
Author's response to the general comments from referee I:

Thank you for revealing your valuable criticism regarding the manuscript. Below, please find our 
responses to your specific comments, along with the implemented changes to our manuscript. 
All page and line numbers as well as figure numbering refer to the revised manuscript. Note 
specifically that the figure numbering has changed during the review process.

MAIN COMMENTS:

i) Main comment from referee: However, we are interested in whether the estimated uncertainty is
common in (satellite) products or inherent in HOAPS-3.3. If the present results are inherent in 
HOAPS-3.3, the results are useful for only people to use HOAPS-3.3. However, if the results are 
common in most satellite products, the value of this article is considerably larger. If possible, we 
would like to know uncertainties about other products in order to judge whether the estimated 
uncertainty for HOAPS-3.3 in this study is common or not. I guess it is not so easy for the authors 
to estimate uncertainties for other products. If so, I would like the authors to investigate the relation
between the uncertainties of HOAPS-3.3 obtained by this study and the differences between HOAPS
and other products, pointed out by previous paper (Iwasaki et al. (2014)).
Author's reponse: We chose to publish an AMT paper, as our manuscript describes a technique for 
assigning uncertainties to latent heat flux (LHF)-related satellite data. We do not aim at performing 
an uncertainty assessment of all available data records. Instead, as mentioned in the title, 
uncertainties are given for HOAPS, which has more than 200 users. We therefore agree that some of
our findings cannot be generalized. As is discussed, our displayed uncertainties are in parts related 
to retrieval uncertainties and sensor noises, which are unique to every data set and satellite 
instrument, respectively, and are therefore not applicable to other satellite climatologies. We are not 
aware of any air-sea flux related remotely sensed data set to date that is equipped with instantaneous
uncertainty estimates. HOAPS-3.3 therefore leads the way towards a more transparent satellite data 
analysis, as the user may individually decide how to treat the data, given the available retrieval 
uncertainties. 
More important, we want to highlight the fact that our approach can easily be applied to other 
satellite data sets, as long as a sufficiently large amount of collocations can be achieved. Choosing a
similar in situ data basis and identical collocation criteria compared to our manuscript, random in 
situ (here: Eins) and collocation uncertainties (here: Ec) are thought to be comparable to our results, 
independent of the investigated satellite climatology. As you state, this considerably increases the 
value of this article.
The uncertainty estimates cannot be set into relation with other satellite climatologies, as no further 
uncertainty values exist for comparison. However, we agree that the research community would 
benefit from investigations answering the questions „Do other LHF-related data sets lie within the 
uncertainty range specified by HOAPS-3.3? If not, how can we explain this discrepancy?“. As 
noted in Sect. 4.7 of the present manuscript, we are currently preparing a follow-up publication 
regarding this aspect. It will present our findings in a larger perspective and thus increase the 
importance of our uncertainty analysis. 
To increase the value of the present manuscript, we have established links to E-P intercomparisons 
illustrated by Iwasaki et al. (2014) whenever it fits the context (see „changes“ below). One must 
keep in mind, however, that HOAPS-3 (as is used in Iwasaki et al. (2014)) differs from HOAPS-3.3 
used within the present work. Apart from a temporal extension by seven years, this includes 
changes to the calibration model of SSM/I brigthness temperatures (Fennig et al. (2013)), an 
updated version of the AVHRR Pathfinder Data Set (SST), and the inclusion of SSMIS data (Fennig
et al. (2015)).
Iwasaki et al. (2014) is valuable when it comes to intercomparing various freshwater flux products 
over the global ice-free oceans. It identifies individual parameter contributions to the overall 
observed differences and allows for assessing which parameters contribute most to the positive 



trend in E. Yet, such an intercomparison does not allow for drawing conclusions regarding the 
uncertainty of the individual data sets. Observed differences between two data sets could either 
diminish or amplify when applied to the respective climate data set. In this regard, the present 
manuscript is very progressive, as it sets a basis for assigning uncertainty measures to climate data 
records. For example, our uncertainty estimates allow for concluding whether the illustrated 
differences were to be expected or not. Large differences, coupled to small HOAPS-3.3 uncertainty 
estimates, would point at retrieval issues related to the data set compared to.
Changes in the manuscript: Iwasaki et al. (2014) is cited for the first time in Sect. 1 (P.3, L.27). In
the following places of Sect. 4, it is picked up again, where is relates HOAPS to other LHF 
climatologies: P.17, L.5/25; P.20, L.2; P.21, L.24/26. 
Sect. 1 (P.4,  L.29) now includes a sentence, which emphasize the fact that the methodology may 
easily be transferred to other retrievals, which increases the value of our manuscript. This is 
revisited in Sect. 5 (P.20, L.27) and also implemented in the abstract (P.1, L.17).
 
ii) Main comment from referee: This article is based on Kinzel et al. (2016). However, the paper 
is not referred in the present introduction. It is curious. The purpose of this article is not so clear 
for me. I think the purpose of this study is comprehensive estimation of uncertainty characterization
of HOAPS-3.3 latent heat flux (LHF) related parameters in addition to specific humidity examined 
in Kinzel et al. (2016).
Author's reponse: We agree that the introduction benefits from citing Kinzel et al. (2016), as it 
introduces the concept of random uncertainty decomposition, which is perfomed within the present 
study. The approach presented in Kinzel et al. (2016) should be understood as one of several 
prerequisites for our work, as it a) (only) focuses on random uncertainties and b) does not cover 
wind speed (U), LHF, and evaporation (E). We will provide a citation in an appropriate place und 
put Kinzel et al. (2016) into a larger context.  
Changes in the manuscript: Kinzel et al. (2016) is now referenced in Sect. 1 (P.4, L.10/21), where 
it is also put into a larger perspective. 

iii) Main comment from referee: For example, the authors attribute the global minimum during 
boreal summer 1991 to the Mount Pinatubo eruption. However, we cannot find the minimum in 
1991 in other products except HOAPS (Iwasaki et al. (2014, their Fig.6a). Therefore, the minimum 
may be due to the HOAPS retrieval error related to the Mount Pinatubo eruption.
Author's reponse: Regarding the 1991 minimum related to the Mount Pinatubo eruption: we agree 
on this. Please refer to the specific comment #20 further below for more details on this. The 
explanation for the SST feature seen in HOAPS LHF during 1991 was already implemented in the 
submitted version (see P.18 ,L.25f of revised manuscript).  

iv ) Main comment from referee: Also, since all HOAPS parameters are derived from SSM/I and 
SSMIS microwave radiometers, the sampling errors are expected to be large compared with other 
products using many kinds of microwave radiometers.
Author's reponse: We agree that differences in sampling between different instruments exist, 
which may cause sampling biases. However, it should be kept in mind that the manuscript 
demonstrates an application of the introduced methodologies and does not focus on an assessment 
or intercomparison of sampling uncertainties. The SSM/I and SSMIS sampling uncertainties are 
accounted for, which play a marginal role on climatological time scales. This is mirrored in the 
small magnitudes of monthly mean Esmp in Table 2 of the present manuscript.       

v) Main comment from referee: Although the second paragraph in the section 5 introduces 
HOAPS 4.0, I feel the paragraph is not necessary in this section.
Author's reponse: We believe it is important to note that the newest version of HOAPS, that is 
HOAPS 4.0 (released in October 2017), includes an update of the uncertainty estimates. Apart from 
this, we outline new features and improvements with respect to HOAPS-3.3 in two sentences. We 



agree that it is somewhat out of place in the submitted manuscript. This short paragraph is therefore 
placed towards the end of Sect. 5. 
Changes in the manuscript: The short paragraph related to HOAPS 4.0 has been moved to the end
of Sect. 5  (P.22, L.6ff).

vi) Main comment from referee: Moreover, the authors discuss about precipitation in this section,
but I think this issue may exceed the scope of this study because they do not carry out uncertainty 
estimates of HOAPS precipitation here.
Author's reponse: We generally agree with this comment and will therefore remove parts of the 
provided literature review on issues with satellite precipitation (P) estimates. However, we want to 
continue emphasizing the importance of quantifying P uncertainties, because it ultimately allows for
assessing uncertainties in freshwater budgets (E-P). In this context, the mentioned study by 
Burdanowitz et al. (2016) is valuable, as it lays the basis for this purpose. 
Changes in the manuscript: The paragraph related to uncertainties in P has been shortened (P.21, 
L.30ff). 

SPECIFIC COMMENTS:

1 )Comment from referee: P.1, L.1: “of LHF” → “of in situ LHF”
Author's reponse: We agree that 'in situ' should be added in this context
Changes in the manuscript: 'in situ' has been added to the revised manuscript (P.1, L.1).

2) Comment from referee: P.3, L.21-27: In this paragraph, we need clear description about 
characteristics related to uncertainties, of HOAPS LHF product compared with other products 
obtained by numerous intercomparison studies
Author's reponse: The mentioned paragraph serves to merely introduce the HOAPS climatology. 
Apart from listing included parameters, the brief literature review on HOAPS intends to 
demonstrate its usefulness in climate research and highlight its performance in context of 
intercomparison studies. For further information, the reader is referred to the quoted references.
We believe that a thorough description related to uncertainty characteristics exceeds the scope of 
this introductory paragraph. However, we agree that highlighting some distinct differences among 
the data sets (without a focus on uncertainty estimates) would improve our introduction.
Changes in the manuscript: A paragraph has been added to the revised manuscript (P.3, L.25ff), 
which points at substantial differences between LHF data sets (including HOAPS) on a local scale. 
A second paragraph deals with performed uncertainty characterizations related to LHF (P.4, L.4ff). 
It shows what has been done to date and points at the shortcoming that, apart from NOCS v2.0, no 
uncertainty estimates are available to the users.   

3) Comment from referee: P.5,L.16-21: Large El Nino and La Nina occurred in 1997-1998. 
Therefore, 1997-1998 is a special period. Why did the authors use the data in this period?
Author's reponse: We agree that 1997-1998 were “special“ years, in a climatological sense. We 
argue that for training purposes, it is not essential whether the contributing data was obtained during
climatologically anomalous years or not. What counts is that a) the network is trained with match 
ups, which are physically connected and b) the whole possible range of atmospheric conditions (i.e.,
in this case wind speeds) is covered by a representative amount of data. It that sense, match-ups 
from 1997-1998 are beneficial, as they guarantee a full coverage of all conditions. Thus, potential 
extremes are covered in our training data base. 

4) Comment from referee: P.5,L.33-34: The assumption of a constant relative humidity of 80 % 
and air-sea temperature difference of 1 K is considerably artificial. To what extent does have the 
assumption impact on estimation of uncertainty?



Author's reponse: Thank you for bringing this up. We did not investigate the uncertainty 
introduced by these two widely used assumptions, as it may be neglected for two reasons. First, air 
temperature only has a secondary effect on LHF (in contrast to SHF) through the stability of the 
atmospheric column. At the same time, the assumption of 1 K temperature difference with respect 
to SST is a good approximation for vast regions over the global oceans. However, we agree that 
over upwelling regimes, which are very confined compared to the global oceanic area, this 
approximation is violated. Compare conclusion section of Wells and King-Hele (1990). Second, our
uncertainty estimation procedure described in Sect. 3 is exclusively based on high-quality match-
ups of HOAPS and in situ measurements. The data density of both ship and buoy records is 
comparably low in the upwelling regimes, which further reduces the impact of our two assumptions.
Due to the comparatively small amount of reference data, we presumably underestimate resulting 
uncertainties in these regions. Using for example ancillary reanalysis-based data would violate our 
ambition to create a completely remotely-sensed data record, which is a key feature of HOAPS. 

5) Comment from referee: P.6,L.25: (2003) ---(2013)
Author's reponse: We agree that Bentamy et al. (2013) is worth citing here.
Changes in the manuscript: A citation of Bentamy et al. (2013) has been added to revised 
manuscript (P.7, L.3).

6) Comment from referee: P.8,L.15: In what ways are these features similar?
Author's reponse: The term 'similarity' refers to the similarity of the bias distributions as a function
of the x-axis parameters. That is, lowest SST (i.e., high latitudinal SST) are underestimated in 
HOAPS (likewise, qa is underestimated for (high latitudinal) qa below 5 g kg-1). The HOAPS 
underestimation also accounts for subtropical SST in the range of 25°-29°C (likewise, qa is 
underesimated for qa between 15-19 g kg-1). By contrast, HOAPS SST are slightly overestimated for
SST ranging between approximately 15°-24°C and the inner tropics (30°C). Likewise, qa is 
overestimated for qa between 7-12 g kg-1  and for inner tropical 20 g kg-1).  
Changes in the manuscript: The wording has been modified in the revised manuscript (P.9, 
L.14f).

7) Comment from referee: P.8,L.22: “ off the Arabian Peninsula”. We cannot recognize the data 
off the Arabian Peninsula in Fig. 1. We need the distribution of average qa for this.
Author's reponse: Indeed, thank you for pointing this out. This paragraph is meant to exemplarily 
present the benefit of multi dimensionality, whereas the illustration of qa patterns referred to is not 
the primary focus. We therefore omitted an additional map showing the distribution of qa and U 
over the Arabian Sea. However, we have included a global map showing the average difference 
between HOAPS and in situ qa 
Changes in the manuscript: 'not shown' has been added twice to the revised manscript (P.9, 
L.24f).

8) Comment from referee: P.9 L.11: Is the bin width equal or not? How did you determine the bin 
width?
Author's reponse: The bin width is not equidistant. It is rather determined by fixed percentiles of 
data, where 5% of all contributing match-ups are assigned to a single bin. In consequence, 20 bins 
result, which are narrow for large data densities and become wide close to the tails of the 
distribution. This is also picked up it the caption of Fig. 2.
Changes in the manuscript: A note on the bin configuration has been added to the revised 
manscript (P.9, L.3ff) and is again picked up in context of Sect. 3.2 (P.10, L.16) and the caption of 
Fig. 2.

9) Comment from referee: P.9, L.17: Why did you choose the different data period between (dqa, 
dU) and (dqs)?



Author's reponse: For dqa and dU, the vast amount of in situ data justified the restriction to 
collocations between 2000 and 2008. For dqs, the time period from 2002-2005 was left out, as 
corresponding local equatorial overpasses of the operating NOAA-17 were disadvantageous for our 
double collocation analysis. Recall that only night-time SST were collocated to in situ 
measurements to avoid the warm layer effect (see Sect. 2.2 of this manuscript). Fulfilling the 
requirement of local night time, the overpass times of NOAA-17 were inappropriate for gathering a 
large number of collocations. Instead, collocation during 2006-2008 were used. Additionally, the 
period 1998-2001 was taken as reference to allow for a sufficiently large collocation data basis. In 
consequence, dqs match ups are based on collocations from 7 years only. This does not pose a 
problem, as in situ SST measurements were available more frequently compared to U and qa.

10) Comment from referee: P. 10, L.4: The average of daily coefficients is applied for estimation 
of instantaneous LHF uncertainties here. Why are not instantaneous values but daily values 
applied? Also, is the difference between daily and instantaneous coefficients small or large?
Author's reponse: Thank you for bringing this up. We had similar thoughts regarding the 
representativity of daily versus instantaneous correlations. Deriving instantaneous correlation 
coefficients, however, has a key disadvantage. Most of the global ocean is scanned only 1-2 times 
per day by a single SSM/I or SSMIS instrument, some regions over the subtropics not at all. This 
implies that the amount of instantaneously derived geophysical parameters is locally very limited. 
Resulting correlation coefficients would therefore not be representative. We therefore decided to 
apply global averaged coefficients, which are remarkably stable throughout the year on a day-to-day
basis (not shown). Due to this decision we are not capable of comparing our coefficients to 
instantaneous correlation coefficients. We are aware that differences may occur. 
However, we furthermore investigated, how much the sum of all correlation terms in Eq. (2) 
contributes to instantaneous σLHF,sys. On average, omitting these correlation terms modifies the 
resulting instantaneous σLHF,sys by merely 0.5 ± 5 W m-2. Thus, even if global mean correlation 
coefficients were not always the most accurate choice, they do not represent a key contribution to 
resulting LHF uncertainty estimates. 
Changes in the manuscript: The two reasons for why we apply the average of daily mean global 
correlation coefficients have been included into the revised manuscript (P.11, L.31ff).

11) Comment from referee: P.10,L.8: Could you explain about the definition of “gridded 
uncertainty products”?
Author's reponse: Sorry for not being precise here. By „gridded products“, we general mean 
satellite data that has been spatially and temporally averaged and that is available for fixed grid cells
(dx,dy) and time periods (dt), like 'HOAPS-C' and 'HOAPS-G'. This stands in contrast to 
instantaneous, level-2 data (points in time and space, like 'HOAPS-S'), which form the basis of our 
uncertainty analysis. To avoid confusion, we will not mention this in the revised manuscript and 
rather rephrase this sentence.  
Changes in the manuscript: The wording has been modified in the revised manuscript (P.12, L.8f)

12) Comment from referee: P.10,L.17: What is a true value for Ec?
Author's reponse: We do not understand the question. Please see Table 1 of our manuscript for 
magnitudes of HOAPS LHF-related Ec resulting from the random uncertainty decomposition.
 
13) Comment from referee: P.11,L.19-22: Here, all daily sampling uncertainties are derived as a 
function of the number. However, sampling error for a daily-mean value depends on not only the 
number but also observation times.
Author's reponse: This is absolutely correct. Assuming a specific number of daily overpasses was 
a prerequisite for showing the sampling uncertainties as a function of operating satellites (Table 2 of
our manuscript). P.11, L.18 of the submitted manuscript indicates that the daily sampling 
uncertainties are estimated using “simultated satellite records“, which are derived using the two 



buoy records closest in time to local satellite overpasses. The assumption of having two overpasses 
per day is reasonable, as this applies to vast regions of the global oceans. We assume that sampling 
uncertainties are inverse proportional to the amount of daily overpasses, but do not investigate this 
dependency further. As the number of daily overpasses increases with an increasing number of 
satellites, we rather resolve the resulting sampling uncertainties as a function of orbiting platforms. 
This is in line with conclusions by Tomita and Kubota (2011), who found that multi-satellite 
simulations for e.g. qa considerably reduced the sampling uncertainty, compared to single satellite 
simulations. 
Changes in the manuscript: The wording has been modified in the revised manuscript (P.12, 
L.18f) to point out that our estimates are based on the assumption of having two overpasses per day.

14) Comment from referee: P.12,L.1-3: We find several geographical words such as “ Arctic”, “ 
polar” and “ inner tropics”. However, it is difficult for us to obtain the relation between the ranges 
of the random satellite retrieval uncertainty and the geographical location from Fig. 1 and Table 1. 
Also are the values shown in this paragraph consistent with those in Table 1? For example, “ 0.3 
and 1.8g kg-1” is “ 0.7 and 1.8g kg-1” in line 1?
Author's reponse: Thank you for pointing this out. We agree that this is confusing and will clarify 
this in the revised manuscript, as Table 1 does not show distributions of the random retrieval 
uncertainty as a function latitude and longitude. Regarding the consistency of values shown in Fig. 
2 and Table 1: Note that  directly comparing results of Table 1 to Fig. 2 (and expecting equality) is 
not correct. Fig. 2 shows bin-wise biases and their spread in one-dimensional space. The values in 
Table 1, however, result from the multi-dimensional bias analysis, multiple triple collocation (MTC)
analysis, and subsequent random uncertainty decomposition. This implies that random retrieval 
uncertainties of qa presented in Table 1 are compatible with the global distributions shown in Fig. 
3a. Regarding 0.3 g kg-1 vs. 0.7 g kg-1: we apologize for this mistake, '0.3' is a typo and has been 
corrected to 0.7 g/g kg-1  in the revised manuscript.
Changes in the manuscript: The geographical terms have been removed and have been replaced 
with qa magnitudes (P.13, L.10ff). The typo has been corrected (P.13,L.10). The captions of Table 1 
and Fig. 3 have been modified to point at the similarity of both representations (i.e., showing 
Eretr,ran). 

15) Comment from referee: P.12, L.1-28: Accuracy of in situ data is considerably different 
depending on used sensors. For example, the accuracy of wind speeds is 1.0m/s or 10% for usual 
NDBC buoys, while that is 0.3 m/s for TOA buoys. Are these differences between them negligible for
the present analysis?
Author's reponse: Thank you for providing this differentiation regarding accuracies of buoy 
measurements. Sect. 4.1 deals with the random uncertainty component (that is, precision) and does 
not target accuracies. However, we generally agree that different instruments are associated with a 
variety of (random) measurement uncertainties. Sect. 4.1 (and thus Table 1) results from a random 
uncertainty decomposition procedure (compare Kinzel et al. (2016)), which crucially depends on 
the amount of contributing triple collocations and thus in situ measurements. Our collocation data 
basis is very large, including a variety of exclusively high-quality in situ measurements. The results 
of the decomposition itself should be interpreted in a way, such that average random insitu 
measurement errors can be separated from average random retrieval and collocation uncertainties, 
depending on the magnitude of qa, U, and qs. See for example the orange, red, and black squares as 
a funtion of qa in Fig. 2 of Kinzel et al. (2016) for an illustration of this decomposition. Each of 
these orange squares can be understood as a bin-averaged random in situ uncertainty contribution. 
Thousands of in situ data records contribute to each of these squares/bins. One needs to therefore 
consider our random in situ uncertainties as an average over all in situ data sources for a specific 
parameter regime, i.e., bin. Therefore, individual in situ accuracies do not receive much weight.
Changes in the manuscript: Sect. 3.3 has been extended by two sentences (P.11, L.15ff), which 
emphasize that the random uncertainty magnitudes illustrated in Table 1 are derived bin-wise and 



result from thousands of triple collocated match ups (and thus in situ records). 

16) Comment from referee: P.14, L.13: Could you tell me the definition of the climatological total 
uncertainties (Eclim)? Are the climatological total uncertainties (Eclim) different from the systematic 
uncertainty?
Author's reponse: Sorry for not being precise enough here. For each grid box of Fig. 3, we define 
the climatological uncertainty (Eclim) as the mean root mean squared sum of Esys, Eretr,ran, and Esmp 
(1988-2012). As Eretr,ran scales with 1/N, with N being the amount of observations per grid box, it 
becomes virtually zero for the temporal averages shown in Fig. 4 of our manuscript. Likewise, 
monthly mean Esmp are small (see Table 2 of our manuscript). Thus, on climatological timescales, 
Eclim and Esys do not differ. We will emphasize the definition of Eclim more clearly in the revised 
manuscript.  
Changes in the manuscript: A sentence has been added to Sect. 4.3 (P.15,L.12ff), which explains 
our definition of Eclim. It has also been added to the caption of Fig. 4. 

17) Comment from referee: P.16,L.28: What is the meaning of “isolated time periods”?
Author's reponse: We apologize for not being precise here. This was to state that during individual 
months ('isolated time periods'), the global mean uncertainty (one value) deviates from the 
respective average of 1988-2012.  
Changes in the manuscript: The wording has been modified in the revised manuscript (P.18, 
L.9f).

18) Comment from referee I: P.17, L.3-19: Eclim is considered to be only one value from the 
meaning of a climatological value. Is it right? If so, I cannot understand the meaning of “ 
respective Eclim over the Pacific upwelling regimes reaches 25 W m-2 specifically during boreal spring
1998” found in line 6-7.
Author's reponse: Eclim is defined separately for each grid box (see comment #16 above on this), 
which is why we are explicitly able to e.g. point at climatological uncertainties over the Pacific 
upwelling regime.
Changes in the manuscript: See comment #16 above.

19) Comment from referee: P.17, L.28: “climatological regional wind speeds range between 4.5.-
11 m s-1 (fig.4b). As for qa” --> “climatological regional uncertainties in wind speeds range 
between 4.5.-11 m s-1(fig.4b). As for U”
Author's reponse: We are not sure whether we understand this comment correctly. As formulated, 
the range of 4.5-11 m s-1 consideres the regional wind speed itself, not its related uncertainties. Fig. 
4b shows regional and global mean HOAPS U, along with systematic and random retrieval 
uncertainties. The individual medians range between 4.5-11 m s-1. Seasonality is most pronounced  
over the Indian monsoon region, WBC, and the North Atlantic (see JJA and DJM in Fig. 4b for 
this). Similar conclusions can be drawn for qa (Fig. 4a), regarding maxima in seasonality for those 
three regions. 

20) Comment from referee: P.18, L.10: The global minimum during boreal summer 1991 is linked
to the Mount Pinatubo eruptions. However, the remarkable minimum can be found in only HOAPS 
product and cannot be found in other products as shown in Fig. 6(a) of Iwasaki et al. (2014). 
Therefore, the minimum would be related to retrieval model uncertainty. The present analysis can 
investigate this issue and present its effectiveness by the investigation.
Author's reponse: Thank you very much for pointing at the valuable study by Iwasaki et al. 
(2014), which we missed to cite so far. Indeed, the global minimum is linked to the Mount Pinatubo
eruption and is not observed in the remaining satellite and reanalysis products. Similar to our work, 
the authors point at the cause of this low bias, which is attributed to AVHRR aerosol issues. In 
consequence, this created low-biased SST (i.e., low-biased qs), which in turm resulted in 



unrealistically low near-surface humidity gradients and thus low-biased E. This has already been 
picked up in e.g. Andersson et al. (2010) and is therefore a known issue related to the retrieval 
model. The recently released HOAPS 4.0 climatology (Andersson et al., 2017) does not include this
feature anymore, as the SST reference has changed to the NOAA 0.25° daily Optimum Interpolation
Sea Surface Temperature (OISST, Reynolds et al. (2007)), which corrects for this effect (see 
Reynolds, 1993). We are not aware of further systematic retrieval issues and the overall good 
performance of HOAPS in relation to other satellite and reanalysis data sets is mirrored in e.g. 
Iwasaki et al. (2014) (e.g. their Fig. 3). Regarding the classification of the low-biased LHF during 
1991 (see Fig. 5 of our manuscript) with respect to the given uncertainty ranges: the low-biased 
LHF lies within the average HOAPS LHF retrieval uncertainty range (gray shading) between 1988-
1998. 
Changes in the manuscript: The explanation for the SST feature seen in HOAPS LHF during 
1991 was already implemented in the submitted manuscript (P.18, L.25ff of revised manuscript). 
Furthermore, Iwasaki et al. (2014) has been included to the reference list and is cited where 
appropriate throughout the revised manuscript (see general comment #1 at the top of this document 
for more details).

21) Comment from referee: P.18,L.15: As mentioned before, could you please explain about 
definition of climatological uncertainty? I cannot catch the meaning of “ the 12-month running 
mean climatological uncertainty”. Is a climatological uncertainty defined each month?
Author's reponse: See comment #16 and #18 regarding the definition of Eclim. From these grid 
point wise Eclim, a global mean climatological uncertainty is derived for each month. This implies 
that twelve values result for each year. For smoothing purposes, an annual (that is , 12-month) 
running mean is performed over these 25x12 = 300 global monthly mean values.
Changes in the manuscript: The wording which describes Fig. 6 has been modified in the revised 
manuscript (P.18, L.29ff). Keeping the definition of Eclim in mind (see comments #16 and #18), it 
becomes clear that a global mean value of Eclim can be calculated for each month, to which running 
means can be performed. Furthermore, the caption of Fig. 6 has been slightly adjusted. 

22) Comment from referee: P.18, L.21-P.19,L. 5: In this paragraph, the results by many previous 
studies are introduced. However, the relation between the results and what Fig.5 shows is not so 
clear. I wonder this paragraph is necessary.
Author's reponse: We agree that the focus of our manuscript lies on the uncertainty 
characterization, rather than on the positive trend seen in LHF. 
Changes in the manuscript: The respective paragraph has been shortened (P.20, L.1-6).

23) Comment from referee: Fig 2. (c) and Fig. 3. (c) It is difficult to know the distribution pattern 
in these figures. How about the change of a color bar?
Author's reponse: These colorbars were chosen in order to be identical to the colorbars of Fig. 3a 
and 4a, respectively. Doing this, one can directly see the comparatively small uncertainty 
contributions of qs in relation to qa. Specifically regarding Fig. 3c, the distribution may not always 
be distinct. However, the most important feature in Fig. 3c, that is the maximum over the Indo-
Pacific warm pool region, is well resolved. Pattern descriptions are additionally given for Fig. 3c 
(P.14, L.30-34) and Fig. 4c (P.16, L.20-25)
Changes in the manuscript: A comment regarding the same color bar range of qa and qs has been 
included in the figure captions of Fig. 3 and 4.
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Author's response to the general comments from referee II:

Thank you for revealing your valuable criticism regarding the manuscript. Below, please find our 
responses to your specific comments, along with the implemented changes to our manuscript. 
All page and line numbers as well as figure numbering refer to the revised manuscript. Note 
specifically that the figure numbering has changed during the review process.

SPECIFIC COMMENTS:

1 ) Comment from referee: Page 5, Line 10, “... the pixel-level HOAPS-3.3 data in sensor 
resolution is used...”. What are the spatial and temporal resolutions of the pixel-level HOAPS-3.3 
data? Which nine sensors are used in the pixel-level HOAPS-3.3 climatology?
Author's reponse: The spatial resolution of both data sources is channel-dependent. For SSM/I 
data (DMSP F08-F15), it varies from 69 km by 43 km (19 GHz channel) to 37 km by 28 km (37 
GHz channel). Sampling frequencies take on a value of 25 km, corresponding to scan lines every 
few seconds. Regarding SSMIS (DMSP F16-F18): The spatial resolution varies from 74 km by 47 
km (19 GHz channel) to 41 km by 31 km (37 GHz channel). As for SSM/I, sampling frequencies 
are given by 25 km. Overall, 9 different DMSP sensors contribute to HOAPS-3.3: F8, F10-F11, and 
F13-F18. 
Changes in the manuscript: The DMSP satellite platforms have been included into the revised 
manuscript (P.5, L.10f). Furthermore, the spatial resolution has been implemented (P.5, L.11ff).

2) Comment from referee: Page 5, Line 15: what is the temporal resolution of qa retrievals? And 
at what height?
Author's reponse: Unfortunately, no information is provided by Bentamy et al. (2003) as to the 
sensor heights of the (in situ) qa retrievals. What is known is that their updated regression 
coefficients are derived using 1000 collocations between globally distributed ship data and 
validated DMSP satellite data (F10-F14) during 1996-1997. As the retrieval is based on these match
ups, we believe that the expression of “temporal resolution“ is somewhat misleading. The globally 
distributed match ups do not have a temporal resolution and are rather point measurements in time 
and space.

3) Comment from referee: Page 5, Line 32: which surface pressure data are used in computing 
LHF?
Author's reponse: The COARE-3.0 algorithm assumes a standard sea level pressure (SLP) of 
1013.25 hPa when iteratively calculating LHF, which is also used for deriving HOAPS LHF. 
Brodeau et al. (2017) investigated the effects of this SLP approximation in bulk parameterizations 
of tubulent air-sea fluxes, amongst others. The authors conclude that errors of such an 
approximation remain well below discrepancies related to the computation of the transfer 
coefficients themselves. Their sensitivity experiments show that qs- and ρ-induced errors range 
between merely ±5% (given an SLP range from 950 hPa to 1040 hPa) with an opposite and 
therefore potentially compensating effect on LHF. Apart from this, both SSM/I and SSMIS are not 
capable of deriving SLP. Making use of auxiliary (e.g. reanalysis) data to implement SLP would 
violate HOAPS' unique feature of relying completely on satellite input. 
Changes in the manuscript: A note has been added to the revised manuscript (P.6, L.9) that a 
constant SLP is presumed. 

4) Comment from referee: Page 5, Line 33: “...surface air temperature, which is estimated by 
assuming a constant relative humidity of 80 % (Liu et al., 1994) and air-sea temperature difference
of 1K”. How accurate is this assumption? During winter cold air outbreaks over the western 
boundary current regions, the air-sea temperature differences can exceed 10 K. In this case, the 



assumption will lead to a bias in air temperature. How is surface air temperature compared to the 
in situ dataset?
Author's reponse: Thank you for bringing this up. We did not investigate the uncertainty 
introduced by these two widely used assumptions, as it may be neglected for two reasons (for our 
purposes). 
First, air temperature only has a secondary effect on LHF (in contrast to SHF) through the stability 
of the atmospheric column. The assumption of 1 K temperature difference with respect to SST is a 
good approximation for vast regions over the global oceans. However, we agree that during cold air 
outbreaks over the WBCs or in upwelling regimes, which are very confined compared to the global 
oceanic area, this approximation is violated. Compare conclusion section of Wells and King-Hele 
(1990). 
Second, our uncertainty estimation procedure described in Sect. 3 is exclusively based on high-
quality match-ups of HOAPS and in situ measurements. The data density of both ship and buoy 
records is comparably low in the regions addressed above, which further reduces the impact of our 
two assumptions. Due to the comparatively small amount of reference data, we presumably 
underestimate resulting uncertainties in these regions. Using for example ancillary reanalysis-based 
data would violate our ambition to create a completely removely-sensed data record, which is a key 
feature of HOAPS. 
No SSM/I or SSMIS retrievals exist that are capable of accurately retrieving oceanic surface air 
temperature (SAT) from space. This implies that SAT is not available as an official HOAPS product 
and has thus not been compared to the in situ reference. Future efforts will take on this challenge. 

5) Comment from referee: Page 6, Line 1: Provide a map showing the spatial distribution of in 
situ (ship and buoy) reference data density over the global domain.
Author's reponse: We agree that providing such a map is useful to the reader. We therefore 
implemented a map showing the spatial distribution of match ups (ship/buoy vs. satellite) over the 
global oceans, exemplarily for qa. It shows all collocated match ups between 2001-2008 that 
contribute to Fig. 2 (≈ 13.8 million match ups per subplot in total). Match ups for U and qs occur 
even more frequently, but are not shown in the revised manuscript.  
Changes in the manuscript: A map showing the distribution of qa collocations between 2001-2008
has been implemented into the revised manuscript (Fig 1, left panel). It is briefly described in terms 
of density distributions (P.8, L.29ff). 

6) Comment from referee: Page 6, Lines 4-5: Does the reference dataset include the 1996-97 
period that is used in training qa algorithm?
Author's reponse: We are not able to answer this question, as Bentamy et al. (2003) does not 
provide any information as to which ship records were used to train their qa retrieval. Yet, the multi-
dimensional bias analyses are restricted to match ups between 1998 and 2008 (depending on the 
parameter, see P.10, L.25f). This implies that no temporal overlap between the reference data 
archive and the ship records used for training purposes exists. 

7) Comment from referee: Page 7, Lines 28-29: The “instantaneous and climatological 
uncertainties” are not explained. How are they related to systematic, random, and sampling 
uncertainties?
Author's reponse: Sorry for not being precise enough here; we agree that this needs clarification.
“Instantaneous“ uncertainties are pixel-level uncertainties. These uncertainties can either be 
systematic (compare Fig. 4 over revised manuscript) or random (see Fig. 3 of revised manuscript). 
On an instantaneous basis, sampling uncertainties do not exist. 
By contrast, we define “climatological“ uncertainties as total uncertainties averaged over the time 
period 1988-2012 (as illustrated in Figs. 4 and 5 of revised manuscript). That is, Eclim is formally the
mean root mean squared sum of Esys, Eretr,ran, and Esmp  averaged over 1988-2012. As Eretr,ran scales 
with 1/N, with N being the amount of observations per grid box (see Eq. 3), it becomes virtually 



zero when averaging over long time periods. Likewise, monthly mean Esmp, which applies even 
more so to multi-annual averages. On climatological time scales, Eclim and Esys therefore hardly 
differ. This is why Fig. 4 of the revised manuscript can be treated as both „systematic“ and 
„climatological“ uncertainty. 
Changes in the manuscript: The explanation of the methodology has been extended (P.8, L.12ff).
This includes a link from instantaneous and climatological uncertainties to systematic, random, and 
sampling uncertainties. A mathematical description of Eclim is furthermore provided (P.15, L.12f).

8) Comment from referee: Page 8, Line 10: Definition of water vapour path?
Author's reponse: The water vapour path (“wvpa“) refers to the vertically integrated water vapour 
and is therefore a measure of humidity contents in the atmospheric column. It is thus suitable to use 
as an indicator of the ambient atmospheric conditions. For more information regarding the HOAPS-
3.3 wvpa retrieval, please refer to Schlüssel and Emery (1990).
Changes in the manuscript: The term „“water vapour path“ has been replaced by “vertically 
integrated water vapour“ (P.9, L.2). 

9) Comment from referee: Page 8, Lines 11-14: It seems that HOAPS qa is wet biased in the 
tropical wet zone and dry biased in the subtropical dry zone. The bias pattern seems to be similar to
GSSFT v3 qa product (Prytherch et al. 2014, Int. J. Climatol.; Jin et al. 2015, J. Atmos. Ocean. 
Technol.).
Author's reponse: Thank you for pointing this out. Indeed, Figure 4c in Prytherch et al. (2014) 
shows a strong resemblance between HOAPS-3.2 and GSSTF3. Both data records are based on the 
same algorithm and follow an inter-satellite calibration procedure. The minor differences in the 
tropics are thought to be related to either different quality control standards or differing Earth 
incidence angles. Given the close resemblance of GSSTF3 and HOAPS-3.2 shown in Prytherch et 
al. (2014), the difference pattern (GSSTF minus buoys and OAFlux) shown in Jin et al. (2015) was 
to be expected. The distribution is closely related to the qa-dependent bias pattern shown in our 
manuscript (Fig. 2a).   
Changes in the manuscript: Prytherch et al. (2014) is cited in this context (P. 9, L.9f).

10) Comment from referee: Page 8, Lines 21-22: Indeed, the 1-D bias analysis is not sufficient. 
Please provide a figure showing the global pattern of the mean differences between HOAPS and the
reference data. Need to discuss the uncertainty pattern in terms of humidity regimes.
Author's reponse: Thank you for your suggestion. Originally we thought the reader would be 
distracted by such a difference map, as we would like to emphasize the importance of considering 
multiple atmospheric state parameters, i.e., the multi-dimensional bias analysis. However, we agree 
that the manuscript improves when including such a difference map (HOAPS minus in situ qa).  
Changes in the manuscript: The difference map has been included into the revised manuscript 
(Fig 1, right panel). It is briefly described  in Section 3.1 (P.9, L.10f,L.25f), where a connection to 
Fig. 2a (of revised manuscript) is established.  

11) Comment from referee: Page 9, Line 24: “Recall that the aim is to characterize uncertainty 
and not bias patterns”. The sentence is confusing. Bias is one kind of uncertainties.
Author's reponse: We disagree with this statement. According to the International Vocabulary of 
Metrology (VIM, 2012), the (measurement) uncertainty is a non-negative parameter characterizing 
the dispersion of the quantity values being attributed to a measurand, based on the information used
(VIM, 2.26). By contrast, a (measurement) bias (VIM, 2.18), which corresponds to an estimate of a 
systematic measurement error (VIM, 2.17), may be either positive or negative and, if known, can be
corrected for. Keeping these two definitions in mind, a bias, which is a signed value, is strictly 
speaking not a kind of uncertainty. In order to turn the bias into an uncertainty estimate, we use the 
absolute systematic difference as an upper boundary of the (more simple) bias distribution. 
Changes in the manuscript: The wording in the revised manuscript has been modified and moved 



further up in Sect. 3.2 (P.10, L.17-22).

12) Comment from referee: Page 10, Eqs (2)-(3): Which figures are produced from Eqs.(2)-(3)?
Author's reponse: Figs. 3-6 are based on Eqs. 2 and 3. Details are provided in the following.
Whereas Eq. 3 merely expresses that the total instantaneous LHF uncertainty consists of a 
systematic and a random component, Eq. 2 forms the basis of LHF pixel-level uncertainties using 
uncertainty propagation. That is, applying Eq. 2 equips each LHF pixel with a total, that is 
systematic plus random uncertainty contribution. In consequence, Figure 4d directly results from 
Eq. 2, that is the systematic uncertainty contribution (the random component convergences to zero, 
due to averaging over long time period). Likewise, the systematic uncertainty contributions by U, 
qs, and qa , which contribute to Eq. 2, are illustrated in Figs. 4a-c. 
Note that the random uncertainty measures resulting from Eq. 2 still incorporates random 
uncertainty contributions of the collocated in situ data (Eins) as well as the collocation procedure 
itself (Ec). Each random uncertainty contribution resulting from Eq. 2 needs to therefore be 
corrected to isolate the random retrieval uncertainty. This random retrieval uncertainty is what we 
would like to characterize in the HOAPS climatology. The random LHF uncertainty resulting from 
Eq. 2 is therefore corrected pixelwise, using the results of the random uncertainty decomposition 
(see Sect. 3.4 and e.g. Figure 2 in Kinzel et al. (2016) for qa). The average field of these 
instantaneous, corrected random retrieval uncertainties is shown in Fig. 3d. Respective random 
retrieval uncertainty components contributed by U, qs, and qa, are shown in Figs. 3a-c, respectively. 
As noted in the manuscript, Fig. 3 shows the instantaneous point of view, that is N=1. 
Likewise, Fig. 5 shows both systematic (rectangles) and instantaneous random retrieval (bars) 
uncertainties. It therefore shows the maximum uncertainty one can expect for a single pixel for 
different geographical regimes. Figure 5 is therefore based on both Eqs. 2 and 3. The same accounts
for Fig. 6. The technical aspects are described in Sect. 3.4-3.5 .

13) Comment from referee: Page 10, Line 10: Why only random satellite retrieval component, not
the total random uncertainty, is computed?
Author's reponse: The purpose of our uncertainty characterization is to assign systematic, random,
and sampling uncertainties to all satellite-related LHF parameters. This approach is unique and 
important, as simply assigning total random uncertainties does not allow the user to understand to 
what extent they are associated with the retrieval itself or other uncertainty sources. This implies 
that contributions by collocation (EC) and in-situ data (Eins) need to be corrected for (i.e., removed) 
by applying the random uncertainty decomposition (Sect. 3.3). What remains is the random retrieval
uncertainty, which consists of both random model uncertainty (EM) and sensor noise (EN) (see 
Kinzel et al. (2016), their Eq. 5). 
Immler et al. (2010) formulate an implication of such an approach for consistencies like this: 
„Roughly speaking, consistency is achieved when the independent measurements agree within their 
individual uncertainties“ (their Sect. 2.5, Eq. 6). In other words, the decomposition of uncertainties 
allows for comparing two independent measurements with own (that is, independent) uncertainties, 
which makes conclusions regarding consistency more meaningful. The decomposition and 
contributing random uncertainties are thoroughly explained in Kinzel et al. (2016), their Sect. 2c. 
Changes in the manuscript: Immler et al. (2010) has been added to Sect. 1 for a clearer motivation
of our uncertainty decomposition approach (P.4, L.1f).

14) Comment from referee: Pages 10-11, sections 3.4-3.5: The two sections are not directly 
related to any figures. Suggest to revise and combine.
Author's reponse: We disagree that these two sections are not directly related to any figures/tables 
in the manuscript. For transparency, we believe a clear separation of all HOAPS-related 
uncertainties, that is systematic and random retrieval uncertainty (Sect. 3.3-3.4) and sampling 
uncertainty (Sect. 3.5), is appreciated. Sect. 3.3 is a main prerequisite for what is shown in Figs. 3 
and 5, respectively. Sect. 4.3 (and Table 2 therein) is dedicated to only Esmp, which is first picked up 



in Sect. 3.5. 

15) Comment from referee: Page 13, Line 10: Fig.2 is regarded as a 2-D representation of the 
error bar magnitude of Fig.1a. A figure showing the global pattern of HOAPS3.3 - minus - in situ 
needs to be provided to help interpret Fig.2.
Author's reponse: The differences map points at biases, which are not linked to the random 
retrieval uncertainties shown in Fig 3a. Yet, the differences map (HOAPS minus in situ) has been 
added to the revised manuscript, where it is also commented on (P.9, L.10f,L.24f). This is already 
picked up in a different context (see comment #10 on this). As noted in the manuscript, the quoted 
passage is meant to qualitatively link the error bars in Fig. 2a to the four-dimensional (Fig. 3a) 
random retrieval uncertainty representation. Differences in their magnitudes were to be expected, as
the bars in Fig. 2a include both EC and Eins, which have been corrected for in Fig. 3a. However, the 
qa-dependent distribution of error bar magnitudes (Fig. 2a) are very closely related to the Eretr,ran 
pattern (Fig. 3a) . That is, random retrieval uncertainties are largest for subtropical ranges of qa (11-
17 g kg-1

, Fig. 3a), which is mirrored in largest uncertainty bars in Fig. 2a. Likewise, these 
magnitudes reduce for tropical qa ranges of roughly 20 g kg-1. Smallest magnitudes are generally 
found in high latitudes, where qa is smallest (below 7 g kg-1, see Fig. 2a).  The intention was to show
the spatial distribution of random uncertainty in HOAPS-3.3 qa. As mentioned later on, this random 
uncertainty can be neglected if monthly to multi-annual averages are considered, while systematic 
components become the dominating source of uncertainty. Spatial maps of these long-term means 
of systematic uncertainties are provided in Fig. 4.
Changes in the manuscript: See comment #10.

16) Comment from referee: Page 13, Fig. 2: The instantaneous random uncertainty map of qa 
(Fig.2a) has a pattern similar to the uncertainty map of qa produced by OAFlux (Yu et al. 2008, 
OAFlux technical report), though HOAPS3.3 has a much larger magnitude.
Author's reponse: Thank you for bringing up this comparison. We agree that the error distribution 
shown in Yu et al. (2008) resembles our instantaneous random uncertainty distribution. Regarding 
uncertainty magnitudes: Yu et al. (2008) declare “mean errors“ as monthly mean standard 
deviations (std) (time period: 1958-2006). This definition considerably differs from our approach. 
Furthermore, it remains unclear as to how this std is derived. Apparently, several data sets 
contribute to its estimation (NCEP1, NCEP2, ERA40, satellites), which may be the cause for lower 
magnitudes shown in their Fig. 21. Whereas our uncertainty estimates are exclusively HOAPS-
related (that is, related to only one data record), the error estimation presented in Yu et al. (2008) 
does not clarify as to how the global error distribution includes contributions by the individual data 
sets. 

17) Comment from referee: Page 14, Line 3: In addition to Table 2, please add a zonal-mean 
average of the monthly mean sampling uncertainties to show the latitudinal distribution of the 
uncertainties.
Author's reponse: We investigated the latitudinal dependency of all sampling uncertainties. Due to
the large averaging time period (monthly means), there is hardly any zonal dependency evident in 
any of the parameters (not shown). This was to be expected, as a differentiation between tropical 
and extratropical buoys for quantifying monthly mean sampling uncertainies did not reveal 
differences in uncertainty magnitudes (see end of Sect. 3.5). As indicated in Table 2, sampling 
uncertainties averaged over such long time scales only show a dependency on the amount of 
orbiting platforms. However, this effect is not seen in the zonal means, as at least three instruments 
were in operational mode between 1995-2008.
Changes in the manuscript: A comment has been included into the revised manuscript (P.12, 
L.26f) that no latitudinal dependency of the sampling uncertainties exists on the monthly mean 
basis. 



18) Comment from referee: Page 14, Line 13: How is Eclim defined? Please provide a 
mathematical expression of Eclim.
Author's reponse: Please refer to comment #7 on this. 
Changes in the manuscript: Please refer to comment #7 on this. 

19) Comment from referee: Page 14, Line 15: “Figures 3a-e can also be treated as the systematic
uncertainty distribution”. What is the relation between Figures 3a-e and the mean difference map
of HOAPS-3.3 minus in situ? See comment Page 13, Line 10. The maps shown in Figures 3a-e are 
not bias patterns, as bias has both positive and negative signs. What is the meaning of the 
systematic uncertainty?
Author's reponse: We apologize that the current formulation may be confusing. Regarding the 
phrase you quoted: When averaging over 25 years (1988-2012), random and sampling uncertainties 
become virtually zero. This implies, given our definition of Eclim (see comment #7 on this), that Eclim 
is pratically equal to the systematic uncertainty (Esys), which in turn is the absolute representation of 
the bias (see Sect. 3.2). Throughout our manuscript, we do not speak of „bias patterns“, as we are 
characterizing uncertainties, which are per definition non-negative. The average of an array of 
biases with respect to a reference can be zero, while none of the individual match ups are actually 
equal. This automatically points at a non-zero uncertainty. In this regard, we agree that Fig. 4 (of 
revised manuscript) does not show bias patterns (unlike Fig. 1 (right) in the revised manuscript), but
rather patterns of Esys. Esys is therefore the upper boundary of the (more simple) bias distribution 
(see  Sect. 3.2). 
Changes in the manuscript: The qa difference map (HOAPS minus in situ) has been included into 
the revised manuscript (Fig. 1 (right), see comment #10 and #15 on this). It is briefly described and 
related to Figs. 2a (P.9, L.25). Also, the composition of Sect. 3.2 has been changed.

20) Comment from referee: Page 18, Line 5: “On average, it increases by roughly 4.5 W m-2 
(4.7%) per decade…”. Which term gives rise to this large increase, qa – qs or U? The continuing 
increase in LHF during the “hiatus” period in the 2000s does not seem realistic from the 
perspective of the global water budget balance (see Robertson et al. 2014, J.Clim).
Author's reponse: Thank you for bringing this up. As mentioned in Sect. 4.7, this linear LHF 
increase over time is picked up by numerous studies and is resolved in several climatologies. Yu et 
al. (2007), for example, point at an OA Flux LHF increase of 9 W m-2 over a time period of 22 years
(1981-2002), which closely resembles our linear trend estimate. Our trend analysis includes a strong
negative offset in HOAPS LHF during 1991. As pointed out in the manuscript (P.18, L.25ff), this is 
associated with retrieval issues related to the Mount Pinatubo eruption and is therefore an artificial 
signal. If this is solved, as has been done for the latest HOAPS version, HOAPS 4.0 (Andersson et 
al., 2017), the offset is smaller, which ultimately reduces the linear trend. Also, possibly related to 
the hiatus, global mean HOAPS LHF slightly decrease after 2008. GSSTF3 also exhibits an LHF 
increase up to 2007/8 (which is even stronger than that of HOAPS) and a subsequent decrease (see 
Robertson et al. (2014), their Fig.2b and Fig.8). Regarding the increase up to 2008, the same 
conclusion may be drawn for SeaFlux (Robertson et al. (2014), their Fig. 2c). As to the cause of the 
LHF increase: Q-term analysis indicates that linear trends of both U and qs are positive, whereas 
that of qa is negative. In consequence, both U and (qs-qa) give rise to the observed LHF increase. For
the time period of 1988-2005, this also becomes evident in Iwasaki et al. (2014), their Fig. 9.

21) Comment from referee: Page 19, Line 14: Remove the sentence. Aren’t the uncertainty 
estimates supposed to be a common practice for all gridded products?
Author's reponse: We think that it is appropriate to include this sentence in our manuscript, as we 
are not aware of any other satellite climate data set with such an (extensive) uncertainty 
characterization. We certainly agree that this should be a common practice in the future. It seems, 
however, that HOAPS-3.3 (and HOAPS 4.0, by now) leads the way. 
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Author's response to the general comments from referee III:

Thank you for revealing your valuable criticism regarding the manuscript. Below, please find our 
responses to your specific comments, along with the implemented changes to our manuscript. 
All page and line numbers as well as figure numbering refer to the revised manuscript. Note 
specifically that the figure numbering has changed during the review process.

MAIN COMMENTS:

1 ) Main comment from referee: 

a) The paper is hard to read. Often it requires re-reading a paragraph a number of times, to 
understand. It also has to do with the structure of the paper. It would help to define the main 
methodology of the data analysis and to have this as the main thread throughout the paper. 

I think I understand the methodology, but I am still not sure.
Let me explain my interpretation of the method:
(i) Four dimensional look-up tables (LUT) are created of co-located data, so differences between 
data sets are stratified according to q_a, U, SST, and wvpa.
(ii) The mean difference between HOAPS and insitu data are interpreted as biases.
(iii) The variances of the difference are used for the triple co-location method, resulting in error 
estimates.
(iv) This results in LUT’s of biases and random error estimates.
(v) In applications (e.g. global maps of mean and random error of q_a) the observations of q_a, U, 
SST and wvpa point to the table and provide errors of each observation. These can be averaged to 
obtain the desired map.

b) I feel that it would be helpful to describe upfront that this is the general methodology and follow 
it throughout the paper. So this would lead to 3 main sections in the paper: (i) Description of the 
methodology, (ii) Results of the methodology, i.e statistics on the LUT data, and (iii) Application to 
HOAPS evaporation. In case I am completely wrong on the interpretation of the paper, there is even
more reason to be clear about the methodology.

c) Another question is: what is the main result of the paper? If my interpretation is correct,
then the 4-dimensional table of error estimates is the main result, because it would
allow a user to make estimates of anything he/she is interested in (e.g. monthly averages,
daily averages, or El-Nino years). So it is worth thinking about communicating
this 4D table to the users. Most of the current paper is about applying the methodology,
but these are in fact just examples.

Author's reponse: 

Related to a) We have restructured the paper to be more clear about the methodology. The 
introduction has been rearranged and shortened (see also specific comment #1 below) for a much 
clearer understanding of the motivation, the benefit, and the structure of the paper. We have 
furthermore appended a flowchart to this document, which guides you through the individual steps 
of data processing, intermediate data products, and resulting HOAPS uncertainty measures. 

Regarding your methodology interpretation (the flowchart assists): 
(i) Correct. 
(ii) Yes, differences of paired collocations are considered as biases. Depending on U, qa, SST, and 
wvpa, these single biases are assigned to one of the 204 bins. Once all collocations have been 



assigned to a bin, bin-averaged systematic uncertainties are computed based on the absolute 
differences of all assigned biases. That is, we consider the upper end of bias considerations (see 
comment #10 on this).
(iii) Exactly. Although the variances of differences, applied to the triplets, only help to decompose 
the random uncertainty estimates to end up with HOAPS-related (that is, retrieva-related) random 
uncertainty estimates.
(iv) The LUTs of systematic and (uncorrected) random uncertainties already result from i). iii) helps
to decompose the random uncertainty components, isolate the retrieval-related part, and finanly 
correct the random uncertainty LUTs.
(v) Yes, this is correct.

Related to b) Regarding your proposed three main sections: We believe that this has already been 
done in a similar manner and is reflected in the numbering of the Section: Methodology (Sect. 3) 
and Results/Applications (Sect. 4). We do not want to dedicate „Results of the methodology“ an 
own section, as we think that it belongs to the methodological part of the manuscript (Sects. 3.3, 
3.4). 
However, we agree that the submitted manuscript was not structured clearly enough. This 
shortcoming has been improved (see comment related to a) above).

Related to c) We agree that one of the main outcomes of the manuscript is the benefit of the multi-
dimensional bias analyses. Particularly because the approach can be easily transferred to other 
satellite retrievals and potentially also other remotely sensed parameters. The approach itself should
be stressed more clearly in the conclusion. Communicating our specific LUTs to the users is not 
helpful, though, as they are tailored to HOAPS-3.3 (due to the double collocations described in 
Sect. 3.1). The results of applying an updated version of the LUTs to instantaneous HOAPS data are
implemented in the most recent HOAPS 4.0 Version (Andersson et al. (2017)) in form of systematic
and random uncertainties. 
We believe that the application of the uncertainty characterization approach is equally important, as 
it leads to uncertainty estimates for a widely used data record. On the one hand, none of the 
remaining LHF-related satellite climatologies are equipped with such estimates. On the other hand, 
Sect. 4 demonstrates a variety of different approaches for illustrating the uncertainties and allows 
for identifying regions where uncertainties in the satellite retrieval are an issue and need to be 
accounted for. 
The focus of this paper is therefore twofold: 1) describing the method and 2) applying the method to
arrive at HOAPS-3.3 uncertainty estimates. 

Changes in the manuscript: 

Related to a and b) The whole manuscript has been revised for a clearer reading experience. This 
specifically targets Sects. 1 and 3. The last paragraph of Sect. 1 now guides the reader through the 
manuscript step by step. Section 3.3. and 3.4 have been swapped to be consistent with the sequence 
of analyses. 

Related to c) The benefit of the multi-dimensional bias analyses for uncertainty characterizations 
has been highlighted more clearly in Sect. 5 (P.20, L.21ff). 

2 ) Main comment from referee: 

Estimation of biases is non-trivial. In fact this is very important because, as the authors point out, 
for long term averages the systematic errors dominate. 



My concern is two-fold:
a) I have the feeling that it is assumed that DWD-ICOADS data is bias-free? If this is the basis for 
the bias estimates, then it deserves more discussion also in view of what has been published in 
literature.
b) Fig. 1 is used as an example to illustrate the estimation of biases. However, it is likely that 
artificial biases occur in binned scatter plots of noisy data if correlated variables are used on 
abscissa and ordinate. This applies to Fig. 1a where hair(HOAPS) is used on both vertical and 
horizontal axes. It also applies to hair versus wind because these variables are correlated due to the 
physics of the mixing (more wind brings hair closer to the surface value). To check, one could e.g. 
bin the differences of Fig. 1a in classes of hair(insitu). Also hair(insitu) is noisy because it has large 
representativeness errors (point observation, whereas HOAPS has a large footprint).

c) Finally, if one can be confident about the bias estimation, then it should also be trivial to
apply a bias correction to HOAPS. This would just leave the uncertainty in C_E which
is a parametrization constant used for satellite as well as in-situ data. Please discuss.

Author's reponse: 

Related to a) It is correct that we assume the DWD-ICOADS data base to be bias free (see last 
paragraph in Sect. 2.2 of submitted manuscript). Our filtering procedure ensures that only high-
quality in situ data is used for collocation analysis. Systematic effects of known origin are thought 
to have been removed or at least minimized within the quality checking procedure at the Marine 
Climate Data Center of DWD. Other systematic uncertainties like differing sensor heights and cool 
skin effects have been eliminated prior to our analysis due to sensor height corrections using in situ 
platform meta data (U) and cool skin corrections (qs). We are aware of the fact that no ground 
“truth“ exists, but are confident that our extensive data base is the best ground “reference“ 
available. Freeman et al. (2016) present a great overview of the variety of ICOADS applications, 
which also include the calibration and validation of satellite data (e.g. Bentamy et al. (2003), 
Bentamy et al. (2013), Jackson et al. (2009), Jackson and Wick (2010)). 
It should be kept in mind that our systematic uncertainty estimates represent the upper limit of a 
more simple bias estimation. Assuming a bias free ground reference therefore does not violate our 
conclusions, although a small contribution to the systematic uncertainties may be caused by the in 
situ reference. 
One could argue that our uncertainty estimates in regions of poor in situ data coverage are 
questionable. However, as picked up in Sect. 3.2, we overcome the regional dependency by 
characterizing uncertainties as a function of ambient atmospheric conditions. Poor in situ data 
densities are therefore of secondary importance, as their ambient atmospheric conditions may be 
similar in regions with considerably more match ups.

Related to b) Thank you for the suggestion to investigate the one-dimensional patterns of dq as a 
function of the in situ source. We exemplarily performed this analysis for 2001 with approximately 
1.8 million match ups. We compared the magnitudes of the mean 5-percentiles, which (in case of 
HOAPS) are illustrated as black squares in Fig. 2. For U, qs, and qa, our results indicate that in 80% 
of all match ups (i.e., excluding the margins), relative differences between HOAPS and in situ mean
5-percentiles range between ± 6-10%, which we consider as negligible. We presume that a two- 
instead of one-sided regression approach would lead to even more robust 5-percentile means. 
Towards the margins of the distributions, relative differences become larger. We believe that this 
does not have a noteworthy impact on the four-dimensional analyses, as the biases in one-
dimensional space may become smaller or even cancel out when the remaining three atmospheric 
state parameters are considered concurrently. 
Independent of this, biases as a function of in situ LHF-related parameters cannot be investigated in 
four-dimensional space, as vertically integrated water vapour („wvpa“), an important indicator for 



the prevalent atmospheric condition, is not available from in situ measurements. This would lead to 
an undesirable simplification of our uncertainty analysis approach. Additionally, our match up data 
base only lasts until 2008. In consequence, no uncertainties could be assigned to pixel level HOAPS
data from 2008 onwards, if the multi-dimensional bias approach was based on in situ data. 

Related to c) Regarding a bias correction of HOAPS data: Our approach aims at characterizing 
uncertainties inherent to HOAPS. This allows users to implement this information into their 
analyses and arrive at appropriate conclusions. We have further emphasized the benefit of such 
estimates in the revised version of Sect. 1. The focus is therefore not put on bias correction with 
respect to DWD-ICOADS. A sustainable consequence of large uncertainties should in fact point at 
the need of modifying the retrieval algorithm instead of bias correcting the data. It is our impression
that a bias correction is feasible, if a constant bias (in terms of dependent variables, region, or time) 
is present relative to a fiducial reference. Such a reference is not available at present. 

Changes in the manuscript: 

regarding a) Freeman et al. (2016) is picked up in context of describing the in situ data base (P.6, 
L.18f). Furthermore, some further references are given regarding our assumption of bias-free 
ICOADS measurements (P.8, L.3ff). 

regarding b) We briefly mention the artificial biases due to correlating variables and conclude that 
two-sided regression analyses could reduce these spurious biases (P.9, L.17ff).

SPECIFIC COMMENTS:

1 ) Comment from referee: 
Section 1: Although well written, the introduction is rather long and contains sometimes fluffy 
language. No reference is made to an earlier study by Kinzel et al. (2016). What is new compared to
earlier work? Reference is made to other data sets and to studies that provide error estimates. 
However, nothing is said about published error estimation methods.
Author's reponse: We agree that the introduction of the submitted manuscript is too long. We have 
restructured Sect. 1 following your suggestions and believe that this essentially improved the 
manuscript (see also “main comment 1“ on this). Furthermore, Kinzel et al. (2016) has been 
included in the revised manuscript to point at the  random uncertainty decomposition approach. We 
agree it is important to distinguish between earlier work and new aspects of this manuscript. This 
also includes a statement regarding earlier error estimation methods and those present in our 
manuscript.  
Changes in the manuscript: The first 24 lines have been considerably shortened.
The whole introduction has been restructured to be clearer about the motivation and benefit of our 
study. It now clearly differentiates between earlier approaches (that is, mostly intercomparison 
studies, P.3, L.25ff) and the novelty of our uncertainty characterization (that is, uncertainty 
estimates that are exclusively related to a specific data set, in particular HOAPS, P.4, L.1f.; P.4, 
L.14ff). At the same time, we highlight the new aspects of our approach (e.g. four-dimensional 
LUTs, P.4, L.20f). In this regard, Kinzel et al. (2016) has been included into the revised manuscript 
and is put into context (P.4, L.10f, L.21f). The advantage of multi-dimensional LUTs has been 
included into the abstract (P.1, L.7f).

2 ) Comment from referee: Page 5, Line 32: The sentence with "The latter depends" suggests that 
it refers to qa in the sentence before, but what it intends to say is that the COARE algorithm needs 
stability and that specific assumptions are made. Please rephrase.
Author's reponse: The wording was chosen on purpose, as we wanted to point out that the 



saturation vapour pressure and hence qa depends on  the surface air temperature. However, we agree
that this may be confusing and the focus should be put on the stability calculation. 
Changes in the manuscript: We changed the wording to “It includes atmospheric stability 
calculations, which necessitate surface air temperatures as input. These are estimated by 
assuming...“ (P.6, L.7f). 

3 ) Comment from referee: Page 6, Line 20-24: The non-correction of qa for measuring height is 
confusing. Why not using the real measuring height in the bulk formula? Perhaps it is possible to 
say in one sentence what the results are of the height difference effects as estimated by Kent et al. 
(2014).
Author's reponse: Prytherch et al. (2014) and Kinzel et al. (2016) point at the disadvantages 
related to qa height corrections. We agree that a statement regarding the height correction effect is 
useful. Kent et al. (2014) quantify the height correction effect to be 0.11 g kg-1 for the time period 
1971-2006, owing to the continuously increasing measurement platform heights. However, this 
effect is masked by bias corrections associated with measurement techniques, which are thought to 
be 2-3 times larger. 
Changes in the manuscript: Results by Kent et al. (2014) regarding the height difference effects 
are briefly mentioned (P.7, L.3ff).

4 ) Comment from referee: Page 7, Line 13: Cool skin corrections are applied to in situ 
observation but not to HOAPS-3.3 SST (AVHRR based). This makes sense in priciple because 
AVHRR measures the skin temperature. However, there must be a calibration procedure of AVHRR,
which is probably against bulk SST data. So, what does calibrated AVHRR data represent, bulk
or skin SST?
Author's reponse: Thank you for bringing this up. Indeed, AVHRR was calibrated against bulk 
SST. Formally, this would necessitate a cold skin correction. However, compared to OISST 
(Reynolds et al. (2007)), AVHRR has a cold bias of unknown origin, which is in the order of the 
skin correction. We therefore refrained from performing the correction and consider the AVHRR 
SST as a skin SST. Note that this cold bias problem is overcome in HOAPS 4.0 (Andersson et al. 
(2017), which is based on OISST. For the HOAPS 4.0 retrieval (Andersson et al. (2017)), OISST is 
corrected for the cold skin effect.

5 ) Comment from referee: Pages 4-5 section 2.1: It would be informative to mention pixel size of 
the microwave sensors.
Author's reponse: Yes, we agree. 
Changes in the manuscript: Pixel sizes have been included into Sect. 2.1 of the revised 
manuscript (P.5, L.11-13).

6 ) Comment from referee: Page 8, Line 11: The sentence "Figure 1a overestimates ...." is 
confusing. Formally it is correct, but, after reading the first time it suggests that the biases range 
from 7-12 g/kg and that the plot is for the inner tropics.
Author's reponse: Indeed, this may be misunderstood.
Changes in the manuscript: The wording has been changed in the revised manuscript to: “For qa 
values between 7-12g kg-1 , HOAPS-3.3 overestimates near-surface specific humidities (see Figure 
2a). Overestimations are also observed in the inner tropics, where qa is in the order of 20 g kg-1“ 
(P.9, L6f).

7 ) Comment from referee: Page 8, Line 17: The expression "over-(under-)estimated" is perhaps 
better than "over-(under-)represented"
Author's reponse: Thank you for this suggestion.
Changes in the manuscript: "over-(under-)represented has been replaced by "over-
(under-)estimated" (P.9, L.12).



8 ) Comment from referee: Scatter plots in Fig.1: In all the plots except (c) the variables on the 
vertical axis are correlated with the variable of the horizontal axis. This is most obvious for Fig. (a) 
where hair-HOAPS is used in both abscissa and ordinate. In such cases the binning according to one
axis can show biases that are not necessarily real. Whether this is really the case can be easily 
demonstrated by making the same plot but now with hair-insitu on the horizontal axis. Similarly 
unrealistic bias may be seen in (b) and (d) because wind and wvpa are derived with from the same 
satellite channels and therefore correlate with hair-HOAPS. Please discuss.
Author's reponse: We assume that “hair-insitu“ means “qa(in situ)“ and not the mathematical 
difference between HOAPS and in situ qa? We are aware of the correlation between the individual 
variables. The aspect of correlating variables is an important remark, which we thoroughly discuss 
in context of the “main comment 2“ (part b), see further above). In fact, this is fundamental for our 
multi-dimensional approach: characterizing systematic and random uncertainty estimates of U, qs, 
and qa  as a function of atmospheric state parameters, which (as we believe) have an impact on the 
parameters themselves. Specifically regarding Figure 2d): wvpa is not available from in situ 
measurements, which is why a bias dependency on in situ wvpa cannot be investigated. 
Changes in the manuscript: See “main comment 2“ (part b) further above. 

9 ) Comment from referee: Page 9, Line 21: Please specify what "even stronger winds" are.
Author's reponse: “stronger wind“ mean wind speeds exceeding 20 m s-1. 
Changes in the manuscript: The wording has been changed in the revised manuscript (P.10, L.9).

10 ) Comment from referee: Page 9, Lines 24-26: This paragraph is hard to read. After reading, a 
number of times times, I think I understand. Is it not better to say: "Our goal is to document the 
upper bound of the bias and therefore we take the absolute value of the possible systematic error in 
CE"?
Author's reponse: We agree that this paragraph is somewhat confusing and out of place. It has 
been moved further up into the appropriate context.
Changes in the manuscript: The wording has been modified and has been moved further up into 
the appropriate context (P.10, L.17ff).

11 ) Comment from referee: Page 10, line 15 and page 11, line 7: I suggest to replace "Next to" by
"In addition to"
Author's reponse: Thank you for this suggestion.
Changes in the manuscript: The wording has been changed in the revised manuscript (P.12, L.12).

12 ) Comment from referee: Page 11, section 3.5: This section is hard to read. If I understand 
correctly, it addresses the question: Does it matter for the averages that the satellites sample the 
ocean at particular times of the day only, given that a diurnal cycle may be present? The authors 
investigate by looking at buoy data and by comparing averages that cover the full diurnal cycle with
samples at satellite overpass times only. Part of the confusion is because it mentions spatial 
sampling, but I don’t think this section covers that? Please simplify for clarity.
Author's reponse: Exactly. For the monthly mean HOAPS product (HOAPS-G), sampling 
uncertainties need to be quantified because of the diurnal cycle of the geopyhsical parameters. Due 
to the sun-synchronous satellite overflights, diurnal cycles or frontal passages are likely to be 
missed. This will affect the monthly mean averages. We agree that the the term “spatial sampling“ is
misleading, as we only cover the temporal sampling issue. 
Changes in the manuscript: The aspect of “spatial sampling uncertainties“ has been removed from
the revised manuscript to avoid confusion.

13 ) Comment from referee: page 13, Lines 9-11: I am not sure that it is helpful here to refer to 
Fig. 1a, because it is showing the combination of E_ins(qa_a) and E_retr(qa), which is different from



Fig. 2a. The authors point this out but instead of clarifying something it confuses. 
Author's reponse: We agree that this may be confusing. 
Changes in the manuscript: This section has been shortened to become more clear. (P. 14, L.18ff)

14 ) Comment from referee: Page 13, 23: Suggestion: replace "merely" by "only"
Author's reponse: Thank you.
Changes in the manuscript: “merely“ has been replaced by “only“. (P.14, L.31).

15 ) Comment from referee: Page 13, Line 24: What is meant by "local minimum in that region 
for q_a"? E_retr(q_a) has a maximum over the warm pool.
Author's reponse: This is a mistake in our manuscript, thank you for pointing this out. We wanted 
to point at the qa random retrieval uncertainty, not qa itself.
Changes in the manuscript: the wording has been changed (P.14, L.31f). 

16 ) Comment from referee: Page 13, Line 29: In the sentence "Respective values partly exceed 
50 W/m2", what is meant by "respective" and "partly"? Do the authors mean: "In these areas, values 
are found in excess of 50 W/m2"?
Author's reponse: Yes, this is correct.
Changes in the manuscript: The wording has been changed in the revised manuscript.  (P.15, L.3).

17 ) Comment from referee: Page 14, Line 33: "direct eddy covariance" is not wind speed.
Author's reponse: Sorry for not being correct here. The wind stresses are based on inertial-
dissipation methods. Together with eddy covariance based LHF, the turbulent fluxes of a variety of 
satellite, reanalysis, and combined products are evaluated.
Changes in the manuscript: The wording has been changed. (P.15, L.31ff). 

18 ) Comment from referee: Page 16, Lines 1-2: This is an interesting example, where it is 
explained that qa retrievals may be in error because of dry air advection. However, it is not clear 
how the systematic error analysis picks up the area of the Agulhas current. The systematic error 
estimation is entirely driven by U, qa and SST and wvpa (if I understand correctly).
Author's reponse: It is correct that the systematic uncertainty estimation is entirely driven by 
combinations of ambient U, qa, SST, and wvpa. Our multi-dimensional bias approach does not point
at specific regions. This implies that we cannot be 100% certain that the observed uncertainties over
the Agulhas region are exclusively associated with local retrieval issues. In general, match ups over 
a region contribute to the look up tables (LUTs), which implies these regions are somewhat 
mirrored in the LUTs. However, they are not explicitly resolved.
The following serves to explain how the LUTs pick up the Agulhas region: Figure 1 (left) indicates 
that numerous collocations between buoys/ships and satellite exist in this area, which is 
characterized by a unique combination of ambient U, qa, SST, and wvpa. In case of the mentioned 
dry cold air outbreaks from the South, qa will be anomalously low and hence qs-qa and LHF 
anomalously large. According to Santorelli et al. (2011), satellite retrievals seem to encounter 
difficulties with these dry cold air outbreaks, which implies that they will not capture qa correctly. 
This would for example be seen when investigating dqa. That is, differences between satellite and in 
situ qa would be negative, which directly impacts our four-dimensional uncertainty analysis. In 
conclusion, repetitive retrieval issues over a specific regions will be manifested in the LUTs and 
will eventually be seen in systematic uncertainty maps. At the same time, underestimated qa along 
the Agulhas Current contribute to an increase in the random uncertainty component of the LUTs. 

19 ) Comment from referee: Section 4.6 and Fig. 4: Here both systematic and random errors are 
discussed region by region and climatologically versus January/July. Earlier in the paper it was 
concluded that the random errors were small compared to the systematic errors. However in Fig. 4 
the random errors are larger than the systematic errors. Furthermore I would expect that the 



climatological data (I assume averaged over the entire period) has much more data than the January 
or July data and therefore much smaller random errors.
Author's reponse: As mentioned in Sect. 4.6, the error bars in Fig. 5 point at instantaneous random
uncertainties (such as those shown in Fig. 3). The idea is to show the maximum uncertainty to be 
expected for a specific region and season on an instantaneous basis. This approach allows for 
illustrating random uncertainties, as they often even exceed the systematic counterpart for pixel-
level data, as is seen when comparing Fig. 3 to Fig. 4. Fig. 3 shows averaged instantaneous random 
uncertainties as a function of region and time. If properly scaled according to the considered period 
of time, they decease with increasing time period and become insignificant at monthly or multi-
annual (that is, climatological) time scale. Keeping this in mind, this also answers the question as to 
the smaller random uncertainties for multi-annual mean (1988-2012) compared to seasonal means 
(1988-2012): The difference in error bar magnitudes is not related to averaging periods, as these are 
averaged instantaneous random uncertainties as a function of region and time. We agree, however, 
that this is not clearly stated in the manuscript. 
Changes in the manuscript: The wording as been modified in the revised manuscript to clarify 
what is shown in Fig. 5. (P.18, L.29-33) This also targets the caption of Fig. 5.

20 ) Comment from referee: Page 18, Line 31: Please replace "outperforms" by "exceeds"
Author's reponse: Thank you for this suggestion.
Changes in the manuscript: This section has been considerably shortened. The phrase is no longer
included in the revised manuscript.
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Abstract. Latent heat fluxes (LHF ) are one of the main contributors to the global energy budget. As the density of
:
in

::::
situ

LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applica-

tions is enormous. However, to date none of the available satellite products include estimates of systematic, randomretrieval,

and sampling uncertainties, all of which are essential for assessing their quality. Here, this challenge is taken on by applying

regionally independent multi-dimensional bias analyses to LHF -related parameters (wind speed U , near-surface specific hu-5

midity qa, and sea surface saturation specific humidity qs) of the Hamburg Ocean Atmosphere Parameters and Fluxes from

Satellite (HOAPS) climatology.
:::
The

:::::::::::::::
multi-dimensional

::::::::
approach

:::::::::
overcomes

:::
the

::::
issue

::
of

::::::
sparse

::
in

:::
situ

::::
data

:::::::
densities

::::
over

:::::
large

::::::
oceanic

:::::
areas,

::::::
which

:::::
makes

::
it
::::
very

:::::::::
promising.

:
In connection with multiple triple collocation analyses, it is demonstrated how

both instantaneous (gridded) uncertainty measures may be assigned to each pixel(grid box). A high-quality in situ data archive

including buoys and selected ships serves as the ground reference. Results show that systematic LHF uncertainties range10

between 15-50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as

well as along the western boundary currents. Investigations indicate that contributions by qa (U ) to the overall LHF uncer-

tainty are in the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically

large over the subtropics with a global average of 37 W m-2. In a climatological sense, their magnitudes become negligible, as

do respective sampling uncertainties. Time series analyses show footprints of climate events, such as the strong El Nio during15

1997/98. Regional and seasonal analyses suggest that largest total (i.e., systematic + instantaneous random) LHF uncertainties

are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the

observed continuous global mean LHF increase up to 2009 needs to be treated with caution. First intercomparisons to other

LHF climatologies (in situ, satellite ) reveal overall resemblance with few, yet distinct exceptions
:::
The

:::::::::::
demonstrated

::::::::
approach

:::
can

:::::
easily

::
be

:::::::::
transferred

:::
to

::::
other

:::::::
satellite

::::::::
retrievals,

::::::
which

:::::::
increases

:::
the

::::::::::
significance

:::
of

:::
the

::::::
present

::::
work.20
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1 Introduction

Exchanges of energy and moisture at the atmosphere–ocean interface represent a critical coupling mechanism within the

climate system. Roughly 20 of the total radiation absorbed by the Earth’s surface is transferred back to the atmosphere by

means of turbulent heat fluxes (Trenberth et al., 2009) . Specifically, latent heat fluxes (LHF ) significantly control the surface

energy budget and are, next
:
in
::::::::
addition to radiative fluxes, one of the main contributors to heating and cooling of the oceans.5

Approximately 86 of the global evaporation occurs over the ocean basin (Baumgartner and Reichel, 1975) , demonstrating that

this water and oceanic energy transfer is a key component of the overall Earth’s energy budget. The fifth assessment report of

the Intergovernmental Panel on Climate Change (IPCC) emphasizes the role of heat transfer between ocean and atmosphere

in driving the oceanic circulation. It stresses that flux anomalies can impact water mass formation rates and alter oceanic

and atmospheric circulation (IPCC, 2013) due to its influence on sea surface salinity and thus the ocean surface’s density10

(Grodsky et al., 2009) .Additionally, LHF modifies the atmospheric stability distribution and triggers convection, which in

turn strongly impacts cloud formation and precipitation. Next to its impact on oceanic processes, this highlights the important

role of LHF in modulating the atmospheric circulation on a variety of scales..

To improve our understanding of
::
the

:
global energy and water cycle variability as well as model simulations of climate varia-

tions, it is of great importance to accurately measure LHF over the global oceans at the highest possible resolution (e.g. Chou15

et al., 2004). The need for accurate surface fluxes has, for example, been picked up by the World Climate Research Programme

(WCRP), the WCRP Global Energy and Water Cycle Experiment (GEWEX), and the Climate Variations (CLIVAR) Science

Steering Group (e.g. Curry et al., 2004). This is ideally achieved through accurate observations and correct implementations of

parameterizations in coupled models. Liu and Curry (2006), for example, stress that accurate LHF are essential for a correct

forcing of ocean models and for evaluating numerical weather prediction. Additionally, reliable long-term global LHF data20

sets
::::::
records

:
represent a substantial input to assimilation experiments, for instance the oceanic synthesis performed by the Ger-

man contribution to Estimating the Circulation and Climate of the Ocean (GECCO, GECCO2, e.g. Köhl and Stammer, 2008;

Köhl, 2015). Such syntheses allow for capturing variability and trends in the turbulent exchange processes, which may exert

changes to the entire climate system.

Several LHF data records exist, which differ in satellite instrumentation, creation process, data density, as well as spatial25

and temporal extent. These are either based on in situ measurements, reanalysisor ,
:
remotely sensed data,

::
or

::
a
::::::
merged

:::::::
version

::
of

::::
these. Apart from isolated direct in situ measurements using e.g. sonic anemometers, all data sources have in common that

:::::::
methods

:::::
share

:
a
::::
need

::
of

:
bulk flux algorithms are applied

::::
such

::
as

:::::::
COARE

::::
3.0a

:::::::::::::::::
(Fairall et al., 2003) to derive LHF . The near-

surface wind speed (U ), the saturation specific humidity at the sea surface (qs), and the near-surface specific humidity (qa)

serve as input bulk parameters, on which the parameterized LHF primarily depend.30

However, global LHF time series are often subject to uncertainties of unknown magnitudes, which for example hampers the

conclusion whether there is a significant multi-decadal trend in global
::
In

::::::::
particular,

:::::::
satellite

:::::::::::
climatologies

::::
have

::
a

:::
vast

::::::::
potential

::
for

:::::::
climate

:::::::
research

::::::::::
applications,

::
as

::::
they

::::::::::
incorporate

:::
data

::::
with

::::
high

::::::
spatial

:::::::::
resolution,

:::::
cover

::::
time

::::::
periods

::
up

::
to
::::::
several

::::::::
decades,

:::
and

::::::
provide

::
a
::::::::
complete

::::::
oceanic

::::::::
coverage

::::
over

::::::
ice-free

:::::::
regions.

::
Of

:::::
these,

:::
the Japanese Ocean Flux data sets with Use of Remote

2



Sensing Observations (J-OFURO) satellite climatology (Kubota et al., 2002), the Goddard Satellite-based Surface Turbulent

Heat Flux (GSSTF) Version 3 product (Shie et al., 2012), the updated version of the French Research Institute for Exploitation

of the Sea (IFREMER) turbulent flux estimates (Bentamy et al., 2013), the SeaFlux Version 1 and 2 data sets (Clayson et al.,

2015), and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (Andersson et al.,

2010; Fennig et al., 2012),
:::::::
amongst

::::::
others,

:::::::
include

:::::::::::
LHF -related

::::::::::
parameters.The HOAPS data set is a completely satellite-5

based, single-source climatology of precipitation, evaporation, related turbulent heat fluxes, and atmospheric state variables

over the global ice-free oceans. The usefulness of HOAPS for climatological applications has been demonstrated in numerous

intercomparison studies and promising results have been published by Bentamy et al. (2003), Bourras (2006), Klepp et al.

(2008), Winterfeldt et al. (2010), Andersson et al. (2011), and Stendardo et al. (2016).

In the framework of assessing sea surface freshwater fluxes, Romanova et al. (2010) conclude that HOAPS-3 is well suited10

for global applications and serves as an important and independent data set that should be included in future ocean syntheses.

::::::::::
Independent

::
of

:::
the

::::
data

::::::
source,

:::
all

:::::
global

::::::
LHF

::::
time

:::::
series

:::
are

::::::
subject

::
to

::::::::::::
uncertainties,

::::
often

::
of
::::::::

unknown
:::::::::::
magnitudes. On

the one hand, in situ LHF climatologies, which often include data from buoys and ships, are known to contain biases (e.g.

Wang and McPhaden, 2001), to be of variable quality, and to be unevenly sampled. Although research vessel measurements

of e.g. qa are expected to be of good quality (e.g. Roberts et al., 2010), they are regionally limited, which also accounts15

for data from moored buoys (Weller et al., 2008). Issues related to poor data densities over the Southern Ocean, amongst

others, are for example stressed in Yu and Weller (2007), Bourassa et al. (2013), and Prytherch et al. (2014). In consequence,

this impedes a meaningful discussion regarding the quality of LHF in this climatologically important region (Josey, 2011).

Despite the above-addressed issues, the research community has put effort into uncertainty characterizations regarding in situ

LHF -related measurements. Whereas random uncertainties of ship-based LHF -related parameters are for example discussed20

in Gleckler and Weare (1997) , Kent and Berry (2005) , and Kent and Taylor (2006) , systematic uncertainties are assessed in

e.g. Kent et al. (1993) and Kent and Taylor (1996) . An example of an in situ LHF climatology incorporating uncertainty

estimates is given by NOCS v2.0 (Berry and Kent, 2009) .

On the other hand,
:::
long

:
global reanalysis products such as ERA-Interim (Dee et al., 2011) and NCEP-NCAR (Saha et al.,

2010) have a high temporal resolutionand extent of time series, but are not capable of resolving local-scale processes due to a25

lack of spatial detail (Winterfeldt et al., 2010). Specifically over data-sparse regions, more weight is given to the atmospheric

model, which is also prone to uncertainties (e.g. Gulev et al., 2007). At some level
::::
Thus, atmospheric reanalysis thus suffer

from problems in their freshwater budgets (e.g. Schlosser and Houser, 2006; Trenberth et al., 2007).

Several remote sensing data records incorporate LHF -related parameters, e.g. the Japanese Ocean Flux data sets with Use

of Remote Sensing Observations (J-OFURO) satellite climatology (Kubota et al., 2002) , the Goddard Satellite-based Surface30

Turbulent Heat Flux (GSSTF) Version 3 product (Shie et al., 2012) , the updated version of the French Research Institute

for Exploitation of the Sea (IFREMER) turbulent flux estimates (Bentamy et al., 2013) , the SeaFlux Version 1 and 2 data

sets (Clayson et al., 2015) , and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology

(Andersson et al., 2010; Fennig et al., 2012) . As all incorporate data with high spatial resolution and cover up to several

decades, they have a vast potential for climate research applications.35
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The HOAPS data set is a completely satellite-based, single-source climatology of precipitation, evaporation, related turbulent

heat fluxes, and atmospheric state variables over the global ice-free oceans. The usefulness of the HOAPS climatology for

climatological applications has been tested among numerous intercomparison studies and promising results have been published

within Bentamy et al. (2003) , Bourras (2006) , Klepp et al. (2008) , Winterfeldt et al. (2010) , Andersson et al. (2011) , and

Stendardo et al. (2016) . In the framework of assessing sea surface freshwater fluxes, Romanova et al. (2010) for example5

conclude that HOAPS-3 is well suited for global applications and serves as an important and independent data set that should

be included in future ocean synthesis.

As in situ and reanalysis data records,
::::::::
Similarly, remotely sensed LHF climatologies are also prone to uncertainties. Next

::
In

:::::::
addition to calibration uncertainties and aliasing problems (Bentamy et al., 2003) , uncertainty sources either originate from un-

certainties in the parameterization (Zeng et al., 1998; Brunke et al., 2002, 2003)
::::::::::::::::::::::
(Brunke et al., 2002, 2003) or may be linked10

to the inaccuracy of the input bulk variables (Bourassa et al., 2013). In the framework of an oceanic LHF assessment, Brunke

et al. (2011) for example conclude that the uncertainty of HOAPS-3 LHF is largely composed of bulk variable-caused issues

::
to

:
a
::::
great

::::::
extent

:::::
caused

:::
by

:::
the

::::
bulk

:::::::
variables

:
due to inaccuracies of their individual retrievals. Liu and Curry (2006) reason sim-

ilarly, while assessing discrepancies of remotely sensed and reanalysis LHF during the 1990s. Romanova et al. (2010) recall

that specifically early satellite-based products contain large uncertainties, as also shown by investigations regarding the hydro-15

logical cycle by Mehta et al. (2005). The knowledge of both accuracy and precision of the remotely sensed bulk parameters

is critical for assessing the quality of satellite-based LHF , as the uncertainties propagate through the applied LHF bulk

formula. Finally, irregular sampling from space introduces sampling uncertainties, which may locally become substantial (e.g.

Gulev et al., 2007).
:
A
:::::::
current

::::::::
overview

::::
study

:::
by

::::::::::::::::::::::::
Loew et al. (2017) highlights

:::
the

::::::::
necessity

::
of

:
a
::::::::
thorough

::::::::::::
satellite-based

::::
data

::::::::
validation

:::
and

:::::
pools

::::::::
different

:::::::::
approaches

::::::
across

:::::::::::
communities.20

To

::
To

:::::
date,

::::::::::::
disagreements

::::::
and/or

::::::::::
weaknesses

::
in
:::::

data
:::
sets

::::
are

::::
often

::::::::
revealed

:::
by

::::::::::
performing

:::::::::::::
intercomparison

:::::::
studies,

:::::
such

::
as

:::::
those

::::::::
presented

:::
by

:::::::::::::::::::
Chou et al. (2004) and

::::::::::::::
Yu et al. (2011) .

:::::::
Another

::::::::
example

::::::::
including

:::::::::
HOAPS-3

:::::
LHF

::
is

::::::::
presented

:::
in

::::::::::::::::::::
Andersson et al. (2011) ,

::::
who

::::
show

:::::::::::
considerable

:::::::::
differences

::
on

:
a
:::::
local

:::::
scale.

::::::
Similar

:::::::
findings

:::
are

::::::::
published

::
in

:::::::::::::::::
Iwasaki et al. (2014) ,

:::
who

::::::::
compare

::::::::
HOAPS-3

::::
and

::::
other

::::
data

::::
sets

::
to

:
a
::::::::
reference

::::::::::
climatology.

:::::::
Results

::::::
indicate

::::
that

:::::::::
differences

:::
are

::::::
largest

::::
close

::
to

::::
15◦25

::::
N/S,

:::::
which

:::::::
mostly

::::
arise

:::::
from

:::::::
differing

:::
qa.

::::::::
Generally,

::::
such

::::::::::::::
intercomparison

::::::
studies

:::
are

:::::::
valuable

:::
for

:::
the

:::::::
research

::::::::::
community.

:::
By

::::
this,

::::::::
however,

:::
the

::::::
source

::
of

::::::::
observed

:::::::::
differences

:::::::
remains

:::::::
unknown

::::
and

:::
can

::::::::
therefore

:::
not

::
be

::::::::
attributed

::
to

:
a
:::::::
specific

::::
data

:::
set.

::
To

:
better quantify the quality of satellite-

based data sets, Prytherch et al. (2014) recently emphasized the value grid box based,
:::
that comprehensive uncertainty estimates

(in their case of qa) would have
:::
are

:::::::
valuable

:
for climate research purposes. To date, none of the above-listed, satellite-based30

data sets
::::::
records

:
are accompanied by LHF -related uncertainty estimates, which hampers a quality assessment of the air–sea

fluxes and related parameters.

Such uncertainty assessments would go beyond conventionalLHF intercomparison studies(as e.g. presented Chou et al., 2004; Yu et al., 2011) ,as

they would
:
,
::
as

::::
they allow for quantifying the data’s accuracy

:::::::::
(systematic

::::::::::
uncertainty)and precision

:::::::
(random

::::::::::
uncertainty). Con-

sistency among two data sets would for example be achieved when independent measurements agree within their individual
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uncertainties, as Immler et al. (2010) formulates the benefit of such an approach. Assimilation schemes like GECCO require

such uncertainty information prior to assimilating respective fields in ocean models.

:::
Few

:::::::
studies

::::
have

:::::
taken

:::
on

:::
the

:::::::::
challenge

::
of

::::::::::
uncertainty

::::::::::
assessments

::
in
:::::::

context
::
of

::::::::::::
LHF -related

::::::::::::
climatologies.

::::::::
Whereas

::::::
random

:::::::::::
uncertainties

::
of

:::::::::
ship-based

:::::::::::
LHF -related

:::::::::
parameters

:::
are

:::
for

:::::::
example

::::::::
discussed

::
in

:::::::::::::::::::::::
Gleckler and Weare (1997) ,

:::::::::::::::::::
Kent and Berry (2005) ,5

:::
and

::::::::::::::::::::
Kent and Taylor (2006) ,

:::::::::
systematic

:::::::::::
uncertainties

:::
are

::::::::
assessed

::
in

:::
e.g.

::::::::::::::::::
Kent et al. (1993) and

:::::::::::::::::::::
Kent and Taylor (1996) .

:::
An

:::::::
example

::
of

::
an

::
in

:::
situ

:::::
LHF

::::::::::
climatology

:::::::::::
incorporating

:::::::::
uncertainty

::::::::
estimates

::::::
(based

::
on

:::::::
optimal

:::::::::::
interpolation)

::
is

:::::
given

::
by

::::::
NOCS

::::
v2.0

::::::::::::::::::::
(Berry and Kent, 2009) .

:
A
:::::::::::::
satellite-related

::::::::::
uncertainty

:::::::::
assessment

::
is

::::::::
published

::
by

:
Brunke et al. (2011), who decomposed

overall biases with respect to direct in situ records into a bulk variable and a residual component, the latter which also includes

the measurement uncertainty. A current overview study by Loew et al. (2017) highlights the necessity of earth observation10

data validation and pools different approaches across communities. Finally, assimilation schemes like GECCO require such

uncertainty information prior to assimilating respective fields in ocean models
::::::::
Recently,

::::::::::::::::::::::::
Kinzel et al. (2016) presented

::
an

::::::
elegant

:::::::
approach

:::
for

:::::::::::
decomposing

:::::::
random

:::::::::::
uncertainties

:::::::
inherent

::
to

::::::::::
independent

::::
data

::::
sets

:::::
using

::::
triple

::::::::::
collocation.

:::::
Apart

:::::
from

::::::
NOCS

::::
v2.0,

::::
none

:::
of

:::
the

::::::::
remaining

::::::::::::
LHF -related

::::::::::::
climatologies,

:::::::::
irrespective

:::
of

::::
their

::::
data

::::::
source,

:::::::
include

::::::::::::
comprehensive

::::::::::
uncertainty

:::::::::
information

:::::::::
appended

::
to

:::
the

:::
data.15

In the framework of the German research
:::::::
Research

::::::::::
Foundation

::::::
(DFG) initiatives ’FOR1740’ and ’FOR21740’ (’Atlantic

Freshwater Cycle’, http://for1740.zmaw.de/ ), the lack of uncertainty information
:::::::
inherent

::
to

::::::
satellite

::::
data is overcome by taking

on the challenge of quantifying
::::::::
specifying

:
systematic, random, and sampling uncertainties inherent to

:::::::::
exclusively

:::::::::
associated

::::
with HOAPS-3.3 LHF -related parameters.

:::
This

::::::::::
manuscript

:::
not

::::
only

:::::::::
introduces

:::
the

::::::::::::
methodology,

:::
but

::::
also

:::::::::::
demonstrates

:::
its

:::::::::
application

::
to

:::::
arrive

::
at

::::::::::
HOAPS-3.3

:::::::::::
LHF -related

::::::::::
uncertainty

::::::::
estimates.

:
20

::::
Once

::::
the

::::::
applied

::::
data

:::::::
sources

:::::
have

::::
been

:::::::::
described

::
in

:::::
more

::::::
detail

:::::
(Sect.

:::
2),

::::::
double

::::::::::
collocation

:::::::
analysis

:::
is

:::::::::
performed

:::::
(Sect.

::::
3.1).

:::::::::
Respective

:::::::::
matchups

:::::
serve

::
as

:::::
input

::
to

:::::::::::::::
multi-dimensional

::::
bias

::::::::
analyses

:::::
(Sect.

::::
3.2),

::::::
which

:::::
result

::
in

::::::::
estimates

:::
of

:::::::::::
instantaneous

:::::::::
systematic

:::
and

::::
total

::::::
random

::::::::::
uncertainty.

:::::::
Finally,

::::::
random

::::::::::
uncertainty

::::::::::::
decomposition

:::::::::::::::::::::::
(Kinzel et al., 2016) isolates

::
the

::::::::
required

:::::::::::::
retrieval-related

::::::::::
contribution

:::::
from

:::::::::
collocation

::::
and

::
in

:::
situ

:::::::::::
measurement

:::::::::::
contributions

:::::
(Sect.

::::
3.3).

:
Rigorous error

propagation to the instantaneousLHF -related data is performed
:::::::::::
subsequently, which accounts for how uncertainties in the bulk25

parameters propagate into uncertainties of LHF themselves , while accounting for covariances of the contributing parameters.

Section 2 presents the applied datasources in more detail
:::::
(Sect.

::::
3.4).

::::
The

::::::::
described

:::::::
sequence

::::::
allows

:::
for

::::::::
assigning

::::::::::
HOAPS-3.3

:::::
related

::::::::::
systematic

:::
and

:::::::
random

::::::::::
uncertainty

::::::::
estimates

:::
to

:::
the

:::::::::
pixel-level

:::::
data,

::::::
which

::
is

:::
not

::::::::
available

:::
for

::::
any

:::::
other

:::::::
satellite

:::
data

::::::
record

::
to
::::

date. As to systematic uncertainty patterns
:::::::
monthly

:::::
mean

::::::::
sampling

:::::::::::
uncertainties

:::::
(Sect.

::::
3.5), the approach of30

double collocation and multi-dimensional bias analyses is introduced in Sect. 3. This is complemented by the strategy of

decomposing random uncertainties via multiple triple collocation to separate the eligible random satellite retrieval uncertainty

from collocation and in situ measurement contributions.
::
by

::::::::::::::::::::::::
Tomita and Kubota (2011) is

:::::::::
employed.

:
All uncertainty compo-

nents are presented in Sect. 4, where seasonal and regional differentiations allow for assessing the uncertainty spectrum. This

is supplemented by trend analysis in light of
:::::
which

:::::::
includes

:::::::
regional

:::
and

::::::::
seasonal

:::::::::::::
differentiations.

:::::::
Section

:
4
::::
also

:::::::::
comprises

:
a
:::::
trend

:::::::
analysis

:::::::
applying

:
the derived uncertainty estimates. Section 5 provides a

:
A

:
summary and a brief outlook regarding
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ongoing work .
::
are

::::::::
provided

::
in

:::::
Sect.

::
5.

:::
The

:::::::::
introduced

::::::::
methods

:::
can

:::::
easily

:::
be

:::::::::
transferred

::
to

:::::
other

::::::::
retrievals,

:::::::::::
highlighting

:::
the

::::
value

::
of

::::
this

:::::
study.

:
5

2 Data

2.1 HOAPS-3.3 Pixel-Level Data Records

Apart from the sea surface temperature (SST ), all HOAPS parameters are derived from intercalibrated Special Sensor Mi-

crowave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave radiometers, which are10

installed aboard the polar orbiting satellites of the United States Air Force Defense Meteorological Satellite Program (DMSP).

HOAPS provides consistently derived global fields of freshwater flux related parameters. Regarding sensor specifications and

orbital paths, the reader is referred to e.g. Andersson et al. (2010).

Here, the focus lies on the HOAPS-3.3pixel-level, which has been produced as an extension to the HOAPS-3.2 data

set (Andersson et al., 2010; Fennig et al., 2012) in the framework of the ongoing DFG research activity. It
::
Its

:::::::::
extensive15

::::::::::::
documentation

::
is

:::::::
available

::::::
online

::::::::::::::::::
(Fennig et al., 2013) .

::::::::::
HOAPS-3.3

:
covers the time period from 1987 to 2015, during which

a total number of nine satellite instruments were in operational mode .
::::::::
(F8-F18).

:::
The

::::::
spatial

:::::::::
resolution

::
of

:::
the

:::::::::
pixel-level

::::
data

:
is
::::::::::::::::
channel-dependent.

::::
For

::::::
SSM/I,

::
it

:::::
varies

::::
from

:::
69

:::
km

::
by

:::
43

:::
km

:::
(19

::::
GHz

::::::::
channel)

::
to

::
37

:::
km

:::
by

::
28

:::
km

:::
(37

::::::
GHz).

::::::::
Likewise,

::
it

:::::
ranges

:::::
from

::
74

:::
km

:::
by

::
47

::::
km

:::
(19

::::
GHz

::::::::
channel)

::
to

::
41

:::
km

:::
by

::
31

::::
km

:::
(37

:::::
GHz)

:::
for

::::::
SSMIS

:::::::
sensors.

:
Compared to HOAPS-3.2,

HOAPS-3.3 has been temporally extended up to 2015 and is based on a pre-release of the CM SAF SSM/I and SSMIS FCDR.20

This reprocessing included a homogenization of the radiance time series by means of an improved inter-sensor calibration

with respect to the DMSP F11 instrument. Earth incidence angle normalization corrections were applied, following a method

described by Fuhrhop and Simmer (1996). Its extensive documentation is available online (Fennig et al., 2013) . Since the

HOAPS-3.1 release, HOAPS is hosted by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF),

whereupon its further development is shared with the University of Hamburg and the Max Planck Institute for Meteorology25

(Hamburg). In this study, the pixel-level HOAPS-3.3 data in sensor resolution is used, which implies that no aggregation for

gridding purposes has been applied.

HOAPS-3.3 qa relies on a direct, four-channel retrieval algorithm by Bentamy et al. (2003), which is based on a modified

version of the two-step multi-channel regression model by Schulz et al. (1993) and its refinement by Schlüssel (1996). 1000

globally collocated pairs of SSM/I TBs
::::::::
brightness

:::::::::::
temperatures

:::::
(TBs) and ship data between 1996-1997

::::::
1996-97

:
were used to30

estimate the new values for the coefficients in the Schulz model.

To account for the non-linearity of the problem, the HOAPS-3.3 U algorithm uses a neural network approach with three

layers after Krasnopolsky et al. (1995) to derive the wind speed at 10 m above sea level (a.s.l.). The network was trained with a

composite data set of buoy measurements, which was compiled using matchups of SSM/I F11 brightness temperatures (TBs )

:::
TBs

:
and near-surface wind speed measurements from the National Oceanographic and Atmospheric Administration (NOAA)
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National Data Buoy Center (NDBC) and the Tropical Atmosphere Ocean (TAO) array between 1997-98. Radiative transfer

simulations based on radiosonde profiles served as input for the training data set (Andersson et al., 2010).

HOAPS-3.3 SST is based on the AVHRR Pathfinder Version 5.2 and is obtained from the US National Oceanographic

Data Center and the Group for High Resolution Sea Surface Temperature (http://pathfinder.nodc.noaa.gov). The data are
::
is5

an updated version of the Pathfinder Version 5.0 and 5.1 collection described in Casey et al. (2010). A static bias correction

of +0.17 K has been applied to HOAPS-3.3 SST data in order to revert the Pathfinder Version 5.2 skin correction and thus

achieve consistency with Version 5.0 used in HOAPS-3.2.

HOAPS-3.3 sea surface saturation specific humidity qs is derived by applying the Magnus formula (Murray, 1967) to SST ,

while accounting for a constant salinity correction factor of 0.98. Zeng et al. (1998) , e.g., showed that omitting the factor under10

strong wind conditions has a significant impact on resulting LHF .

HOAPS-3.3 LHF is based on the Coupled Ocean–Atmosphere Response Experiment (COARE) 2.6a bulk flux algorithm.

With minor modifications of physics and parameterizations, the algorithm is published as COARE 3.0
::::::::::
COARE-3.0a by Fairall

et al. (2003). U , qs, and qa are required
:
It
:::::::
includes

:::::::::::
atmospheric

::::::
stability

:::::::::::
calculations,

:::::
which

:::::::::
necessitate

::::::
surface

:::
air

:::::::::::
temperatures

as input. The latter depends on the surface air temperature, which is
::::
These

::::
are estimated by assuming a constant relative15

humidity of 80 % (Liu et al., 1994) and air-sea temperature difference of 1 K (Wells and King-Hele, 1990).
:
A
::::::::

constant

:::
sea

::::::
surface

:::::::
pressure

:::
of

:::::::
1013.25

:::
hPa

::
is
:::::::::
prescribed

::::::
within

:::
the

::::
bulk

::::
flux

:::::::::
algorithm. COARE-3.0 is widely accepted within the

scientific community; its benefits are for example presented in the framework of an intercomparison study by Brunke et al.

(2003).

2.2 DWD-ICOADS Data Archive20

Hourly in situ measurements of U , qs, and qa (bulk parameters, as of now) have been provided by the Marine Climate Data

Center of the German Meteorological Service (DWD), supervised by the Marine Meteorological Office (Seewetteramt, SWA).

While data prior to 1995 is excluded due to a comparatively poor in situ data coverage, the data set used here includes mea-

surements up to 2008. It comprises global high-quality shipborne measurements as well as data provided by drifting and

moored buoys. In case of data gaps within the SWA archive, the in situ data basis was extended at SWA by available Interna-25

tional Comprehensive Ocean–Atmosphere Data Set (ICOADS) measurements (Version 2.5, Woodruff et al., 2011). These
::
A

::::::::::::
comprehensive

::::::::
literature

::::::::
overview

::
on

::::::::
research

::::::::::
applications

::::::::
involving

::::::::
ICOADS

::::
data

::
is

:::::
given

::
by

:::::::::::::::::::
Freeman et al. (2016) .

:::::
Both

::::
SWA

::::
and

::::::::
ICOADS records contain hourly global measurements obtained from ships, moored and drifting buoys as well as

near-surface measurements of oceanographic profiles. Several quality checks were performed at SWA prior to using the merged

DWD-ICOADS data, which resulted in quality index assignments to each observation. Details regarding the flagging proce-30

dures carried out at SWA are given in Kinzel et al. (2016).

In preparation for the uncertainty analyses, further filtering and correcting procedures to both ship and buoy data were carried

out. Regarding ship records, annual lists of Voluntary Observing Ships (VOS) metadata (Kent et al., 2007) were employed.

Most of the supplementary buoy metadata was extracted from the Data Buoy Cooperation Panel, which particularly includes a

fleet of moored buoy arrays operated by NDBC. Metadata of the Global Tropical Moored Buoy Array, such as TAO-TRITON
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(Pacific-), PIRATA (Atlantic-), and RAMA (Indian Ocean) were obtained from the Pacific Marine Environment Laboratory

(PMEL).

ICOADS VOS estimates of qa are based on wet bulb temperature measurements, typically using mercury thermometers,

which are often exposed in either (ventilated) screens or sling psychrometers (Kent et al., 2007). qa is eventually derived by5

applying the psychrometric formula. By contrast, qa estimates of buoys originate from measurements of air temperature and

relative humidity. For this study, qa of both VOS and buoys were not corrected to the HOAPS-3.3 reference of 10 m a.s.l.,

assuming neutral stratification. A discussion related to this approach is published in Kinzel et al. (2016). It is in line with

Prytherch et al. (2014), who conclude that a conversion to 10 a.s.l. (neutral stability) substantially adds to the noise in the

resulting in situ qa. The aspect of correcting qa with respect to height and stratification is also elucidated in Bentamy et al.10

(2003) and
::::::::::::::::::
Bentamy et al. (2013) ,

:::::::
whereas

:
correction effects are presented in Kent et al. (2014).

:::
The

::::::
authors

:::
for

::::::::
example

:::::::
quantify

:::
the

:::::
height

:::::::::
correction

:::::
effect

::::
due

::
to

:::::::::::
continuously

::::::::
increasing

::::::::::::
measurement

:::::::
platform

:::::::
heights

:::::::
between

:::::::::
1971-2006

::
to

:::
be

::::
0.11

:
g
::::
kg-1.

::::::::
However,

::::
this

:::::
effect

::
is

::::::
masked

:::
by

::::
bias

:::::::::
corrections

:::::::::
associated

::::
with

:::::::::::
measurement

::::::::::
techniques,

:::::
which

:::
are

:::::::
thought

::
to

::
be

:::
2-3

:::::
times

:::::
larger.

:

DWD-ICOADS VOS U are either measured using anemometers (likewise for buoys) or are estimated from the sea state,15

depending on the preference of the country recruiting the VOS (Kent et al., 2007). By means of the measured wind speed and

direction, the true wind speeds are derived considering the ship’s speed and direction. If a specific anemometer height was not

given, it was estimated from the annual global mean height difference with respect to the thermometer platform. For each year,

this single height difference value is based on all contributing ship records with complete metadata information. Prior to 2002,

no thermometer heights were available; consequently, the height difference was set to 6 m (average between 2002-2008). In20

case both sensor heights were unknown, the linear fits shown in Table 4 of Kent et al. (2007) were used to derive anemometer

heights based on available ship length metadata. It was assumed that these ship type dependent linear fits (Kent et al., 2007,

their Fig. 11) introduce negligible uncertainties to the sensor height derivation. Given the anemometer heights of both VOS and

buoys, in situ wind speeds were corrected to the HOAPS-3.3 standard height of 10 m a.s.l. to remove inhomogeneities, using

the iterative equivalent neutral stability approach of Fairall et al. (2003). With the exception of e.g. (stable stratified) upwelling25

regimes or local instabilities, the equivalent neutral stability assumption is valid over vast regions of the open oceans. The

correction using a neutral wind equivalent profile has been suggested by e.g. Shearman and Zelenko (1989). It is argued that in

case of VOS, the omission of a correction would lead to a positive wind speed bias, as the average wind sensor height is given

by 18 m (Kent et al., 2014). By contrast, buoy U would be low-biased.

VOS SST measurement techniques differ in terms of platform, measurement depth, and extent of automation. Strictly speak-30

ing, in situ SST are sub-surface temperatures and thus differ from the HOAPS-3.3 Pathfinder SST , which are treated as a skin

SST for the surface flux calculations. This necessitates an in situ cool-skin correction as a function of wind speed, following

Donlon et al. (2002). Their Equation (2) was applied, omitting all records subject to wind speeds below 2 m s-1 (corrected to

10 m a.s.l.), as the exponential fit introduces additional uncertainty for very calm conditions. On average, the SST correction

reduced the DWD-ICOADS SST by approximately 0.17 K. Moreover, the warm layer part of the COARE 3.0 algorithm is not

implemented in HOAPS-3.3 due to the lack of a continuous diurnal cycle information on the surface radiation budget from the
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SSM/I and SSMIS measurements. To be directly comparable to the in situ counterpart, all in situ measurements taken during5

local daytime were excluded. As only night-time in situ measurements during non-calm conditions were considered, the sea

water temperature gradient within the uppermost meters of the water column is thought to be negligible. A SST correction

with respect to the sensor depths was therefore omitted for both VOS and buoys, independent of the measurement platform.

All VOS data processing described above were
:::
was

:
carried out for research vessels (so-called ’special ships’) and merchant

vessels only due to vast data amounts and in order to minimize in situ uncertainties. In case of multiple triple collocation10

analysis (Sect. 3.3), buoy records were excluded to ensure having a consistent, globally distributed data set as the ground

reference for the random decomposition procedure. It is argued that the vast amount of remaining triplets authorizes this

restriction.

Despite strict filtering and correcting procedures, in situ measurement uncertainties related to sensor types, measurement

heights and positions, and solar radiation contamination may remain (e.g. Bourassa et al., 2013). Assessments regarding15

the quality of the reference data are beyond the scope of this article. The in situ data basis is therefore considered as the

bias-free, ground reference.
::::
This

:::::::::
assumption

::
is
:::
in

:::
line

::::
with

::::::::::
calibration

:::
and

:::::::::
validation

:::::::::
approaches

:::
of

:::::::::::::::::::
Bentamy et al. (2003) ,

::::::::::::::::::
Jackson et al. (2009) ,

:::
and

::::::::::::::::::::
Bentamy et al. (2013) ,

:::::::
amongst

::::::
others.

:::
As

::::
will

:::
be

::::::
shown

::
in

:::::
Sect.

::::
3.2,

:::
the

:::::::
HOAPS

::::::::::
systematic

::::::::::
uncertainties

::::::::
presented

:::
in

:::
this

:::::
work

:::
are

:::::::::
interpreted

::
as

::::::
upper

::::
limit

::::::::
estimates.

:::::::::
Therefore,

:::
the

::::::::::
assumption

::
of

::
a
::::
bias

:::
free

:::::::
ground

:::::::
reference

:::::
does

:::
not

::::::
violate

:::
our

:::::
main

::::::::::
conclusions,

::::::::
although

:
a
:::::
small

::::::::::
contribution

::
to
:::

the
:::::::::

systematic
:::::::::::

uncertainties
::::
may

:::
be

::::::
caused20

::
by

:::
the

::
in

::::
situ

:::::::::
reference.

3 Methodology

This Section describes the technical background for deriving systematic, random, and sampling uncertainties inherent to

HOAPS-3.3.
::
By

::::::::::
performing

::::::
double

:::::::::
collocation

:::::::
analysis

::::::
(Sect.

::::
3.1),

:::::::::::::::
multi-dimensional

::::
bias

:::::::
analysis

:::::
(Sect.

::::
3.2),

::::
and

:::::::
random

:::::::::
uncertainty

::::::::::::
decomposition

:::::
(Sect.

::::
3.3),

:::::::::
pixel-level

::::
data

:::
will

:::
be

:::::::
equipped

::::
with

::::
both

:::::::::
systematic

:::
and

:::::::
random

:::::::::
uncertainty

:::::::::
estimates.25

:::::
When

::::::::
averaging

::
in

:::::
time,

:::::::
sampling

:::::::::::
uncertainties

:::
are

::::
also

::::::::
accounted

:::
for

:::::
(Sect.

::::
3.5).

:
The uncertainties will be examined from an

either instantaneous or climatological
::::
(i.e.,

:::::::::
pixel-level)

:::
or

:::::::
averaged

::::
(i.e.,

:::::::
monthly

::
or

:::::::::::
multi-annual

::::::
mean) point of view, depend-

ing on the scale of interest and thus the application . The random uncertainty decomposition presented in Kinzel et al. (2016) is

therefore complemented, leading to
:::::::::
application

:::::
(Sect.

:::
4).

::::
The

:::::
longer

:::
the

:::::::::
averaging

::::
time

::::::
period,

:::
the

:::::
lesser

:::
the

::::::
impact

:::
of

::::
both

::::::
random

:::
and

::::::::
sampling

:::::::::::
uncertainties.

::::
This

:::::::
implies

:::
that

:::
on

::::::::::::
climatological

:::::
scales,

::::
total

:::::::::::
uncertainties

::::::
hardly

::::
differ

:::::
from

:::::::::
systematic30

:::::::::::
uncertainties.

:::
The

::::::::
sequence

:::
of

:::::::
analyses

::::::
allows

:::
for

:
a complete HOAPS-3.3 uncertainty characterization of LHF -related pa-

rameters
::
on

:::
all

::::
time

::::::
scales,

:::::
which

:::::::::::
complements

:::
the

::::::
random

::::::::::
uncertainty

::::::::::::
decomposition

::
of

:::
qa ::::::::

presented
::
in

::::::::::::::::
Kinzel et al. (2016) .

3.1 Double Collocation Analysis

In preparation for uncertainty calculations, a double collocation analysis is performed for the time period of 2001–2008,

resulting in paired matchups of LHF -related HOAPS-3.3 and in situ data. Although HOAPS-3.3 lasts until 2015, collocations

between 2009–2015 were not performed, as the DWD-ICOADS data archive only lasts until 2008. The collocated pairs are
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based on the so-called nearest neighbor approach; that is, HOAPS-3.3 pixels are assigned to respective in situ observations

closest in time and space. Parameter-independent collocation criteria of ∆x = 50 km and ∆t = 60 min are chosen. These are5

more restrictive than those derived in e.g. Kinzel (2013). Due to the vast amount of available matchups this is justifiable and

ensures that e.g. strong spatial and/or temporal gradients associated with fronts are discarded from further analysis.

Figure
:
1
:::::
(left)

:::::::
presents

:::
the

::::::::
resulting

::::::::::
collocation

::::::
density

::::
for

::::::::::
2001-2008,

::::::::::
exemplarily

:::
for

:::
qa.

:::::::::
Matchups

::::::
mainly

:::::
occur

:::
in

::::::
coastal

::::::
regions

::::::::::
(associated

::::
with

::::::
buoys)

:::
and

:::::
along

:::::
major

::::::::
shipping

:::::
lanes.

:::
By

::::::::
contrast,

:::
the

:::::::
Southern

::::::
Ocean

:::::::::::
considerably

:::::
lacks

::::::::::
high-quality

::
in

:::
situ

:::::::::::::
measurements.

:::
The

:::::::
amount

::
of

::
U

:::
and

::
qs:::::::::::

collocations
::::::
exceeds

:::::
those

::::::
shown

::
in

:::
Fig.

::
1
:::::
(left).

:::
For

:::::::
brevity,

::::
their10

::::::::::
distributions

:::
are

:::
not

::::::
shown.

:

:::::
Figure

:
2a-d exemplarily shows scatter density plots of the qa bias (2001-2008) as a function of the atmospheric state param-

eters qa ("hair"), U ("wind"), SST ("asst"), and water vapour path
:::::::
vertically

:::::::::
integrated

:::::
water

::::::
vapour ("wvpa"), resulting from

the double collocation analyses. Overall, 13.8 million matchups contribute to each subplot. Figure 2a indicates that HOAPS-3.3

overestimates near-surface specific humidities for
:::
The

::::::::
illustrated

::::
bins

:::
are

:::
not

::::::::::
equidistant;

::
in
:::::

fact,
::::
their

:::::
width

:::::::
depends

:::
on

:::
the15

:::
data

:::::::
density

::
of

:::
the

::::::::
matchups.

::::
This

::::::
implies

::::
that

:
5%

::
of

::
all

:::::::::
collocated

::::
pairs

:::
are

::::::::
assigned

::
to

:
a
:::::
single

::::
bin,

::::::::::
respectively.

:::::::::::
Analogously

::
to

:::
Fig.

::
2,

::::::::::::::
one-dimensional

::::
bias

:::::::
analyses

:::
are

:::::::::
performed

:::
for

::::
both

:::
dU

:::
and

::::
dqs :::

(not
:::::::
shown).

:

:::
For qa between 7–12

:::::
values

::::::::
between

::::
7-12 g kg-1 and

:
,
::::::::::
HOAPS-3.3

:::::::::::
overestimates

:::::::::::
near-surface

::::::
specific

:::::::::
humidities

::::
(see

::::
Fig.

:::
2a).

::::::::::::::
Overestimations

:::
are

::::
also

::::::::
observed in the inner tropics(,

::::::
where qa ≈

::
is

::
in

:::
the

:::::
order

::
of

:
20 g kg-1). In return, biases are

negative over Arctic
::
for

:::::
polar

:
(< 5 g kg-1) and subtropical (12–17 g kg-1) humidity regimes. The latter regions

:::::
region

:
is also20

subject to largest random uncertainties, which exceed 2 g kg-1. See Kinzel et al. (2016)
:::
and

:::::::::::::::::::
Prytherch et al. (2014) for more

details on the analysis of HOAPS-3.3 qa:::
and

::
its

:::::::::::
resemblance

::
to

:::::::
GSSTF3

:::
qa :::::::::::::::

(Shie et al., 2012) .
::::
The

:::::
spatial

::::::::::
distribution

::
of

:::::
these

::
qa:::::

biases
:::
are

::::::
shown

::
in
::::

Fig.
::
1
::::::
(right). The humidity bias and standard deviation dependency on SST (Fig. 2c)shows similar

features regarding regimes of over- and underestimation.
::::::::::
Specifically

:::
the

::::::::::::::
underestimations

::::::::::::::
(overestimations)

::::
over

::::::::::
subtropical

:::::::
(tropical)

:::::::
oceans

:::
are

::::
well

::::::::
resolved. Humidity biases as a function of wind speed are illustrated in Fig. 2b. The distribution25

is somewhat linear, where low (high) wind regimes are over-(under-)represented
:::::::
estimated

:
in HOAPS-3.3. In contrast to the

remaining atmospheric state parameters, the random uncertainty decreases fairly linearly with increasing wind speeds.
:::
The

:::
qa

:::
bias

::::::::::
distribution

::
as

::
a

:::::::
function

::
of

:::::
SST

::::
(Fig.

:::
2c)

::::::::
resembles

::::
that

::
of

:::
the

:::::::::::
qa-dependent

::::::::::
distribution

::::
(Fig.

::::
2a)

::::::::
regarding

:::::::
regimes

::
of

::::
over-

:::
and

::::::::::::::
underestimation.

:
A dependency of dqa on the total integrated water vapour (Fig. 2d) shows only few distinct features.

Most matchups coincide with values below 20 kg m-2. With the exception of smallest values, these result in positive biases30

with respect to HOAPS-3.3.
::
As

:::
the

:::::::
abscissa

::::
and

:::::::
ordinate

:::::::
variables

::
in

::::
Fig.

::
2

::
are

:::::::::
correlated,

:::
we

::::::::::
investigated

:::
the

:::::::::::
contribution

::
of

:::::::
artificial

:::::
biases

:::
by

:::::::::
illustrating

:::
dqa::

as
::
a

:::::::
function

::
of

::
in

:::
situ

:::
qa,

:::
U ,

:::
und

::::::
SST .

::::::
Results

:::::::
indicate

:::
that

:::
the

::::::::
percental

:::::::::
difference

::
of

:::
the

::::
mean

:::
bin

::::::
values

:::::
(black

:::::::
squares)

:::
of

::::::
HOAPS

::::
and

:::::::::::::
DWD-ICOADS

:::::
range

:::::::
between

::::
6-10%

:::
(not

:::::::
shown).

:::
We

:::
are

::::::::
therefore

::::::::
confident

:::
that

:::
our

::::::::
approach

::
is

::::::
robust.

:::::::::
Two-sided

::::::::
regression

::::::::
analyses

:::::
could

::::::
further

:::::
reduce

:::::
these

:::::::
spurious

::::::
biases.

:

A comparison of e.g. Fig. 2a and b indicates that the simple one-dimensional bias analyses may be misleading when it comes

to HOAPS-3.3 qa-related uncertainty characterizations. Average qa off the Arabian Peninsula, for example, are in the order of5

14–15 g kg-1
:::
(not

:::::::
shown). According to Fig. 2a, this is associated with a HOAPS-3.3 qa underestimation. ,

:::
as

::
is

:::
also

:::::
seen

::
in

:::
Fig.

::
1

::::::
(right). At the same time, climatological mean wind speeds are as low as 3–5 m s-1

:::
(not

:::::::
shown), which goes along with a
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HOAPS-3.3 qa overestimation (Fig. 2b). This is no contradiction, but rather indicates that the HOAPS-3.3 qa retrieval seems to

encounter challenges for specific humidity and wind regimes. Furthermore, a constraint to one-dimensional analyses implies for

example that parts of the random uncertainties illustrated in Fig. 2a (bars) receive a systematic component in Fig. 2b (squares).10

This conclusion motivates to proceed with multi-dimensional
:::::::::::::::
multi-dimensional bias analyses, where all possible atmospheric

states, i.e. combinations of the four chosen atmospheric state parameters, are accounted for simultaneously. This approach

finally allows for separating systematic from random uncertainties. Results illustrated in Fig. 2 can therefore be considered

as a preliminary stage of the four-dimensional bias analyses introduced in Sect. 3.2, where each of the four atmospheric state

variables (i.e., Fig. 2, x-axes) represent one dimension. Analogously to Fig. 2, one-dimensional analyses are performed for15

both dU and dqs (not shown).

3.2 Multi-Dimensional Bias Analyses

The bulk formula for LHF is given by

LHF = ρaLV CEU(qs − qa), (1)

where ρa is the density of moist air and LV the latent heat of vaporization. ρa is derived as a function of HOAPS-3.3 qa and20

near-surface air temperature. Likewise, LV is computed simultaneously as a function of HOAPS-3.3 SST .

Assuming uncertainties in ρa and LV to be negligible and according to standard error propagation, the overall LHF uncer-

tainty is a function of the systematic and random uncertainties introduced by the remaining parameters.

::
As

:::
to

:::
the

::::::
Dalton

:::::::
Number

::::
CE ,

::::
the

::::::::
estimates

::
of

:::::::::::::::::::
Fairall et al. (2003) are

:::::::
applied

:::
by

::::::::
assigning

::
5
:
%

:::
(10

:
%

:
)
::
of
::::::::::

systematic

:::::::::
uncertainty

::
of
::::
CE:::

for
:::::

wind
::::::
speeds

:::::::
smaller

:::::::
(larger)

::::
than

:::
10

::
m

::::
s-1.

:::
For

:::::
wind

::::::
speeds

:::::::::
exceeding

:::
20

::
m

:::
s-1,

::::
the

:::::::
estimate

:::
of25

::::::::::::::::::::::::
Gleckler and Weare (1997) of

::
12

:
%

:
is
:::::

taken
:::
on.

::::::::::::
Independently

:::
of

::
U ,

:::::::
random

:::::::::::
uncertainties

::
of

::
20

:
%

:::
are

::::::::
assigned,

::
as

::::::::
proposed

::
by

:::::::::::::::::::::::
Gleckler and Weare (1997) .

:

In case of U , qs, and qathese
:
,
::
the

:::::::::::
uncertainties

:
are assumed to depend on the concurrent atmospheric state. The combination

of qa, U , SST , and water vapour path
::::::::
vertically

::::::::
integrated

:::::
water

::::::
vapour

:
is thought to represent the concurrent atmospheric

state best. Therefore, the one-dimensional consideration presented in Sect. 3.1 is expanded by creating four-dimensional look30

up tables (LUTs) including 204 entries, respectively. The dimension is reflected in the exponent, whereas its base represents

the amount of bins per dimension.
::
As

::::::::
described

::
in

::::
Sect.

::::
3.1,

::::
these

::::
bins

:::
are

:::
not

::::::::::
equidistant.

::
In

::::
case

::
of

::::
dqa,

:::
bin

:::::
means

::
of
:::::
each

::
of

::
the

::::
four

::::::::::
dimensions

:::
are

::::::::
indicated

::
by

:::
the

::::::::
x-values

::
of

:::
the

:::::
black

::::::
squares

::::::
shown

::
in

::::
Fig.

::::
2a-d,

:::::::::::
respectively. The values of all four

dimensional vectors are essential for assigning instantaneous, absolute differences (HOAPS-3.3 minus in situ) to the correct

LUTbin and are predetermined by the respective x-values of the black squares shown in Fig. 2a-d
:
.
:::
By

::::::::
averaging

:::
the

:::::::
content

::
of

::::
each

::::
bin,

:::::::::
systematic

:::
and

:::::
total

:::::::
random

::::::::::
uncertainties

::::::
finally

:::::
result

:::
as

:
a
::::::::
function

::
of

:::
the

::::
four

::::::::::
atmospheric

:::::
state

::::::::::
parameters.

:::
The

::::::::
approach

::
of

:::::::::
processing

::::::::
absolute

::::::::
measures

::
of

:::
the

::::::::
observed

:::::::::
differences

::::::
allows

:::
for

:::::::
moving

::::
from

::
a
::::::
simple

::::
bias

:::::::
analysis

::
to5

::
an

:::::::::
uncertainty

::::::::::::::
characterization.

::::
The

::::::::
resulting

:::::::::
systematic

:::::::::::
uncertainties,

:::::
which

:::
are

::::::
shown

::::::::::
throughout

::::
Sect.

::
4,

:::
can

::::::::
therefore

:::
be

:::::
treated

:::
as

::
an

:::::
upper

::::::::
boundary

::
of

::
a

::::
more

::::::
simple

::::
bias

::::::::::
distribution.

11



The uncertainty dependency on specific ambient conditions
::::::::::::::
multi-dimensional

::::::::::
uncertainty

:::::::::::::
characterization

::::::::
approach

:
over-

comes the issues introduced by data-sparse regions, such as the Southern Ocean and the tropical oceans (e.g. Kent and Berry,

2005). Here, it is knowingly turned away from the dependency on matchup density, which implies that the LUTs are valid on a10

global scale. Due to the immense data availability, their
:::::::
pairwise input biases are confined to matchups from 2001–2008 (dqa,

dU ) and 1998–2001/2006–2008 (dqs). A thorough elucidation of the multi-dimensional bias analysis is presented in Kinzel

et al. (2016), exemplarily for HOAPS-3.2 qa (Sect. 2c and Fig. 5, left therein). Here, it is applied to all three bulk parameters,

which results in both systematic and total random uncertainty LUTs.

As to the Dalton Number CE , the estimates of Fairall et al. (2003) are applied by assigning 5 (10 ) of systematic uncertainty15

ofCE for wind speeds smaller (larger) than 10 m s-1. For even stronger wind speeds, the estimate of Gleckler and Weare (1997) of

12 is taken on. Independently of U , random uncertainties of 20 are assigned, as proposed by Gleckler and Weare (1997) .

3.3
:::::::

Random
:::::::::::
Uncertainty

:::::::::::::
Decomposition

Recall that the aim is to characterize uncertainty and not bias patterns. This implies that absolute systematic uncertainty values

are generally presented, i.e., magnitudes are invariably positive. Results presented in Sect. 4.4-4.6 can therefore be considered20

as illustrating the upper boundaries of systematic (that is, climatological) uncertainties.

3.4 HOAPS-3.3 Uncertainty of LHF

The uncertainties inLHF are caused by uncertainties in all bulk input parameters contributing to Eq. . Assuming the underlying

parameterizations to be correct, LHF uncertainties can thus be derived by carrying out standard error propagation. These

uncertainty estimates are assigned at each point in time and space.25

Total instantaneous LHF uncertainties, σLHF , are derived as follows:

σLHF =

√(
∂LHF

∂x

)2

σ2
x +

(
∂LHF

∂y

)2

σ2
y + 2rxy

(
∂LHF

∂x

∂LHF

∂y

)
σxσy,

where x and y are place holders ofU , qs, qa, andCE . rxy is the correlation coefficient between x and y. For each combination

of x and y, the average of daily global mean correlation coefficients between 1995 and 2008 is applied.

σx and σy are
:::
The

:
total uncertainties in x

::::::
random

:::::::::::
uncertainties

:::::::::
introduced

::
in

::::
Sect.

::::
3.2

:
(and y. These can be decomposed

into systematic and random components:

(
∂LHF

∂x

)2

σ2
x =̂

(
∂LHF

∂x

)2

σ2
x,sys +

(
∂LHF

∂x

)2

σ2
x,ran

(
N−1/2

)2
.

N is the number of HOAPS-3.3 satellite observations (N=1 for instantaneous LHF uncertainties ). Note that in case of5

gridded uncertainty products, the random component becomes negligibly small, given long temporal and large spatial averages.

Sampling uncertainties do not exist on an instantaneous basis and are therefore not considered in Eqs. -.
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Recall that σx,ran in Eq. represents the overall random uncertainty of x. To isolate its random satellite retrieval component

(Eran
retr), a random uncertainty decomposition is carried out, which is briefly reviewed in the following.

3.4 HOAPS-3.3 Random Uncertainty Decomposition10

This section briefly summarizes the concept of random uncertainty decomposition. For more mathematical and technical

details, the reader is referred to Kinzel et al. (2016) .

Next to Eran
retr, random uncertainty estimates resulting from collocations (e.g.

:::
also

:::::
those

::::::::::
represented

:::
by

:::
the

:
black error

bars in Fig. 2) include
::::::
random

:
uncertainties associated with the collocation procedure (EC) and in situ measurement noise

(Eins) (e.g. Bourras, 2006). To isolate
::
the

:::::::
random

:::::::
retrieval

:::::::::::
uncertainty, Eran

retr,
:::::
which

::
is

:::::::::
exclusively

::::::::::::::
HOAPS-related,

:
multi-15

ple triple collocation (MTC) analysis is applied to matchups of U , qs, and qa for the time period 1995–2008.
:::
This

:::::::
section

:::::
briefly

::::::::::
summarizes

:::
the

:::::::
concept

::
of

:::::::
random

:::::::::
uncertainty

:::::::::::::
decomposition.

:::
For

:::::
more

:::::::::::
mathematical

:::
and

::::::::
technical

::::::
details,

:::
the

::::::
reader

:
is
:::::::
referred

::
to
::::::::::::::::::

Kinzel et al. (2016) . MTC analysis includes a twofold triple collocation
:::::::::::::::::::::::::::::
(TC, introduced by Stoffelen, 1998) ,

whereupon double collocated data described in Sect. 3.1 serves as input. Triplets incorporating two independent in situ mea-

surements and one HOAPS-3.3 pixel represent the first arrangement, whereas a single in situ record and two HOAPS-3.3 pixels20

of independent satellite instruments form the second triplet structure (see Fig. 1 in Kinzel et al. (2016)). The collocation criteria

applied in Sect. 3.1 are adopted . Data
:::
and

:::
data

:
poleward of 60◦ N/S is excluded to avoid biases associated with sea ice effects.

Subsequent to a bias correction with respect to the in situ measurements, the variances of differences between two indepen-

dent data sources X and Y , that is VXY , are calculated following O’Carroll et al. (2008). Given three data sources and two

types of TCs, this results in six combinations of VXY . Next, error models for both ship and satellite records are defined. In25

case of ship records, these include Eins, whereas for satellite records, they incorporate satellite sensor noise (EN , synthetically

derived) and retrieval model uncertainty (EM ). Applying these error models to the derived VXY results in six equations incor-

porating Eins, EM , EN , and EC . These equations are successively solved for all random uncertainty sources as a function of

the respective bulk parameter.
::
U ,

:::
qs,

:::
and

:::
qa,

:::
that

::
is

:::
for

::
20

:::::::::
individual

:::
bins

:::
per

:::::::::
parameter.

:::::
Each

::
of

::::
these

::::
bins

::::::
include

:::::::::
thousands

::
of

::::
triple

:::::::::
collocated

:::::::::
matchups.

::::::
Finally,

:
Eran

retr =
√

(EM )2 + (EN )2 is the pursued
:::::::
required

:
random satellite retrieval uncertainty

:
,

:::::
which

::
is

::::::
derived

:::
for

::
all

:::
20

::::
bins

::
as

:
a
::::::::
function

::
of

::
U ,

:::
qs,

:::
and

:::
qa.5

Thus, MTC is a powerful tool to decompose total random uncertainties (i.e., Esum = Eran
retr + Eins + EC) inherent to

LHF -related bulk parameters in order to isolate the random retrieval contribution Eran
retr. Depending on the magnitude of the

respective bulk parameter, the fractional contribution ofEran
retr toEsum is finally derived. That is, each entry of the total random

uncertainty LUTs introduced in Sect. 3.2 is ’adjusted’. Table 1
::::::
Section

:::
4.1

:
presents a statistical summary of the instantaneous,

decomposed random uncertainties inherent to U , qs, and qa.10

3.4 Deriving
::::::::::
HOAPS-3.3

:
LHF-Related Uncertainties
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:::
The

:::::::::::
uncertainties

::
in
::::::
LHF

:::
are

::::::
caused

:::
by

:::::::::::
uncertainties

::
in

:::
all

::::
bulk

:::::
input

::::::::::
parameters

::::::::::
contributing

:::
to

:::
Eq.

:
(1)

:
.
:::::::::
Assuming

:::
the

:::::::::
underlying

::::::::::::::
parameterizations

::
to
:::
be

::::::
correct,

:::::
LHF

:::::::::::
uncertainties

:::
can

::::
thus

:::
be

::::::
derived

::
by

::::::::
carrying

:::
out

:::::::
standard

::::
error

:::::::::::
propagation.

:::::
These

:::::::::
uncertainty

::::::::
estimates

:::
are

::::::::
assigned

::
to

::::
each

:::::::
HOAPS

:::::
pixel,

:::::::::
depending

::
on

:::
the

::::
four

::::::::::
atmospheric

::::
state

::::::::::
parameters.

:

::::
Total

:::::::::::
instantaneous

::::::
LHF

:::::::::::
uncertainties,

::::::
σLHF ,

:::
are

::::::
derived

::
as

:::::::
follows:

:
15

σLHF =

√(
∂LHF

∂x

)2

σ2
x +

(
∂LHF

∂y

)2

σ2
y + 2rxy

(
∂LHF

∂x

∂LHF

∂y

)
σxσy,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

:::::
where

:
x
::::
and

:
y
:::
are

:::::
place

::::::
holders

::
of

::
U ,

:::
qs,

:::
qa,

:::
and

::::
CE .

:::
rxy::

is
::
the

::::::::::
correlation

::::::::
coefficient

:::::::
between

::
x

:::
and

::
y.

:::
For

::::
each

:::::::::::
combination

::
of

:
x
:::
and

::
y,
:::
the

:::::::
average

::
of

::::
daily

::::::
global

::::
mean

:::::::::
correlation

::::::::::
coefficients

:::::::
between

::::
1995

::::
and

::::
2008

::
is

:::::::
applied.

:::::
Global

:::::
mean

::::::::::
coefficients

::
are

::::::::::
preferential

:::::::::
compared

::
to

:::::::::::
instantaneous

::::
rxy:::

for
:::
two

::::::::
reasons.

::::
First,

:::
the

:::::::
amount

::
of

::::::::::::
instantaneous

::::
data

:::
for

:
a
:::::::
specific

::::::
region

:
is
:::::::
limited,

::::::
which

::::
may

:::::
distort

::::
the

:::::
results

:::
of

:::
the

:::::::::
correlation

::::::::
analysis.

:::::::
Second,

:::::::
omitting

:::
all

:::::::::::::::
correlation-related

:::::
terms

::
in
::::

Eq. (2)20

:::::::
modifies

::::::::
σLHF,sys:::

by
::::::
merely

:::
0.5

:::
±5

:::
W

:::
m-2

::::
(not

:::::::
shown),

:::::
which

::::::::
indicates

::::
that

::::
these

:::::
terms

:::
do

:::
not

::::::
receive

:::::
much

::::::
weight

:::::
after

::
all.

:

::
σx::::

and
::
σy:::

are
::::
total

::::::::::
uncertainties

::
in

::
x
:::
and

:::
y.

:::::
These

:::
can

:::
be

::::::::::
decomposed

::::
into

:::::::::
systematic

:::
and

:::::::
random

:::::::::::
components.

::::
Note

::::
that

::
the

:::::::
random

:::::::::
component

::::
has

::::
been

::::::::
corrected

:::
for

:::::::::
collocation

::::
and

::
in

:::
situ

::::::::::
uncertainty

:::::
effects

::::
(see

:::::
Sect.

:::
3.3)

::::
and

::::::
already

:::::::::
represents

::
the

:::::::
random

:::::::
retrieval

::::::::::
uncertainty

:::::
Eran

retr.
:

25

(
∂LHF

∂x

)2

σ2
x =̂

(
∂LHF

∂x

)2

σ2
x,sys +

(
∂LHF

∂x

)2

σ2
x,retr,ran

(
N−1/2

)2
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

::
N

::
is

:::
the

::::::
number

:::
of

::::::::::
HOAPS-3.3

::::::
satellite

:::::::::::
observations

:::::
(N=1

:::
for

:::::::::::
instantaneous

:::::
LHF

::::::::::::
uncertainties).

::
In
::::

case
:::
of

:::::::
temporal

::::
and

:::::
spatial

::::::::
averaging

::::
over

::
a
:::::::::
sufficiently

::::
long

::::
time

::::::
period,

:::
the

::::::
random

::::::::::
component

:::::::
becomes

:::::::::
negligibly

:::::
small.

::::::::
Sampling

:::::::::::
uncertainties

::
do

:::
not

::::
exist

:::
on

::
an

::::::::::::
instantaneous

::::
basis

:::
and

:::
are

::::::::
therefore

:::
not

:::::::::
considered

::
in
::::
Eqs.

:
(2)

:
-(3)

:
.

3.5 Sampling Uncertainty

Next
:
In

::::::::
addition to systematic and random uncertainties, inhomogeneous sampling may occur, specifically when temporal

and/or spatial resolution in observations are coarse. As remotely sensed data is measured at selected times only, spatial and

temporal sampling uncertainties therefore become an issue (Gulev et al., 2010), as the diurnal cycle may not be captured

correctly.5

In a first step, daily
::::
Daily

:
mean sampling uncertainties of HOAPS-3.3 LHF -related parameters are derived, using high-

resolution buoy measurements. Overall, data of eight tropical (PMEL, hourly resolution) and 15 extratropical (NDBC, 10-

minute resolution) moored buoys account for a possible climate regime dependency. All chosen buoy records comprise several

years of data
::::::::::
(1995-2008) and hardly show temporal data gaps. Here, the approach by Tomita and Kubota (2011) is followed

to derive the sampling uncertainties by simulating
:::
two

:
satellite data overpasses based on the buoy records

:::
per

::::
day,

:::::
using

:::
the10

::::
buoy

::::::
values. In case of U and SST , records are corrected for sensor heights and cool skin effects, respectively, as explained

14



in Sect. 2.2. In situ LHF are computed by means of the COARE-2.6a algorithm (Fairall et al., 2003). Daily means of ’true’

buoy data are derived by averaging all daily buoy records, where only high-quality data (indicated by quality flags 1–2) is

considered. The weighted average of the two closest (in time) ’true’ buoy observations to local satellite overpasses corresponds

to the so-called ’simulated’ satellite data record (Tomita and Kubota, 2011, their Fig. 2). All daily sampling uncertainties are15

derived as a function of the number of simultaneously operating SSM/I instruments. These daily values form the basis for the

monthly averages of selected parameters
:::::
(Esmp), which are outlined in Table 2 (Sect. 4.4). The estimates are global means;

an earlier, regime-dependent investigation resulted in negligible differencesbetween the resulting sampling uncertainties
:
.
::::
This

::::::
implies

:::
that

::::::::
monthly

::::
mean

:::::::::
systematic

:::::::::::
uncertainties

:::
do

:::
not

::::::
exhibit

:
a
:::::::::
latitudinal

::::::::::
dependency.

4 Results and Discussion20

4.1 Magnitudes of
::::::::::
HOAPS-3.3

:
Decomposed Random Uncertainties

Table 1 presents a statistical summary of the instantaneous random uncertainty decomposition for the bulk parameters U , qs,

and qa, following the approaches described in Sect. 3.2 and
:::
3.1

::
to 3.3. Note that EN is not included, as its synthetically derived

value
::::::
remains

::::::::
constant

:::::::::
throughout

:::
the

:::::::::
respective

:::::::::
parameter

:::::
range

:
(for procedure, see Kinzel et al., 2016)remains constant

throughout the respective parameter range. Asterisked values indicate global mean weighted averages and pooled variances of25

Kent and Berry (2005), resulting from a semivariogram approach. These are based on their Fig. 1, taking the illustrated grid

averaged random uncertainties, the standard deviation as well as the number of observations into account. In the following,

individual contributions to the overall random uncertainties are discussed, but not shown in terms of supplementary figures.

Eran
retr(qa) ranges between 0.3

::
0.7

:
and 1.8 g kg-1, where minima (maxima) are found in Arctic (subtropical

:::::
below

:
5
::
g
::::
kg-1

:::::::
(between

::::::
13-17

:
g
::::

kg-1) qa regimes. Whereas largest relative uncertainties are associated with polar qa values
:::
(3-5

::
g

::::
kg-1),30

lowest relative contributions below 10 % are confined to the inner tropics
:::
(20

:
g
:::::
kg-1). On average, both Ec(qa) and Eins(qa)

are approximately half the size of Eran
retr(qa). The average of Eins(qa) is 0.4 g kg-1 below the mean estimate of Kent and Berry

(2005). It is hypothesized that the lower estimate of Eins(qa) is a direct consequence of the rigorous in situ filtering procedure

prior to MTC analysis. The difference may furthermore be triggered by the fact that Kent and Berry (2005) include data records

dating back to the 1970s and 1980s, which may imply that ship records are included which do not fulfill the here applied quality

control standards. In contrast to Eran
retr(qa), Eins(qa) increases rather linearly with qa, which implies that smallest (largest)

random in situ measurement uncertainties are found for lowest (highest) qa. In contrast, Ec(qa) shows a similar distribution as

Eran
retr(qa), yet with considerably smaller amplitude. These random collocation uncertainties range between 0.4 and 0.7 g kg-1,5

corresponding to 3–18 %. A graphical illustration of the qa random uncertainty decomposition is shown in Kinzel et al. (2016)

(their Fig. 2).

In case of U , all random uncertainties tend to be larger compared to qa in a relative sense. In contrast to qa, all three relative

uncertainties exhibit a clear increase over large ranges of U , where minima and maxima in Eran
retr(U ) (Eins(U ), Ec(U )) range

between 1.0–2.6 m s-1 (1.5–2.3 m s-1, 0.8–2.0 m s-1). Whereas Eran
retr(U ) and Eins(U ) are fairly constant for moderate wind10

speeds before continuously increasing, Ec(U ) seems to already saturate for mean wind speeds in the order of 10 m s-1 (not
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shown). Similar to Eins(qa), the Eins(U ) estimate of Kent and Berry (2005) is roughly 40 % larger. Again, this difference

is suspected to arise from the differences in the data set compositions. Kent and Berry (2005) furthermore elucidate that no

corrections for height or adjustments to the Beaufort scale have been applied to their data, which would have caused a reduction

in random uncertainty of 13 ± 1 %, according to the authors. Yet,Eins(U ) almost exclusively represents the largest contribution15

to the random uncertainty budget of U . For all random uncertainty sources, strong wind regimes are linked to smallest relative

uncertainties in the order of 12–15 %. In low-wind regimes, however, relative uncertainties exceed 50 % to even 100 %.

Both absolute and relative contributions of qs-related random uncertainties remain well below those of qa. Global mean

values of all three random uncertainty sources are in the order of 0.5–0.6 g kg-1. Regarding Eran
retr(qs), this is comparable to

the value published in e.g. McClain (1989), who estimated the global RMSE of AVHRR-derived SST to be in the order of20

0.6–0.7 K (=̂ 0.4–0.5 g kg-1). Similar to Eran
retr(U ), Eran

retr(qs) (Eins(qs)) shows a positive proportionality with largest values

of 0.9 g kg-1 (1.5 g kg-1). As for Eins(U ), Eins(qs) exceeds Eran
retr(qs), specifically for qs larger than 8 g kg-1. In contrast

to qa, relative uncertainties are smallest in extratropical regimes with contributions of merely few percent. Largest relative

uncertainties remain well below those of qa and are in the order of 8–14 %.

4.2
:::::
Global

:
Patterns of

::::::::::
HOAPS-3.3 Random Retrieval Uncertainties25

The results shown
::::::::
presented in Sect. ??

:::
4.1 are expanded by showing the global patterns of Eran

retr in two-dimensional space.

Depending on the time period and thus on the number of SSM/I and SSMIS instruments in operation, the monthly global

mean sum of instantaneous observations per 0.5◦x0.5◦ grid cell ranges from approximately 90 (1988) to 650 (2006). In con-

sequence, monthly means of Eran
retr are considerably below the systematic counterpart (see scaling effect of N in Eq. (3)).

Specifically from 1991 onwards, monthly globally averaged Eran
retr of LHF -related parameters only reach 0.5–3 %. This30

reduction becomes even more striking when investigating multi-annual or even climatological means; LHF -related Eran
retr vir-

tually vanish on these scales. An increase (decrease) in these climatological random uncertainty values often directly results

from a decrease (increase) in the number of pixel-level observations and thus not from a physical change due to shifts in the

climate. This implies that results of trend analyses in random uncertainties, for example, may be misinterpreted. Therefore, the

attention is drawn to the pixel-level (instantaneous) random uncertainty fields, which are subsequently related to the systematic

counterpart in terms of distribution and magnitude. This instantaneous point of view causes their orders of magnitude to be

similar to the results of Eran
retr presented in Table 1. Note that the global averages shown in Fig. 3 in form of text strings are

cosine-weighted, whereas the means illustrated in Table 1 do not take a regional dependency into account.

Figure 3 shows the instantaneousEran
retr patterns of HOAPS-3.3 LHF -related parameters between 1988 and 2012. To a great5

extent, Fig. 3a can be interpreted as a two-dimensional representation of the error bar magnitudes
:::
The

:::::::::
magnitudes

:::::::::
presented

::
in

:::::
Figure

:::
3a

:::
are

:::::
below

:::::
those shown in Fig. 2a. Recall that ,

::
as

:
the random uncertainties illustrated in Fig. 2a have not yet

::::
have

been corrected for the impact of Eins(qa) and Ec(qa) (Sect. 3.3), which is why their magnitudes exceed those shown in Fig. 3a.

:
. Maxima above 1.5 g kg-1 are located over all subtropical ocean basins, where qa is in the order of 13–17 g kg-1. A reduction

within the inner tropics is clearly resolved, specifically over the warm pool region. Eran
retr(qa) sharply decreases poleward to10

values of 0.6–0.9 g kg-1. The global mean instantaneous Eran
retr(qa) takes on a value of 1.2 g kg-1.
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The distribution of instantaneous Eran
retr(U ) (Fig. 3b) shows a rather reversed pattern of qa and closely resembles the clima-

tological distribution of U itself. The global mean is given by 1.0 m s-1. Global maxima cover large areas of the extratropical

oceans, specifically over the Southern Ocean. Here, averages partly exceed 1.5 m s-1. However, this results in less than 15

% retrieval uncertainty in a relative sense (not shown). In contrast, instantaneous Eran
retr)(U ) remain low (that is, below 0.815

m s-1) over the (sub-) tropical ocean basins. This also applies to the warm pool area, which indicates a maximum in relative

contribution close to 20 % due to climatological low wind speeds (not shown).

The pattern of instantaneous Eran
retr(qs) (Fig. 3c) resembles that of qa. However, the global mean magnitude of 0.3 g kg-1

represents merely
:::
only

:
25 % of the atmospheric counterpart. Absolute maxima in the order of 0.4 g kg-1 are located over the

Indo-Pacific warm pool region, which stands in contrast to the local
:::::::
Eran

retr(qa)
:
minimum in that regionfor qa. The comparatively20

small Eran
retr(qs) also find expression in the low global mean relative uncertainty of 2 % (not shown). Values exceeding 4 % are

confined to the extratropical ocean basins on both hemispheres.

Instantaneous Eran
retr(LHF ) (Fig. 3d) show a strong proportionality to the climatological mean LHF pattern. In that respect,

maxima are generally located over the subtropical central parts of all ocean basins (specifically the Indian Ocean) as well as

along the western boundary currents. Respective values partly exceed
::
In

:::::
these

:::::
areas,

::::::
values

:::
are

:::::
found

::
in

::::::
excess

::
of 50 W m-2.25

Apart from extratropical minima, low values in the tropics are confined to the eastern margins of the basins and the warm pool

region.

Figure 3e shows the instantaneous random uncertainty of LHF relative to its natural variability. This variability has been

defined as the pixelwise
:::
For

::::
each

::::
grid

::::
box,

::::
this

:::::::::
variability

::
is

::::::
derived

:::
as

:::
the

:
difference between the 5th and 95th percentile

of instantaneous LHF observations between 2000–2008 , based on the (F13 platform only
:
). Globally averaged, the relative30

random uncertainty equals to 17 %. Due to the large range of LHF along the western boundary currents (WBCs) and over the

Central Indian Ocean, the absolute maxima seen in Fig. 3d are not resolved in Fig. 3e. Largest relative uncertainties exceeding

25 % are confined to the Southern Central Tropical Pacific and along the equatorial Atlantic.

4.3 Monthly Mean Sampling Uncertainties

Table 2 summarizes the monthly mean sampling uncertainties of severalLHF -related
::::::
Global

::::::
Patterns

:::
of HOAPS-3.3 parameters

as a function of concurrently operating SSM/I instruments. SST -related parameters show largest sampling uncertainties when

three SSM/I instruments are simultaneously operating. This is not contradictory, as HOAPS-3.3 SST are AVHRR-based and

thus not linked to the coverage of SSM/I instruments. From a climatological perspective, all magnitudes are negligibly small5

compared to respective systematic uncertainties. Regarding the main bulk parameters, orders of magnitude closely resemble

those of monthly mean scaled Eran
retr. It is concluded that their relative contribution to the monthly mean uncertainty budget is

in the order of merely 1–2 However, one should keep in mind that sampling uncertainties become essential on considerably

shorter time scales, i.e., in the framework of (sub-) daily analyses.
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4.4
:::::

Global
:
Patterns of

::::::::::
HOAPS-3.3 Climatological Uncertainties10

Figure 4 a-e shows the distribution of the climatological total uncertainties (Eclim) between 1988 and 2012 for LHF and its

related bulk parameters.
:::::
Eclim::

is
::::::
defined

::::
grid

:::::
point

::::
wise

:::
as

:::
the

:::::
mean

:::
root

:::::
mean

:::::::
squared

::::
sum

::
of
::::::::::::

instantaneous
:::::
Esys,

::::::
Eran

retr,

:::
and

:::::
Esmp:::::::

between
::::::::::
1988-2012.

:
As the contribution of Eran

retr and sampling uncertainties
::::
Esmp:

converges towards 0% due to

the vast number of observations, Figure 4a-e can also be treated as the systematic uncertainty distribution.

In an absolute sense, Fig. 4a mirrors the bias distribution shown in Fig. 2a. Eclim(qa) (Fig. 4a) generally range between15

0.4–0.9 g kg-1, where the global mean of 0.63 g kg-1 is approximately half the size of the instantaneous random counterpart

shown in Fig. 3a. Maxima are found over the tropical central and western Pacific Ocean as well as the Caribbean and off

the easternmost tip of South America. In the framework of a LHF intercomparison study, Smith et al. (2011) argue that

satellite products have difficulties estimating qa due to persistent stratus clouds, as observed west of Peru over the tropical

eastern Pacific. This conclusion may be the cause for the elevated systematic uncertainties over the tropical eastern Pacific.20

In contrast, minima are located along both extratropical belts poleward of 50–60◦ N/S. Secondly, isolated minima
:::::::
Isolated

::::::
minima

::::
also

:
lie over the subtropical eastern margins of all ocean basins in the vicinity of 15–30◦ N/S, specifically over the

Pacific basin. Interestingly, regions of comparatively low systematic uncertainties often coincide with regional maxima in

random uncertainties (compare Fig. 3a). According to Fig. 2a, biases are smallest for climatological mean qa of 4–5 g kg-1 and

13 g kg-1, which fits well to the mentioned minima in Fig. 4a. Likewise, absolute bias maxima for qa of 10 g kg-1 and 16–17 g25

kg-1 are resolved in both Fig. 2a and Fig. 4a.

:::
The

::::::
global

::::
mean

::
of
:
Eclim(U ) is shown in Fig. 4b . Its global mean equals to 0.81 m s-1. On the one hand, maxima exceeding

1 m s-1 are located along the extratropical storm tracks, specifically over the northern hemisphere. On the other hand, local

maxima are found along broad regions at 30◦ S and further equatorward over the Central Indian Ocean, off the Arabian

Peninsula (both monsoon-related), and the central Northern Tropical Pacific. With the excepDIFDELCMDtion of the Southern30

Ocean, this is in line with Brunke et al. (2011), who conclude that reanalysis -, satellite -, and combined data sets tend to

overestimate wind speeds with respect to direct eddy covariance measurements
::::::::
compared

::
to

::
in

:::
situ

:::::::
records

::
of

::::::
inertial

:::::::::
dissipation

::::
wind

:::::::
stresses, specifically over strong wind regimes. Monsoon-related characteristic features of Indian Ocean LHF variability,

which also exhibit an impact on climatological uncertainties, are elucidated in e.g. Mohanty et al. (1996). Minima in the order

of 0.5 m s-1 are mostly confined to the eastern margins of all ocean basins (Fig. 4b). The maxima over the northern hemispheric

storm track are associated with climatological mean wind speeds of 9–11 m s-1. This range also reveals largest positive biases

in the one-dimensional bias consideration with respect to the in situ source (analogously to Fig. 2, but not shown for U ).

This also targets the maximum over the central Northern Tropical Pacific and all southern hemispheric maxima along 40–50◦

S. Although climatological mean wind speeds maximise over the Southern Ocean, respective systematic uncertainties rather5

show a slight poleward decrease. Again, this is in line with results from the one-dimensional dU analysis (not shown), which

indicates that systematic uncertainties reduce for wind speeds above 12 m s-1. Likewise, absolute bias minima are associated

with low wind regimes in the order of 4–6 m s-1. Climatologically lowest wind speeds of 2–4 m s-1 are for example found along

18



the Pacific coast of Central America (15◦ N), over the Arabian Sea, and over the Indo-Pacific warm pool region. HOAPS-3.3

tends to underestimate these wind speeds, as is mirrored in moderate Eclim(U ) (Fig. 4b).10

The climatological uncertainty estimates
::::::::
illustrated

::
in

:::
Fig.

:::
4b exceed those found in e.g. scatterometer records in comparison

to buoy measurements (e.g. Verhoef et al., 2017). On the one hand, this is linked to the fact that estimates in Fig. 4b should

be treated as upper-boundary uncertainty estimates. On the other hand, scatterometers are specifically designed to derive near-

surface wind speeds at highest accuracy. Passive microwave measurements, in return, allow for a much broader range of

applications, which is a unique feature of HOAPS. An inclusion of scatterometer data into the HOAPS wind speed retrieval15

was not envisaged, due to differing overflight times and data coverage, i.e., additional uncertainties of unknown magnitude.

Further potential uncertainty sources, which may contribute to the distribution shown in Fig. 4b, target currents, sea states, and

the treatment of air mass density (i.e., the concept of stress-equivalent wind speeds, e.g. de Kloe et al., 2017).

Eclim(qs) covers the range of 0.1-0.6 g kg-1 and its global average is given by 0.23 g kg-1 (Fig. 4c). The pattern reflects a

latitudinal dependency, which is equivalent to smallest (largest) biases towards the poles ((sub-) tropics). This observation is20

not generally valid, as is shown by the comparatively low values over large parts of the Eastern Tropical Pacific and Atlantic.

Distinct maxima are found over the Arabian Sea and along northwestern Australia, the Caribbean, and west of Madagascar.

Narrow bands of elevated systematic uncertainty are also resolved along the WBCs. With the exception of the WBCs, the

regions of maxima are exposed to qs in the range of 20–22 g kg-1.

Figure 4d shows the resulting Eclim(LHF ). It closely resembles that of the global mean LHF pattern itself with values25

ranging between roughly 15–50 W m-2 and a global mean of 25.1
::
25 W m-2. Relating this pattern to Fig. 4a-c shows a substantial

contribution of Eclim(qa) to the absolute maximum of Eclim(LHF ) in the Northern/Southern Tropical Central Pacific, the

Caribbean, and the western tropical South Atlantic (compare Fig. 4a). However, due to the large climatological mean LHF ,

respective relative systematic uncertainties of qa are merely in the order of 5–7 %. Correspondingly, imprints of Eclim(U ) are

clearly seen along the WBCs, the Central Indian Ocean (10–15 % in a relative sense), and off the Arabian Peninsula (partly30

exceeding 15 %) (Fig. 4b). Likewise, the maxima in Eclim(LHF ) over the Arabian Sea, along the northwestern coast of

Australia, and close to Madagascar show the footprint of Eclim(qs) (Fig. 4c). However, relative systematic uncertainties in qs

generally do not exceed 2.5 %. Locally, isolated Eclim(LHF ) maxima are resolved along 35◦ S. Specifically over the Agulhas

Current, Santorelli et al. (2011) conclude that different satellite data sets show discrepancies, as they are not able to properly

handle strong LHF associated with storm systems and potential LHF amplifications due to dry air advection northwards from

the Antarctic (Grodsky et al., 2009). Furthermore, note that the maximum in the Arabian Sea is somewhat special, in as much

as climatological mean LHF in this region are elevated, yet not extraordinarily large. This striking uncertainty maximum may

be linked to occasionally occuring advection of hot, dry air masses from the deserts, which poses problems to the HOAPS-3.35

satellite retrieval.
::::
This

:::::::::
hypothesis

::
is

::::::::::
strengthened

:::
by

:::
the

:::
fact

::::
that

:::::::::::::::::::::
Iwasaki et al. (2014) show

::::::
largest

:::::::::
deviations

::
in

::::::::
HOAPS-3

:::
qs

::::
with

::::::
respect

::
to

::::
their

::::::::
reference

::::::::::
climatology,

::::::
which

:::
are

:::
not

::::
seen

::
in

:::
the

::::::::
remaining

::::
data

::::
sets.

:

Figure 4e relates Eclim(LHF ) to its natural variability (compare Sect. 4.2). The global average is in the order of 12 %.

Apart from the WBC regimes and the Southern Ocean, largest relative uncertainties are in line with the Eclim(LHF ) maxima

illustrated in Fig. 4d.10
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4.4 Fractional contributions to total LHF uncertainty
:::::::
Monthly

::::::
Mean

::::::::::
HOAPS-3.3

:::::::::
Sampling

::::::::::::
Uncertainties

::::
Table

::
2
::::::::::
summarizes

::::
the

:::::::
average

::
of

:::::::
monthly

:::::
mean

::::::::
sampling

:::::::::::
uncertainties

:::
of

::::::
several

::::::::::::
LHF -related

::::::::::
HOAPS-3.3

::::::::::
parameters

::
as

:
a
:::::::
function

:::
of

::::::::::
concurrently

:::::::::
operating

:::::
SSM/I

:::::::::::
instruments.

:::::
From

:
a
::::::::::::
climatological

:::::::::::
perspective,

::
all

::::::::::
magnitudes

:::
are

:::::::::
negligibly

::::
small

:::::::::
compared

::
to

::::::::
respective

:::::::::
systematic

:::::::::::
uncertainties.

:::::::::::
SST -related

:::::::::
parameters

::::
show

::::::
largest

::::::::
sampling

:::::::::::
uncertainties

::::
when

:::::
three

:::::
SSM/I

::::::::::
instruments

:::
are

:::::::::::::
simultaneously

:::::::::
operating.

::::
This

::
is

:::
not

:::::::::::
contradictory,

:::
as

::::::::::
HOAPS-3.3

:::::
SST

:::
are

::::::::::::
AVHRR-based

::::
and

::::
thus15

:::
not

:::::
linked

::
to

:::
the

::::::::
coverage

::
of

::::::
SSM/I

::::::::::
instruments.

:::::::::
Regarding

:::
the

:::::
main

::::
bulk

::::::::::
parameters,

:::::
orders

:::
of

:::::::::
magnitude

::::::
closely

::::::::
resemble

::::
those

::
of

:::::::
monthly

:::::
mean

::::::
scaled

::::
Eran

retr::::
(not

:::::::
shown).

:
It
::
is
:::::::::
concluded

:::
that

::::
their

:::::::
relative

::::::::::
contribution

::
to

:::
the

:::::::
monthly

::::
mean

::::::::::
uncertainty

:::::
budget

::
is
:::
in

:::
the

::::
order

:::
of

::::::
merely

::::
1–2 %.

:::::::::
However,

:::
one

::::::
should

::::
keep

:::
in

::::
mind

::::
that

::::::::
sampling

:::::::::::
uncertainties

:::::::
become

:::::::
essential

:::
on

::::::::::
considerably

::::::
shorter

::::
time

::::::
scales,

::::
i.e.,

::
in

:::
the

:::::::::
framework

::
of

::::
daily

::::::::
analyses.

:

4.5
::::::::

Fractional
::::::::::::
contributions

::
to

:::::
total

::::::::::
HOAPS-3.3

::::::
LHF

:::::::::::
uncertainty20

Simply comparing Fig. 4a-c to Fig. 4d allows for qualitatively assessing which LHF -related parameter contributes most to

Eclim(LHF ). However, this does not permit a quantitative conclusion. Following a modified version of the ’Q-term’ approach

demonstrated in Bourras (2006),Eclim(LHF ) is decomposed into fractions associated with U , qs, qa, andCE . Results indicate

that the global mean contribution of Eclim(qa) is largest (60 %). This specifically targets the Central Northern and Southern

Tropical Pacific, the Caribbean, the regime off the eastern tip of South America, as well as the Central Indian Ocean.
::::
This25

::::::
finding

::
is

::
in

:::
line

::::
with

::::
that

::
of

::::::::::::::::::
Iwasaki et al. (2014) ,

::::
who

:::::
show

:::
that

:::::::::
HOAPS-3

::
qa::::::::::

contributes
::::
most

::
to

:::
the

::::::::
observed

::::::::
deviation

::
in

::
E

::::
with

::::::
respect

::
to

::::
their

::::::::
reference

::::::::::
climatology.

:

On average, the contribution by Eclim(U ) takes on a value of 25 %. Local hotspots are considerably larger, especially over

the Arabian Sea, along the WBCs, and off Northwestern Australia. The fractional contributions due to both Eclim(qs) and

Eclim(CE) equal to 7.5 %, respectively. Eclim(qs) is largest over the Arabian Sea (SST retrieval issues due to dust particles),30

whereas Eclim(CE) maximises over the Central Indian Ocean and along the North Atlantic WBC. The latter has also been

shown by Bourassa et al. (2013), in as much as accuracy issues in CE tend to occur over very low and very high wind speed

regimes.

All findings are in line with Bourras (2006), Liu and Curry (2006), Grodsky et al. (2009), and Santorelli et al. (2011), who

conclude that the main LHF uncertainty sources are related to the accuracy of qa (and U ). Similar conclusions are drawn by

e.g. Tomita and Kubota (2006), who show that the main source of discrepancy between tropical satellite and buoy estimates may

be attributed to the accuracy of qa. By comparison, HOAPS-3.3 uncertainty analyses are beneficial, as the
::::
The findings of the

above-quoted studies are restricted to either regional analyses, considerably shorter investigation periods, and/or comparatively

thin reference data bases.
:::::
Again,

:::
this

::::::
points

::
at

:::
the

::::
high

:::::
value

::
of

:::
the

::::::::
presented

::::::::::
HOAPS-3.3

::::::::::
uncertainty

:::::::
analyses.

:
5
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4.6 Regional and Seasonal Analysis
::::::::::
HOAPS-3.3

:::::::::::
Uncertainty

::::::::
Analyses

Global mean Eclim and Eran
retr of all

:::
and

:::::
Eclim:::

of LHF -related HOAPS-3.3 parameters are fairly constant in time throughout

the whole climatology . During isolated time periods, however, absolute
::::
(Figs.

:::::
3-4).

:::::::
Absolute

:
deviations from the global mean

LHF (qa, U ) uncertainty become as large as 18 % (3 %, 8 %).

Next to
:::::
Apart

::::
from

:
seasonal signals, these are footprints of distinct local anomalies. On the one hand, these anomalies seem10

to originate from events that temporarily modify the global climate. On the other hand, Figures
::::
Figs. 3-4 resolve considerable

regional variability. Therefore, the aim is to (1) identify climate features that are manifested in both temporal and spatial

uncertainty anomalies and discuss their origin (descriptive only). At the same time, (2) regional uncertainty differences shall

be highlighted by focusing on climate hotspots (Fig. 5a-c).

Regarding (1): The imprints of moderate to strong El Niño events during boreal spring 1998 and 2010 are manifested in15

LHF -related Eclim and Eran
retr. During these events, wind speeds over the Pacific upwelling regime are 1.5–2.0 m s-1 below

the climatological average. As has been mentioned in Kinzel et al. (2016), this causes an increase in systematic uncertainties

in U . Along with an enhanced Eclim(qs), the respective Eclim(LHF ) over the Pacific upwelling regime reaches 25 W m-2
:
,

specifically during boreal spring 1998, which
:::::
1998.

::::
This is approximately 10 W m-2 above the seasonal mean and more than 50

% of climatological mean LHF . As qa are anomalously high with 20 g kg-1, Eran
retr(qa) is up to 0.2 g kg-1 below the seasonal20

mean (see Fig. 2 in Kinzel et al. (2016) for clarification).

By contrast, global minima inEclim(LHF ) andEran
retr(LHF ) are confined to boreal autumn 1991, taking on a mean value of

20 W m-2 (33 W m-2), respectively. These estimates are 20 % (11 %) below their climatological averages and are associated with

absolute minima in HOAPS-3.3 LHF . The comparatively small systematic component is induced by Eclim(U ) (Eclim(qs)) of

-8 % (-14 %). The absolute minimum in LHF and its uncertainties during 1991 is a footprint of the Mount Pinatubo eruption,25

which caused low-biased SST due to AVHRR aerosol issues and thus unrealistically low near-surface humidity gradients

(Romanova et al., 2010). Amongst others, this shortcoming in the HOAPS-3.3 climatology has already been picked up by

Andersson et al. (2011).

Regarding (2): Figures 5a-c summarize the ranges of seasonal, regime-dependent uncertainty distributions. The color-coded

boxes in Figures 5a-c represent the expected parameter ranges when considering the
:::::::::::
multi-annual

::::::::::
(1988-2012)

::::::
means

:::
of30

systematic uncertainty contributions(,
::::
that

::
is Eclim). At the same time, the error bars indicate the instantaneous

:::::::::::
instantaneous

random uncertainty components(,
::::
that

::
is Eran

retr). Both are shown separately, as they are independent of each other. With few

exceptions, the random uncertainty contributions exceed the systematic counterpart, as is also mirrored in Figures 3 e and

4e
:::
and

:
4.

Figure 5a indicates that the total (i.e.,Eclim +Eran
retr) uncertainty ranges in qa are largest in (sub-) tropical regimes, concurrent

to high qa. In contrast to the Pacific upwelling region (red) and the Southern Ocean (cyan), the seasonal qa variability over

the Indian monsoon regime (green), the North Atlantic basin (dark blue), and specifically the North Atlantic western boundary

current (brown) is striking. This also finds expression in differences in absolute uncertainties of up to ±0.6 g kg-1 between5
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January and July. Largest uncertainties are in the order of ±2.40 g kg-1 and are confined to the Indian summer monsoon

season, whereas smallest uncertainties around ±1 g kg-1 occur over the Southern Ocean.

Climatological regional wind speeds range between 4.5–11 m s-1 (Fig. 5b). As for qa, the seasonality is most pronounced

over the Indian monsoon region, WBC, and the North Atlantic. Largest total uncertainties exceeding ±2 m s-1 throughout the

year are observed over the Southern Ocean, which is primarily due to large Eran
retr(U ) (compare Fig. 3b). The Indian monsoon10

region is somewhat special, in as much as summertime total uncertainties are largest on a global scale, while wintertime ranges

are almost 50 % lower.

Figure 5c presents regionally dependent LHF and associated uncertainty ranges. As for Fig. 5a-b, seasonality is most

distinct over the North Atlantic, WBC, and the Indian monsoon region. Largest Eclim(LHF ) exceeding ±35 W m-2 are

confined to the WBC regime (specifically during winter) and the monsoon region (climatological average, compare also Fig.15

4d). Total uncertainty ranges maximise along the WBC, where ±65–95 W m-2 are to be expected, which is 2–3 times larger

compared to the ranges observed along the Pacific upwelling regime. Grodsky et al. (2009), for example, recall that
::
an

:::::::
accurate

:::::::::::
representation

:::
of

:::::
LHF

:::::
along the Gulf Stream region is challenging due to strong surface currents and SST gradients as well

as intraseasonal dependencies of how the stratified atmospheric boundary layer amplifies air-sea interactions. This reasoning

may also apply to the Agulhas and Kuroshio region. The wintertime WBC uncertainty maximum is particularly caused by vast20

Eran
retr(LHF ) of up to ±60 W m-2 (see also signal in Fig. 3d). By contrast, regional Eclim(LHF ) become largest in the Indian

monsoon region, where their climatological average is in the order of ±40 W m-2 (compare also Fig. 4d).

4.7 Uncertainty Application: Trends in HOAPS-3.3 LHF

Figure 6 shows the HOAPS-3.3 global monthly mean LHF (thin black line) between 1988-2012 (70◦ S-70◦ N, cosine-

weighted average). The global minimum below 80 W m-2 during boreal summer 1991 is linked to the Mount Pinatubo eruption.25

Overall maxima in the order of 110 W m-2 occur during 2008 and 2009.

The bold black line in Fig. 6 shows the annual running mean climatology of HOAPS-3.3 LHF . On average, it increases

by roughly 4.5 W m-2 (4.7%) per decade (dark red line). If uncertainty ranges were discarded, this trend would be considered

as significant at the 95 % level (p<0.00001, based on a two-tailed t-test). The addressed uncertainty estimates are illustrated

as grey shadings and represent ±1 standard deviation of the 12-month running mean climatological uncertainty
:::::
Eclim (global30

average). They take on a mean value of ± 17 W m-2.

A Bayesian approach to linear regression is applied including LHF uncertainty estimates following Kelly (2007), which

yields a large range of linear trends (light red lines). Although the majority has a positive slope, some even indicate a climato-

logical decrease in LHF . In light of the illustrated uncertainty range, the mean upward trend in HOAPS-3.3 LHF (dark red

line) should therefore be treated with caution, as the magnitude of linear increase lies well within the grey shaded area.

The overall increase in LHF has been elucidated in several studies concerning various LHF data sets . Amongst others,it

was already detected by Liu and Curry (2006) for HOAPS2 (Fennig et al., 2006) ,GSSTF2 (Chou et al., 2004) ,and reanalysis

data (NCEP-R2, ERA-40; Kanamitsu et al., 2002; Uppala et al., 2005) between 1989–2000,specifically over the (sub-) tropics

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Liu and Curry, 2006; Yu and Weller, 2007; Santorelli et al., 2011; Yu et al., 2011; Iwasaki et al., 2014) .5
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The authors attribute it to increases in both qs ::::
(i.e.,

:::::
SST )

:
and U , whereas the latter may be linked to stronger Hadley

and Walker Circulations (Cess and Udelhofen, 2003). Likewise, Gao et al. (2013) attribute largest contributions to observed

positive trends in GSSTF2c LHF to qs and U . Similar conclusions are drawn by Rahul and Gnanaseelan (2013) for the Indian

Ocean, although local LHF decreases in the
:::
The

::::::
global

:::::
mean

:::::::
increase

:::
of

:
9
:::
W

:::
m-2

:::::::
between

:::::
1981

::::
and

:::::
2002,

::
as

::
is

::::
e.g.

::::
seen

::
in Objectively Analyzed Air-Sea Heat Fluxes (OAFlux, Yu and Weller (2007) ) are in line with findings from a model study10

by Held and Soden (2006) .Yu and Weller (2007) present results from an OAFlux analysis and highlight the concurrent rapid

warming of global SST (e.g. Levitus et al., 2005) and associated increasing qs, especially over the North Atlantic. Concurrently, qa decrease over the eastern Pacific and high southern latitudes, which adds to an increase in LHF . Mostly, the impact of increasing SST outperforms the positive trend in qa, that is ∆q generally becomes larger. The authors also point out that trends in near-surface wind speeds are predominantly positive, which is in line with larger LHF . The global positive LHF trend in the OAFlux product is strongest during the 1990s and is specifically evident along the WBCs, the Indo-Pacific warm pool region, and the Tropical Indian Ocean. The global mean increase of 9 W m-2 between 1981 and 2002 is in the
:
,

:
is
:::
in

:::
the order of 10 %, which is in line with the findings

::::::
findings

::
of

::::::::::::::::::::::
Santorelli et al. (2011) and

:::::
those

:
illustrated in Fig. 6 ,

yet one order of magnitude larger compared to the model study of Pierce et al. (2006) . Santorelli et al. (2011) confirm this

global mean LHF increase in OAFlux and draw same conclusions for IFREMER LHF (Bentamy et al., 2008) , specifically15

for the North Atlantic. The increase in HOAPS-3 LHF is also seen over the Southern Ocean, as has been investigated by

Yu et al. (2011) due to increases in both U and ∆q. Locally, these increases between 1988–2000 are in the order of 30 W m-2.

::
of

:::
the

::::::
present

:::::
work.

Figure 6 also shows that recent global means decrease again. Time series analyses for single satellite instruments suggest that

this is a physical signal (i.e., associated with either multi-annual variability or a climate signal), rather than being associated20

with intercalibration issues among SSM/I and SSMIS instruments. However, its decrease may
::::::::::
Additionally,

:::
the

::::::::
decrease

::::
may

:::
also

:
be attributed to the slight negative SST bias from 2011 onwards. This bias is caused by anomalously high NOAA-19

sensor noises, which themselves may be traced back to erroneous flag assignments during cloud detection. This is thought to

cause up to 5-10 % reduction in LHF . Closer investigations that involve other LHF climatologies exceed the scope of this

study, but are needed to interpret this gradual decay.25

First intercomparisons of HOAPS-3.3 LHF to in situ and further satellite climatologies have been carried out, where pre-

liminary results indicate that nearly all compared data sets lie within the uncertainty range presented in Fig. 6 (not shown).

A more detailed intercomparison study is envisaged; it will benefit from uncertainty estimates available in NOCSv2.0 and

allow for concluding whether global mean deviations among the data sets lie within or outside of the HOAPS-3.3 prescribed

uncertainty range.30

5 Conclusions and Outlook

By means of multi-dimensional bias and MTC analysis
::::::
analyses, a universal approach for characterizing systematic, random re-

trieval, and sampling uncertainties inherent to HOAPS-3.3LHF -related parameters has been presented.
:::
The

:::::::::::::::
multi-dimensional

:::::::
approach

:::::::::
overcomes

:::
the

::::::
issues

::
of

:::::
sparse

::::
data

::::::::
densities

::
in

::::::
remote

:::::::
regions,

::
as

::
it

::::::::
expresses

:::
the

:::::::::::
uncertainties

::
as

:
a
::::::::
function

::
of

:::
the

::::::
ambient

:::::::::::
atmospheric

:::::::::
conditions.

:::
At

:::
the

:::::
same

:::::
time,

:::::
MTC

::::::
enables

::
a
::::::::::::
decomposition

:::
of

::::::
random

::::::::::
uncertainty

:::::::
sources

::
to

::::::
isolate

::
the

:::::::::::
contribution

::
of

::::
the

:::::::
satellite

::::::::
retrieval.

::::
Both

::::::::
methods

::::::::
represent

:::
the

:::::
main

::::::::::
procedures

::
to

:::::
arrive

:::
at

:::::::::
pixel-level

::::::::::
uncertainty

::::::::::
information,

:::::
which

:::::::::
essentially

::::::::
increases

:::
the

:::::
value

::
of
:

HOAPS-3.3can therefore .
:::
As

::
to

::::::::
sampling

::::::::::::
uncertainties,

:::::::
monthly

:::::
mean

:::::::
estimates

:::::
have

::::
been

:::::::::
calculated

::::::::
following

:::
the

::::::::
approach

:::
of

::::::::::::::::::::::
Tomita and Kubota (2011) .

:::
To

::::::::
conclude,

:::::::::::
HOAPS-3.3

:::
can

:
be con-5

23



sidered as the first LHF satellite-only climatology including instantaneous and gridded uncertainty estimates.
::
As

:::
the

:::::::
method

:::
can

::
be

:::::
easily

::::::::::
transferred

::
to

::::
other

:::::::::
retrievals,

:
it
::::
lays

:::
the

:::::::::
foundation

:::
for

:::::::::
uncertainty

::::::::::::::
characterizations

:::
of

:::::
further

:::::::::::
LHF-related

::::
data

:::
sets,

::::::
which

::::::::
increases

:::
the

::::::::::
significance

::
of

:::
this

:::::
work.

:

It has been shown that maxima of systematic uncertainties (Eclim) reach up 50 W m-2, specifically over the large regions

of the subtropical oceans (mainly qa-induced) and along the western boundary currents (mainly U -induced). Instantaneous10

random retrieval uncertainties (Eran
retr) maximise along 20–30◦ N/S with values up to 60 W m-2, clearly showing the footprint

of random uncertainties of qa. From a climatological perspective, all random retrieval uncertainty components contribute to

the total uncertainty by merely 1–2 % on a monthly basis (and even less for longer periods), which also accounts for respective

sampling uncertainties. Considerable regional and seasonal variability of LHF uncertainty ranges have been resolved from

an instantaneous point of view, with maxima over the Gulf Stream and Indian monsoon region during boreal winter. Climate15

events, such as strong El Niño signals and the Mount Pinatubo eruption, are well manifested in both systematic and random

LHF uncertainties, even on a global scale. In light of the available uncertainty estimates, it has been shown that the positive

trend in global mean LHF during the last 25 years lies within the derived uncertainty boundaries .

A new version of HOAPS-3.3, that is HOAPS-4.0, will be released in mid 2017. Major changes compared to HOAPS-3.3

include a temporal extension up to 2014, a new SST product (Version 2 of the NOAA Optimum Interpolation SST (OISST)20

product, Reynolds et al. (2007) ), and the implementation of a 1D-Var retrieval for several geophysical parameters. Preliminary

results suggest that the new U estimates have improved compared to HOAPS-3.3 in terms of bias and RMSD behaviour relative

to in situ ground reference data. In consequence, estimates ofLHF andE will be updated, along withLHF -related uncertainty

estimates
:::::
needs

::
to

::::::::
therefore

::
be

::::::
treated

::::
with

:::::::
caution.

Results of the Q-term analysis presented in Sect. 4.5 and other studies suggest that more effort is necessary to improve the25

qa retrieval. This would ultimately reduce the overall LHF uncertainty, which, according to e.g. Bourras (2006), ought to be

below 10 W m-2 for a quantitative use over the global oceans. In the framework of the HOAPS-4.0 release, this value has also

been declared as the target requirement for the global mean LHF . An increase in the reliability of HOAPS-3.3 LHF -related

parameters could for example be achieved by referring to a new ground truth reference. Freeman et al. (2016), for example,

recently presented a new version of ICOADS (release 3.0, up to 2014), highlighting its improvements compared to earlier30

versions, which target topics such as data quality, data traceability, and data base extension. Apart from new in situ reference

data, the effect of approximations in bulk flux parameterizations should also be picked up, as has been done in detail in Brodeau

et al. (2017). Amongst others, this concerns implications of sensor height corrections, algorithm choices, the qs reduction due

to the salinity effect, cool skin/ warm layer effects, and the assumption of constant sea level pressure.

According to Andersson et al. (2011), the E-P budget of HOAPS-3.2 is not closed. This also accounts for HOAPS-3.3, with35

a climatological mean value of 0.45 mm d-1 (1988–2012, 70◦ S-70◦ N). Long-term run-off estimates are summarized and

published by the Global Runoff Data Center (GRDC), adding up to a mean value of 0.34 mm d-1 (Wilkinson et al., 2014).

According to Andersson et al. (2011), the uncertainty of these run-off estimates is in the order of 10–20 %. Comparing these

values to the HOAPS-3.3 global freshwater flux leaves an imbalance of approximately 0.10 mm d-1, which is 0.30 mm d-1

below the HOAPS-3.2 estimate and can be evaluated as an improvement towards closing the global freshwater flux imbalance.5
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As Eclim(E) is in the order of ± 0.6 mm d-1, the imbalance clearly lies in the range of freshwater flux uncertainty.
:::::::
Keeping

:::
this

:::::::::
uncertainty

:::::
range

::
in
:::::
mind

:::::
sheds

::::
new

::::
light

::
on

:::
the

:::::::::
conclusion

:::
by

::::::::::::::::::::
Iwasaki et al. (2014) that

:::
the

:::::::::
HOAPS-3

:::::::::
freshwater

::::::
budget

::::::::
(including

::::
river

::::
run

:::
off)

::
is

::::::
largest

::::::::
compared

::
to

:::
the

:::::::::
remaining

::::
data

::::
sets.

::
A

:::
unit

::::::::::
conversion

::::
from

::::
mm

::
d-1

::
to
:::
kg

:::::
year-1

::::::
allows

:::
for

::::::::::
qualitatively

:::::::::
estimating,

::::::::
whether

:::
the

::::::::::::
intercompared

::::
data

:::
sets

:::
in

::::::::::::::::::::::
Iwasaki et al. (2014) (their

:::::
Figure

::::
6a)

::
lie

::::::
within

:::
the

:::::::
derived

:::::::::
uncertainty

:::::
range

::
of
::::::::

HOAPS.
:::
As

:::
0.6

::::
mm

:::
d-1

::::::::::
corresponds

:::
to

:::::::
roughly

:::::::
0.8*1017

:::
kg

::::::
year-1,

:::
we

::::::::
conclude

::::
that

::
all

:::::::
satellite

::::
and10

:::::
hybrid

::::::
related

::::
time

:::::
series

:::
lie

::::::
within

:::
the

:::::::::
uncertainty

::::::
range.

::::
This

::::
does

:::
not

:::::::
account

:::
for

:::
the

:::::::::
reanalyses;

:::::::::
according

::
to

:::
the

:::::::
authors,

::::
these

::::
tend

::
to

:::::::::::
overestimate

::
E,

:::::
which

::
is
:::::::::
associated

::::
with

:::
the

:::::::::
underlying

::::
bulk

::::
flux

:::::::::
algorithm.

Recall, however, that uncertainty estimates of HOAPS-3.3 precipitation have not been accounted for in this quantitative

estimation. Generally, the availability of remotely sensed precipitation uncertainty estimates is complicated by sparse reference

data and its intermittency. Tian and Peters-Lidard (2010) , for example, have taken on the challenge of creating global maps of15

uncertainties in satellite-based (i.e., six TRMM-era data sets) precipitation measurements. In conclusion, overall uncertainties

range between 40–60 over the tropical oceans, whereas uncertainties may exceed 100 over the higher-latitudinal regimes

poleward of 40◦ N/S. A recent study by Burdanowitz et al. (2016) presents an automatic phase distinction algorithm for optical

disdrometer data. Together with a continuously growing high-quality in situ data base of ship-based precipitation measurements

(OceanRAIN, Klepp (2015)), it will serve as a valuable basis for a characterization of HOAPS-3.3 precipitation and hence5

freshwater flux uncertainty ranges in the near future. Accuracy assessments of global rainfall estimates can also be achieved

by means of triple collocation analysis, as is demonstrated in Massari et al. (2017) .

Future work also aims at investigating trends in water vapour transports (WVT), using HOAPS-3.3 monthly mean freshwater

fluxes. Sohn and Park (2010), for example, demonstrated that trends in WVT can be used to examine circulation changes and

conclude that the large-scale Hadley Circulation has experienced an increase in strength since 1979. Similarly, Durack et al.10

(2012) recently highlighted a considerable water cycle intensification during global warming. Available uncertainty estimates

will allow for quantifying the WVT uncertainty range, the necessity of which has been picked up by e.g. Sohn et al. (2004).

:
A
::::

new
:::::::

version
:::
of

::::::::::
HOAPS-3.3,

::::
that

::
is
::::::::

HOAPS
:::
4.0,

::::
has

::::
been

::::::::
released

::
in

:::::::
October

:::::
2017

:::::::::::::::::::::
(Andersson et al., 2017) .

::::::
Major

::::::
changes

:::::::::
compared

::
to

:::::::::::
HOAPS-3.3

::::::
include

::
a
::::::::
temporal

::::::::
extension

:::
up

::
to

:::::
2014,

::
a
::::
new

:::::
SST

:::::::
product

:::::::
(Version

::
2

::
of

:::
the

:::::::
NOAA

::::::::
Optimum

:::::::::::
Interpolation

:::::
SST

:::::::
(OISST)

::::::::
product,

::::::::::::::::::::
Reynolds et al. (2007) ),

::::
and

:::
the

:::::::::::::
implementation

:::
of

::
a

::::::
1D-Var

::::::::
retrieval

:::
for15

::::::
several

::::::::::
geophysical

:::::::::
parameters.

::::::::::
Preliminary

::::::
results

:::::::
suggest

:::
that

:::
the

::::
new

::
U

::::::::
estimates

::::
have

::::::::
improved

:::::::::
compared

::
to

::::::::::
HOAPS-3.3

::
in

::::
terms

:::
of

:::
bias

::::
and

::::::
RMSD

::::::::
behaviour

:::::::
relative

::
to

::
in

:::
situ

:::::
ground

::::::::
reference

::::
data.

:::
In

:::::::::::
consequence,

::::::::
estimates

::
of

:::::
LHF

:::
and

:::
E

::::
have

::::
been

:::::::
updated,

:::::
along

::::
with

:::::::::::
LHF -related

::::::::::
uncertainty

::::::::
estimates.

:

20

Data availability: HOAPS-3.3 is a prolongation of HOAPS-3.2 and is based on a pre-release of the CM SAF SSM/I and SSMIS

FCDR. It was created in the framework of the DFG FOR1740 research activity for internal use. The monthly mean HOAPS-3.2

climatology and the respective FCDR are publicly available and may be downloaded free of charge (http://www.cmsaf.eu/EN/Products/DOI/Doi_node.html).

Instantaneous and gridded HOAPS-3.3 data are available upon request from the author.
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Table 1. Absolute and relative random statistical measures resulting from the multi-dimensional LUTs,
:::
i.e.,

:::::
MTC and random uncertainty

decomposition (Sect. 3.2, 3.3). ’stddev’ = standard deviation, ’abs’ = absolute, ’rel’ = relative. Apart from the LHF -related bulk parameters

themselves (U , qs, and qa), global mean ranges of the random retrieval- (Eran
retr), random collocation- (Ec), and random in situ measurement

uncertainty (Eins) are shown. Relative measures result from bin-wise relative uncertainty calculations. For comparison, the asterisks indicate

respective estimates published in Kent and Berry (2005), which are based on a semivariogram approach.

parameter / stat. measure mean stddev min (abs) min (rel) max (abs) max (rel)

qa [g kg-1] 8.8 4.4 2.8 / 19.3 /

Eran
retr(qa) 1.0 0.3 0.7 6 % 1.8 24 %

Ec(qa) 0.5 0.1 0.4 3 % 0.7 18 %

Eins(qa) 0.5 [0.9*] 0.3 [0.3*] 0.1 4 % 1.2 7 %

U [m s-1] 7.9 3.6 1.8 / 15.4 /

Eran
retr(U ) 1.4 0.4 1.0 12 % 2.6 63 %

Ec(U ) 1.4 0.3 0.8 12 % 2.0 44 %

Eins(U ) 1.8 [2.5*] 0.2 [0.4*] 1.5 15 % 2.3 111 %

qs [g kg-1] 10.2 5.7 4.5 / 24.3 /

Eran
retr(qs) 0.5 0.2 0.2 2 % 0.9 9 %

Ec(qs) 0.5 0.1 0.4 2 % 0.6 14 %

Eins(qs) 0.6 0.5 < 0.1 1 % 1.5 8 %
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Table 2. Monthly
::::::
Average

::
of

:::::::
monthly mean HOAPS-3.3 LHF -related sampling uncertainties

::::::
(Esmp) as a function of simultaneously

operating SSM/I instruments
:::::::::
(1995-2008). qa = "hair", U = "wind", qs = "hsea", LHF = "late", SST = "asst", E = "evap", air temperature

= "tair". All magnitudes are negligible compared to the instantaneous random (Eran
retr) and climatological uncertainties (Eclim) presented in

Sect. 4.2 and 4.4.

# of satellites / parameters "hair" [g kg-1] "wind" [m s-1] "hsea" [g kg-1] "late" [W m-2] "asst" [K] "evap" [mm d-1] "tair" [K]

1 0.05 0.14 0.04 2.3 0.04 0.08 0.08

2 0.03 0.12 0.04 1.9 0.03 0.07 0.05

3 0.03 0.11 0.05 1.8 0.04 0.06 0.04
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:::

Figure 1.
:::
Left

::::
panel

:
:
:::::
Global

::::
map

:::::::
showing

:::
the

::::::::
distribution

:::
of

::::::::
collocated

::
qa:::::::::::

measurements
:::::::
(HOAPS

:::::
versus

::
in
::::

situ)
:::::::
between

:::::::::
2001-2008.

::::::
Overall,

::::
more

:::
than

::::
13.8

::::::
million

:::::::
matchups

::::::::
contribute

:
to
:::
this

::::::
density

::::
map.

::::
Note

:::
that

::
the

:::::::
colorbar

:
is
::::::::::
logarithmic.

::::
Right

::::
panel

:
:
:::::::::::::
Two-dimensional

::::::::
illustration

::
of

::
the

::::::::::
near-surface

:::::::
humidity

::::
biases

::::
dqa :::::::

(HOAPS
::::
minus

::
in
::::
situ,

:::::::::
2001-2008)

:::::
shown

::
in

:::
Fig.

::
2.

::::
Note

:::
that

::
the

:::::::
colorbar

:
is
:::

not
:::::
linear.
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Figure 2. Scatter density plots of qa bias (HOAPS-3.3 minus in situ, g kg-1) as a function of (a) qa ("hair"), (b) U ("wind"), (c) SST ("asst"),

and (d) water vapour path ("wvpa"), based on global double collocations between 2001 and 2008. The black squares and error bars represent

bin-averaged systematic uncertainties (significant at the 95 % level) and their standard deviations, whereby each bin contains 5 % of all

double collocated matchups. Note that the bars include random uncertainty contributions by the satellite retrieval, the collocation procedure,

and the in situ measurement uncertainty. (a) is a revised version of Fig. 3 published in Kinzel et al. (2016).
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Figure 3. Temporal averages (1988-2012) of HOAPS-3.3 instantaneous Eran
retr of (a) qa ("hair"), (b) U ("wind"), (c) qs ("hsea"), and (d) LHF

("late"). (e) Relative random retrieval uncertainty of HOAPS-3.3 LHF with respect to its natural variability. This variability is defined as

the range between the 5th and 95th percentile of instantaneous LHF between 2000-2008. The global averages (text strings) were derived

by considering a latitudinal cosine-dependency. All patterns result from the multi-dimensional bias analyses,
:::::
MTC, random uncertainty

decompositions, and, in case of (d), uncertainty propagation described in Sect. 3.2-3.3
::
3.4.

::::
Note

:::
that

::
the

:::::
color

:::
bar

:::::
ranges

::
of

::
(a)

:::
and

:::
(c)

:::
are

::::::
identical

::
to

::::
allow

:::
for

:::::
direct

::::::::::
comparisons.
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Figure 4. Temporal averages (1988-2012) of HOAPS-3.3 climatological total uncertainties (Eclim) of (a) qa ("hair"), (b) U ("wind"), (c)

qs ("hsea"), and (d) LHF ("late").
::::
Eclim::

is
::::::

defined
:::

as
::
the

:::::
mean

::::
root

::::
mean

:::::::
squared

:::
sum

::
of
:::::
Esys,

::::::
Eran

retr ,
:::
and

:::::
Esmp:

(
:::::::::
1988-2012).

:
(e)

Climatological mean relative Eclim(LHF ) with respect to its natural variability. This variability is defined as the range between the 5th

and 95th percentile of instantaneous LHF between 2000-2008. The global averages (text strings) were derived by considering a latitudinal

cosine-dependency. All patterns result from the multi-dimensional bias analyses and subsequent uncertainty propagations described in Sect.

3.2 -
:::
and 3.4.

::::
Note

:::
that

:::
the

::::
color

:::
bar

:::::
ranges

::
of

::
(a)

:::
and

:::
(c)

::
are

:::::::
identical

::
to

::::
allow

:::
for

::::
direct

::::::::::
comparisons.
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Figure 5. (a) Expected ranges of qa ("hair") as a function of different regions and seasons, while considering both .
::::
The

:::::::::
color–coded

:::::
boxes

::::
show Eclim and

::::::::::
(1988-2012),

::::::
whereas

:::
the

:::
bars

:::::::
indicate

::
the

::::::
average

:::::::::::
instantaneous

::::::
random

::::::::
uncertainty

:::::::::
component Eran

retr :::::::::
(1988-2012).

::::
The

:::::::
following

::::::
regions

:::
are

:::::::
presented: global (orange), North Atlantic (60◦ W–5◦ E, 35–65◦ N, dark blue), North Atlantic Western boundary

current (WBC, 60–80◦ W, 30–40◦ N, brown), Southern Ocean (50–60◦ S, cyan), Pacific upwelling regime (80–100◦ W, 5◦ N–5◦ S, red), and

Indian Monsoon region (50–75◦ E, 15–30◦ N, green). Whereas the color–coded boxes show the expected systematic uncertainty, the bars

indicate the random uncertainty component. (b) As for (a), but for U ("wind"). (c) As for (a), but for LHF ("late").
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Figure 6. The thin (thick) black line shows the monthly (annual running mean) time series of HOAPS-3.3 LHF (70◦ S-70◦ N, cosine-

weighted average). The dark red line illustrates the linear trend, which takes on a value of 4.5 W m-2 per decade (p<0.00001, based on a

two-tailed t-test). The grey shading represents ± 1 standard deviation ("stddev") of the annual running mean Eclim :::::
(global

:::::::
average). The

light red regression lines were iteratively derived following Kelly (2007) by taking ± 1 stddev of Eclim into account.
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