice clouds are in an ongoing focus of atmospheric remote sensing as they play an important role in atmospheric radiation due to

their reflection of sun light and due to their entrapment of infrared radiation. The bulk mass of ice in the atmosphere is typically

used to describe the column-integrated bulk mass of atmospheric ice, also known as the ice water path (IWP). Measuring the20

IWP continues to remain a challenging task and is an important gap in the current global climate observation system. Buehler

et al. (2012b) and Holl et al. (2014) argued that this discrepancy is one of the reasons why there are large differences in the
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IWP estimates in climate models. In general, the term IWP is defined for the whole integrated ice bulk mass, for example

in the work of Evans et al. (2012) and Holl et al. (2014). However, in this paper, henceforth, we distinguish between cloud

ice, which consists mainly of ice particles with diameters < 100µm, and snow, which consists mainly of ice particles with

diameters > 100µm. This threshold results from the used particle size distribution (see Sect. 3.2). This distinction between

small and large ice particles is similar to that in atmospheric models such as the Icosahedral Nonhydrostatic (ICON) model5

(Zängl et al., 2015) or in the European Centre for Medium-Range Weather Forecasts (ECMWF) IFS-137 model (Eresmaa and

McNally, 2014). Hereinafter, we define the CIWP as the column integrated bulk mass of cloud ice and we define the snow

water path (SIWP) as the column integrated bulk mass of snow. Note that snow defined in this way can and does occur at high

altitudes; typical cirrus clouds in the used model fields contained about 2/3 of their mass in the form of snow, and only the

remaining in the form of cloud ice.10

Existing methods to estimate the IWP use passive sensors within the microwave, infrared, and visible ranges of the elec-

tromagnetic spectrum, and use active sensors such as radar or lidar, or combinations of different sensors. Comprehensive

overviews of existing methods can be found in Eliasson et al. (2013) and Holl et al. (2014). According to Holl et al. (2014)

active sensors especially combined radar/lidar are probably capable of estimating IWP with a higher accuracy than any existing

passive sensor. Furthermore, because of the principle on which their measurements are based, active sensors such as lidar and15

radar are much more suited for also retrieving the vertical structure. The problem with active sensors is that they lack horizontal

coverage, because they only sample the atmosphere directly below the satellite.

Existing passive sensors are problematic in that their sensitivity is highly selective. Passive microwave sensors for example

lack sensitivity for thin ice clouds, but are capable of sensing the whole column, whereas infrared and optical sensors are

capable of sensing thin ice clouds but cannot sense the whole column because high clouds obscure lower clouds. Sub-millimeter20

waves are much more sensitive to ice clouds compared to microwaves, as we show in Sect. 3, but passive sub-millimeter waves

are still capable of sensing the whole column in contrast to infrared or visible waves. The use of sub-millimeter waves therefore

ensures that the retrieval of the IWP based on combined microwave and sub-millimeter wave measurements is more effective

than when using infrared or visible waves. This approach also obviates the need for collocating data from different sensors,

for example when using the SPARE-ICE product (Holl et al., 2014). However, regardless of the technique that is used, remote25

sensing of ice clouds is a difficult task because of the many factors that can influence the measurement (Evans et al., 2012).

The launch of the Meteorological Operational Satellite - Second Generation - B (MetOp-SG B) is planned for the early

2020s. Among other sensors, this satellite will be equipped with an Ice Cloud Imager (ICI) and Microwave Imager (MWI).

ICI will be the first operational space borne down-looking sensor with the ability to measure in the sub-millimeter range of the

electromagnetic spectrum. The main purpose of ICI, as indicated by its name, is to sense ice clouds. Even though the studies30

of Buehler et al. (2012b), Buehler et al. (2007) and Jiménez et al. (2007) were not explicitly carried out for ICI, they provide

a useful overview of the fundamentals of ICI. The International SubMillimetre Airborne Radiometer (ISMAR) is an airborne

radiometer that measures at several frequencies between 118GHz and 664GHz of the electromagnetic spectrum. One of the

main tasks of ISMAR is to serve as a satellite demonstrator for ICI (Fox et al., 2017). Apart from ISMAR, an other airborne

radiometer that measures in a similar region of the electromagnetic spectrum is the Compact Scanning Sub-millimeter-wave35
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Imaging Radiometer (CoSSIR). Evans et al. (2012) used measurements from CoSSIR on board the ER-2 aircraft to estimate

the IWP.

In March 2015, COSMICS (Cold-air Outbreak and Sub-Millimetre Ice Cloud Study) was carried out around the northern

part of the United Kingdom and Iceland. Among other measurements, COSMICS recorded airborne radiometer measurements

with ISMAR and the Microwave Airborne Radiometer Scanning System (MARSS). These measurements were conducted5

using the BAe-146 aircraft from the Facility for Airborne Atmospheric Measurements (FAAM). ISMAR and MARSS together

cover most of the ICI and MWI channels ≥ 89GHz, which makes ISMAR and MARSS very useful in view of MetOp-SG B.

The main purpose of this work is to develop a method to retrieve the paths of ice and snow in the atmosphere, known

as frozen hydrometeors, from data recorded by airborne millimeter/submillimeter radiometer and to apply the retrieval on

real observations. Our plan is to base the retrieval method on artificial neural networks. The artificial neural networks are10

trained using a database of atmospheric profiles taken from a numerical weather prediction model and associated brightness

temperatures calculated using a radiative transfer model. The model profiles are broadly representative of the conditions during

the flight, but they span a much greater range of atmospheric conditions. As the simulations need information about cloud

liquid water, precipitating water, and water vapor, we additionally investigated retrieval for column integrated cloud liquid

water, which we term the liquid water path (LWP), the column integrated precipitating water, which we term the rain water15

path (RWP), and the column integrated bulk mass of water vapor, which we term integrated water vapor (IWV). Our retrieval

approach is similar to a previous approach of Jiménez et al. (2007). However, our study differs from theirs in three main

respects: first, we apply the retrieval method to real measurements; second, we are not only interested in frozen hydrometeors;

and, third, our system can be employed over the ocean, whereas the approach of Jiménez et al. (2007) worked only over land.

The performance of the neural network retrieval is evaluated using an independent set of atmospheric profiles and simulated20

brightness temperatures to get an error estimate of the retrieval. Furthermore, the retrieval is applied to the observation and

the retrieved quantities are compared to numerical weather prediction model values as a consistency check . Although Wang

et al. (2016) followed a similar approach to estimate hydrometeor paths, they did not apply their approach to measured data.

They only used measurement data up to 200GHz to validate their simulations. In contrast to our study, the retrieval system

they developed was intended for retrieval over land and ocean.25

The text is structured as follows: In Sect. 2 we provide an overview of ISMAR and MARSS. In Sect. 3 we describe the

retrieval method. This includes the basic assumptions of the method, the structure and training of the artificial neural networks

we used, the approach we followed to conduct the simulations, and the approach we used to construct the dataset on which to

train the neural network and to check the consistency of the simulations. Sect. 4 contains the results of our test of the retrieval

system under ideal conditions to obtain the limits of the procedure and a discussion of the results. In Sect. 5 we present the30

results of applying the retrieval method to ISMAR and MARSS measurements and discuss the results. In Sect. 6 we summarize

the results.
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2 Sensors

2.1 ISMAR

ISMAR is an along-track scanning heterodyne radiometer, which measures between 118GHz and 664GHz (Table 1). ISMAR

is jointly funded by the UK Met Office and the European Space Agency (ESA). One task of ISMAR is to serve as an airborne

demonstrator for the upcoming ICI on MetOp-SG B. ISMAR measures at similar frequencies as ICI except for the channels at5

approximately 118GHz, which form part of MWI instead, and which is on board the same satellite. ISMAR measures radiation

as Rayleigh-Jeans calibrated brightness temperatures. This means, within ISMAR, the received radiation power is converted to

brightness temperatures using the Rayleigh-Jeans approximation for a blackbody. Except for the window channels at 243.2GHz

and 664.0GHz, ISMAR measures single linear polarization. The window channels measure dual orthogonal linear polarization.

ISMAR is mounted on the left side of the aircraft allowing both upward and downward views. Downward views with nominal10

nadir incidence angles between +50 and -10 degrees are possible, where positive angles indicate directions towards the front of

the aircraft. Zenith observations can be made in the +10 to -40 degree range. The nadir +50 degree view is designed to give a

close match in incidence angle to conically-scanning imagers such as ICI. However, in this work we use only the near-vertical

nadir view in order to eliminate any polarization differences. For further details on ISMAR see Fox et al. (2017). Polarization

differences are not expected in the vertical view as both polarizations are orthogonal to both the surface and the clouds, and the15

sensed medium is likely to be random in the azimuth direction. Therefore, the two polarizations of the window channels were

averaged.

2.2 MARSS

MARSS is an along-track scanning heterodyne radiometer, which measures between 89GHz and 183GHz (Table 1). The view-

ing directions of MARSS are 40° to−40° nadir and 40° to−40° zenith. MARSS is an airborne version AMSU-B (McGrath and20

Hewison, 2001). MARSS is also mounted on the side of the aircraft allowing similar upward and downward views. MARSS

measures single linear polarization and measures the radiation as Rayleigh- Jeans calibrated brightness temperatures. Further

details on MARSS can be found in McGrath and Hewison (2001) and the articles cited therein. In this work, we use only the

nadir viewing direction.

3 Retrieval method25

Retrieving hydrometeor paths from brightness temperatures or in general from the radiance is an inverse problem with the

generic form (Rodgers, 2000):

Y = f (X) + ε (1)

where Y is the vector of the measured brightness temperatures, X is the vector quantities to retrieve, f (the forward model)

is the radiative transfer and sensor model, that can simulate brightness temperatures for a given atmospheric state, and ε is the30
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Table 1. Channel description, taken mostly from Fox et al. (2017).

Center fre- Side Band- Noise Polari- Feature

# quency [GHz] bands [GHz] widths [GHz] [K] zation Instrument

1 89.0 ±1.1 0.65 0.5 v MARSS window

2 118.75 ±1.1 0.4 0.2 v ISMAR oxygen line

3 118.75 ±1.5 0.4 0.2 v ISMAR oxygen line

4 118.75 ±2.1 0.8 0.2 v ISMAR oxygen line

5 118.75 ±3.0 1.0 0.2 v ISMAR oxygen line

6 118.75 ±5.0 2.0 0.2 v ISMAR oxygen line

7 157.05 ±2.6 2.6 0.5 v MARSS window

8 183.31 ±1.0 0.45 0.5 v MARSS water vapor line

9 183.31 ±3.0 1.0 0.5 v MARSS water vapor line

10 183.31 ±7.0 2.0 0.5 v MARSS water vapor line

11 243.20 ±2.5 3.0 0.3, 0.5 h, v ISMAR window

12 325.15 ±1.5 1.6 1.1 v ISMAR water vapor line

13 325.15 ±3.5 2.4 0.3 v ISMAR water vapor line

14 325.15 ±9.5 3.0 0.8 v ISMAR water vapor line

15 448.0 ±1.4 1.2 0.9 v ISMAR water vapor line

16 448.0 ±3.0 2.0 1.3 v ISMAR water vapor line

17 448.0 ±7.2 3.0 1.9 v ISMAR water vapor line

18 664.0 ±4.2 3.0 0.9, 2.7 h, v ISMAR window

measurement noise. The typical inverse problem in remote sensing is an ill-proposed problem. Many different ways have been

reported in the literature to overcome this problem, for example optimal estimation (Rodgers and Connor, 2003), Monte Carlo

integration in combination with Bayesian inference (Evans et al., 2012), or artificial neural networks (NN) (Defer et al., 2008;

Jiménez et al., 2007). We followed the latter approach and used neural networks to retrieve the desired quantities. For a detailed

introduction on neural networks, see for example Rojas (2013). Before it can be used, a neural network requires training data5

to set up the network. Construction of the training dataset is explained in the next subsection. Details of the neural network

follow in Sect. 3.4.

3.1 Training database

The training database plays a crucial role in neural network-based retrieval. All the assumptions on which the retrieval method

is based are condensed in the database. For example, the database needs to cover the actual measurement space (the full range10

of Y ’s), failing which the retrieval would be unsuccessful for some measurements. This would imply that the assumptions

about the atmosphere and the interaction with electromagnetic radiation were inadequate. Therefore, it is important to make

reasonable assumptions. The two main assumptions in terms of retrieval are that the atmospheric profiles from a numerical
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Figure 1. Locations of the approximately 13,000 randomly selected profiles of the training database from the three ICON forecast runs on

March 11, 13, and 18, 2015. Each dot stands for one profile. The day time of each profile is color indicated in hours after start of the runs.

The red lines depict the north-south-transects of the FAAM flight B897 on March 18, 2015. The white ocean areas north of Iceland and east

of Greenland indicate areas covered with sea ice.

weather prediction (NWP) model are sufficient to describe the possible states of the atmosphere and that the interaction of the

atmosphere with the electromagnetic radiation can be described by a radiative transfer model.

We use atmospheric profiles from simulations of a regional version of the ICON model, details of which can be found in

Zängl et al. (2015) and Reinert et al. (2016). The atmospheric profiles were taken from three ICON forecast runs on March

11, 13, and 18, 2015 of the region between 50°N and 75°N and 30°W and 5°E with a gridded resolution of about 10km.5

These three runs cover the three different FAAM BAe-146 flights during COSMICS. Each run started at 0h00 GMT using the

starting conditions from the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts

(ECMWF) and ended at 6h00 GMT on the following day. The complete model fields of each run had a time resolution of 30

minutes. The fields for the first six hours of each run were excluded to eliminate possible spin-up effects. From the remaining

time steps we randomly selected approximately 13,000 atmospheric profiles over the ocean. The location and the time of10

the profiles and the north-south-transects of the FAAM flight B897 on March 18 are shown in Fig. 1. The selected profiles

cover a much wider range of atmospheric conditions than the actual conditions during the flight. The flight took about 3 hours
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west of Iceland, whereas the selected profiles span in total a time range of 72 hours over a much larger area than the actual

flight. Because the atmospheric profiles were from the same season and they cover a wide range of atmospheric conditions

including the conditions during the flight, these profiles are expected to sufficiently cover the situations encountered during the

measurement flight without being optimized for this specific flight. Though, the database covers a wide range of atmospheric

conditions, it is constrained to a similar season and similar latitude over ocean. A retrieval based on this database is likely5

to provide insufficient results, when applied to different seasons, different latitudes, or even over land. Simulated brightness

temperature measurements for each atmospheric profile were generated for the database using the Atmospheric Radiative

Transfer Simulator (ARTS) (Eriksson et al. (2011) and Buehler et al. (2005)).

3.2 Radiative transfer simulations

ARTS, which is a radiative transfer model for thermal radiation, can process fully polarized radiative transfer calculations10

with scattering. This is important as microwave and sub-millimeter radiation mostly interacts with ice particles by scattering.

We used ARTS version 2.3. The Discrete Ordinate ITerative (DOIT; Emde, 2004) method was used as scattering solver within

ARTS. The Rayleigh-Jeans brightness temperatures were simulated for each randomly selected atmospheric profile. No explicit

spectral response function was used to simulate the ISMAR and MARSS channels; instead, we conducted monochromatic

radiative transfer simulations for the center frequencies of the two side bands of each channel and obtained their average. Tests15

with highly spectral resolved clearsky simulations showed that the error by using only the center frequency of each pass band is

< 1K. Possible effects due to different footprint sizes and beam-filling are neglected as the footprints of MARSS and ISMAR

are much smaller than similar satellite instruments, or an ICON model grid cell. The footprint size at ground level is pretty

much the same for all the ISMAR channels and are in the order of 700m for a flight altitude of 10km. The footprint size at the

surface varies with channel; for a flight altitude of 10km it varies between 700 and 1500m.20

Within ARTS, gas absorption was taken into account by using the HITRAN database (Rothman et al., 2013) and the

MT_CKD model for the continuum absorption of water vapor and molecular nitrogen in version 2.52 (Mlawer et al., 2012).

The gas absorption of molecular oxygen was processed by using the full absorption model of Rosenkranz (1998) modified by

the values from Tretyakov et al. (2005). The surface emissivity was calculated using the FAST microwave Emissivity Model

(FASTEM; Liu et al., 2011) implementation within ARTS 2.3 using the surface wind speed and surface temperature from25

the ICON model dataset. Although FASTEM was originally developed for low microwave frequencies, with further develop-

ment the valid frequency range was enhanced to higher frequencies. Liu et al. (2011) tested FASTEM up to 150GHz. Prigent

et al. (2016) compared FASTEM with the Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-Millimeter waves

(TESSEM2) and with ISMAR measurements from two low-level flights at low wind speeds. They showed that FASTEM tends

to underestimate the emissivity at 243.3GHz leading to errors of order 5K in the upwelling brightness temperature close to the30

surface (flight altitudes < 300m). The emissivity using FASTEM at 243GHz is roughly between 0.7 and 0.8 for nadir viewing

direction and atmospheric conditions during FAAM flight B897. At surface level and for a surface temperature of 276K, which

is the surface temperature in the ICON model for the beginning of the first transect of FAAM flight B897 (see also Sect. 5),

these emissivities result in upwelling brightness temperatures of 193K and 221K and a difference of 28K in the upwelling
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brightness temperatures. Clearsky simulations using ARTS for conditions similar to the driest conditions during the FAAM

flight B897 show for an IWV of 6kg m−2 at a flight level of 10km an upwelling brightness temperature of 233K for a surface

emissivitiy of 0.7 and 243K for a surface emissivitiy of 0.8. The difference in upwelling brightness temperatures is reduced

to 10K at a flight level of 10km. This is roughly one third of the upwelling brightness temperature difference at surface level.

So, a 5K error in the upwelling brightness temperature at the surface will result in a worst-case error of approximately 1.8K at5

10km. For greater IWV the error is even smaller. Therefore, considering the strong scattering signal at 243.3GHz (see Fig. 3),

we do not consider this problematic. For the higher frequency ISMAR channels (325GHz and higher, Ch. 12-18) the effect of

surface emissivity errors will be smaller due to the strong water vapour absorption at these frequencies.

Each atmospheric profile consists of the following profiles with 90 pressure levels between 0.02hPa and the surface pressure:

Atmospheric temperature in K, altitude in m, atmospheric humidity in vmr, cloud liquid water in kg m−3, cloud ice water in10

kg m−3, rain in kgm−2s−1, and snow in kg m−3. Oxygen and nitrogen levels were assumed to be constant with volume mixing

ratios of 0.2095 and 0.7808, respectively.

The ICON runs used a 1-moment microphysics scheme with four distinct hydrometeor types namely liquid cloud water,

cloud ice, rain, and snow. Assumptions on particle size distributions and shape are necessary in order to simulate brightness

temperatures. Our assumptions are similar to Geer and Baordo (2014) with one exception: Geer and Baordo (2014) use sector-15

like snowflakes from the Liu (2008) -database to simulate the scattering of snow. The Liu database is valid only for frequencies

up to 340GHz, which is insufficient for our simulations. Instead, we use aggregates from the database of Hong et al. (2009)

to simulate the scattering of snow, because the Hong aggregate is the only aggregate habit for which there exists publicly

available data above 340GHz. According to Eriksson et al. (2015), Hong aggregates reasonably represent the average scattering

properties of snow. However, in some respects the Hong database is also problematic. Firstly, the effective density of the Hong20

aggregates is constant, whereas the effective density of snow changes with the particle size. Secondly, the data are based on

the old Warren (1984) refractive index data, which do not include the temperature dependencies. We therefore used a corrected

version of the Hong et al. (2009)-database in which the absorption is rescaled using the Mätzler (2006) parametrization for

the refractive index of ice. Rescaling is achieved by multiplication with imag(n)/imag(n0), where n0 and n is the refractive

index from Warren (1984) and Mätzler (2006), respectively. The rescaling is used to obtain data for 183, 213, 243 and 266K.25

The scattering extinction and all six of the phase matrix values are maintained constant. This means that only the absorption

is rescaled. Our assumptions about the microphysics are the same in terms of the basic hydrometeor types but differ from the

internal microphysics of the ICON model in terms of size, shape, and density. However, this is not considered an issue, because

the function of the ICON model for the database is simply to deliver physically realistically profiles, which span the range of

conditions that may be encountered. For this case, it is not needed to be fully consistent with the ICON model. If the interest is30

in the ICON microphysics then consistency would be needed.

Explicitly, we used the following four hydrometeors for the radiative transfer simulations:
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Table 2. Parameters used for the modified gamma distribution

Hydrometeor µ γ Λ

Cloud liquid water 2 1 2.13× 105

Cloud ice water 2 1 2.05× 105

1. Liquid cloud water: The scattering properties were calculated under the assumption of a spherical shape using the Mie

theory. The size distribution was calculated using a modified gamma distribution

N (D) =N0D
µ exp(−ΛDγ) (2)

where D the diameter of the spheres using the coefficients of Geer and Baordo (2014). The parameters µ, γ, and Λ are

provided in Table 2. The scale parameter N0 is set according to the mass concentration using the expression for the third5

moment of a modified gamma distribution (Petty and Huang, 2011)

2. Cloud ice: The scattering properties were calculated under the assumption of a soft sphere with a density of 900kg/m3

using the Mie theory as in Geer and Baordo (2014). The size distribution was calculated using a modified gamma

distribution (Eq. 2). The parameters µ, γ, and Λ are listed in Tab. 2. The scale parameter N0 is set according to the mass

concentration using the expression for the third moment of a modified gamma distribution (Petty and Huang, 2011).10

3. Rain: The scattering properties were calculated under the assumption of a spherical shape using the Mie theory. The size

distribution was calculated using the Marshall-Palmer size distribution (Marshall and Palmer, 1948), for which the mass

flux was converted to the rain rate by assuming a constant density of 1,000kgm−3.

4. Snow: We assume snowflakes behave similar to the aggregates from the Hong- DDA database (Hong et al., 2009). The

size distribution was calculated using the midlatitude version of the distribution from Field et al. (2007). The mass-15

dimension relationship we used is

m(D) = α

(
D

D0

)β
(3)

where α= 65.4kg and β = 3 are the shape parameters, D is the maximum diameter, and D0 is the unit maximum

diameter. The shape parameters α and β were calculated from the shape dimensions.

The selected size distributions define the size range covered by the different hydrometeor habits. These choices result in cloud20

ice mainly consisting of particles < 100µm, whereas snow mainly consist of particles > 100µm.

3.3 Comparison of Simulations and Measurements

Before we can start with the retrieval, we have to verify whether the data in our training database covers the measurements. If

the simulations do not cover the full range of measurements or only partially cover this range, the retrieval is likely to provide
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insufficient results. In Fig. 2 the brightness temperature of each channel at a flight altitude of 10,500m is plotted against that

of all the other channels, such that the plot consists of 18 times 18 subplots. The diagonal is empty by definition. The channels

stated above the plots correspond to the brightness temperatures on the X-axis and the channels stated on the right-hand side

correspond to the brightness temperatures on the Y-axis. The plot in Fig. 2 shows how each channel is correlated with every

other channel. First, let us consider the upper right half of the plot, where the measurements are plotted over the simulations.5

Although the measured values cover a smaller area than the simulated values, the former of these values are mostly surrounded

by the latter values. This means that the variability of our simulations is higher than the variability of the measurements. As we

chose the profiles randomly we do not expect to obtain an exact match between each measurement and its simulation. Actually,

this is not necessary and is not our intention. The ICON profiles only have to be physically realistic and span the possible range

of conditions. The important point is that the set of measurements is contained within the set of simulations. In the lower left10

half, where the simulations are plotted over the measurements, we can easily determine whether the set of measurements is

within the set of simulations. Mostly, the red dots are covered by the blue dots, meaning the measurements are within the set

of simulated values. The simulated brightness temperatures of the 183.31± 1GHz channel, the 325.15± 1.5GHz channel, the

three 448GHz channels, and the 664GHz channel are slightly higher than the measured brightness temperatures. One reason

could be the presence of an insufficient amount of water vapor in the upper troposphere of the randomly selected atmospheric15

profiles from the ICON model dataset, because these channels are sensitive to the upper troposphere. Another reason could be

the spectroscopy used within ARTS.

Of course this comparison cannot prove the sufficiency of our training database for retrieval purposes; however, thus far the

behavior seems to be reasonable and understandable. We therefore expect the training database to be adequate for the retrieval.

Before we discuss the neural network, we investigate the influence of frozen hydrometeors on the brightness temperatures.20

The liquid particles interact with the electromagnetic radiation by absorption and in the case of rain also by scattering, whereas

the frozen particles interact with the electromagnetic radiation mainly by scattering. Furthermore, the absorption is mostly

related to the total mass of the particles and is less dependent on the particle size, whereas scattering strongly depends on the

particle size. Buehler et al. (2007) showed, for frequencies similar to those of ISMAR, that the frozen particles must have an

effective diameter > 100µm to have a significant influence on the brightness temperatures. Fig. 3 (a) shows the difference in25

brightness temperatures between a subset of 450 simulations without cloud ice and with cloud ice as a function of the CIWP.

The maximum difference is < 0.5K, which is mostly smaller than the noise of ISMAR and MARSS. This means, by using

ISMAR and MARSS, there is no possibility to physically sense CIWP, bearing in mind, that within this study, CIWP is the

column integrated bulk mass of ice particles mostly smaller than 100µm. In this respect, our work contrasts with that of Wang

et al. (2016), who stated that they can estimate CIWP. The reason for this difference is that they assume a different particle size30

distribution for cloud ice, which results in larger cloud ice particles. Fig. 3 (b) shows the difference in brightness temperatures

between a subset of 450 simulations without snow and with snow as a function of the SIWP. A clear relationship between the

SIWP and the difference in brightness temperature can be seen. The difference in brightness temperature is up to 50K. For the

243GHz channel, it is even up to 80K (outside the y-axis range of Figure 3).
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a)

b)

Figure 3. Difference in brightness temperatures between simulations with (a) cloud ice set to zero and with simulation with unchanged cloud

ice as a function of the CIWP, (b) same as for (a) but with snow set to zero and as a function of SIWP.
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3.4 Neural network

Before the neural network is set up, the retrieval method has to be defined. The main interest of this study is to retrieve SIWP,

but also to investigate the retrieval of IWV, LWP and RWP. Except for IWV, these quantities have a high dynamic range and

all four quantities are always greater than or equal to 0kg m−2. Therefore, we retrieve the logarithm of the ratio of the desired

quantity and the unit path, for example for SIWP:5

siwp= log10

SIWP

SIWP0
(4)

with SIWP0 = 1kg m−2 the unit snow water path. As the logarithm is not defined for zero, every zero value of the four

quantities is assigned the value of 10−9 kg m−2 before computing the logarithm, which was the order of the smallest values

above zero, to avoid infinite values. Thus, the smallest value of a retrieval quantity is −9. Henceforth, writing the SIWP or one

of the other three quantities in lowercase means that the decadic logarithm of the quantity was used. Our state vector X refers10

to

X =


lwp

rwp

siwp

iwv

 . (5)

The measurement vector Y consists of 18 components. Each component is the measured brightness temperature Tb of one of

the 18 combined channels of ISMAR and MARSS

Y =


Tb,ch1

Tb,ch2
...

Tb,ch18

 (6)15

with the channels defined as in Table 1.

Instead of using one neural network for the retrieval, we use an ensemble of neural networks. According to Heskes et al.

(1997), an ensemble of neural networks is expected to provide a more accurate estimate of the true regression than would be

possible with only one neural network. The retrieved state vector X is then the average over the estimated state vectors of each

neural network of the ensemble,20

X =
1

N

N∑
n=1

Xn, (7)

where N is the number of neural networks and Xn is the estimated state vector of the n-th neural network. An ensemble of

20 neural networks is used for the retrieval. Each neural network consists of one input, one hidden, and one output layer with
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18, 12, and 4 neurons, respectively. The input neurons are the components of the measurement vector Y , i.e., the measured

brightness temperatures. The output neurons are the components of the state vector X , i.e., the logarithms of the path of the

3 hydrometeors and the logarithm of the IWV. Each neural network is trained with simulated measurement vectors from the

training database and the corresponding state vectors. The noise behavior of the measured brightness temperatures is included

by adding a Gaussian distributed error to every simulated brightness temperature with a standard deviation of the noise of each5

channel, see also Table 1.

The neural networks are trained by using approximately 6,000 state vectors. The other 7,000 state vectors are used for

testing. Each neural network of the ensemble is trained with a randomly chosen subsample of about 3,000 state vectors and

the corresponding measurement vectors. Each neural network is trained by the Levenberg-Marquardt algorithm (Hagan and

Menhaj, 1994).10

As simple to use and as powerful as neural networks are, these networks have a downside. As soon as one part of the

measurement setup is changed, a new neural network must be trained. If the number of channels or even simply the position of

one channel is changed, it is necessary to train a new neural network. This has the implication that for airborne measurements,

different neural networks are required for different flight altitudes. Nonetheless the computational burden is not high. Once the

neural networks are trained, which take some hours, they are very fast. For satellites such as MetOp-SG B, which will carry15

MWI and ICI, this is less of an issue, because observation will always be from above the top of the atmosphere. The main

issue for a satellite application is that the training database must cover the global range of atmospheric conditions. Therefore

our retrieval is limited to similar seasons and latitude range as the used database, but there is no fundamental limit in the usage

a neural network for global retrieval application, as long the database covers the wide range of globally possible atmospheric

conditions and the neural network can capture this variability. For example, Holl et al. (2014) applied their trained neural20

network globally to retrieve IWP. By using for example similar ICON model runs for several globally distributed regions and

different seasons, our retrieval can be expanded to global applications.

4 Basic retrieval performance

Retrieval simulations for a flight altitude of 10.5km are used to test the basic retrieval performance. We applied the neural

network, which was trained with one part of the training database, to the other part of the training database. This means,25

the retrieval procedure was applied to approximately 7,000 measurement vectors with simulated brightness temperatures. For

each of these 7,000 measurement vectors the corresponding state vector is known. Thus, the results of the retrieval can be

compared directly with the true state vectors. This is a test under ideal conditions as retrieval and test data are based on the

same assumptions. Possible errors due to radiative transfer simulation or errors of the model profiles are excluded in this test.

In that case, the retrieval performance is limited by the errors of the artificial neural networks and from the radiometer noise of30

MARSS and ISMAR in combination with limited interaction between the electromagnetic radiation and the atmosphere. We

excluded the error of the radiative transfer simulation and the error of the atmospheric model, because the modeling errors are

difficult to estimate, as there is no data to compare with. Therefore, the errors from the direct comparison are an estimate of the

14



physical limits of our retrieval approach. The retrieval error when applying the retrieval on measured brightness temperatures

is likely to be larger, as the a priori assumptions will be never completely fulfilled.

4.1 Offset

In Fig. 4 the difference between the retrieved state vector and the true state vector is shown as a two-dimensional histogram.

The x- and y-axes show the component of the retrieved state vector and the corresponding component of the difference between5

the retrieved and the true state vector, respectively. On the x- and y-axes, 45 equally sized bins between−9 and 2, and 121 bins

between −5 and 12 are used, respectively. Because of the different value range of IWV, 121 equally sized bins between −1

and 2, and 161 bins between −1 and 1 are used on the x- and y-axes, respectively. The histograms are normalized with respect

to the number of state vectors.

The relative frequency of occurrence is coded as different grey shadings. Recall that the components of the state vectors are10

logarithmic quantities, as mentioned in the beginning of Sect. 3. The difference in the logarithmic quantities is the same as the

logarithm of the ratio of the linear quantities. For example, a y-axis value of 1 in Fig. 4 corresponds to a factor 10 error, and a

value of 0.1 corresponds to a 25% relative error. To look for systematic errors of each component, the offset Oi as a function

of the j-th bin of the binned i-th component of the retrieved state vector is shown as a blue line. The offset Oi is

Oi(xret,ij) =

∑161
k=1wijk∆xijk∑161

k=1wijk
, (8)15

where wijk is the number of occurrences of bin (k,j) of component i, and ∆xijk the binned difference ∆xi = xret,i−xtrue,i
between the component i of the retrieved and the true state vector of bin (k,j). The standard deviation σO,i is calculated

to consider the random error. The standard deviation σO,i is shown by red dashed lines on either side of the offset Oi. The

standard deviation σO,i is

σO,i(xret,ij) =

[∑161
k=1wijk (∆xijk −Oi(xret,ij))2∑161

k=1wijk

] 1
2

. (9)20

The offset and the standard deviation were calculated for each j-th binned component of the estimated state vector but only if

the summed number of occurrences in the j-th bin is at least 1% of the number of state vectors to avoid statistical fluctuation

due to small numbers. Strikingly, there is a straight line in the upper half of the plots of the retrieved hydrometeors indicating

a bimodal distribution for small values. For values >−3 this second mode vanish. These lines depict cases of overestimation

of the specific hydrometeor. All cases on these lines are cases where we set the specific component of the state vector to −9 to25

avoid infinite values, because for these cases the actual hydrometeor path was zero.

The SIWP-histogram has a bell-mouthed shape, from which we can infer that with increasing amount the error decreases.

The offset of the retrieved SIWP is 0 for SIWP >−2. In addition to this, the standard deviation is symmetric around zero

for SIWP >−2. For SIWP <−2, the offset is oscillating around zero with increasing amplitude for decreasing SIWP. Up to

this point, we can record that for SIWP >−2 the retrieval has no offset and the standard deviation decreases from 0.6 to 0.230

with increasing SIWP. The standard deviation of SIWP >−2 is of the same order of magnitude as the error for the retrieved
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IWP within the work of Evans et al. (2012). These authors used combined passive microwave and sub-millimeter radiometers

to retrieve the IWP among other quantities. The IWP of Evans et al. (2012) corresponds to the column integrated bulk mass

of atmospheric ice, whereas SIWP is the column integrated bulk mass of snow. However, as the column integrated bulk mass

of cloud ice, which is our definition for CIWP, is typically an order of magnitude smaller, the IWP of Evans et al. (2012)

corresponds mostly with the SIWP in our retrieval. A detailed comparison with the work of Evans et al. (2012) is difficult since5

there is no distinct information about the error as function of the IWP as there is in the work of Holl et al. (2014), for example.

The LWP histogram differs from the SIWP histogram. For LWP <−1 the LWP histogram consists mainly of a straight line

in the upper half and a wider strip in the lower half. The various values in the lower half mean that many estimated values

are underestimated. Due to the fact that cases with no LWP are strongly overestimated, the offset has some stronger jumps

around zero. For LWP >−2 the offset and the standard deviation become smoother with increasing LWP. For LWP >−110

the offset changes only slightly with increasing LWP and the standard deviation decreases from 0.8 to 0.4 at LWP > 0. The

RWP histogram is similar to the LWP histogram for RWP <−1. For RWP >−1, the size of the standard deviation is still

similar to the standard deviation of LWP but compared to LWP there is a strong change of the RWP offset with increasing

RWP indicating a significant non-zero offset.

The IWV histogram differs strongly from the histograms of the three estimated hydrometeor paths. It has a rectangular shape15

and the differences are at least one order of magnitude smaller. Except for IWV > 1.3 (IWV> 20kg m−2), the offset over the

whole range of values is practically zero and the standard deviation is almost constant with a value of 0.04. This means the

IWV retrieval is offset-free over that range of values. For IWV > 1.3, there is a small offset of 0.02.

In summary, the retrieval is practically offset-free for IWV, for SIWP >−2 (SIWP> 0.01kgm−2) and for LWP >−1 (LWP

> 0.1kgm−2). For RWP, this does not hold.20

4.2 Median fractional error (MFE)

Thus far, we know which quantities can be measured offset-free. We next address the retrieval error, which is described using

the median fractional error (MFE), which was also used by Holl et al. (2014) to estimate the error of IWP of the SPARE-ICE

product. The MFE is defined as follows,

MFE = median

=FE[︷ ︸︸ ︷
exp10 (|xi,ret−xi,true|)− 1

]
(10)25

with xi the i-th component of the estimated state vector and xi,true the i-th component of the true state vector. For example,

MFESWP = median [exp10 (|swpret− siwptrue|)− 1]

= median
[
exp10

(∣∣∣∣log10

SIWP

SIWPtrue

∣∣∣∣)− 1

] . (11)

For example 100% MFE on SIWP means that for half of the considered cases the retrieved value is within the interval

[SIWPtrue/2, 2 ·SIWPtrue]. For MFE < 30% it is approximately equal to the relative error. The MFE for each compo-

nent of the state vector as function of the corresponding component of the estimated state vector is shown as blue lines in30
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Figure 4. Two-dimensional histograms of the difference between components of the retrieved state vector and the corresponding ICON

model state vector, as a function of the retrieved state vector. The components of the state vectors are defined as the decadal logarithm of

the ratio of the specific quantity and the specific unit path, therefore they are unitless. The offsets O of the components of the retrieved state

vector are shown as blue lines and the corresponding standard deviations σO are shown as red lines. For the hydrometeor paths, an x-value

of −3 corresponds to a value of 10−3 kg m−2 = 1gm−2. For IWV, an x-value of 1 corresponds to a value of 101 kg m−2 = 10kg m−2.
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Fig. 5. To compute the MFE, the components of the state vector were binned on a logarithmic grid with 45 bins starting from

10−9 kg m−2 and ending at 102 kg m−2. The different value range for the MFE of IWV necessitated the use of a logarithmic

grid with 121 bins starting from 10−1 kg m−2 and ending at 102 kg m−2 was used for IWV. The MFE is shown only for bins

that include at least 1% of the total number of state vectors to avoid statistical fluctuations.

The MFE of SIWP decreases with increasing SIWP. Whereas the MFE of SIWP is more than 600% for SIWP< 10−3 kg m−25

it decreases to 20% at SIWP = 1kg m−2. For SIWP > 0.01kg m−2 the MFE is less than 100% and for SIWP > 0.1kg m−2

the MFE is less than 50%, which is in good agreement with the relative error of SIWP over the ocean of Wang et al. (2016) for

combined simulated MWI-ICI measurements. They used an approach similar to ours but with the difference of an additional

frozen hydrometeor, different assumptions about the particle size distributions, and they used an additional neural network-

based classification before the retrieval. For snow they also assume slightly different scattering properties.10

Jiménez et al. (2007) conducted a simulated retrieval of IWP using channels similar to ISMAR and neural networks, but

compared to our retrieval, they carried out the retrieval over land and for different meteorological situations. These authors

defined the column integrated bulk mass of atmospheric ice as IWP, which, as written in the previous subsection, corresponds

mostly with the SIWP of our retrieval. Comparing the MFE of SIWP with the retrieval error of IWP by Jiménez et al. (2007)

shows that their retrieval error is approximately half as large as the MFE of SIWP. One has to be cautious when comparing15

these errors, because the exact error definition in Jiménez et al. (2007) is not clear. Because the datasets and assumptions in

Jiménez et al. (2007) differ from ours, compared to our retrieval, the errors cannot be expected to be the same, but they should

be of the same order, which they are.

A comparison with the error estimation of the SPARE-ICE product (Holl et al., 2014), which combines the results that were

obtained with the current operational microwave and infrared sensors, shows that the MFE of SIWP for SIWP = 0.01kg m−220

is of similar size as the MFE of IWP of the SPARE-ICE product and that with increasing SIWP the MFE of SIWP decreases

to about half of the MFE of IWP of the SPARE-ICE product. The IWP of the SPARE-ICE product is defined as the column

integrated bulk mass of atmospheric ice, but should be comparable to SIWP in our retrieval. For SIWP< 0.01kg m−2 the MFE

of SIWP is larger than the MFE of IWP of the SPARE-ICE product. The SPARE-ICE product is a good measure to compare

with, because the SPARE-ICE product provides a good estimate of the performance of the latest operational passive sensors,25

but there are also two caveats in the comparison. Firstly, our MFE is based on model simulations under ideal conditions,

whereas the MFE of SPARE-ICE is based on the 2C-ICE product (Deng et al., 2010), which is derived from lidar and radar

measurements. Secondly, our error estimation is obtained from the perspective of the retrieval results, whereas that of Holl

et al. (2014) is from the perspective of the reference data, but as long as the retrieval is offset-free this should not make a

significant difference. For SIWP < 0.01kg m−2 it is more effective to use a retrieval that includes thermal infrared channels30

as in SPARE-ICE, because the interaction between atmospheric ice and microwaves and submillimetre waves is too weak for

such a low amount of SIWP, see Fig. 3. For now, we can keep in mind that our retrieval is capable of estimating SIWP with

MFE lower than 100% for SIWP> 0.01kg m−2, and that the MFE of SIWP is reduced to about 20% for high SIWP.

The MFE of LWP is of similar size as the MFE of RWP for LWP< 0.1kg m−2, but for LWP > 0.1kg m−2 the MFE of

LWP decreases to 30%. For LWP > 0.05kg m−2, the MFE is < 100%. A MFE of 50% for LWP = 0.1kg m−2 converted to35
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Figure 5. Median fractional error as function of the components of the retrieved state vectors. The blue lines indicate the MFE of the retrieval

using all ISMAR and MARSS channels. The red lines indicate the MFE using all ISMAR and MARSS channels up to the 183GHz channels

for the retrieval and the orange lines indicate the MFE using a AMSU-B type sensor. See Sect. 4.3 for details.
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absolute values approximately corresponds to an error of 0.05kg m−2 and a MFE of 30% for LWP = 1kg m−2 converted

to absolute values approximately corresponds to an error of 0.3kg m−2. English (1995) estimated an error of 0.03kg m−2 to

0.05kg m−2 for LWP < 0.5kg m−2 using a retrieval based on measurements of the 89GHz channel and the 157GHz channel

of MARSS, which is of the same order as our retrieval. For LWP > 0.5kg m−2, English (1995) argued that the retrieval is

unreliable by estimating an error of 0.85kg m−2 for a LWP of 1kg m−2. However, these researchers performed their LWP5

retrieval on low liquid clouds, apparently without any ice. Compared to their results the error of our retrieval is almost one

third of the error of their retrieval and the meteorological conditions in our retrieval are much more complicated. Horvath and

Davies (2007) compared the retrieval of LWP of warm non-precipitating clouds from Tropical Rainfall Measurement Mission

(TRMM) Microwave Imager (TMI) and from Moderate Resolution Imaging Spectroradiometer (MODIS). They found a RMS

difference 0.025kg m−2 between the two LWP retrievals for a mean LWP of 0.1kg m−2. Care needs to be exercised when10

comparing the errors of English (1995) and Horvath and Davies (2007) with our error estimate, because our error definition

differs. Nonetheless, considering the fact that the meteorological conditions in our retrieval are more complex, because of

coexisting frozen and liquid hydrometeors and because we do not focus on a specific cloud form, the estimated MFE of LWP

is reasonable.

Our previous consideration of RWP indicated that the retrieval of RWP using MARSS and ISMAR is difficult. Except for15

the section around RWP = 0.1kg m−2, where the MFE of RWP is about 50%, the MFE of RWP is much larger than 100%.

Interestingly, the MFE of RWP decreases for RWP < 0.1kg m−2 and afterwards the MFE increases with increasing RWP. If

we compare the MFE of RWP with the offset of RWP, then we can identify the regions with the lowest MFE as the regions

where the offset of RWP is zero. The MFE of RWP increases for RWP > 0.1kg m−2 with increasing RWP, because the offset

of RWP increases with increasing RWP even though the standard deviation of RWP changes little with increasing RWP. This20

is in contrast to the findings of Wang et al. (2016), who estimated a relative value of < 40% for RWP > 0.1kgm−2. The reason

for this is that their training database includes more cases with higher RWP than our training database, so that their training

database is more suitable for estimating RWP. If our database included more cases with higher RWP it is likely that our retrieval

would provide a similar result to Wang et al. (2016).

Let us now consider the MFE of IWV, which is also shown in Fig. 5. As for the consideration of the offset of IWV, the25

MFE of IWV differs strongly from the results of the hydrometeor paths. The MFE of IWV is one order of magnitude smaller

compared to the MFE of the hydrometeor paths and almost constant over the whole range of values changing little between 5%

to 8%. Converted to an absolute value, this corresponds to an error of 0.2kg m−2 for low IWV and to an error of 2kg m−2 for

high IWV. This error range of IWV corresponds to the range of differences of several different IWV retrievals (microwaves,

infrared, radio sonde) and GPS retrieved IWV within the work of Buehler et al. (2012a). Note that, as we did not place any30

restriction on IWV, the retrieval for IWV is effective for cloudy conditions as well as for clear sky conditions.

4.3 Benefit of the high-frequency channels of ISMAR

It is interesting to explore the benefit of the new high-frequency channels of ISMAR. We answer this question by comparing

the retrieval, which we name the “ISMAR-MARSS” retrieval hereafter, with two additional retrievals: one retrieval using all
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channels up to 183GHz (Table 1, Ch. 1-10) and another retrieval using the 89GHz, the 157GHz, and the 183GHz channels

(Table 1, Ch. 1, 7-10), which are the same 5 channels at which AMSU-B measures (Saunders et al., 1995), see also Sect. 2.2.

We name the former and latter retrievals “LF” and “AMSU-B,” respectively. Except for the number of channels used and the

number of hidden layer neurons, the setup is exactly as for the ISMAR-MARSS retrieval. Compared to the ISMAR-MARSS

retrieval the number of hidden layer neurons of the LF retrieval and the AMSU-B retrieval were reduced to reduce the chance5

of overfitting, but tests showed that this is still adequate. The LF and AMSU-B retrievals use 7 and 5 hidden layer neurons,

respectively.

The MFE for each component of the state vector as a function of the corresponding component of the estimated state

vector is shown in Fig. 5. The MFE for RWP of the LF retrieval and of the AMSU-B retrieval are shown only for the sake of

completeness, because we already know from our above considerations that the retrieval is insufficient for RWP. Therefore, we10

concentrate on SIWP, LWP, and IWV. For SIWP, the MFE of the ISMAR-MARSS retrieval is reduced at SIWP ≈ 0.01kg m−2

below 100%, whereas the MFE of the LF retrieval and of the AMSU-B retrieval of SIWP decrease at SIWP = 0.06kg m−2

and SIWP = 0.1kg m−2 below 100%, respectively. At SIWP = 0.06kg m−2 the MFE for the ISMAR-MARSS retrieval is

already at 50%. For SIWP, the MFE of the LF retrieval and of the AMSU-B retrieval are consistently higher than the MFE

of the ISMAR-MARSS retrieval, but with increasing SIWP the difference between the MFE decreases. Because of the higher15

frequencies of the ISMAR channels (Ch. 11-18) the MFE of SIWP can be reduced by a factor of as much as two with respect to

the AMSU-B configuration. The 118GHz channels are less important for the retrieval of SIWP, because the difference between

the LF retrieval and the AMSU-B retrieval is smaller.

For LWP, the MFE of the ISMAR-MARSS retrieval decreases monotonically, whereas the MFE of the LF retrieval and of

the AMSU-B retrieval of LWP decreases only up to LWP = 0.1kg m−2 and then increases with increasing LWP, whereas the20

MFE of the LF retrieval only increases slightly. The reason for the strong increase of the MFE of the AMSU-B retrieval is a

strong underestimation of LWP > 0.1kg m−2. The AMSU-B retrieval estimates almost no LWP > 0.2kg m−2. The increase of

the MFE of the LF retrieval is less strong than the MFE of the AMSU-B retrieval. The reason for the increase of the MFE of

the LF retrieval is an increase of the offset with increasing LWP, which results in an overestimation of the LWP. Therefore, the

higher frequency ISMAR channels (Ch. 11-18) deliver valuable information for the retrieval of LWP.25

Thus, the lower frequency ISMAR channels (Ch. 2-6) and the higher frequency ISMAR channels (Ch. 11-18) are valuable

for the retrieval of IWV. Whereas the MFE of IWV for the AMSU-B retrieval is on average about 10% below an IWV of

12kg m−2 and higher than 10% above an IWV of 12kg m−2, the MFE of IWV for the LF retrieval is on average approximately

8% and the MFE of IWV for the ISMAR-MARSS retrieval is approximately 6% on average.

Thus, we can say that compared to an AMSU-B type sensor, the ISMAR channels deliver very valuable information for the30

retrieval, especially for SIWP, but also for a more accurate IWV retrieval and for a LWP retrieval under complex meteorological

conditions.
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4.4 Basic Performance summary

This section describes the retrieval tests under ideal conditions. This means, retrieval and test data are based on the same

assumptions. By doing so, the error of the radiative transfer simulation and the error of the atmospheric model were excluded

from this investigation. The investigated errors result from the artificial neural networks and from the physical limits of the

retrieval, which are on the one hand the limited interaction between the electromagnetic radiation and the atmosphere and on5

the other hand the noise of the radiometers ISMAR and MARSS. Therefore, the investigated errors are an estimate of the limits

of our retrieval approach. The retrieval error when applying the retrieval on measured brightness temperatures is likely to be

larger, as the a priori assumptions will be never completely fulfilled.

One basic requirement of a retrieval is, in general, that the retrieval should be bias free or in our terms the retrieval should

have no offset. Based on that, the retrieval fulfills this requirement for SIWP> 0.01kg m−2, LWP> 0.1kg m−2 and for IWV>10

3kg m−2. If the retrieval has also an offset of zero for IWV< 3kg m−2, we cannot say, because there were almost no states

with IWV< 3kg m−2. We can say that the requirement is not fulfilled for RWP.

In summary, a comparison with the simulated retrieval of Jiménez et al. (2007) showed that the performance of our SIWP

is of the same order. The performance of our SIWP is also in good agreement with the performance of the SIWP retrieval

of Wang et al. (2016). When the SIWP is not excessively small, above 10−2 kg m−2 ISMAR has the potential to perform15

more effectively than the SPARE-ICE (Holl et al., 2014) product. For smaller SIWP, SPARE-ICE performs more effectively,

because it uses infrared channels, which are more sensitive to very thin clouds than millimeter and sub-millimeter waves. A

comparison with the retrieval of English (1995) and the study Horvath and Davies (2007) showed that the results of the LWP

retrieval are reasonable. The LWP retrieval method is capable of retrieving LWP in situations with coexisting frozen and liquid

hydrometeors. Furthermore, our retrieval is capable of retrieving IWV under cloudy and clear sky conditions with an error,20

which is comparable with existing clear-sky IWV retrievals.

A comparison of our retrieval with retrievals using only the channels up to 183GHz enables us to conclude that the retrieval

of SIWP strongly benefits from the higher frequency ISMAR channels (Ch. 11-18, see Table 1). The MFE of SIWP is reduced

by a factor of two compared to retrievals using only channels up to 183GHz-channels. Both the IWV and LWP retrievals

benefit from the higher frequency ISMAR channels.25

5 Flight B897: Measurements on March 18, 2015

In this subsection, we describe the application of the retrieval to brightness temperatures measured during the FAAM flight

B897 on March 18, 2015 as part of COSMICS. On that day, the FAAM BAe-146 aircraft measured a precipitating frontal

system west of the coast of Iceland. The aircraft had several instruments on board to measure the size of ice particles, amongst

which in-situ probes, ISMAR, and MARSS. We focus on the measurements of these two radiometers. Details about FAAM30

BAe-146 and the other instruments on board can be found on the website of FAAM (http://www.faam.ac.uk) .

Figure 6 shows the flight track, overlaid on MODIS images from March 18, 2015. The flight consisted of three north-south-

transects across the frontal structure starting in the north. The transects were flown along a straight line starting at 66°N and
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25°W and ending at 62°N and 25°W. The airplane required 2.5h for the three transects. During these transects a total of 12

dropsondes (Vaisala Dropsonde RD94) were dropped. The altitude time series is also shown in Fig. 6. The airplane was above

the clouds most of the time. During the flight the clouds varied from thin, broken clouds in the north to full-depth precipitating

clouds in the south. The frontal structure moved slightly northwards during the flight.

Every time step at which the aircraft was not in stable straight and level flight was excluded from the brightness temperature5

time series to ensure that the retrieval is only applied to measurements recorded when the aircraft was at constant altitude with

its wings level. In stable straight and level flight, the aircraft actually has a pitch of 5° resulting in slightly different incidence

angle for ISMAR and MARSS instead of nadir, but this slight change in the incidence angle has no significant effect on the

retrieval. The sampling period of the brightness temperature time series is 3.6s. The time series is smoothed by a 3.5min

running mean to improve the compatibility of the measurements with those of the ICON model and to reduce the amount of10

noise. A 3.5min running mean corresponds to a path length of ≈ 23km. This is in the order of the smallest horizontal size

of features that can be resolved within of the ICON model, which is twice the grid resolution of ICON. As stated in Sect.

3.4, different neural networks need to be trained for different flight altitudes. Thus, we divided the flight into nine discrete

pressure levels, for each of which, neural networks, as described in Sect. 3.4, were trained using 6,000 randomly selected

profiles from the database. These neural networks were applied to the measured brightness temperature time series, which15

is shown in Fig. 7. The flight consisted of three crossings of a frontal system. The brightness temperature time series starts

at 12.3h in the north, then flying southward till 13.4h crossing the frontal system and flying back northward till 14.1h and

finally flying southward. The brightness temperature time series itself reflects the flight pattern, as it is symmetric around the

turning points (13.4h, 14.1h). From the symmetry within the brightness temperature time series, it is to be expected that the

meteorological conditions are also symmetric with respect to the turning points. This symmetric pattern is a good test for the20

consistency of the retrieval procedure, because the retrieved hydrometeor path and IWV time series should reflect this pattern.

In the 89GHz channel, we can clearly see the crossing of the frontal system. At the beginning the brightness temperatures are

about 190K and this low brightness temperature indicates that the sensed radiation was emitted from the ocean surface. At

89GHz the emissivity of the ocean surface is approximately 0.7, resulting in a brightness temperature of about 190K for a

surface temperature of about 273K. Over the ocean an increase in the amount of liquid water in the atmosphere leads to an25

increase in the brightness temperature at 89GHz. When the aircraft moved towards the frontal system, the 89GHz brightness

temperature increased up to a maximum of 250K around the turning point at 13.4h. This increase in the brightness temperature

enables us to conclude that there must be a strong increase in the amount of liquid water in the atmosphere, because the high

brightness temperature indicates that the large amount of absorption suggests that the sensed radiation is not emitted by the

ocean surface but from somewhere in the lower troposphere.30

5.1 Retrieval applied to flight B897

Time series of the retrieved SIWP, LWP, and IWV are shown as blue lines in Fig. 8. In the absence of in-situ data except for

the twelve water vapor profiles from dropsonde measurements, the retrieval is compared with the ICON model. The red lines

indicate the value of the corresponding component of the ICON model state vectors interpolated to the time and location of the
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a)

b)

Figure 6. (a) Images of MODIS (Terra and Aqua) band 1 (visible) during flight B897 on March 18, 2015 overlaid with the flight track (red

lines) and the position of the aircraft (green crosses) at the MODIS measurement time. (b) Altitude time series of flight B897 and below map

with the flight track (black) with a color marker indicating the time.
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Figure 7. (left) Observed brightness temperature time series of flight B897. (right) Simulated brightness temperature time series of flight

B897. The markers are shown only for every 100th value.
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aircraft measurement. Of course, the ICON model itself is far from being perfect due to internal assumptions, limited temporal

and spatial resolution. Therefore we cannot expect that the model is accurate in terms of retrieval quantities, time and location.

To get an estimate for the uncertainty of the ICON model, we produced histograms of the corresponding components of the

ICON state vectors within a 50km radius and within ±1h of the time of measurement for every time step and location of the

flight . The histograms are plotted as grey shades underneath the ICON time series. The model data itself is not considered as5

truth but it serves as a consistency check within this analysis.

Comparing the retrieval to the model state is not a true validation for several reasons, notably the dependence of the training

data on the same model, and the fact that the model hydrometeors may be quite far from the true hydrometeors at the time

and location of measurement. Nevertheless, testing whether the ICON simulations and ISMAR/MARSS measurements are

comparable is important to ensure consistency, given our assumptions in representing the model hydrometeors in the radiative10

transfer simulations. Big errors in these assumptions would mean that the simulated and observed brightness temperature for a

given profile would be very different. This implies that the result from the retrieval applied to the actual observation would be

a very different to the model.

In general, the time series of the retrieved state vectors in Fig. 8 are within the given uncertainties and in reasonable agree-

ment with the time series of the ICON model. The blue lines are mostly within the grayish area. The retrieved SIWP, LWP, and15

IWV time series are symmetric with respect to the turning points (13.4h, 14.1h), which is consistent with the above-mentioned

expectation. Although the agreement is good in general, there are substantial differences between the retrieval and the model,

for example the time period between 13h and 13.5h of the SIWP time series. Possible sources for the difference between the

retrieved time series and the modeled time series are:

1. The limit of the retrieval itself, namely the combined error from the neural network approach and the radiometer noise.20

2. The assumptions for the radiative transfer simulations, namely the assumption about particle size distributions and hy-

drometeor types and their shape.

3. Misplacement. The ICON model can generally simulate the frontal structure during the flight; however, the ICON model

cannot simulate the frontal structure exactly collocated in time and space of the measurements.

4. Unresolved features. the ICON model cannot simulate all the small details of the frontal structure that can be sensed by25

the aircraft measurements. Recall that, firstly, the airborne measurements have a much shorter sampling period (Ts,air =

3.6s). Although the brightness temperature time series have been smoothed by a 3.5min running mean, compared to the

ICON model data (Ts,model = 1800s = 30min) it still captures more temporal variability. Secondly, the sampled space

is much smaller than the grid size of the ICON model. The sampled space is of similar length in the along-track direction

but in the across-track direction it is of the order of a hundred meters. In contrast, the ICON model has a grid resolution30

of about 10km in the horizontal direction and 30min in time, from which we interpolated the ICON model time series

to the location and time of flight. Thus, we expect that the aircraft measurements sample more detailed features, which

are not resolved in the ICON model.
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Figure 8. Time series of the retrieved SIWP, LWP, and IWV. The time series of the retrieved SIWP, LWP, and IWV are shown as blue lines.

The time series of the ICON model SIWP, LWP, and IWV for the time and location of the FAAM during flight B897 are shown as red lines.

Time series of histograms of the ICON model SIWP, LWP, and IWV are plotted as grey shades underneath, see text for details. The green

shaded areas marks the range where the retrieval is offset free according to Sect. 4. The orange crosses indicate the IWV from the dropsonde

measurements. 27



Time series of SIWP, LWP and IWV retrieved from simulated brightness temperatures of the flight are shown in Fig. 9 in a

similar way as in Fig. 8 in order to illustrate the performance of the retrieval in idealized conditions. Under this ideal conditions,

as simulation and retrieval are based on the same assumptions, the agreement between the retrieved time series and the model

time series is very good, and differences are within the range expected from the analysis in Sect. 4. In Fig. 7 both the observed

and simulated brightness temperature time series are shown. The observed brightness temperatures of the 89GHz and the5

118.75GHz± 5GHz channels show for example a steady increase between 12.5h and 13.3h flight time, whereas the increase

of the simulated brightness is rather discontinuous with being flatter at the beginning and steeper after 13.2h. As described

at the beginning of Sect. 5, an increase of the 89GHz brightness temperature over ocean indicates an increase of liquid water

within the atmosphere. The same holds for the 118.75GHz±5GHz channel. The conclusion from this comparison of brightness

temperatures is that in the model the increase of liquid water is delayed compared to reality. This implies that the model predicts10

the front further south, with a more rapid increase in liquid water. These behaviors are also reflected in the retrieved LWP time

series from the observation (Fig. 8) and from the simulation (Fig. 9). LWP retrieved from the observation shows a more

steady increase, whereas LWP retrieved from simulation shows a more discontinuous increase, with a strong increase at 13.2h.

Therefore, it is unlikely that the differences arise from neural network and noise related uncertainties and that their effect is

less important, because the retrieval shows for observation and simulation a coherent behavior in terms brightness temperature15

and LWP. Furthermore, the brightness temperature time series were smoothed to reduce the noise. However, it is likely that

the differences mainly arise from the inaccuracies of the ICON model in the spatial, temporal, and structural representation of

the front, because the difference between LWP retrieved from the observation and LWP retrieved from simulation corresponds

to the difference between observed and simulated brightness temperatures. Nonetheless, unresolved features in the ICON

model cannot be excluded as possible source for the difference, too. The errors made by the radiative transfer simulations and20

the assumptions therein also influence the retrieval, but this reflects the general agreement between retrieval and model. A

quantitative error estimate is difficult as there is no in-situ data to compare with and the model error of ICON and the radiative

transfer simulations are unknown.

For IWV we can compare the retrieval with the in-situ data from the dropsondes. The dropsonde IWV is shown as orange

crosses in Fig. 8. The retrieved IWV measurement captures the trend of the dropsonde IWV measurement, but compared to25

the dropsonde IWV the retrieved IWV is shifted to slightly higher values. The offset (mean difference) between the twelve

dropsonde IWV values and the retrieved IWV value at the time of the start of dropsonde measurements is 0.5kg m−2. This

offset could be due to a dry bias of the radiosondes or due to a wet bias within the retrieval. Nonetheless, for an IWV value

of > 5kg m−2 this offset results in an error of less than 10%. The rms difference between the twelve dropsonde IWV values

and the corresponding retrieved IWV value is 0.8kg m−2. This corresponds to an MFE of 16% for an IWV value of 5kg m−230

and to a MFE of 4% for an IWV value of 18kg m−2. When removing the offset, the rms difference is 0.6kg m−2, which is

similar to the random error 0.66kg m−2 between the radiosonde measurements and the GPS measurement of the IWV values

in Buehler et al. (2012a). The IWV error is in the expected range of Sect. 4.2. Despite the accuracy of the statistic being such

that a detailed analysis is not possible, this comparison is encouraging, showing that the retrieval of IWV measurements, in

general, is effective under both cloudy and clear sky conditions.35
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Figure 9. Time series of the retrieved SIWP, LWP, and IWV from simulated flight B897. The time series of the retrieved SIWP, LWP, and

IWV are shown as blue lines. The time series of the ICON model SIWP, LWP, and IWV for the time and location of the FAAM during flight

B897 are shown as red lines. Time series of histograms of the ICON model SIWP, LWP, and IWV are plotted as grey shades underneath, see

text for details. The green shaded areas marks the range where the retrieval is offset free according to Sect. 4. The orange crosses indicate

the IWV from the dropsonde measurements. 29



We know from Sect. 4 that the retrieval is insufficient for RWP. Nonetheless, we apply the retrieval for RWP out of curiosity.

Fig. 10 (top) shows the time series of the retrieved RWP, which seems to represent the general structure of the modeled time

series. The retrieved RWP time series is symmetric with respect to the turning points (13.4h, 14.1h), which is consistent with

the stated expectations. The retrieved RWP time series shows a strong increase within the time period between 12.5h and

13.4h with a maximum RWP at approximately 13.4h, which is consistent with our conclusion from the brightness temperature5

time series. In Sect. 4, we concluded that the retrieval is insufficient for RWP, but at first glance the retrieval of RWP seems to

be effective according to Fig. 10. We verified this by applying the retrieval to a simulated brightness temperature time series,

because, if the retrieval of RWP was effective, then the retrieved RWP should be similar to the ICON RWP. The time series of

the RWP retrieved from the simulated brightness temperature is shown in Fig. 10 (bottom). For RWP the blue and red lines are

not in agreement. Therefore, our conclusion from Sect. 4 still holds. Even though the RWP retrieval is unreliable, it can still10

deliver some useful information, for example an approximate classification that indicates whether there is rain or not.

5.2 Summary of flight analysis

We applied the retrieval method to the brightness temperatures measured during Flight B897. As a consistency check we

compared the retrieved state vectors with the ICON model state vectors, which we interpolated to the time and location of the

aircraft measurements. Considering the given uncertainties, the agreement between the estimated SIWP, LWP, and IWV and the15

SIWP, LWP, and IWV from ICON is reasonable. There are strong local differences due to the misplacement of spatial features

in the ICON model and small-scale variability. Compared to SIWP, LWP, and IWV, the RWP retrieval is less satisfactory, which

is consistent with the results from Sect. 4. Furthermore, we compared the retrieved IWV with IWV from twelve dropsonde

measurements. The mean difference between them is 0.5kg m−2 and the rms difference is 0.8kg m−2. We showed thereby,

that we can estimate SIWP, LWP, and IWV with ISMAR in combination with MARSS.20

6 Summary

This study involved an investigation of strategies for hydrometeor path retrieval from airborne radiometer measurements. We

distinguish between cloud ice, which consists mainly of ice particles< 100µm, and snow, which consists mainly of ice particles

> 100µm. This distinction between small and large ice particles is similar to the distinction in atmospheric models. We defined

the CIWP as the column integrated bulk mass of cloud ice and we defined the SIWP as the column integrated bulk mass of25

snow. As the use of ISMAR and MARSS makes it possible to sense SIWP but not CIWP, we developed a retrieval method based

on a neural network by using nadir viewing brightness temperature measurements with the main purpose of estimating SIWP.

We also tried to estimate LWP, RWP, and IWV with the retrieval. The neural networks were trained by simulated brightness

temperatures and atmospheric profiles from the ICON model. The brightness temperatures were simulated by ARTS with the

atmospheric profiles from the ICON model as input. The scattering properties of the hydrometeors were assumed to behave30

as Mie spheres except for SIWP particles, which were assumed to behave like the aggregates from the Hong et al. (2009)

database.
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a)

b)

Figure 10. (a) Time series of the retrieved RWP. The time series of the retrieved RWP is shown as a blue line. The time series of the ICON

model RWP for the time and location of the FAAM during flight B897 is shown as red line. Time series of histograms of the ICON model

RWP are plotted as grey shades underneath, see text for details. (b) The same as in the top figure, but the RWP retrieved from the simulated

flight.
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We tested the retrieval with simulated measurements of which the true state is known. This test enabled us to estimate the

physical limits of this retrieval process, which are:

– SIWP> 0.01kg m−2, then the MFE of our retrieval is lower than 100%, which decreases to about 20% for high SIWP

and the retrieval has an offset of zero.

– LWP> 0.05kg m−2, then the MFE of our retrieval is lower than 100%, which decreases to about 30% for high LWP and5

the retrieval has an offset of zero.

– IWV> 3kg m−2, then the MFE is 5% to 8%. Converted to an absolute value, this corresponds to an error of 0.2kg/m2

for low IWV measurements and to an error of 2kg m−2 for high IWV measurements.

The retrieval is insufficient for RWP determination, because it is not bias free and the MFE is mostly higher than 100%.

Furthermore, we showed that the magnitude of the error in the SIWP determination of the retrieval using ISMAR and10

MARSS measurements is only half of that of the retrieval using only AMSU-B channel combinations. This shows that esti-

mating SIWP strongly benefits from sub-millimeter wave measurements, but also that estimating LWP and IWV benefits from

the higher frequency ISMAR channels.

We applied the retrieval method to brightness temperature measurements recorded during Flight B897. As a consistency

check we compared the estimated SIWP, LWP, and IWV values with the SIWP, LWP, and IWV values that were obtained by15

using the ICON model, which were interpolated to the time and location of flight B897. Considering the stated uncertainties,

the agreement between the estimated SIWP, LWP, and IWV values and the SIWP, LWP, and IWV values obtained with ICON

is reasonable. A comparison between the retrieved IWV values with those from the twelve dropsonde measurements shows

that the mean difference between them is 0.5kg m−2 and the rms difference is 0.8kg m−2. We showed thereby, that we can

use brightness temperature measurements obtained using ISMAR in combination with MARSS to estimate SIWP, LWP, and20

IWV. This is especially interesting in view of the upcoming METOP-SG mission, where ICI together with MWI will provide

brightness temperature measurements with a similar combination of channels. Though, our retrieval is limited in season and

latitude range, there is no fundamental limit in using neural network for global retrievals. The main requirement for global

application is that the training database covers the wide range of global possible atmospheric conditions.

After establishing that the retrieval of SIWP, LWP, and IWV is effective, the next steps would be to firstly proceed beyond25

estimating integrated quantities and retrieve profiles, because of the considerable potential of the combination of the channels

of ISMAR and MARSS, which we did not exploit in our actual retrieval. Secondly, the scattering properties of snow have to be

investigated especially in the sub-millimeter range, because data for the scattering properties of this range of the electromag-

netic spectrum are rare and partially inconsistent with measurements. The mass of the taken Hong aggregates is proportional

to the third power of the maximum dimension of these aggregates (see also 3.2), whereas the measurements show that the30

mass is approximately proportional to the second power of the maximum dimension (Cotton et al., 2013). This is especially

important in view of retrievals for the upcoming ICI sensor, because the retrieval results will strongly depend on the goodness

of the scattering properties. Therefore, a more thorough validation is clearly needed, for example against in-situ measurements.

32



Setting up such validation experiments will be logistically challenging, ideally using at least two different aircraft, one with

the radiometer and one with the in-situ probes. Co-located aircraft cloud radar would be also very helpful.
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