Author's response to the general comments from referee I:

Thank you for revealing your valuable criticism regarding the manuscript. Below, please find our
responses to your specific comments, along with the implemented changes to our manuscript.
All page and line numbers as well as figure numbering refer to the revised manuscript. Note
specifically that the figure numbering has changed during the review process.

MAIN COMMENTS:

i) Main comment from referee: However, we are interested in whether the estimated uncertainty is
common in (satellite) products or inherent in HOAPS-3.3. If the present results are inherent in
HOAPS-3.3, the results are useful for only people to use HOAPS-3.3. However, if the results are
common in most satellite products, the value of this article is considerably larger. If possible, we
would like to know uncertainties about other products in order to judge whether the estimated
uncertainty for HOAPS-3.3 in this study is common or not. I guess it is not so easy for the authors
to estimate uncertainties for other products. If so, I would like the authors to investigate the relation
between the uncertainties of HOAPS-3.3 obtained by this study and the differences between HOAPS
and other products, pointed out by previous paper (Iwasaki et al. (2014)).

Author's reponse: We chose to publish an AMT paper, as our manuscript describes a technique for
assigning uncertainties to latent heat flux (LHF)-related satellite data. We do not aim at performing
an uncertainty assessment of all available data records. Instead, as mentioned in the title,
uncertainties are given for HOAPS, which has more than 200 users. We therefore agree that some of
our findings cannot be generalized. As is discussed, our displayed uncertainties are in parts related
to retrieval uncertainties and sensor noises, which are unique to every data set and satellite
instrument, respectively, and are therefore not applicable to other satellite climatologies. We are not
aware of any air-sea flux related remotely sensed data set to date that is equipped with instantaneous
uncertainty estimates. HOAPS-3.3 therefore leads the way towards a more transparent satellite data
analysis, as the user may individually decide how to treat the data, given the available retrieval
uncertainties.

More important, we want to highlight the fact that our approach can easily be applied to other
satellite data sets, as long as a sufficiently large amount of collocations can be achieved. Choosing a
similar in situ data basis and identical collocation criteria compared to our manuscript, random in
situ (here: Ei;s) and collocation uncertainties (here: E.) are thought to be comparable to our results,
independent of the investigated satellite climatology. As you state, this considerably increases the
value of this article.

The uncertainty estimates cannot be set into relation with other satellite climatologies, as no further
uncertainty values exist for comparison. However, we agree that the research community would
benefit from investigations answering the questions ,,Do other LHF-related data sets lie within the
uncertainty range specified by HOAPS-3.3? If not, how can we explain this discrepancy?“. As
noted in Sect. 4.7 of the present manuscript, we are currently preparing a follow-up publication
regarding this aspect. It will present our findings in a larger perspective and thus increase the
importance of our uncertainty analysis.

To increase the value of the present manuscript, we have established links to E-P intercomparisons
illustrated by Iwasaki et al. (2014) whenever it fits the context (see ,,changes“ below). One must
keep in mind, however, that HOAPS-3 (as is used in Iwasaki et al. (2014)) differs from HOAPS-3.3
used within the present work. Apart from a temporal extension by seven years, this includes
changes to the calibration model of SSM/I brigthness temperatures (Fennig et al. (2013)), an
updated version of the AVHRR Pathfinder Data Set (SST), and the inclusion of SSMIS data (Fennig
et al. (2015)).

Iwasaki et al. (2014) is valuable when it comes to intercomparing various freshwater flux products
over the global ice-free oceans. It identifies individual parameter contributions to the overall
observed differences and allows for assessing which parameters contribute most to the positive



trend in E. Yet, such an intercomparison does not allow for drawing conclusions regarding the
uncertainty of the individual data sets. Observed differences between two data sets could either
diminish or amplify when applied to the respective climate data set. In this regard, the present
manuscript is very progressive, as it sets a basis for assigning uncertainty measures to climate data
records. For example, our uncertainty estimates allow for concluding whether the illustrated
differences were to be expected or not. Large differences, coupled to small HOAPS-3.3 uncertainty
estimates, would point at retrieval issues related to the data set compared to.

Changes in the manuscript: Iwasaki et al. (2014) is cited for the first time in Sect. 1 (P.3, L.27). In
the following places of Sect. 4, it is picked up again, where is relates HOAPS to other LHF
climatologies: P.17, L..5/25; P.20, L.2; P.21, L..24/26.

Sect. 1 (P.4, L.29) now includes a sentence, which emphasize the fact that the methodology may
easily be transferred to other retrievals, which increases the value of our manuscript. This is
revisited in Sect. 5 (P.20, L.27) and also implemented in the abstract (P.1, L.17).

ii) Main comment from referee: This article is based on Kinzel et al. (2016). However, the paper
is not referred in the present introduction. It is curious. The purpose of this article is not so clear
for me. I think the purpose of this study is comprehensive estimation of uncertainty characterization
of HOAPS-3.3 latent heat flux (LHF) related parameters in addition to specific humidity examined
in Kinzel et al. (2016).

Author's reponse: We agree that the introduction benefits from citing Kinzel et al. (2016), as it
introduces the concept of random uncertainty decomposition, which is perfomed within the present
study. The approach presented in Kinzel et al. (2016) should be understood as one of several
prerequisites for our work, as it a) (only) focuses on random uncertainties and b) does not cover
wind speed (U), LHF, and evaporation (E). We will provide a citation in an appropriate place und
put Kinzel et al. (2016) into a larger context.

Changes in the manuscript: Kinzel et al. (2016) is now referenced in Sect. 1 (P.4, L.10/21), where
it is also put into a larger perspective.

iii) Main comment from referee: For example, the authors attribute the global minimum during
boreal summer 1991 to the Mount Pinatubo eruption. However, we cannot find the minimum in
1991 in other products except HOAPS (Iwasaki et al. (2014, their Fig.6a). Therefore, the minimum
may be due to the HOAPS retrieval error related to the Mount Pinatubo eruption.

Author's reponse: Regarding the 1991 minimum related to the Mount Pinatubo eruption: we agree
on this. Please refer to the specific comment #20 further below for more details on this. The
explanation for the SST feature seen in HOAPS LHF during 1991 was already implemented in the
submitted version (see P.18 ,L..25f of revised manuscript).

iv ) Main comment from referee: Also, since all HOAPS parameters are derived from SSM/I and
SSMIS microwave radiometers, the sampling errors are expected to be large compared with other
products using many kinds of microwave radiometers.

Author's reponse: We agree that differences in sampling between different instruments exist,
which may cause sampling biases. However, it should be kept in mind that the manuscript
demonstrates an application of the introduced methodologies and does not focus on an assessment
or intercomparison of sampling uncertainties. The SSM/I and SSMIS sampling uncertainties are
accounted for, which play a marginal role on climatological time scales. This is mirrored in the
small magnitudes of monthly mean En, in Table 2 of the present manuscript.

v) Main comment from referee: Although the second paragraph in the section 5 introduces
HOAPS 4.0, 1 feel the paragraph is not necessary in this section.

Author's reponse: We believe it is important to note that the newest version of HOAPS, that is
HOAPS 4.0 (released in October 2017), includes an update of the uncertainty estimates. Apart from
this, we outline new features and improvements with respect to HOAPS-3.3 in two sentences. We



agree that it is somewhat out of place in the submitted manuscript. This short paragraph is therefore
placed towards the end of Sect. 5.

Changes in the manuscript: The short paragraph related to HOAPS 4.0 has been moved to the end
of Sect. 5 (P.22, L.6ff).

vi) Main comment from referee: Moreover, the authors discuss about precipitation in this section,
but I think this issue may exceed the scope of this study because they do not carry out uncertainty
estimates of HOAPS precipitation here.

Author's reponse: We generally agree with this comment and will therefore remove parts of the
provided literature review on issues with satellite precipitation (P) estimates. However, we want to
continue emphasizing the importance of quantifying P uncertainties, because it ultimately allows for
assessing uncertainties in freshwater budgets (E-P). In this context, the mentioned study by
Burdanowitz et al. (2016) is valuable, as it lays the basis for this purpose.

Changes in the manuscript: The paragraph related to uncertainties in P has been shortened (P.21,
L.30ff).

SPECIFIC COMMENTS:

1 )Comment from referee: P.1, L.1: “of LHF” — “of in situ LHF”
Author's reponse: We agree that 'in situ' should be added in this context
Changes in the manuscript: 'in situ' has been added to the revised manuscript (P.1, L.1).

2) Comment from referee: P.3, L.21-27: In this paragraph, we need clear description about
characteristics related to uncertainties, of HOAPS LHF product compared with other products
obtained by numerous intercomparison studies

Author's reponse: The mentioned paragraph serves to merely introduce the HOAPS climatology.
Apart from listing included parameters, the brief literature review on HOAPS intends to
demonstrate its usefulness in climate research and highlight its performance in context of
intercomparison studies. For further information, the reader is referred to the quoted references.
We believe that a thorough description related to uncertainty characteristics exceeds the scope of
this introductory paragraph. However, we agree that highlighting some distinct differences among
the data sets (without a focus on uncertainty estimates) would improve our introduction.

Changes in the manuscript: A paragraph has been added to the revised manuscript (P.3, L.25ff),
which points at substantial differences between LHF data sets (including HOAPS) on a local scale.
A second paragraph deals with performed uncertainty characterizations related to LHF (P.4, L.4ff).
It shows what has been done to date and points at the shortcoming that, apart from NOCS v2.0, no
uncertainty estimates are available to the users.

3) Comment from referee: P.5,L..16-21: Large El Nino and La Nina occurred in 1997-1998.
Therefore, 1997-1998 is a special period. Why did the authors use the data in this period?
Author's reponse: We agree that 1997-1998 were “special® years, in a climatological sense. We
argue that for training purposes, it is not essential whether the contributing data was obtained during
climatologically anomalous years or not. What counts is that a) the network is trained with match
ups, which are physically connected and b) the whole possible range of atmospheric conditions (i.e.,
in this case wind speeds) is covered by a representative amount of data. It that sense, match-ups
from 1997-1998 are beneficial, as they guarantee a full coverage of all conditions. Thus, potential
extremes are covered in our training data base.

4) Comment from referee: P.5,1..33-34: The assumption of a constant relative humidity of 80 %
and air-sea temperature difference of 1 K is considerably artificial. To what extent does have the
assumption impact on estimation of uncertainty?



Author's reponse: Thank you for bringing this up. We did not investigate the uncertainty
introduced by these two widely used assumptions, as it may be neglected for two reasons. First, air
temperature only has a secondary effect on LHF (in contrast to SHF) through the stability of the
atmospheric column. At the same time, the assumption of 1 K temperature difference with respect
to SST is a good approximation for vast regions over the global oceans. However, we agree that
over upwelling regimes, which are very confined compared to the global oceanic area, this
approximation is violated. Compare conclusion section of Wells and King-Hele (1990). Second, our
uncertainty estimation procedure described in Sect. 3 is exclusively based on high-quality match-
ups of HOAPS and in situ measurements. The data density of both ship and buoy records is
comparably low in the upwelling regimes, which further reduces the impact of our two assumptions.
Due to the comparatively small amount of reference data, we presumably underestimate resulting
uncertainties in these regions. Using for example ancillary reanalysis-based data would violate our
ambition to create a completely remotely-sensed data record, which is a key feature of HOAPS.

5) Comment from referee: P.6,L.25: (2003) ---(2013)

Author's reponse: We agree that Bentamy et al. (2013) is worth citing here.

Changes in the manuscript: A citation of Bentamy et al. (2013) has been added to revised
manuscript (P.7, L.3).

6) Comment from referee: P.8,L.15: In what ways are these features similar?

Author's reponse: The term 'similarity’ refers to the similarity of the bias distributions as a function
of the x-axis parameters. That is, lowest SST (i.e., high latitudinal SST) are underestimated in
HOAPS (likewise, q, is underestimated for (high latitudinal) g, below 5 g kg™). The HOAPS
underestimation also accounts for subtropical SST in the range of 25°-29°C (likewise, g is
underesimated for q,between 15-19 g kg™). By contrast, HOAPS SST are slightly overestimated for
SST ranging between approximately 15°-24°C and the inner tropics (30°C). Likewise, qa is
overestimated for g, between 7-12 g kg™ and for inner tropical 20 g kg™).

Changes in the manuscript: The wording has been modified in the revised manuscript (P.9,

L.14f).

7) Comment from referee: P.8,L.22: “ off the Arabian Peninsula”. We cannot recognize the data
off the Arabian Peninsula in Fig. 1. We need the distribution of average q, for this.

Author's reponse: Indeed, thank you for pointing this out. This paragraph is meant to exemplarily
present the benefit of multi dimensionality, whereas the illustration of g, patterns referred to is not
the primary focus. We therefore omitted an additional map showing the distribution of g, and U
over the Arabian Sea. However, we have included a global map showing the average difference
between HOAPS and in situ g,

Changes in the manuscript: not shown' has been added twice to the revised manscript (P.9,
L.24f).

8) Comment from referee: P.9 L.11: Is the bin width equal or not? How did you determine the bin
width?

Author's reponse: The bin width is not equidistant. It is rather determined by fixed percentiles of
data, where 5% of all contributing match-ups are assigned to a single bin. In consequence, 20 bins
result, which are narrow for large data densities and become wide close to the tails of the
distribution. This is also picked up it the caption of Fig. 2.

Changes in the manuscript: A note on the bin configuration has been added to the revised
manscript (P.9, L.3ff) and is again picked up in context of Sect. 3.2 (P.10, L.16) and the caption of
Fig. 2.

9) Comment from referee: P.9, L.17: Why did you choose the different data period between (dq.,
dU) and (dqs)?



Author's reponse: For dq. and dU, the vast amount of in situ data justified the restriction to
collocations between 2000 and 2008. For dg, the time period from 2002-2005 was left out, as
corresponding local equatorial overpasses of the operating NOAA-17 were disadvantageous for our
double collocation analysis. Recall that only night-time SST were collocated to in situ
measurements to avoid the warm layer effect (see Sect. 2.2 of this manuscript). Fulfilling the
requirement of local night time, the overpass times of NOAA-17 were inappropriate for gathering a
large number of collocations. Instead, collocation during 2006-2008 were used. Additionally, the
period 1998-2001 was taken as reference to allow for a sufficiently large collocation data basis. In
consequence, dqs match ups are based on collocations from 7 years only. This does not pose a
problem, as in situ SST measurements were available more frequently compared to U and q..

10) Comment from referee: P. 10, L.4: The average of daily coefficients is applied for estimation
of instantaneous LHF uncertainties here. Why are not instantaneous values but daily values
applied? Also, is the difference between daily and instantaneous coefficients small or large?
Author's reponse: Thank you for bringing this up. We had similar thoughts regarding the
representativity of daily versus instantaneous correlations. Deriving instantaneous correlation
coefficients, however, has a key disadvantage. Most of the global ocean is scanned only 1-2 times
per day by a single SSM/I or SSMIS instrument, some regions over the subtropics not at all. This
implies that the amount of instantaneously derived geophysical parameters is locally very limited.
Resulting correlation coefficients would therefore not be representative. We therefore decided to
apply global averaged coefficients, which are remarkably stable throughout the year on a day-to-day
basis (not shown). Due to this decision we are not capable of comparing our coefficients to
instantaneous correlation coefficients. We are aware that differences may occur.

However, we furthermore investigated, how much the sum of all correlation terms in Eq. (2)
contributes to instantaneous orugss. On average, omitting these correlation terms modifies the
resulting instantaneous oyugsys by merely 0.5 + 5 W m™. Thus, even if global mean correlation
coefficients were not always the most accurate choice, they do not represent a key contribution to
resulting LHF uncertainty estimates.

Changes in the manuscript: The two reasons for why we apply the average of daily mean global
correlation coefficients have been included into the revised manuscript (P.11, L.31ff).

11) Comment from referee: P.10,L.8: Could you explain about the definition of “gridded
uncertainty products”?

Author's reponse: Sorry for not being precise here. By ,,gridded products“, we general mean
satellite data that has been spatially and temporally averaged and that is available for fixed grid cells
(dx,dy) and time periods (dt), like ' HOAPS-C' and 'HOAPS-G'. This stands in contrast to
instantaneous, level-2 data (points in time and space, like 'HOAPS-S'), which form the basis of our
uncertainty analysis. To avoid confusion, we will not mention this in the revised manuscript and
rather rephrase this sentence.

Changes in the manuscript: The wording has been modified in the revised manuscript (P.12, L.8f)

12) Comment from referee: P.10,L.17: What is a true value for E.?
Author's reponse: We do not understand the question. Please see Table 1 of our manuscript for
magnitudes of HOAPS LHF-related E. resulting from the random uncertainty decomposition.

13) Comment from referee: P.11,L.19-22: Here, all daily sampling uncertainties are derived as a
function of the number. However, sampling error for a daily-mean value depends on not only the
number but also observation times.

Author's reponse: This is absolutely correct. Assuming a specific number of daily overpasses was
a prerequisite for showing the sampling uncertainties as a function of operating satellites (Table 2 of
our manuscript). P.11, L..18 of the submitted manuscript indicates that the daily sampling
uncertainties are estimated using “simultated satellite records®, which are derived using the two



buoy records closest in time to local satellite overpasses. The assumption of having two overpasses
per day is reasonable, as this applies to vast regions of the global oceans. We assume that sampling
uncertainties are inverse proportional to the amount of daily overpasses, but do not investigate this
dependency further. As the number of daily overpasses increases with an increasing number of
satellites, we rather resolve the resulting sampling uncertainties as a function of orbiting platforms.
This is in line with conclusions by Tomita and Kubota (2011), who found that multi-satellite
simulations for e.g. q, considerably reduced the sampling uncertainty, compared to single satellite
simulations.

Changes in the manuscript: The wording has been modified in the revised manuscript (P.12,
L..18f) to point out that our estimates are based on the assumption of having two overpasses per day.

14) Comment from referee: P.12,1.1-3: We find several geographical words such as “ Arctic”,
polar” and “ inner tropics”. However, it is difficult for us to obtain the relation between the ranges
of the random satellite retrieval uncertainty and the geographical location from Fig. 1 and Table 1.
Also are the values shown in this paragraph consistent with those in Table 1? For example, “ 0.3
and 1.8g kg*” is “ 0.7 and 1.8g kg*” in line 1?

Author's reponse: Thank you for pointing this out. We agree that this is confusing and will clarify
this in the revised manuscript, as Table 1 does not show distributions of the random retrieval
uncertainty as a function latitude and longitude. Regarding the consistency of values shown in Fig.
2 and Table 1: Note that directly comparing results of Table 1 to Fig. 2 (and expecting equality) is
not correct. Fig. 2 shows bin-wise biases and their spread in one-dimensional space. The values in
Table 1, however, result from the multi-dimensional bias analysis, multiple triple collocation (MTC)
analysis, and subsequent random uncertainty decomposition. This implies that random retrieval
uncertainties of q, presented in Table 1 are compatible with the global distributions shown in Fig.
3a. Regarding 0.3 g kg vs. 0.7 g kg™': we apologize for this mistake, '0.3' is a typo and has been
corrected to 0.7 g/g kg™ in the revised manuscript.

Changes in the manuscript: The geographical terms have been removed and have been replaced
with g.magnitudes (P.13, L.10ff). The typo has been corrected (P.13,L..10). The captions of Table 1
and Fig. 3 have been modified to point at the similarity of both representations (i.e., showing
Erelr,ran)-

15) Comment from referee: P.12, L.1-28: Accuracy of in situ data is considerably different
depending on used sensors. For example, the accuracy of wind speeds is 1.0m/s or 10% for usual
NDBC buoys, while that is 0.3 m/s for TOA buoys. Are these differences between them negligible for
the present analysis?

Author's reponse: Thank you for providing this differentiation regarding accuracies of buoy
measurements. Sect. 4.1 deals with the random uncertainty component (that is, precision) and does
not target accuracies. However, we generally agree that different instruments are associated with a
variety of (random) measurement uncertainties. Sect. 4.1 (and thus Table 1) results from a random
uncertainty decomposition procedure (compare Kinzel et al. (2016)), which crucially depends on
the amount of contributing triple collocations and thus in situ measurements. Our collocation data
basis is very large, including a variety of exclusively high-quality in situ measurements. The results
of the decomposition itself should be interpreted in a way, such that average random insitu
measurement errors can be separated from average random retrieval and collocation uncertainties,
depending on the magnitude of q., U, and g;. See for example the orange, red, and black squares as
a funtion of q, in Fig. 2 of Kinzel et al. (2016) for an illustration of this decomposition. Each of
these orange squares can be understood as a bin-averaged random in situ uncertainty contribution.
Thousands of in situ data records contribute to each of these squares/bins. One needs to therefore
consider our random in situ uncertainties as an average over all in situ data sources for a specific
parameter regime, i.e., bin. Therefore, individual in situ accuracies do not receive much weight.
Changes in the manuscript: Sect. 3.3 has been extended by two sentences (P.11, L.15ff), which
emphasize that the random uncertainty magnitudes illustrated in Table 1 are derived bin-wise and



result from thousands of triple collocated match ups (and thus in situ records).

16) Comment from referee: P.14, L.13: Could you tell me the definition of the climatological total
uncertainties (Eqim)? Are the climatological total uncertainties (E.im) different from the systematic
uncertainty?

Author's reponse: Sorry for not being precise enough here. For each grid box of Fig. 3, we define
the climatological uncertainty (Ecim) as the mean root mean squared sum of Egys Eretrran, and Egmp
(1988-2012). As Eexran Scales with 1/N, with N being the amount of observations per grid box, it
becomes virtually zero for the temporal averages shown in Fig. 4 of our manuscript. Likewise,
monthly mean En, are small (see Table 2 of our manuscript). Thus, on climatological timescales,
Eaimand Esys do not differ. We will emphasize the definition of Euin more clearly in the revised
manuscript.

Changes in the manuscript: A sentence has been added to Sect. 4.3 (P.15,L.12ff), which explains
our definition of Ein. It has also been added to the caption of Fig. 4.

17) Comment from referee: P.16,L.28: What is the meaning of “isolated time periods”?
Author's reponse: We apologize for not being precise here. This was to state that during individual
months ('isolated time periods'), the global mean uncertainty (one value) deviates from the
respective average of 1988-2012.

Changes in the manuscript: The wording has been modified in the revised manuscript (P.18,
L.9f).

18) Comment from referee I: P.17, [.3-19: E...is considered to be only one value from the
meaning of a climatological value. Is it right? If so, I cannot understand the meaning of
respective E..,over the Pacific upwelling regimes reaches 25 W m™ specifically during boreal spring
1998” found in line 6-7.

Author's reponse: Eqin is defined separately for each grid box (see comment #16 above on this),
which is why we are explicitly able to e.g. point at climatological uncertainties over the Pacific
upwelling regime.

Changes in the manuscript: See comment #16 above.

19) Comment from referee: P.17, L.28: “climatological regional wind speeds range between 4.5.-
11 m s (fig.4b). As for qa” --> “climatological regional uncertainties in wind speeds range
between 4.5.-11 m s'(fig.4b). As for U”

Author's reponse: We are not sure whether we understand this comment correctly. As formulated,
the range of 4.5-11 m s™ consideres the regional wind speed itself, not its related uncertainties. Fig.
4b shows regional and global mean HOAPS U, along with systematic and random retrieval
uncertainties. The individual medians range between 4.5-11 m s'. Seasonality is most pronounced
over the Indian monsoon region, WBC, and the North Atlantic (see JJA and DJM in Fig. 4b for
this). Similar conclusions can be drawn for q. (Fig. 4a), regarding maxima in seasonality for those
three regions.

20) Comment from referee: P.18, L.10: The global minimum during boreal summer 1991 is linked
to the Mount Pinatubo eruptions. However, the remarkable minimum can be found in only HOAPS
product and cannot be found in other products as shown in Fig. 6(a) of Iwasaki et al. (2014).
Therefore, the minimum would be related to retrieval model uncertainty. The present analysis can
investigate this issue and present its effectiveness by the investigation.

Author's reponse: Thank you very much for pointing at the valuable study by Iwasaki et al.
(2014), which we missed to cite so far. Indeed, the global minimum is linked to the Mount Pinatubo
eruption and is not observed in the remaining satellite and reanalysis products. Similar to our work,
the authors point at the cause of this low bias, which is attributed to AVHRR aerosol issues. In
consequence, this created low-biased SST (i.e., low-biased qs), which in turm resulted in



unrealistically low near-surface humidity gradients and thus low-biased E. This has already been
picked up in e.g. Andersson et al. (2010) and is therefore a known issue related to the retrieval
model. The recently released HOAPS 4.0 climatology (Andersson et al., 2017) does not include this
feature anymore, as the SST reference has changed to the NOAA 0.25° daily Optimum Interpolation
Sea Surface Temperature (OISST, Reynolds et al. (2007)), which corrects for this effect (see
Reynolds, 1993). We are not aware of further systematic retrieval issues and the overall good
performance of HOAPS in relation to other satellite and reanalysis data sets is mirrored in e.g.
Iwasaki et al. (2014) (e.g. their Fig. 3). Regarding the classification of the low-biased LHF during
1991 (see Fig. 5 of our manuscript) with respect to the given uncertainty ranges: the low-biased
LHEF lies within the average HOAPS LHEF retrieval uncertainty range (gray shading) between 1988-
1998.

Changes in the manuscript: The explanation for the SST feature seen in HOAPS LHF during
1991 was already implemented in the submitted manuscript (P.18, L.25ff of revised manuscript).
Furthermore, Iwasaki et al. (2014) has been included to the reference list and is cited where
appropriate throughout the revised manuscript (see general comment #1 at the top of this document
for more details).

21) Comment from referee: P.18,L.15: As mentioned before, could you please explain about
definition of climatological uncertainty? I cannot catch the meaning of “ the 12-month running
mean climatological uncertainty”. Is a climatological uncertainty defined each month?

Author's reponse: See comment #16 and #18 regarding the definition of Euin. From these grid
point wise Eim, a global mean climatological uncertainty is derived for each month. This implies
that twelve values result for each year. For smoothing purposes, an annual (that is , 12-month)
running mean is performed over these 25x12 = 300 global monthly mean values.

Changes in the manuscript: The wording which describes Fig. 6 has been modified in the revised
manuscript (P.18, L.29ff). Keeping the definition of Eqinin mind (see comments #16 and #18), it
becomes clear that a global mean value of Euin can be calculated for each month, to which running
means can be performed. Furthermore, the caption of Fig. 6 has been slightly adjusted.

22) Comment from referee: P.18, L.21-P.19,L. 5: In this paragraph, the results by many previous
studies are introduced. However, the relation between the results and what Fig.5 shows is not so
clear. I wonder this paragraph is necessary.

Author's reponse: We agree that the focus of our manuscript lies on the uncertainty
characterization, rather than on the positive trend seen in LHF.

Changes in the manuscript: The respective paragraph has been shortened (P.20, L.1-6).

23) Comment from referee: Fig 2. (c) and Fig. 3. (c) It is difficult to know the distribution pattern
in these figures. How about the change of a color bar?

Author's reponse: These colorbars were chosen in order to be identical to the colorbars of Fig. 3a
and 4a, respectively. Doing this, one can directly see the comparatively small uncertainty
contributions of g, in relation to q.. Specifically regarding Fig. 3c, the distribution may not always
be distinct. However, the most important feature in Fig. 3c, that is the maximum over the Indo-
Pacific warm pool region, is well resolved. Pattern descriptions are additionally given for Fig. 3c
(P.14, L.30-34) and Fig. 4c (P.16, L.20-25)

Changes in the manuscript: A comment regarding the same color bar range of g. and g, has been
included in the figure captions of Fig. 3 and 4.
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Author's response to the general comments from referee II:

Thank you for revealing your valuable criticism regarding the manuscript. Below, please find our
responses to your specific comments, along with the implemented changes to our manuscript.
All page and line numbers as well as figure numbering refer to the revised manuscript. Note
specifically that the figure numbering has changed during the review process.

SPECIFIC COMMENTS:

1) Comment from referee: Page 5, Line 10, “... the pixel-level HOAPS-3.3 data in sensor
resolution is used...”. What are the spatial and temporal resolutions of the pixel-level HOAPS-3.3
data? Which nine sensors are used in the pixel-level HOAPS-3.3 climatology?

Author's reponse: The spatial resolution of both data sources is channel-dependent. For SSM/I
data (DMSP F08-F15), it varies from 69 km by 43 km (19 GHz channel) to 37 km by 28 km (37
GHz channel). Sampling frequencies take on a value of 25 km, corresponding to scan lines every
few seconds. Regarding SSMIS (DMSP F16-F18): The spatial resolution varies from 74 km by 47
km (19 GHz channel) to 41 km by 31 km (37 GHz channel). As for SSM/I, sampling frequencies
are given by 25 km. Overall, 9 different DMSP sensors contribute to HOAPS-3.3: F8, F10-F11, and
F13-F18.

Changes in the manuscript: The DMSP satellite platforms have been included into the revised
manuscript (P.5, L.10f). Furthermore, the spatial resolution has been implemented (P.5, L.11ff).

2) Comment from referee: Page 5, Line 15: what is the temporal resolution of q, retrievals? And
at what height?

Author's reponse: Unfortunately, no information is provided by Bentamy et al. (2003) as to the
sensor heights of the (in situ) g, retrievals. What is known is that their updated regression
coefficients are derived using 1000 collocations between globally distributed ship data and
validated DMSP satellite data (F10-F14) during 1996-1997. As the retrieval is based on these match
ups, we believe that the expression of “temporal resolution“ is somewhat misleading. The globally
distributed match ups do not have a temporal resolution and are rather point measurements in time
and space.

3) Comment from referee: Page 5, Line 32: which surface pressure data are used in computing
LHF?

Author's reponse: The COARE-3.0 algorithm assumes a standard sea level pressure (SLP) of
1013.25 hPa when iteratively calculating LHF, which is also used for deriving HOAPS LHF.
Brodeau et al. (2017) investigated the effects of this SLP approximation in bulk parameterizations
of tubulent air-sea fluxes, amongst others. The authors conclude that errors of such an
approximation remain well below discrepancies related to the computation of the transfer
coefficients themselves. Their sensitivity experiments show that q,- and p-induced errors range
between merely +5% (given an SLP range from 950 hPa to 1040 hPa) with an opposite and
therefore potentially compensating effect on LHF. Apart from this, both SSM/I and SSMIS are not
capable of deriving SLP. Making use of auxiliary (e.g. reanalysis) data to implement SLP would
violate HOAPS' unique feature of relying completely on satellite input.

Changes in the manuscript: A note has been added to the revised manuscript (P.6, L.9) that a
constant SLP is presumed.

4) Comment from referee: Page 5, Line 33: “...surface air temperature, which is estimated by
assuming a constant relative humidity of 80 % (Liu et al., 1994) and air-sea temperature difference
of 1K”. How accurate is this assumption? During winter cold air outbreaks over the western
boundary current regions, the air-sea temperature differences can exceed 10 K. In this case, the



assumption will lead to a bias in air temperature. How is surface air temperature compared to the
in situ dataset?

Author's reponse: Thank you for bringing this up. We did not investigate the uncertainty
introduced by these two widely used assumptions, as it may be neglected for two reasons (for our
purposes).

First, air temperature only has a secondary effect on LHF (in contrast to SHF) through the stability
of the atmospheric column. The assumption of 1 K temperature difference with respect to SST is a
good approximation for vast regions over the global oceans. However, we agree that during cold air
outbreaks over the WBCs or in upwelling regimes, which are very confined compared to the global
oceanic area, this approximation is violated. Compare conclusion section of Wells and King-Hele
(1990).

Second, our uncertainty estimation procedure described in Sect. 3 is exclusively based on high-
quality match-ups of HOAPS and in situ measurements. The data density of both ship and buoy
records is comparably low in the regions addressed above, which further reduces the impact of our
two assumptions. Due to the comparatively small amount of reference data, we presumably
underestimate resulting uncertainties in these regions. Using for example ancillary reanalysis-based
data would violate our ambition to create a completely removely-sensed data record, which is a key
feature of HOAPS.

No SSM/I or SSMIS retrievals exist that are capable of accurately retrieving oceanic surface air
temperature (SAT) from space. This implies that SAT is not available as an official HOAPS product
and has thus not been compared to the in situ reference. Future efforts will take on this challenge.

5) Comment from referee: Page 6, Line 1: Provide a map showing the spatial distribution of in
situ (ship and buoy) reference data density over the global domain.

Author's reponse: We agree that providing such a map is useful to the reader. We therefore
implemented a map showing the spatial distribution of match ups (ship/buoy vs. satellite) over the
global oceans, exemplarily for q.. It shows all collocated match ups between 2001-2008 that
contribute to Fig. 2 (* 13.8 million match ups per subplot in total). Match ups for U and qs occur
even more frequently, but are not shown in the revised manuscript.

Changes in the manuscript: A map showing the distribution of g, collocations between 2001-2008
has been implemented into the revised manuscript (Fig 1, left panel). It is briefly described in terms
of density distributions (P.8, L.29ff).

6) Comment from referee: Page 6, Lines 4-5: Does the reference dataset include the 1996-97
period that is used in training q. algorithm?

Author's reponse: We are not able to answer this question, as Bentamy et al. (2003) does not
provide any information as to which ship records were used to train their q. retrieval. Yet, the multi-
dimensional bias analyses are restricted to match ups between 1998 and 2008 (depending on the
parameter, see P.10, L.25f). This implies that no temporal overlap between the reference data
archive and the ship records used for training purposes exists.

7) Comment from referee: Page 7, Lines 28-29: The “instantaneous and climatological
uncertainties” are not explained. How are they related to systematic, random, and sampling
uncertainties?

Author's reponse: Sorry for not being precise enough here; we agree that this needs clarification.
“Instantaneous” uncertainties are pixel-level uncertainties. These uncertainties can either be
systematic (compare Fig. 4 over revised manuscript) or random (see Fig. 3 of revised manuscript).
On an instantaneous basis, sampling uncertainties do not exist.

By contrast, we define “climatological“ uncertainties as total uncertainties averaged over the time
period 1988-2012 (as illustrated in Figs. 4 and 5 of revised manuscript). That is, Ecin is formally the
mean root mean squared sum of Eqys, Ereqran, and Eqmp averaged over 1988-2012. As Eey,ran Scales
with 1/N, with N being the amount of observations per grid box (see Eq. 3), it becomes virtually



zero when averaging over long time periods. Likewise, monthly mean En,, which applies even
more so to multi-annual averages. On climatological time scales, Ecimand Egy therefore hardly
differ. This is why Fig. 4 of the revised manuscript can be treated as both ,,systematic* and
,climatological“ uncertainty.

Changes in the manuscript: The explanation of the methodology has been extended (P.8, L.12ff).
This includes a link from instantaneous and climatological uncertainties to systematic, random, and
sampling uncertainties. A mathematical description of Ecin is furthermore provided (P.15, L.12f).

8) Comment from referee: Page 8, Line 10: Definition of water vapour path?

Author's reponse: The water vapour path (“wvpa“) refers to the vertically integrated water vapour
and is therefore a measure of humidity contents in the atmospheric column. It is thus suitable to use
as an indicator of the ambient atmospheric conditions. For more information regarding the HOAPS-
3.3 wvpa retrieval, please refer to Schliissel and Emery (1990).

Changes in the manuscript: The term ,,“water vapour path® has been replaced by “vertically
integrated water vapour” (P.9, L.2).

9) Comment from referee: Page 8, Lines 11-14: It seems that HOAPS q.is wet biased in the
tropical wet zone and dry biased in the subtropical dry zone. The bias pattern seems to be similar to
GSSFT v3 qaproduct (Prytherch et al. 2014, Int. J. Climatol.; Jin et al. 2015, J. Atmos. Ocean.
Technol.).

Author's reponse: Thank you for pointing this out. Indeed, Figure 4c in Prytherch et al. (2014)
shows a strong resemblance between HOAPS-3.2 and GSSTF3. Both data records are based on the
same algorithm and follow an inter-satellite calibration procedure. The minor differences in the
tropics are thought to be related to either different quality control standards or differing Earth
incidence angles. Given the close resemblance of GSSTF3 and HOAPS-3.2 shown in Prytherch et
al. (2014), the difference pattern (GSSTF minus buoys and OAFlux) shown in Jin et al. (2015) was
to be expected. The distribution is closely related to the q,-dependent bias pattern shown in our
manuscript (Fig. 2a).

Changes in the manuscript: Prytherch et al. (2014) is cited in this context (P. 9, L.9f).

10) Comment from referee: Page 8, Lines 21-22: Indeed, the 1-D bias analysis is not sufficient.
Please provide a figure showing the global pattern of the mean differences between HOAPS and the
reference data. Need to discuss the uncertainty pattern in terms of humidity regimes.

Author's reponse: Thank you for your suggestion. Originally we thought the reader would be
distracted by such a difference map, as we would like to emphasize the importance of considering
multiple atmospheric state parameters, i.e., the multi-dimensional bias analysis. However, we agree
that the manuscript improves when including such a difference map (HOAPS minus in situ q,).
Changes in the manuscript: The difference map has been included into the revised manuscript
(Fig 1, right panel). It is briefly described in Section 3.1 (P.9, L.10f,L.25f), where a connection to
Fig. 2a (of revised manuscript) is established.

11) Comment from referee: Page 9, Line 24: “Recall that the aim is to characterize uncertainty
and not bias patterns”. The sentence is confusing. Bias is one kind of uncertainties.

Author's reponse: We disagree with this statement. According to the International Vocabulary of
Metrology (VIM, 2012), the (measurement) uncertainty is a non-negative parameter characterizing
the dispersion of the quantity values being attributed to a measurand, based on the information used
(VIM, 2.26). By contrast, a (measurement) bias (VIM, 2.18), which corresponds to an estimate of a
systematic measurement error (VIM, 2.17), may be either positive or negative and, if known, can be
corrected for. Keeping these two definitions in mind, a bias, which is a signed value, is strictly
speaking not a kind of uncertainty. In order to turn the bias into an uncertainty estimate, we use the
absolute systematic difference as an upper boundary of the (more simple) bias distribution.
Changes in the manuscript: The wording in the revised manuscript has been modified and moved



further up in Sect. 3.2 (P.10, L.17-22).

12) Comment from referee: Page 10, Eqgs (2)-(3): Which figures are produced from Eqs.(2)-(3)?
Author's reponse: Figs. 3-6 are based on Egs. 2 and 3. Details are provided in the following.
Whereas Eq. 3 merely expresses that the total instantaneous LHF uncertainty consists of a
systematic and a random component, Eq. 2 forms the basis of LHF pixel-level uncertainties using
uncertainty propagation. That is, applying Eq. 2 equips each LHF pixel with a total, that is
systematic plus random uncertainty contribution. In consequence, Figure 4d directly results from
Eq. 2, that is the systematic uncertainty contribution (the random component convergences to zero,
due to averaging over long time period). Likewise, the systematic uncertainty contributions by U,
gs, and qg. , which contribute to Eq. 2, are illustrated in Figs. 4a-c.

Note that the random uncertainty measures resulting from Eq. 2 still incorporates random
uncertainty contributions of the collocated in situ data (Ei.) as well as the collocation procedure
itself (Ec). Each random uncertainty contribution resulting from Eq. 2 needs to therefore be
corrected to isolate the random retrieval uncertainty. This random retrieval uncertainty is what we
would like to characterize in the HOAPS climatology. The random LHF uncertainty resulting from
Eq. 2 is therefore corrected pixelwise, using the results of the random uncertainty decomposition
(see Sect. 3.4 and e.g. Figure 2 in Kinzel et al. (2016) for g.). The average field of these
instantaneous, corrected random retrieval uncertainties is shown in Fig. 3d. Respective random
retrieval uncertainty components contributed by U, qs and q., are shown in Figs. 3a-c, respectively.
As noted in the manuscript, Fig. 3 shows the instantaneous point of view, that is N=1.

Likewise, Fig. 5 shows both systematic (rectangles) and instantaneous random retrieval (bars)
uncertainties. It therefore shows the maximum uncertainty one can expect for a single pixel for
different geographical regimes. Figure 5 is therefore based on both Egs. 2 and 3. The same accounts
for Fig. 6. The technical aspects are described in Sect. 3.4-3.5 .

13) Comment from referee: Page 10, Line 10: Why only random satellite retrieval component, not
the total random uncertainty, is computed?

Author's reponse: The purpose of our uncertainty characterization is to assign systematic, random,
and sampling uncertainties to all satellite-related LHF parameters. This approach is unique and
important, as simply assigning total random uncertainties does not allow the user to understand to
what extent they are associated with the retrieval itself or other uncertainty sources. This implies
that contributions by collocation (Ec) and in-situ data (Ei,) need to be corrected for (i.e., removed)
by applying the random uncertainty decomposition (Sect. 3.3). What remains is the random retrieval
uncertainty, which consists of both random model uncertainty (Ev) and sensor noise (Ex) (see
Kinzel et al. (2016), their Eq. 5).

Immler et al. (2010) formulate an implication of such an approach for consistencies like this:
,Roughly speaking, consistency is achieved when the independent measurements agree within their
individual uncertainties” (their Sect. 2.5, Eq. 6). In other words, the decomposition of uncertainties
allows for comparing two independent measurements with own (that is, independent) uncertainties,
which makes conclusions regarding consistency more meaningful. The decomposition and
contributing random uncertainties are thoroughly explained in Kinzel et al. (2016), their Sect. 2c.
Changes in the manuscript: Immler et al. (2010) has been added to Sect. 1 for a clearer motivation
of our uncertainty decomposition approach (P.4, L.1f).

14) Comment from referee: Pages 10-11, sections 3.4-3.5: The two sections are not directly
related to any figures. Suggest to revise and combine.

Author's reponse: We disagree that these two sections are not directly related to any figures/tables
in the manuscript. For transparency, we believe a clear separation of all HOAPS-related
uncertainties, that is systematic and random retrieval uncertainty (Sect. 3.3-3.4) and sampling
uncertainty (Sect. 3.5), is appreciated. Sect. 3.3 is a main prerequisite for what is shown in Figs. 3
and 5, respectively. Sect. 4.3 (and Table 2 therein) is dedicated to only Esnp, which is first picked up



in Sect. 3.5.

15) Comment from referee: Page 13, Line 10: Fig.2 is regarded as a 2-D representation of the
error bar magnitude of Fig.1a. A figure showing the global pattern of HOAPS3.3 - minus - in situ
needs to be provided to help interpret Fig.2.

Author's reponse: The differences map points at biases, which are not linked to the random
retrieval uncertainties shown in Fig 3a. Yet, the differences map (HOAPS minus in situ) has been
added to the revised manuscript, where it is also commented on (P.9, L.10f,L..24f). This is already
picked up in a different context (see comment #10 on this). As noted in the manuscript, the quoted
passage is meant to qualitatively link the error bars in Fig. 2a to the four-dimensional (Fig. 3a)
random retrieval uncertainty representation. Differences in their magnitudes were to be expected, as
the bars in Fig. 2a include both E¢ and Ei,s, which have been corrected for in Fig. 3a. However, the
g.-dependent distribution of error bar magnitudes (Fig. 2a) are very closely related to the Ereqran
pattern (Fig. 3a) . That is, random retrieval uncertainties are largest for subtropical ranges of q. (11-
17 g kg Fig. 3a), which is mirrored in largest uncertainty bars in Fig. 2a. Likewise, these
magnitudes reduce for tropical q. ranges of roughly 20 g kg". Smallest magnitudes are generally
found in high latitudes, where g, is smallest (below 7 g kg™, see Fig. 2a). The intention was to show
the spatial distribution of random uncertainty in HOAPS-3.3 q.. As mentioned later on, this random
uncertainty can be neglected if monthly to multi-annual averages are considered, while systematic
components become the dominating source of uncertainty. Spatial maps of these long-term means
of systematic uncertainties are provided in Fig. 4.

Changes in the manuscript: See comment #10.

16) Comment from referee: Page 13, Fig. 2: The instantaneous random uncertainty map of q,
(Fig.2a) has a pattern similar to the uncertainty map of q. produced by OAFlux (Yu et al. 2008,
OAFlux technical report), though HOAPS3.3 has a much larger magnitude.

Author's reponse: Thank you for bringing up this comparison. We agree that the error distribution
shown in Yu et al. (2008) resembles our instantaneous random uncertainty distribution. Regarding
uncertainty magnitudes: Yu et al. (2008) declare “mean errors“ as monthly mean standard
deviations (std) (time period: 1958-2006). This definition considerably differs from our approach.
Furthermore, it remains unclear as to how this std is derived. Apparently, several data sets
contribute to its estimation (NCEP1, NCEP2, ERA40, satellites), which may be the cause for lower
magnitudes shown in their Fig. 21. Whereas our uncertainty estimates are exclusively HOAPS-
related (that is, related to only one data record), the error estimation presented in Yu et al. (2008)
does not clarify as to how the global error distribution includes contributions by the individual data
sets.

17) Comment from referee: Page 14, Line 3: In addition to Table 2, please add a zonal-mean
average of the monthly mean sampling uncertainties to show the latitudinal distribution of the
uncertainties.

Author's reponse: We investigated the latitudinal dependency of all sampling uncertainties. Due to
the large averaging time period (monthly means), there is hardly any zonal dependency evident in
any of the parameters (not shown). This was to be expected, as a differentiation between tropical
and extratropical buoys for quantifying monthly mean sampling uncertainies did not reveal
differences in uncertainty magnitudes (see end of Sect. 3.5). As indicated in Table 2, sampling
uncertainties averaged over such long time scales only show a dependency on the amount of
orbiting platforms. However, this effect is not seen in the zonal means, as at least three instruments
were in operational mode between 1995-2008.

Changes in the manuscript: A comment has been included into the revised manuscript (P.12,
L.26f) that no latitudinal dependency of the sampling uncertainties exists on the monthly mean
basis.



18) Comment from referee: Page 14, Line 13: How is E.in defined? Please provide a
mathematical expression of Ejim.

Author's reponse: Please refer to comment #7 on this.

Changes in the manuscript: Please refer to comment #7 on this.

19) Comment from referee: Page 14, Line 15: “Figures 3a-e can also be treated as the systematic
uncertainty distribution”. What is the relation between Figures 3a-e and the mean difference map
of HOAPS-3.3 minus in situ? See comment Page 13, Line 10. The maps shown in Figures 3a-e are
not bias patterns, as bias has both positive and negative signs. What is the meaning of the
systematic uncertainty?

Author's reponse: We apologize that the current formulation may be confusing. Regarding the
phrase you quoted: When averaging over 25 years (1988-2012), random and sampling uncertainties
become virtually zero. This implies, given our definition of Eui, (see comment #7 on this), that Ecim
is pratically equal to the systematic uncertainty (Esy), which in turn is the absolute representation of
the bias (see Sect. 3.2). Throughout our manuscript, we do not speak of ,,bias patterns®, as we are
characterizing uncertainties, which are per definition non-negative. The average of an array of
biases with respect to a reference can be zero, while none of the individual match ups are actually
equal. This automatically points at a non-zero uncertainty. In this regard, we agree that Fig. 4 (of
revised manuscript) does not show bias patterns (unlike Fig. 1 (right) in the revised manuscript), but
rather patterns of Esy. Eqys is therefore the upper boundary of the (more simple) bias distribution
(see Sect. 3.2).

Changes in the manuscript: The q.difference map (HOAPS minus in situ) has been included into
the revised manuscript (Fig. 1 (right), see comment #10 and #15 on this). It is briefly described and
related to Figs. 2a (P.9, L.25). Also, the composition of Sect. 3.2 has been changed.

20) Comment from referee: Page 18, Line 5: “On average, it increases by roughly 4.5 W m”
(4.7%) per decade...”. Which term gives rise to this large increase, q. — qsor U? The continuing
increase in LHF during the “hiatus” period in the 2000s does not seem realistic from the
perspective of the global water budget balance (see Robertson et al. 2014, J.Clim).

Author's reponse: Thank you for bringing this up. As mentioned in Sect. 4.7, this linear LHF
increase over time is picked up by numerous studies and is resolved in several climatologies. Yu et
al. (2007), for example, point at an OA Flux LHF increase of 9 W m™ over a time period of 22 years
(1981-2002), which closely resembles our linear trend estimate. Our trend analysis includes a strong
negative offset in HOAPS LHF during 1991. As pointed out in the manuscript (P.18, L.25ff), this is
associated with retrieval issues related to the Mount Pinatubo eruption and is therefore an artificial
signal. If this is solved, as has been done for the latest HOAPS version, HOAPS 4.0 (Andersson et
al., 2017), the offset is smaller, which ultimately reduces the linear trend. Also, possibly related to
the hiatus, global mean HOAPS LHF slightly decrease after 2008. GSSTF3 also exhibits an LHF
increase up to 2007/8 (which is even stronger than that of HOAPS) and a subsequent decrease (see
Robertson et al. (2014), their Fig.2b and Fig.8). Regarding the increase up to 2008, the same
conclusion may be drawn for SeaFlux (Robertson et al. (2014), their Fig. 2c). As to the cause of the
LHF increase: Q-term analysis indicates that linear trends of both U and q; are positive, whereas
that of q. is negative. In consequence, both U and (qs-q.) give rise to the observed LHF increase. For
the time period of 1988-2005, this also becomes evident in Iwasaki et al. (2014), their Fig. 9.

21) Comment from referee: Page 19, Line 14: Remove the sentence. Aren’t the uncertainty
estimates supposed to be a common practice for all gridded products?

Author's reponse: We think that it is appropriate to include this sentence in our manuscript, as we
are not aware of any other satellite climate data set with such an (extensive) uncertainty
characterization. We certainly agree that this should be a common practice in the future. It seems,
however, that HOAPS-3.3 (and HOAPS 4.0, by now) leads the way.
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Author's response to the general comments from referee II1:

Thank you for revealing your valuable criticism regarding the manuscript. Below, please find our
responses to your specific comments, along with the implemented changes to our manuscript.
All page and line numbers as well as figure numbering refer to the revised manuscript. Note
specifically that the figure numbering has changed during the review process.

MAIN COMMENTS:

1) Main comment from referee:

a) The paper is hard to read. Often it requires re-reading a paragraph a number of times, to
understand. It also has to do with the structure of the paper. It would help to define the main
methodology of the data analysis and to have this as the main thread throughout the paper.

I think I understand the methodology, but I am still not sure.

Let me explain my interpretation of the method:

(i) Four dimensional look-up tables (LUT) are created of co-located data, so differences between
data sets are stratified according to q_a, U, SST, and wvpa.

(ii) The mean difference between HOAPS and insitu data are interpreted as biases.

(iii) The variances of the difference are used for the triple co-location method, resulting in error
estimates.

(iv) This results in LUT’s of biases and random error estimates.

(v) In applications (e.g. global maps of mean and random error of gq_a) the observations of q_a, U,
SST and wvpa point to the table and provide errors of each observation. These can be averaged to
obtain the desired map.

b) I feel that it would be helpful to describe upfront that this is the general methodology and follow
it throughout the paper. So this would lead to 3 main sections in the paper: (i) Description of the
methodology, (ii) Results of the methodology, i.e statistics on the LUT data, and (iii) Application to
HOAPS evaporation. In case I am completely wrong on the interpretation of the paper, there is even
more reason to be clear about the methodology.

c) Another question is: what is the main result of the paper? If my interpretation is correct,
then the 4-dimensional table of error estimates is the main result, because it would

allow a user to make estimates of anything he/she is interested in (e.g. monthly averages,
daily averages, or El-Nino years). So it is worth thinking about communicating

this 4D table to the users. Most of the current paper is about applying the methodology,
but these are in fact just examples.

Author's reponse:

Related to a) We have restructured the paper to be more clear about the methodology. The
introduction has been rearranged and shortened (see also specific comment #1 below) for a much
clearer understanding of the motivation, the benefit, and the structure of the paper. We have
furthermore appended a flowchart to this document, which guides you through the individual steps
of data processing, intermediate data products, and resulting HOAPS uncertainty measures.

Regarding your methodology interpretation (the flowchart assists):

(i) Correct.

(ii) Yes, differences of paired collocations are considered as biases. Depending on U, q, SST, and
wvpa, these single biases are assigned to one of the 20*bins. Once all collocations have been



assigned to a bin, bin-averaged systematic uncertainties are computed based on the absolute
differences of all assigned biases. That is, we consider the upper end of bias considerations (see
comment #10 on this).

(iii) Exactly. Although the variances of differences, applied to the triplets, only help to decompose
the random uncertainty estimates to end up with HOAPS-related (that is, retrieva-related) random
uncertainty estimates.

(iv) The LUTs of systematic and (uncorrected) random uncertainties already result from i). iii) helps
to decompose the random uncertainty components, isolate the retrieval-related part, and finanly
correct the random uncertainty LUTs.

(v) Yes, this is correct.

Related to b) Regarding your proposed three main sections: We believe that this has already been
done in a similar manner and is reflected in the numbering of the Section: Methodology (Sect. 3)
and Results/Applications (Sect. 4). We do not want to dedicate ,,Results of the methodology“ an
own section, as we think that it belongs to the methodological part of the manuscript (Sects. 3.3,
3.4).

However, we agree that the submitted manuscript was not structured clearly enough. This
shortcoming has been improved (see comment related to a) above).

Related to c) We agree that one of the main outcomes of the manuscript is the benefit of the multi-
dimensional bias analyses. Particularly because the approach can be easily transferred to other
satellite retrievals and potentially also other remotely sensed parameters. The approach itself should
be stressed more clearly in the conclusion. Communicating our specific LUTs to the users is not
helpful, though, as they are tailored to HOAPS-3.3 (due to the double collocations described in
Sect. 3.1). The results of applying an updated version of the LUTs to instantaneous HOAPS data are
implemented in the most recent HOAPS 4.0 Version (Andersson et al. (2017)) in form of systematic
and random uncertainties.

We believe that the application of the uncertainty characterization approach is equally important, as
it leads to uncertainty estimates for a widely used data record. On the one hand, none of the
remaining LHF-related satellite climatologies are equipped with such estimates. On the other hand,
Sect. 4 demonstrates a variety of different approaches for illustrating the uncertainties and allows
for identifying regions where uncertainties in the satellite retrieval are an issue and need to be
accounted for.

The focus of this paper is therefore twofold: 1) describing the method and 2) applying the method to
arrive at HOAPS-3.3 uncertainty estimates.

Changes in the manuscript:

Related to a and b) The whole manuscript has been revised for a clearer reading experience. This
specifically targets Sects. 1 and 3. The last paragraph of Sect. 1 now guides the reader through the
manuscript step by step. Section 3.3. and 3.4 have been swapped to be consistent with the sequence
of analyses.

Related to c) The benefit of the multi-dimensional bias analyses for uncertainty characterizations
has been highlighted more clearly in Sect. 5 (P.20, L.21ff).

2 ) Main comment from referee:

Estimation of biases is non-trivial. In fact this is very important because, as the authors point out,
for long term averages the systematic errors dominate.



My concern is two-fold:

a) I have the feeling that it is assumed that DWD-ICOADS data is bias-free? If this is the basis for
the bias estimates, then it deserves more discussion also in view of what has been published in
literature.

b) Fig. 1 is used as an example to illustrate the estimation of biases. However, it is likely that
artificial biases occur in binned scatter plots of noisy data if correlated variables are used on
abscissa and ordinate. This applies to Fig. 1a where hair(HOAPS) is used on both vertical and
horizontal axes. It also applies to hair versus wind because these variables are correlated due to the
physics of the mixing (more wind brings hair closer to the surface value). To check, one could e.g.
bin the differences of Fig. 1a in classes of hair(insitu). Also hair(insitu) is noisy because it has large
representativeness errors (point observation, whereas HOAPS has a large footprint).

c) Finally, if one can be confident about the bias estimation, then it should also be trivial to
apply a bias correction to HOAPS. This would just leave the uncertainty in C_E which
is a parametrization constant used for satellite as well as in-situ data. Please discuss.

Author's reponse:

Related to a) It is correct that we assume the DWD-ICOADS data base to be bias free (see last
paragraph in Sect. 2.2 of submitted manuscript). Our filtering procedure ensures that only high-
quality in situ data is used for collocation analysis. Systematic effects of known origin are thought
to have been removed or at least minimized within the quality checking procedure at the Marine
Climate Data Center of DWD. Other systematic uncertainties like differing sensor heights and cool
skin effects have been eliminated prior to our analysis due to sensor height corrections using in situ
platform meta data (U) and cool skin corrections (gs). We are aware of the fact that no ground
“truth® exists, but are confident that our extensive data base is the best ground “reference*
available. Freeman et al. (2016) present a great overview of the variety of ICOADS applications,
which also include the calibration and validation of satellite data (e.g. Bentamy et al. (2003),
Bentamy et al. (2013), Jackson et al. (2009), Jackson and Wick (2010)).

It should be kept in mind that our systematic uncertainty estimates represent the upper limit of a
more simple bias estimation. Assuming a bias free ground reference therefore does not violate our
conclusions, although a small contribution to the systematic uncertainties may be caused by the in
situ reference.

One could argue that our uncertainty estimates in regions of poor in situ data coverage are
questionable. However, as picked up in Sect. 3.2, we overcome the regional dependency by
characterizing uncertainties as a function of ambient atmospheric conditions. Poor in situ data
densities are therefore of secondary importance, as their ambient atmospheric conditions may be
similar in regions with considerably more match ups.

Related to b) Thank you for the suggestion to investigate the one-dimensional patterns of dq as a
function of the in situ source. We exemplarily performed this analysis for 2001 with approximately
1.8 million match ups. We compared the magnitudes of the mean 5-percentiles, which (in case of
HOAPS) are illustrated as black squares in Fig. 2. For U, q, and q., our results indicate that in 80%
of all match ups (i.e., excluding the margins), relative differences between HOAPS and in situ mean
5-percentiles range between + 6-10%, which we consider as negligible. We presume that a two-
instead of one-sided regression approach would lead to even more robust 5-percentile means.
Towards the margins of the distributions, relative differences become larger. We believe that this
does not have a noteworthy impact on the four-dimensional analyses, as the biases in one-
dimensional space may become smaller or even cancel out when the remaining three atmospheric
state parameters are considered concurrently.

Independent of this, biases as a function of in situ LHF-related parameters cannot be investigated in
four-dimensional space, as vertically integrated water vapour (,,wvpa“), an important indicator for



the prevalent atmospheric condition, is not available from in situ measurements. This would lead to
an undesirable simplification of our uncertainty analysis approach. Additionally, our match up data
base only lasts until 2008. In consequence, no uncertainties could be assigned to pixel level HOAPS
data from 2008 onwards, if the multi-dimensional bias approach was based on in situ data.

Related to c) Regarding a bias correction of HOAPS data: Our approach aims at characterizing
uncertainties inherent to HOAPS. This allows users to implement this information into their
analyses and arrive at appropriate conclusions. We have further emphasized the benefit of such
estimates in the revised version of Sect. 1. The focus is therefore not put on bias correction with
respect to DWD-ICOADS. A sustainable consequence of large uncertainties should in fact point at
the need of modifying the retrieval algorithm instead of bias correcting the data. It is our impression
that a bias correction is feasible, if a constant bias (in terms of dependent variables, region, or time)
is present relative to a fiducial reference. Such a reference is not available at present.

Changes in the manuscript:
regarding a) Freeman et al. (2016) is picked up in context of describing the in situ data base (P.6,
L.18f). Furthermore, some further references are given regarding our assumption of bias-free

ICOADS measurements (P.8, L.3ff).

regarding b) We briefly mention the artificial biases due to correlating variables and conclude that
two-sided regression analyses could reduce these spurious biases (P.9, L.17ff).

SPECIFIC COMMENTS:

1) Comment from referee:

Section 1: Although well written, the introduction is rather long and contains sometimes fluffy
language. No reference is made to an earlier study by Kinzel et al. (2016). What is new compared to
earlier work? Reference is made to other data sets and to studies that provide error estimates.
However, nothing is said about published error estimation methods.

Author's reponse: We agree that the introduction of the submitted manuscript is too long. We have
restructured Sect. 1 following your suggestions and believe that this essentially improved the
manuscript (see also “main comment 1“ on this). Furthermore, Kinzel et al. (2016) has been
included in the revised manuscript to point at the random uncertainty decomposition approach. We
agree it is important to distinguish between earlier work and new aspects of this manuscript. This
also includes a statement regarding earlier error estimation methods and those present in our
manuscript.

Changes in the manuscript: The first 24 lines have been considerably shortened.

The whole introduction has been restructured to be clearer about the motivation and benefit of our
study. It now clearly differentiates between earlier approaches (that is, mostly intercomparison
studies, P.3, L..25ff) and the novelty of our uncertainty characterization (that is, uncertainty
estimates that are exclusively related to a specific data set, in particular HOAPS, P.4, L.1f.; P4,
L.14ff). At the same time, we highlight the new aspects of our approach (e.g. four-dimensional
LUTs, P.4, L.20f). In this regard, Kinzel et al. (2016) has been included into the revised manuscript
and is put into context (P.4, L.10f, L.21f). The advantage of multi-dimensional LUTs has been
included into the abstract (P.1, L.7f).

2 ) Comment from referee: Page 5, Line 32: The sentence with "The latter depends" suggests that
it refers to g, in the sentence before, but what it intends to say is that the COARE algorithm needs
stability and that specific assumptions are made. Please rephrase.

Author's reponse: The wording was chosen on purpose, as we wanted to point out that the



saturation vapour pressure and hence q. depends on the surface air temperature. However, we agree
that this may be confusing and the focus should be put on the stability calculation.

Changes in the manuscript: We changed the wording to “It includes atmospheric stability
calculations, which necessitate surface air temperatures as input. These are estimated by
assuming...“ (P.6, L.7f).

3 ) Comment from referee: Page 6, Line 20-24: The non-correction of q, for measuring height is
confusing. Why not using the real measuring height in the bulk formula? Perhaps it is possible to
say in one sentence what the results are of the height difference effects as estimated by Kent et al.
(2014).

Author's reponse: Prytherch et al. (2014) and Kinzel et al. (2016) point at the disadvantages
related to g, height corrections. We agree that a statement regarding the height correction effect is
useful. Kent et al. (2014) quantify the height correction effect to be 0.11 g kg™ for the time period
1971-2006, owing to the continuously increasing measurement platform heights. However, this
effect is masked by bias corrections associated with measurement techniques, which are thought to
be 2-3 times larger.

Changes in the manuscript: Results by Kent et al. (2014) regarding the height difference effects
are briefly mentioned (P.7, L.3ff).

4 ) Comment from referee: Page 7, Line 13: Cool skin corrections are applied to in situ
observation but not to HOAPS-3.3 SST (AVHRR based). This makes sense in priciple because
AVHRR measures the skin temperature. However, there must be a calibration procedure of AVHRR,
which is probably against bulk SST data. So, what does calibrated AVHRR data represent, bulk

or skin SST?

Author's reponse: Thank you for bringing this up. Indeed, AVHRR was calibrated against bulk
SST. Formally, this would necessitate a cold skin correction. However, compared to OISST
(Reynolds et al. (2007)), AVHRR has a cold bias of unknown origin, which is in the order of the
skin correction. We therefore refrained from performing the correction and consider the AVHRR
SST as a skin SST. Note that this cold bias problem is overcome in HOAPS 4.0 (Andersson et al.
(2017), which is based on OISST. For the HOAPS 4.0 retrieval (Andersson et al. (2017)), OISST is
corrected for the cold skin effect.

5) Comment from referee: Pages 4-5 section 2.1: It would be informative to mention pixel size of
the microwave sensors.

Author's reponse: Yes, we agree.

Changes in the manuscript: Pixel sizes have been included into Sect. 2.1 of the revised
manuscript (P.5, L.11-13).

6 ) Comment from referee: Page 8, Line 11: The sentence "Figure 1la overestimates ...." is
confusing. Formally it is correct, but, after reading the first time it suggests that the biases range
from 7-12 g/kg and that the plot is for the inner tropics.

Author's reponse: Indeed, this may be misunderstood.

Changes in the manuscript: The wording has been changed in the revised manuscript to: “For q,
values between 7-12g kg™ , HOAPS-3.3 overestimates near-surface specific humidities (see Figure
2a). Overestimations are also observed in the inner tropics, where g, is in the order of 20 g kg™
(P.9, L6f).

7 ) Comment from referee: Page 8, Line 17: The expression "over-(under-)estimated" is perhaps
better than "over-(under-)represented”

Author's reponse: Thank you for this suggestion.

Changes in the manuscript: "over-(under-)represented has been replaced by "over-
(under-)estimated" (P.9, L.12).



8 ) Comment from referee: Scatter plots in Fig.1: In all the plots except (c) the variables on the
vertical axis are correlated with the variable of the horizontal axis. This is most obvious for Fig. (a)
where hair-HOAPS is used in both abscissa and ordinate. In such cases the binning according to one
axis can show biases that are not necessarily real. Whether this is really the case can be easily
demonstrated by making the same plot but now with hair-insitu on the horizontal axis. Similarly
unrealistic bias may be seen in (b) and (d) because wind and wvpa are derived with from the same
satellite channels and therefore correlate with hair-HOAPS. Please discuss.

Author's reponse: We assume that “hair-insitu means “q.(in situ)* and not the mathematical
difference between HOAPS and in situ q,? We are aware of the correlation between the individual
variables. The aspect of correlating variables is an important remark, which we thoroughly discuss
in context of the “main comment 2 (part b), see further above). In fact, this is fundamental for our
multi-dimensional approach: characterizing systematic and random uncertainty estimates of U, qs,
and g, as a function of atmospheric state parameters, which (as we believe) have an impact on the
parameters themselves. Specifically regarding Figure 2d): wvpa is not available from in situ
measurements, which is why a bias dependency on in situ wvpa cannot be investigated.

Changes in the manuscript: See “main comment 2“ (part b) further above.

9 ) Comment from referee: Page 9, Line 21: Please specify what "even stronger winds" are.
Author's reponse: “stronger wind“ mean wind speeds exceeding 20 m s™.
Changes in the manuscript: The wording has been changed in the revised manuscript (P.10, L.9).

10 ) Comment from referee: Page 9, Lines 24-26: This paragraph is hard to read. After reading, a
number of times times, I think I understand. Is it not better to say: "Our goal is to document the
upper bound of the bias and therefore we take the absolute value of the possible systematic error in
CE"?

Author's reponse: We agree that this paragraph is somewhat confusing and out of place. It has
been moved further up into the appropriate context.

Changes in the manuscript: The wording has been modified and has been moved further up into
the appropriate context (P.10, L.17ff).

11 ) Comment from referee: Page 10, line 15 and page 11, line 7: I suggest to replace "Next to" by
"In addition to"

Author's reponse: Thank you for this suggestion.

Changes in the manuscript: The wording has been changed in the revised manuscript (P.12, L..12).

12 ) Comment from referee: Page 11, section 3.5: This section is hard to read. If I understand
correctly, it addresses the question: Does it matter for the averages that the satellites sample the
ocean at particular times of the day only, given that a diurnal cycle may be present? The authors
investigate by looking at buoy data and by comparing averages that cover the full diurnal cycle with
samples at satellite overpass times only. Part of the confusion is because it mentions spatial
sampling, but I don’t think this section covers that? Please simplify for clarity.

Author's reponse: Exactly. For the monthly mean HOAPS product (HOAPS-G), sampling
uncertainties need to be quantified because of the diurnal cycle of the geopyhsical parameters. Due
to the sun-synchronous satellite overflights, diurnal cycles or frontal passages are likely to be
missed. This will affect the monthly mean averages. We agree that the the term “spatial sampling* is
misleading, as we only cover the temporal sampling issue.

Changes in the manuscript: The aspect of “spatial sampling uncertainties“ has been removed from
the revised manuscript to avoid confusion.

13 ) Comment from referee: page 13, Lines 9-11: I am not sure that it is helpful here to refer to
Fig. 1a, because it is showing the combination of E_ins(q,_a) and E_retr(q.), which is different from



Fig. 2a. The authors point this out but instead of clarifying something it confuses.
Author's reponse: We agree that this may be confusing.
Changes in the manuscript: This section has been shortened to become more clear. (P. 14, L.18ff)

14 ) Comment from referee: Page 13, 23: Suggestion: replace "merely" by "only"
Author's reponse: Thank you.
Changes in the manuscript: “merely“ has been replaced by “only“. (P.14, L.31).

15 ) Comment from referee: Page 13, Line 24: What is meant by "local minimum in that region
for g_a"? E_retr(q_a) has a maximum over the warm pool.

Author's reponse: This is a mistake in our manuscript, thank you for pointing this out. We wanted
to point at the q.random retrieval uncertainty, not g, itself.

Changes in the manuscript: the wording has been changed (P.14, L.31f).

16 ) Comment from referee: Page 13, Line 29: In the sentence "Respective values partly exceed
50 W/m?", what is meant by "respective" and "partly"? Do the authors mean: "In these areas, values
are found in excess of 50 W/m*"?

Author's reponse: Yes, this is correct.

Changes in the manuscript: The wording has been changed in the revised manuscript. (P.15, L.3).

17 ) Comment from referee: Page 14, Line 33: "direct eddy covariance" is not wind speed.
Author's reponse: Sorry for not being correct here. The wind stresses are based on inertial-
dissipation methods. Together with eddy covariance based LHF, the turbulent fluxes of a variety of
satellite, reanalysis, and combined products are evaluated.

Changes in the manuscript: The wording has been changed. (P.15, L.31ff).

18 ) Comment from referee: Page 16, Lines 1-2: This is an interesting example, where it is
explained that g retrievals may be in error because of dry air advection. However, it is not clear
how the systematic error analysis picks up the area of the Agulhas current. The systematic error
estimation is entirely driven by U, g, and SST and wvpa (if I understand correctly).

Author's reponse: It is correct that the systematic uncertainty estimation is entirely driven by
combinations of ambient U, q,, SST, and wvpa. Our multi-dimensional bias approach does not point
at specific regions. This implies that we cannot be 100% certain that the observed uncertainties over
the Agulhas region are exclusively associated with local retrieval issues. In general, match ups over
a region contribute to the look up tables (LUTs), which implies these regions are somewhat
mirrored in the LUTs. However, they are not explicitly resolved.

The following serves to explain how the LUTs pick up the Agulhas region: Figure 1 (left) indicates
that numerous collocations between buoys/ships and satellite exist in this area, which is
characterized by a unique combination of ambient U, q,, SST, and wvpa. In case of the mentioned
dry cold air outbreaks from the South, . will be anomalously low and hence gs-q. and LHF
anomalously large. According to Santorelli et al. (2011), satellite retrievals seem to encounter
difficulties with these dry cold air outbreaks, which implies that they will not capture g, correctly.
This would for example be seen when investigating dq. That is, differences between satellite and in
situ g, would be negative, which directly impacts our four-dimensional uncertainty analysis. In
conclusion, repetitive retrieval issues over a specific regions will be manifested in the LUTs and
will eventually be seen in systematic uncertainty maps. At the same time, underestimated q.along
the Agulhas Current contribute to an increase in the random uncertainty component of the LUTs.

19 ) Comment from referee: Section 4.6 and Fig. 4: Here both systematic and random errors are
discussed region by region and climatologically versus January/July. Earlier in the paper it was
concluded that the random errors were small compared to the systematic errors. However in Fig. 4
the random errors are larger than the systematic errors. Furthermore I would expect that the



climatological data (I assume averaged over the entire period) has much more data than the January
or July data and therefore much smaller random errors.

Author's reponse: As mentioned in Sect. 4.6, the error bars in Fig. 5 point at instantaneous random
uncertainties (such as those shown in Fig. 3). The idea is to show the maximum uncertainty to be
expected for a specific region and season on an instantaneous basis. This approach allows for
illustrating random uncertainties, as they often even exceed the systematic counterpart for pixel-
level data, as is seen when comparing Fig. 3 to Fig. 4. Fig. 3 shows averaged instantaneous random
uncertainties as a function of region and time. If properly scaled according to the considered period
of time, they decease with increasing time period and become insignificant at monthly or multi-
annual (that is, climatological) time scale. Keeping this in mind, this also answers the question as to
the smaller random uncertainties for multi-annual mean (1988-2012) compared to seasonal means
(1988-2012): The difference in error bar magnitudes is not related to averaging periods, as these are
averaged instantaneous random uncertainties as a function of region and time. We agree, however,
that this is not clearly stated in the manuscript.

Changes in the manuscript: The wording as been modified in the revised manuscript to clarify
what is shown in Fig. 5. (P.18, 1..29-33) This also targets the caption of Fig. 5.

20 ) Comment from referee: Page 18, Line 31: Please replace "outperforms" by "exceeds"
Author's reponse: Thank you for this suggestion.

Changes in the manuscript: This section has been considerably shortened. The phrase is no longer
included in the revised manuscript.
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Abstract. Latent heat fluxes (LH F') are one of the main contributors to the global energy budget. As the density of in situ
LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applica-
tions is enormous. However, to date none of the available satellite products include estimates of systematic, randomretrieval,
and sampling uncertainties, all of which are essential for assessing their quality. Here, this challenge is taken on by applying
regionally independent multi-dimensional bias analyses to L H F'-related parameters (wind speed U, near-surface specific hu-
midity q,, and sea surface saturation specific humidity ¢s) of the Hamburg Ocean Atmosphere Parameters and Fluxes from
Satellite (HOAPS) climatology. The multi-dimensional approach overcomes the issue of sparse in situ data densities over large
oceanic areas, which makes it very promising. In connection with multiple triple collocation analyses, it is demonstrated how
both instantaneous {gridded)uncertainty measures may be assigned to each pixel{grid-box). A high-quality in sifu data archive
including buoys and selected ships serves as the ground reference. Results show that systematic LH F' uncertainties range
between 15-50 W m with a global mean of 25 W m™. Local maxima are mainly found over the subtropical ocean basins as
well as along the western boundary currents. Investigations indicate that contributions by ¢, (U) to the overall LH F' uncer-
tainty are in the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically
large over the subtropics with a global average of 37 W m™. In a climatological sense, their magnitudes become negligible, as
do respective sampling uncertainties.
1997/98-Regional and seasonal analyses suggest that largest total (i.e-systematic+instantaneousrandom)-L [ I uncertainties
are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the

observed continuous global mean L H F' increase up to 2009 needs to be treated with caution. Firstintercomparisons-to-other

HE matologies sitit-satellite- )y reveal-overall resemblance-with-few-yet-distinetexceptionsThe demonstrated approach
can easily be transferred to other satellite retrievals, which increases the significance of the present work.
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1 Introduction

Exchanges of energy and moisture at the atmosphere—ocean interface represent a critical coupling mechanism within the

climate system.

means-of-turbulentheatfluxes(Frenberth-et-al52009)—Specifically, latent heat fluxes (L H F') significantly control the surface

energy budget and are, nextin addition to radiative fluxes, one of the main contributors to heating and cooling of the oceans.

et—The fifth assessment report of
the Intergovernmental Panel on Climate Change (IPCC) emphasizes the role of heat transfer between ocean and atmosphere

in driving the oceanic circulation.

{Grodsky-et-al5-2009)-Additionally, LH F' modifies the atmospheric stability distribution and triggers convection, which in

turn strongly impacts cloud formation and precipitation. < sses;

To improve our understanding of the global energy and water cycle variability as well as model simulations of climate varia-
tions, it is of great importance to accurately measure L H F' over the global oceans at the highest possible resolution (e.g. Chou
et al., 2004). The need for accurate surface fluxes has, for example, been picked up by the World Climate Research Programme
(WCRP), the WERP-Global Energy and Water Cycle Experiment (GEWEX), and the Climate Variations (CLIVAR) Science
Steering Group (e.g. Curry et al., 2004). This-isideally-achieved-through-aceurate-observations-and-correetimplementations-of
parameterizations-in-coupled-models—Liu and Curry (2006), for example, stress that accurate LH F' are essential for a correct

forcing of ocean models and for evaluating numerical weather prediction. Additionally, reliable long-term global L H F' data

setsrecords represent a substantial input to assimilation experiments, for instance the oceanic synthesis performed by the Ger-
man contribution to Estimating the Circulation and Climate of the Ocean (GECCO, GECCO?2, e.g. Kohl and Stammer, 2008;
Kohl, 2015). i tabili i i

Several LH F' data records exist, which differ in sateHite-instrumentation, creation process, data density, as well as spatial
and temporal extent. These are either based on in sifu measurements, reanalysiser-, remotely sensed data, or a merged version
of these. Apart from isolated direct in sifu measurements using e.g. sonic anemometers, all data sourees-have-in-common-that
methods share a need of bulk flux algorithms are-applied-such as COARE 3.0a (Fairall et al., 2003) to derive LH F'. The near-

surface wind speed (U), the saturation specific humidity at the sea surface (gs), and the near-surface specific humidity (g,)

serve as input bulk parameters, on which the parameterized L H F' primarily depend.

for climate research applications, as they incorporate data with high spatial resolution, cover time periods up to several decades
and provide a complete oceanic coverage over ice-free regions.Of these, the Japanese Ocean Flux data sets with Use of Remote
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Sensing Observations (J-OFURO) satellite climatology (Kubota et al., 2002), the Goddard Satellite-based Surface Turbulent
Heat Flux (GSSTF) Version 3 product (Shie et al., 2012), the updated version of the French Research Institute for Exploitation
of the Sea (IFREMER) turbulent flux estimates (Bentamy et al., 2013), the SeaFlux Version 1 and 2 data sets (Clayson et al.,
2015), and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (Andersson et al.,
2010; Fennig et al., 2012), amongst others, include L H F-related parameters.The HOAPS data set is a completely satellite-
based, single-source climatology of precipitation, evaporation, related turbulent heat fluxes, and atmospheric state variables
over the global ice-free oceans. The usefulness of HOAPS for climatological applications has been demonstrated in numerous
intercomparison studies and promising results have been published by Bentamy et al. (2003), Bourras (2006), Klepp et al.
(2008), Winterfeldt et al. (2010), Andersson et al. (2011), and Stendardo et al. (2016).

In the framework of assessing sea surface freshwater fluxes, Romanova et al. (2010) conclude that HOAPS-3 is well suited
for global applications and serves as an important and independent data set that should be included in future ocean syntheses.

Independent of the data source, all global LITF time series are subject to uncertainties, often of unknown magnitudes. On
the one hand, in situ LH F' climatologies, which eften-include data from buoys and ships, are known to contain biases (e.g.
Wang and McPhaden, 2001), to be of variable quality, and to be unevenly sampled. Although research vessel measurements
of e.g. g, are expected to be of good quality (e.g. Roberts et al., 2010), they are regionally limited, which also accounts
for data from moored buoys (Weller et al., 2008). Issues related to poor data densities over the Southern Ocean, amongst

others, are for example stressed in Yu and Weller (2007), Bourassa et al. (2013), and Prytherch et al. (2014). In consequence,

this impedes a meaningful discussion regarding the quality of LH F' in this climatologically important region (Josey, 2011).

On the other hand, long global reanalysis products such as ERA-Interim (Dee et al., 2011) and NCEP-NCAR (Saha et al.,
2010) have a high temporal resolutionand-extent-ef-time-series, but are not capable of resolving local-scale processes due to a
lack of spatial detail (Winterfeldt et al., 2010). Specifically over data-sparse regions, more weight is given to the atmospheric
model, which is also prone to uncertainties (e.g. Gulev et al., 2007). Atseme-levelThus, atmospheric reanalysis thus-suffer
from problems in their freshwater budgets (e.g. Schlosser and Houser, 2006; Trenberth et al., 2007).




10

15

20

25

30

As-insiti and-reanalysis-datarecords:Similarly, remotely sensed L H F' climatologies are also prone to uncertainties. NextIn
addition to calibration uncertainties and aliasing problems (Bentamy et al., 2003) , uncertainty sources either originate from un-

certainties in the parameterization {Zeng-et-al;1998; Brunke-etal52002,2003)-(Brunke et al., 2002, 2003) or may be linked

to the inaccuracy of the input bulk variables (Bourassa et al., 2013). In the framework of an oceanic L H F' assessment, Brunke
et al. (2011) for example conclude that the uncertainty of HOAPS-3 LH F is largely-composed-of-bullkvariable-eaused-issues
to a great extent caused by the bulk variables due to inaccuracies of their individual retrievals. Liu and Curry (2006) reason sim-
ilarly, while assessing discrepancies of remotely sensed and reanalysis LH F' during the 1990s. Romanova et al. (2010) recall
that specifically early satellite-based products contain large uncertainties, as also shown by investigations regarding the hydro-

logical cycle by Mehta et al. (2005).

formula-Finally, irregular sampling from space introduces sampling uncertainties, which may locally become substantial (e.g.

Gulev et al., 2007). A current overview study by Loew et al. (2017) highlights the necessity of a thorough satellite-based data

validation and pools different approaches across communities.
Fo-

To date, disagreements and/or weaknesses in data sets are often revealed by performing intercomparison studies, such
as those presented by Chou et al. (2004) and Yu et al. (2011) . Another example including HOAPS-3 LHF is presented in

Andersson et al. (2011) , who show considerable differences on a local scale. Similar findings are published in Iwasaki et al. (2014) ,

who compare HOAPS-3 and other data sets to a reference climatology. Results indicate that differences are largest close to 15°
N/S, which mostly arise from differin .
Generally, such intercomparison studies are valuable for the research community. By this, however, the source of observed

differences remains unknown and can therefore not be attributed to a specific data set. To better quantify the quality of satellite-
based data sets, Prytherch et al. (2014) recently emphasized the-value-grid-box-based;-that comprehensive uncertainty estimates

in-their-ease-of¢;-would-have-are valuable for climate research purposes. To date, none of the above-listed, satellite-based
data sets-records are accompanied by LH F'-related uncertainty estimates, which hampers a quality assessment of the air—sea

fluxes and related parameters.

Such uncertainty assessments wewld-go beyond conventional L H F' intercomparison studiestas-e-g—presented-Chou-et-al; 2004 Yu-etak

they-wottd-, as they allow for quantifying the data’s accuracy (systematic uncertainty)and precision (random uncertainty). Con-

sistency among two data sets would for example be achieved when independent measurements agree within their individual
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uncertainties, as Immler et al. (2010) formulates the benefit of such an approach. Assimilation schemes like GECCO require

such uncertainty information prior to assimilating respective fields in ocean models.

Few studies have taken on the challenge of uncertainty assessments in context of L H F'-related climatologies. Whereas

random uncertainties of ship-based L H F'-related parameters are for example discussed in Gleckler and Weare (1997) , Kent and Berry (20(

and Kent and Taylor (2006) , systematic uncertainties are assessed in e.g. Kent et al. (1993) and Kent and Taylor (1996) . An
example of an in situ LH I climatology incorporating uncertainty estimates (based on optimal interpolation) is given by NOCS
v2.0 (Berry and Kent, 2009) . A satellite-related uncertainty assessment is published by Brunke et al. (2011), who decomposed

overall biases with respect to direct in sifu records into a bulk variable and a residual component, the latter which also includes

the measurement uncertainty.

sRecently, Kinzel et al. (2016) presented an elegant
approach for decomposing random uncertainties inherent to independent data sets using triple collocation. Apart from NOCS
v2.0, none of the remaining L H F'-related climatologies, irrespective of their data source, include comprehensive uncertaint

information appended to the data.
In the framework of the German researeh-Research Foundation (DFQG) initiatives ’FOR1740° and "’FOR21740’ (’ Atlantic

Freshwater Cycle’, hitp.//for1740.zmaw.de/), the lack of uncertainty information inherent to satellite data is overcome by taking
on-the-challenge-ofquantifying-specifying systematic, random, and sampling uncertainties inherent-to-exclusively associated
with HOAPS-3.3 LH F-related parameters. This manuscript not only introduces the methodology, but also demonstrates its
application to arrive at HOAPS-3.3 LH F'-related uncertainty estimates.

Once the applied data sources have been described in more detail (Sect. 2), double collocation analysis is performed
Sect. 3.1). Respective matchups serve as input to multi-dimensional bias analyses (Sect. 3.2
instantaneous systematic and total random uncertainty. Finally, random uncertainty decomposition (Kinzel et al., 2016) isolates

the required retrieval-related contribution from collocation and in situ measurement contributions (Sect. 3.3). Rigorous error
propagation to the instantaneous L F'-related data is performed subsequently, which accounts for how uncertainties in the bulk

parameters propagate into uncertainties of L H F' themselves -while-accountingforcovariances-of-the-contributing parameters:

which result in estimates of

Seetion2-presents-the-applied-dataseureesin-mere-detail(Sect. 3.4). The described sequence allows for assigning HOAPS-3.3
related systematic and random uncertainty estimates to the pixel-level data, which is not available for any other satellite
gg%dtodate As to sy%temaﬁetmeeﬁm%ypa&emsmonthl mean sampling uncertainties (Sect. 3.5), the approach of

from-collocation-and-in-sitit WWWWMMMAH uncertamty compo-
nents are presented in Sect. 4, w
wﬁﬁnm%mmmwm
a trend analysis applying the derived uncertainty estimates. Seetion—5-provides-a-A summary and a brief outlook regarding
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ongoing work —are provided in Sect. 5. The introduced methods can easily be transferred to other retrievals, highlighting the
value of this study.

2 Data
2.1 HOAPS-3.3 Pixel-Level Data Records

Apart from the sea surface temperature (SS7T), all HOAPS parameters are derived from intercalibrated Special Sensor Mi-
crowave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave radiometers, which are
installed aboard the polar orbiting satellites of the United States Air Force Defense Meteorological Satellite Program (DMSP).
HOAPS provides consistently derived global fields of freshwater flux related parameters. Regarding sensor specifications and
orbital paths, the reader is referred to e.g. Andersson et al. (2010).

Here, the focus lies on the-HOAPS-3.3pixel-level, which has been produced as an extension to the HOAPS-3.2 data
set (Andersson et al., 2010; Fennig et al., 2012) in the framework of the ongoing DFG research activity. FtIts extensive
documentation is available online (Fennig et al., 2013) . HOAPS-3.3 covers the time period from 1987 to 2015, during which
a total number of nine satellite instruments were in operational mode —(F8-F18). The spatial resolution of the pixel-level data

ranges from 74 km by 47 km (19 GHz channel) to 41 km by 31 km (37 GHz) for SSMIS sensors. Compared to HOAPS-3.2,
HOAPS-3.3 has been temporally extended up to 2015 and is based on a pre-release of the CM SAF SSM/I and SSMIS FCDR.

This reprocessing included a homogenization of the radiance time series by means of an improved inter-sensor calibration
with respect to the DMSP F11 instrument. Earth incidence angle normalization corrections were applied, following a method
described by Fuhrhop and Simmer (1996). Its-extensive-documentation-is-available-online(Fennig-etal52043)—Since the
HOAPS-3.1 release, HOAPS is hosted by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF),
whereupon its further development is shared with the University of Hamburg and the Max Planck Institute for Meteorology
(Hamburg). In this study, the pixel-level HOAPS-3.3 data in sensor resolution is used, which implies that no aggregation for
gridding purposes has been applied.

HOAPS-3.3 g, relies on a direct, four-channel retrieval algorithm by Bentamy et al. (2003), which is based on a modified
version of the two-step multi-channel regression model by Schulz et al. (1993) and its refinement by Schliissel (1996). 1000
globally collocated pairs of SSM/I FBs-brightness temperatures (TBs) and ship data between +996-+997-1996-97 were used to
estimate the new values for the coefficients in the Schulz model.

To account for the non-linearity of the problem, the HOAPS-3.3 U algorithm uses a neural network approach with three
layers after Krasnopolsky et al. (1995) to derive the wind speed at 10 m above sea level (a.s.l.). The network was trained with a
composite data set of buoy measurements, which was compiled using matchups of SSM/I F11 brightness-temperatures{TBs)

TBs and near-surface wind speed measurements from the National Oceanographic and Atmospheric Administration (NOAA)
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National Data Buoy Center (NDBC) and the Tropical Atmosphere Ocean (TAO) array between 1997-98. Radiative transfer
simulations based on radiosonde profiles served as input for the training data set (Andersson et al., 2010).

HOAPS-3.3 SST is based on the AVHRR Pathfinder Version 5.2 and is obtained from the US National Oceanographic
Data Center and the Group for High Resolution Sea Surface Temperature (http://pathfinder.nodc.noaa.gov). The data are-is
an updated version of the Pathfinder Version 5.0 and 5.1 collection described in Casey et al. (2010). A static bias correction
of +0.17 K has been applied to HOAPS-3.3 SST data in order to revert the Pathfinder Version 5.2 skin correction and thus
achieve consistency with Version 5.0 used in HOAPS-3.2.

HOAPS-3.3 sea surface saturation specific humidity g is derived by applying the Magnus formula (Murray, 1967) to SST,

while accounting for a constant salinity correction factor of 0.98. al- e g5S

HOAPS-3.3 LHF is based on the Coupled Ocean—Atmosphere Response Experiment (COARE) 2.6a bulk flux algorithm.
With minor modifications of physics and parameterizations, the algorithm is published as COARE-3-0COARE-3.0a by Fairall

etal. (2003). £ gx-andare requiredtIt includes atmospheric stability calculations, which necessitate surface air temperatures
as input. The-latter-depends—on-the-surface-air-temperature;—which—is-These are estimated by assuming a constant relative
humidity of 80 % (Liu et al., 1994) and air-sea temperature difference of 1 K (Wells and King-Hele, 1990). A constant
sea surface pressure of 1013.25 hPa is prescribed within the bulk flux algorithm. COARE-3.0 is widely accepted within the
scientific community; its benefits are for example presented in the framework of an intercomparison study by Brunke et al.
(2003).

2.2 DWD-ICOADS Data Archive

Hourly in situ measurements of U, ¢s, and g, (bulk parameters, as of now) have been provided by the Marine Climate Data
Center of the German Meteorological Service (DWD), supervised by the Marine Meteorological Office (Seewetteramt, SWA).
While data prior to 1995 is excluded due to a comparatively poor in situ data coverage, the data set used here includes mea-
surements up to 2008. It comprises global high-quality shipborne measurements as well as data provided by drifting and
moored buoys. In case of data gaps within the SWA archive, the in sifu data basis was extended at SWA by available Interna-
tional Comprehensive Ocean—Atmosphere Data Set (ICOADS) measurements (Version 2.5, Woodruff et al., 2011). These-A
lications involving ICOADS data is

comprehensive literature overview on research a iven by Freeman et al. (2016) . Both

SWA and ICOADS records contain hourly global measurements obtained from ships, moored and drifting buoys as well as
near-surface measurements of oceanographic profiles. Several quality checks were performed at SWA prior to using the merged
DWD-ICOADS data, which resulted in quality index assignments to each observation. Details regarding the flagging proce-
dures carried out at SWA are given in Kinzel et al. (2016).

In preparation for the uncertainty analyses, further filtering and correcting procedures to both ship and buoy data were carried
out. Regarding ship records, annual lists of Voluntary Observing Ships (VOS) metadata (Kent et al., 2007) were employed.
Most of the supplementary buoy metadata was extracted from the Data Buoy Cooperation Panel, which particularly includes a
fleet of moored buoy arrays operated by NDBC. Metadata of the Global Tropical Moored Buoy Array, such as TAO-TRITON



10

15

20

25

30

(Pacific-), PIRATA (Atlantic-), and RAMA (Indian Ocean) were obtained from the Pacific Marine Environment Laboratory
(PMEL).

ICOADS VOS estimates of g, are based on wet bulb temperature measurements, typically using mercury thermometers,
which are often exposed in either (ventilated) screens or sling psychrometers (Kent et al., 2007). g, is eventually derived by
applying the psychrometric formula. By contrast, g, estimates of buoys originate from measurements of air temperature and
relative humidity. For this study, g, of both VOS and buoys were not corrected to the HOAPS-3.3 reference of 10 m a.s.l.,
assuming neutral stratification. A discussion related to this approach is published in Kinzel et al. (2016). It is in line with
Prytherch et al. (2014), who conclude that a conversion to 10 a.s.l. (neutral stability) substantially adds to the noise in the

resulting in situ q,. The aspect of correcting g, with respect to height and stratification is also elucidated in Bentamy et al.

(2003) and Bentamy et al. (2013) , whereas correction effects are presented in Kent et al. (2014). The authors for example
uantify the height correction effect due to continuously increasing measurement platform heights between 1971-2006 to be
0.11 g ke'!. However, this effect is masked by bias corrections associated with measurement techniques, which are thought to

be 2-3 times larger.
DWD-ICOADS VOS U are either measured using anemometers (likewise for buoys) or are estimated from the sea state,

depending on the preference of the country recruiting the VOS (Kent et al., 2007). By means of the measured wind speed and
direction, the true wind speeds are derived considering the ship’s speed and direction. If a specific anemometer height was not
given, it was estimated from the annual global mean height difference with respect to the thermometer platform. For each year,
this single height difference value is based on all contributing ship records with complete metadata information. Prior to 2002,
no thermometer heights were available; consequently, the height difference was set to 6 m (average between 2002-2008). In
case both sensor heights were unknown, the linear fits shown in Table 4 of Kent et al. (2007) were used to derive anemometer
heights based on available ship length metadata. It was assumed that these ship type dependent linear fits (Kent et al., 2007,
their Fig. 11) introduce negligible uncertainties to the sensor height derivation. Given the anemometer heights of both VOS and
buoys, in situ wind speeds were corrected to the HOAPS-3.3 standard height of 10 m a.s.l. to remove inhomogeneities, using
the iterative equivalent neutral stability approach of Fairall et al. (2003). With the exception of e.g. (stable stratified) upwelling
regimes or local instabilities, the equivalent neutral stability assumption is valid over vast regions of the open oceans. The
correction using a neutral wind equivalent profile has been suggested by e.g. Shearman and Zelenko (1989). It is argued that in
case of VOS, the omission of a correction would lead to a positive wind speed bias, as the average wind sensor height is given
by 18 m (Kent et al., 2014). By contrast, buoy U would be low-biased.

VOS SST measurement techniques differ in terms of platform, measurement depth, and extent of automation. Strictly speak-
ing, in situ SST are sub-surface temperatures and thus differ from the HOAPS-3.3 Pathfinder SST', which are treated as a skin
SST for the surface flux calculations. This necessitates an in situ cool-skin correction as a function of wind speed, following
Donlon et al. (2002). Their Equation (2) was applied, omitting all records subject to wind speeds below 2 m s™' (corrected to
10 m a.s.l.), as the exponential fit introduces additional uncertainty for very calm conditions. On average, the S.ST correction
reduced the DWD-ICOADS SST by approximately 0.17 K. Moreover, the warm layer part of the COARE 3.0 algorithm is not

implemented in HOAPS-3.3 due to the lack of a continuous diurnal cycle information on the surface radiation budget from the
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SSM/T and SSMIS measurements. To be directly comparable to the in situ counterpart, all in situ measurements taken during
local daytime were excluded. As only night-time in sifu measurements during non-calm conditions were considered, the sea
water temperature gradient within the uppermost meters of the water column is thought to be negligible. A SST correction
with respect to the sensor depths was therefore omitted for both VOS and buoys, independent of the measurement platform.

All VOS data processing described above were-was carried out for research vessels (so-called ’special ships’) and merchant
vessels only due to vast data amounts and in order to minimize in situ uncertainties. In case of multiple triple collocation
analysis (Sect. 3.3), buoy records were excluded to ensure having a consistent, globally distributed data set as the ground
reference for the random decomposition procedure. It is argued that the vast amount of remaining triplets authorizes this
restriction.

Despite strict filtering and correcting procedures, in sifu measurement uncertainties related to sensor types, measurement
heights and positions, and solar radiation contamination may remain (e.g. Bourassa et al., 2013). Assessments regarding
the quality of the reference data are beyond the scope of this article. The in sifu data basis is therefore considered as the
bias-free, ground reference. This assumption is in line with calibration and validation approaches of Bentamy et al. (2003) ,
Jackson et al. (2009) , and Bentamy et al. (2013), amongst others. As will be shown in Sect. 3.2, the HOAPS systematic
uncertainties presented in this work are interpreted as upper limit estimates. Therefore, the assumption of a bias free ground
reference does not violate our main conclusions, although a small contribution to the systematic uncertainties may be caused
by the in situ reference.

3 Methodology

This Section describes the technical background for deriving systematic, random, and sampling uncertainties inherent to

HOAPS-3.3. By performing double collocation analysis (Sect. 3.1), multi-dimensional bias analysis (Sect. 3.2), and random

2

uncertainty decomposition (Sect. 3.3), pixel-level data will be equipped with both systematic and random uncertainty estimates.

When averaging in time, sampling uncertainties are also accounted for (Sect. 3.5). The uncertainties will be examined from an
either instantaneous eFehmafe}ngre&F mwm%m)omt of view, depend—
ing on the «
therefore complemented; leadingto-application (Sect. 4). The longer the averaging time period, the lesser the impact of both
random and sampling uncertainties. This implies that on climatological scales, total uncertainties hardly differ from systematic
uncertainties. The sequence of analyses allows for a complete HOAPS-3.3 uncertainty characterization of LH F-related pa-

rameters on all time scales, which complements the random uncertainty decomposition of resented in Kinzel et al. (2016) .

3.1 Double Collocation Analysis

In preparation for uncertainty calculations, a double collocation analysis is performed for the time period of 2001-2008,
resulting in paired matchups of L H F'-related HOAPS-3.3 and in sifu data. Although HOAPS-3.3 lasts until 2015, collocations
between 2009-2015 were not performed, as the DWD-ICOADS data archive only lasts until 2008. The collocated pairs are
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based on the so-called nearest neighbor approach; that is, HOAPS-3.3 pixels are assigned to respective in situ observations
closest in time and space. Parameter-independent collocation criteria of Az = 50 km and At = 60 min are chosen. These are
more restrictive than those derived in e.g. Kinzel (2013). Due to the vast amount of available matchups this is justifiable and

ensures that e.g. strong spatial and/or temporal gradients associated with fronts are discarded from further analysis.

Figure 1 (left) presents the resulting collocation density for 2001-2008, exemplarily for g,. Matchups mainly occur in

coastal regions (associated with buoys) and along major shipping lanes. By contrast, the Southern Ocean considerably lacks

high-quality in situ measurements. The amount of U and ¢, collocations exceeds those shown in Fig, 1 (left). For brevity, their

distributions are not shown.

Figure 2a-d exemplarily shows scatter density plots of the ¢, bias (2001-2008) as a function of the atmospheric state param-
eters g, ("hair"), U ("wind"), SST' ("asst"), and water-vapour-path-vertically integrated water vapour ("wvpa"), resulting from
the double collocation analyses. Overall, 13.8 million matchups contribute to each subplot. Figure2a-indicates-that HOAPS-3-3
to Fig. 2, one-dimensional bias analyses are performed for both dU_and dg, (not shown).

For q, between7—1t2-values between 7-12 g kg! and-, HOAPS-3.3 overestimates near-surface specific humidities (see Fig.
2a). Overestimations are also observed in the inner tropicsf, where g, ==is in the order of 20 g kg!y. In return, biases are

negative ever-Aretie-for polar (< 5 g k™) and subtropical (1217 g kg'!) humidity regimes. The latter regions-region is also
subject to largest random uncertainties, which exceed 2 g kg™!. See Kinzel et al. (2016) and Prytherch et al. (2014) for more
details on the analysis of HOAPS-3.3 0. snd it tosemblance to GSSTF3 g, (Shie ot ol 2012). The sonial distrbution of these

featuresregardingregimes-of-over—and-underestimation—Specifically the underestimations (overestimations) over subtropical
tropical) oceans are well resolved. Humidity biases as a function of wind speed are illustrated in Fig. 2b. The distribution

is somewhat linear, where low (high) wind regimes are over-(under-)represented-estimated in HOAPS-3.3. In contrast to the

remaining atmospheric state parameters, the random uncertainty decreases fairly linearly with increasing wind speeds. The g,

bias distribution as a function of S.ST" (Fig. 2c) resembles that of the ¢,-dependent distribution (Fig. 2a) regarding regimes of

over- and underestimation. A dependency of dg, on the total integrated water vapour (Fig. 2d) shows only few distinct features.

Most matchups coincide with values below 20 kg m™. With the exception of smallest values, these result in positive biases

with respect to HOAPS-3.3. As the abscissa and ordinate variables in Fig. 2 are correlated, we investigated the contribution of
artificial biases by illustrating dg, as a function of in situ g,, U, und SST. Results indicate that the percental difference of the
mean bin values (black squares) of HOAPS and DWD-ICOADS range between 6-10% (not shown). We are therefore confident

that our approach is robust. Two-sided regression analyses could further reduce these spurious biases.

A comparison of e.g. Fig. 2a and b indicates that the simple one-dimensional bias analyses may be misleading when it comes
to HOAPS-3.3 g,-related uncertainty characterizations. Average q, off the Arabian Peninsula, for example, are in the order of
14-15 g kg! (not shown). According to Fig. 2a, this is associated with a HOAPS-3.3 ¢, underestimation—, as is also seen in

ASRAARAAAARAAA

Fig. 1 (right). At the same time, climatological mean wind speeds are as low as 3—5 m s™' (not shown), which goes along with a

10
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HOAPS-3.3 g, overestimation (Fig. 2b). This is no contradiction, but rather indicates that the HOAPS-3.3 g, retrieval seems to
encounter challenges for specific humidity and wind regimes. Furthermore, a constraint to one-dimensional analyses implies for
example that parts of the random uncertainties illustrated in Fig. 2a (bars) receive a systematic component in Fig. 2b (squares).
This conclusion motivates to proceed with multi-dimensionab-multi-dimensional bias analyses, where all possible atmospheric
states, i.e. combinations of the four chosen atmospheric state parameters, are accounted for simultaneously. This approach
finally allows for separating systematic from random uncertainties. Results illustrated in Fig. 2 can therefore be considered
as a preliminary stage of the four-dimensional bias analyses introduced in Sect. 3.2, where each of the four atmospheric state

variables (i-e-Fig. 2, x-axes) represent one dimension.

3.2 Multi-Dimensional Bias Analyses

The bulk formula for LH F' is given by

LHF = p, Ly CrU(qs — qa), M

where p,, is the density of moist air and Ly the latent heat of vaporization. p, is derived as a function of HOAPS-3.3 ¢, and
near-surface air temperature. Likewise, Ly, is computed simultaneously as a function of HOAPS-3.3 SST.

Assuming uncertainties in p, and Ly to be negligible and according to standard error propagation, the overall L H F' uncer-
tainty is a function of the systematic and random uncertainties introduced by the remaining parameters.
uncertainty of Cp for wind speeds smaller (larger) than 10 m s'. For wind speeds exceeding 20 m s
Gleckler and Weare (1997) of 12 % is taken on. Independently of U, random uncertainties of 20 % are assigned, as proposed

In case of U, g5, and ¢, these-, the uncertainties are assumed to depend on the concurrent atmospheric state. The combination

the estimate of

of q,, U, SST, and water-vapour—path-vertically integrated water vapour is thought to represent the concurrent atmospheric

state best. Therefore, the one-dimensional consideration presented in Sect. 3.1 is expanded by creating four-dimensional look

up tables (LUTs) including 20* entries, respectively. The dimension is reflected in the exponent, whereas its base represents

the amount of bins per dimension. As described in Sect. 3.1, these bins are not equidistant. In case of dg,, bin means of each of
the four dimensions are indicated by the x-values of the black squares shown in Fig. 2a-d, respectively. The values of all four
dimensional vectors are essential for assigning instantaneous, absolute differences (HOAPS-3.3 minus in sifu) to the correct
a-d. By averaging the content
of each bin, systematic and foral random uncertainties finally result as a function of the four atmospheric state parameters.
The approach of processing absolute measures of the observed differences allows for moving from a simple bias analysis to
an uncertainty characterization. The resulting systematic uncertainties, which are shown throughout Sect. 4, can therefore be
treated as an upper boundary of a more simple bias distribution.

11



The uneertainty-dependeney-on-—specific-ambient-conditions-multi-dimensional uncertainty characterization approach over-

comes the issues introduced by data-sparse regions, such as the Southern Ocean and the tropical oceans (e.g. Kent and Berry,
2005). Here, it is knowingly turned away from the dependency on matchup density, which implies that the LUTs are valid on a
global scale. Due to the immense data availability, their pairwise input biases are confined to matchups from 2001-2008 (dgq,
dU) and 1998-2001/2006-2008 (dgs). A thorough elucidation of the multi-dimensional bias analysis is presented in Kinzel
et al. (2016), exemplarily for HOAPS-3.2 ¢, (Sect. 2c and Fig. 5, left therein). Here, it is applied to all three bulk parameters,

which results in both systematic and fotal random uncertainty LUTs.
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e—also those represented by the black error
bars in Fig. 2) include random uncertainties associated with the collocation procedure (F¢) and in situ measurement noise

(Eins) (e.g. Bourras, 2006). To isolate the random retrieval uncertainty, ¢/, which is exclusively HOAPS-related, multi-
ple triple collocation (MTC) analysis is applied to matchups of U, ¢,, and ¢, for the time period 1995-2008. This section
briefly summarizes the concept of random uncertainty decomposition. For more mathematical and technical details, the reader
is referred to Kinzel et al. (2016) . MTC analysis includes a twofold triple collocation (TC, introduced by Stoffelen, 1998) ,

whereupon double collocated data described in Sect. 3.1 serves as input. Triplets incorporating two independent in situ mea-
surements and one HOAPS-3.3 pixel represent the first arrangement, whereas a single in sifu record and two HOAPS-3.3 pixels
of independent satellite instruments form the second triplet structure (see Fig. 1 in Kinzel et al. (2016)). The collocation criteria
applied in Sect. 3.1 are adopted —Pata-and data poleward of 60° N/S is excluded to avoid biases associated with sea ice effects.

Subsequent to a bias correction with respect to the in sifu measurements, the variances of differences between two indepen-
dent data sources X and Y, that is Vxy, are calculated following O’Carroll et al. (2008). Given three data sources and two
types of TCs, this results in six combinations of Vxy. Next, error models for both ship and satellite records are defined. In
case of ship records, these include E;, s, whereas for satellite records, they incorporate satellite sensor noise (£, synthetically
derived) and retrieval model uncertainty (/). Applying these error models to the derived Vxy results in six equations incor-

porating E;,s, Epr, En, and E¢. These equations are successively solved for all random uncertainty sources as a function of

therespective-bullkparameter-U, g, and g,, that is for 20 individual bins per parameter. Each of these bins include thousands of

ran

triple collocated matchups. Finally, E7% = \/(Ewm)? + (En)? is the pursued-required random satellite retrieval uncertainty,

which is derived for all 20 bins as a function of U, ¢5, and q,.

Thus;-MTC is a powerful tool to decompose fotal random uncertainties (i.e., Es,m = ES + E;ns + E¢) inherent to

L H F-related bulk parameters in order to isolate the random retrieval contribution E)¢/.. Depending on the magnitude of the
respective bulk parameter, the fractional contribution of E]S/} to Ej,,., is finally derived. That is, each entry of the total random

uncertainty LUTs introduced in Sect. 3.2 is *adjusted’. Fable+-Section 4.1 presents a statistical summary of the instantaneous,

decomposed random uncertainties inherent to U, ¢5, and q,.

3.4 Deriving HOAPS-3.3 LHF-Related Uncertainties
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The uncertainties in L[ F’ are caused by uncertainties in all bulk input parameters contributing to Eq. (1). Assuming the
underlying parameterizations to be correct, I/ I uncertainties can thus be derived by carrying out standard error propagation.
These uncertainty estimates are assigned to each HOAPS pixel, depending on the four atmospheric state parameters.

Total instantaneous LI F’ uncertainties, oz, are derived as follows:

OLHF\® ,  (OLHF\? , OLHF OLHF
OLHF = o o+ By o, + 274y e Ty 00y, 2)
where z and y are place holders of U, q., q,, and Cg. .., is the correlation coefficient between x and y. For each combination

of z and y, the average of daily global mean correlation coefficients between 1995 and 2008 is applied. Global mean coefficients
are preferential compared to instantaneous 1, for two reasons. First, the amount of instantaneous data for a specific region
is limited, which may distort the results of the correlation analysis. Second, omitting all correlation-related terms in Eg. (2)
modifies 0,71 .sys by merely 0.5 25 W m (not shown), which indicates that these terms do not receive much weight after
all,

g, and gy, are fotal uncertainties in x and y. These can be decomposed into systematic and random components. Note that
the random component has been corrected for collocation and in situ uncertainty effects (see Sect. 3.3) and already represents
the random retrieval uncertainty J725/7.

OLHF\® , _ (OLHF\® SLHFE\2 .
< 8I ) O—i - ( 837 ) O—i,sys—’_(@x) O’i,’l"et’r,’r’an (N 1/2) . (3)

N is the number of HOAPS-3.3 satellite observations (N=1 for instantaneous L H F’ uncertainties). In case of temporal and
spatial averaging over a sufficiently long time period, the random component becomes negligibly small. Sampling uncertainties
do not exist on an instantaneous basis and are therefore not considered in Egs. (2)-(3).

3.5 Sampling Uncertainty

Next-In_addition to systematic and random uncertainties, inhomogeneous sampling may occur, specifically when temporal
and/er-spatial-resolution in observations are coarse. As remotely sensed data is measured at selected times only, spatial-and
temporal sampling uncertainties therefore become an issue (Gulev et al., 2010), as the diurnal cycle may not be captured
correctly.

In-a-first-step-daily-Daily mean sampling uncertainties of HOAPS-3.3 LH F'-related parameters are derived, using high-
resolution buoy measurements. Overall, data of eight tropical (PMEL, hourly resolution) and 15 extratropical (NDBC, 10-
minute resolution) moored buoys account for a possible climate regime dependency. All chosen buoy records comprise several
years of data (1995-2008) and hardly show temporal data gaps. Here, the approach by Tomita and Kubota (2011) is followed

to derive the sampling uncertainties by simulating two satellite data overpasses based-on-the-buoy-reeordsper day, using the
buoy values. In case of U and S'ST, records are corrected for sensor heights and cool skin effects, respectively, as explained
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in Sect. 2.2. In situ LH F' are computed by means of the COARE-2.6a algorithm (Fairall et al., 2003). Daily means of ’true’
buoy data are derived by averaging all daily buoy records, where only high-quality data (indicated by quality flags 1-2) is
considered. The weighted average of the two closest (in time) "true’ buoy observations to local satellite overpasses corresponds
to the so-called ’simulated’ satellite data record (Tomita and Kubota, 2011, their Fig. 2). All daily sampling uncertainties are
derived as a function of the number of simultaneously operating SSM/I instruments. These daily values form the basis for the

monthly averages of selected parameters (F,,,), which are outlined in Table 2 (Sect. 4.4). The estimates are global means;

an earlier, regime-dependent investigation resulted in negligible differencesbetween-theresulting sampling-tineertainties-, This
implies that monthly mean systematic uncertainties do not exhibit a latitudinal dependency.

4 Results and Discussion
4.1 Magnitudes of HOAPS-3.3 Decomposed Random Uncertainties

Table 1 presents a statistical summary of the instantaneous random uncertainty decomposition for the bulk parameters U, ¢,
and ¢,, following the approaches described in Sect. 3-2-an€-3.1 to 3.3. Note that E'y is not included, as its synthetically derived
value remains constant throughout the respective parameter range (for procedure, see Kinzel et al., 2016)remains—constant
througheutthe respeetive-parameterrange. Asterisked values indicate global mean weighted averages and pooled variances of
Kent and Berry (2005), resulting from a semivariogram approach. These are based on their Fig. 1, taking the illustrated grid
averaged random uncertainties, the standard deviation as well as the number of observations into account. In the following,
individual contributions to the overall random uncertainties are discussed, but not shown in terms of supplementary figures.

Era" (q,) ranges between 8:3-0.7 and 1.8 g kg!, where minima (maxima) are found in-Aretie-{subtropicatbelow 5 g kg!
(between 13-17 g kg™') g, regimes. Whereas largest relative uncertainties are associated with polar g, values (3-5 g kg'!),
lowest relative contributions below 10 % are confined to the inner tropics nggvlggv& On average, both E.(q,) and E;;,5(qq)
are approximately half the size of E7%%(q,). The average of E;,s(q,) is 0.4 g kg™! below the mean estimate of Kent and Berry
(2005). It is hypothesized that the lower estimate of F;,,s(q,) is a direct consequence of the rigorous in situ filtering procedure
prior to MTC analysis. The difference may furthermore be triggered by the fact that Kent and Berry (2005) include data records
dating back to the 1970s and 1980s, which may imply that ship records are included which do not fulfill the here applied quality
control standards. In contrast to E75/".(q.), Eins(qs) increases rather linearly with g,, which implies that smallest (largest)
random in sifu measurement uncertainties are found for lowest (highest) q,. In contrast, E.(q,) shows a similar distribution as
Era"(q,), yet with considerably smaller amplitude. These random collocation uncertainties range between 0.4 and 0.7 g kg'!,
corresponding to 3—18 %. A graphical illustration of the ¢, random uncertainty decomposition is shown in Kinzel et al. (2016)
(their Fig. 2).

In case of U, all random uncertainties tend to be larger compared to ¢, in a relative sense. In contrast to g, all three relative
uncertainties exhibit a clear increase over large ranges of U, where minima and maxima in E72/(U) (E;,s(U), E.(U)) range

retr

between 1.0-2.6 m s (1.5-2.3 m s™!, 0.8-2.0 m s™'). Whereas E"%(U) and E;,,s(U) are fairly constant for moderate wind

retr

speeds before continuously increasing, E.(U) seems to already saturate for mean wind speeds in the order of 10 m s™! (not
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shown). Similar to E;,s(q,), the E;,s(U) estimate of Kent and Berry (2005) is roughly 40 % larger. Again, this difference
is suspected to arise from the differences in the data set compositions. Kent and Berry (2005) furthermore elucidate that no
corrections for height or adjustments to the Beaufort scale have been applied to their data, which would have caused a reduction
in random uncertainty of 13 &£ 1 %, according to the authors. Yet, E;,,s(U) almost exclusively represents the largest contribution
to the random uncertainty budget of U. For all random uncertainty sources, strong wind regimes are linked to smallest relative
uncertainties in the order of 12—15 %. In low-wind regimes, however, relative uncertainties exceed 50 % to even 100 %.

Both absolute and relative contributions of gs-related random uncertainties remain well below those of ¢,. Global mean
values of all three random uncertainty sources are in the order of 0.5-0.6 g kg!. Regarding E"%"(qs), this is comparable to
the value published in e.g. McClain (1989), who estimated the global RMSE of AVHRR-derived SST to be in the order of
0.6-0.7 K (£ 0.4-0.5 g kg'"). Similar to ETer(U), E780(gs) (Bins(gs)) shows a positive proportionality with largest values

of 0.9 g kg! (1.5 g kg"). As for E;,,,(U), E;,s(qs) exceeds E787.(qs), specifically for g5 larger than 8 g kg‘l. In contrast
to q,, relative uncertainties are smallest in extratropical regimes with contributions of merely few percent. Largest relative

uncertainties remain well below those of ¢, and are in the order of 8—-14 %.
4.2  Global Patterns of HOAPS-3.3 Random Retrieval Uncertainties

The results shown-presented in Sect. 22-4.1 are expanded by showing the global patterns of E ¢/ in two-dimensional space.
Depending on the time period and thus on the number of SSM/I and SSMIS instruments in operation, the monthly global

mean sum of instantaneous observations per 0.5°x0.5° grid cell ranges from approximately 90 (1988) to 650 (2006). In con-

sequence, monthly means of E7Z/ are considerably below the systematic counterpart (see scaling effect of IV in Eq. (3)).

Specifically from 1991 onwards, monthly globally averaged E7S/. of LH F-related parameters only reach 0.5-3 %. This

retr

ran
retr

reduction becomes even more striking when investigating multi-annual or even climatological means; L H F'-related E2;. vir-
tually vanish on these scales. An increase (decrease) in these climatological random uncertainty values often directly results
from a decrease (increase) in the number of pixel-level observations and thus not from a physical change due to shifts in the
climate. This implies that results of trend analyses in random uncertainties, for example, may be misinterpreted. Therefore, the

attention is drawn to the plxel level (instantaneous) random uncertainty fields;which-are-subsequentlyrelated-to-the systematie

. This instantaneous point of view causes their orders of magnitude to be

similar to the results of E] 2/ presented in Table 1. Note that the global averages shown in Fig. 3 in form of text strings are

cosine-weighted, whereas the means illustrated in Table 1 do not take a regional dependency into account.

retr

Figure 3 shows the instantaneous E;.¢/ patterns of HOAPS-3.3 L H F'-related parameters between 1988 and 2012. Te-a-great

ades-The magnitudes presented
in Figure 3a are below those shown in Fig. 2a-Reealt-that, as the random uncertainties tHustrated-inFig—2a-havenot-yethave
been corrected for the impact of F;;,5(q,) and E.(q,) (Sect. 3.3)whichis-why-theirmagnitades-exeeed-theseshowninFig3a:

. Maxima above 1.5 g kg™! are located over all subtropical ocean basins, where ¢, is in the order of 1317 g kg'!. A reduction

within the inner tropics is clearly resolved, specifically over the warm pool region. E2/%(q,) sharply decreases poleward to

values of 0.6-0.9 g kg''. The global mean instantaneous E"%"(q,) takes on a value of 1.2 g kg™'.

retr
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The distribution of instantaneous E; ¢ (U) (Fig. 3b) shows a rather reversed pattern of ¢, and closely resembles the clima-
tological distribution of U itself. The global mean is given by 1.0 m s*'. Global maxima cover large areas of the extratropical
oceans, specifically over the Southern Ocean. Here, averages partly exceed 1.5 m s™'. However, this results in less than 15
% retrieval uncertainty in a relative sense (not shown). In contrast, instantaneous E;¢/>)(U) remain low (that is, below 0.8
m s™') over the (sub-) tropical ocean basins. This also applies to the warm pool area, which indicates a maximum in relative
contribution close to 20 % due to climatological low wind speeds (not shown).

The pattern of instantaneous E,2(gs) (Fig. 3c) resembles that of g,. However, the global mean magnitude of 0.3 g kg!
represents merely-only 25 % of the atmospheric counterpart. Absolute maxima in the order of 0.4 g kg™! are located over the
Indo-Pacific warm pool region, which stands in contrast to the local E, ¢/: (g,) minimum in that regionfer-¢;. The comparatively
small E720 (gs) also find expression in the low global mean relative uncertainty of 2 % (not shown). Values exceeding 4 % are
confined to the extratropical ocean basins on both hemispheres.

Instantaneous E; ¢ (L H F') (Fig. 3d) show a strong proportionality to the climatological mean L H F’ pattern. In that respect,
maxima are generally located over the subtropical central parts of all ocean basins (specifically the Indian Ocean) as well as
along the western boundary currents. Respeetive-values-parthy-exeeed-In these areas, values are found in excess of 50 W m2,
Apart from extratropical minima, low values in the tropics are confined to the eastern margins of the basins and the warm pool
region.

Figure 3e shows the instantaneous random uncertainty of LH F’ relative to its natural variability. This—variability-has-been
defined-as-the-pixelwise_For each grid box, this variability is derived as the difference between the 5th and 95th percentile
of instantaneous LH F' observations between 2000-2008 ;-based-on-the-(F13 platform only). Globally averaged, the relative
random uncertainty equals to 17 %. Due to the large range of L H F' along the western boundary currents (WBCs) and over the
Central Indian Ocean, the absolute maxima seen in Fig. 3d are not resolved in Fig. 3e. Largest relative uncertainties exceeding

25 % are confined to the Southern Central Tropical Pacific and along the equatorial Atlantic.

4.3 Monthly Mean Sampling Uncertainties

ec-Global Patterns of HOAPS-3.3 parameters

in-the-order-of-merely1—2-However, one should keep in mind that sampling uncertainties become essential on considerably

shorter time scales, i.e., in the framework of (sub-) daily analyses.
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4.4 Global Patterns of HOAPS-3.3 Climatological Uncertainties

Figure 4 a-e-shows the distribution of the climatological fetaf uncertainties (Ey;,,) between1988-and2042for LH F' and its

related bulk parameters. E.;,, is defined grid point wise as the mean root mean squared sum of instantaneous F, ., E7 %"
and ., between 1988-2012. As the contribution of E[Z/. and sampling-uneertainties-L,,,, converges towards 0% due to

retr
the vast number of observations, Figure 4a-e can also be treated as the systematic uncertainty distribution.

In an absolute sense, Fig. 4a mirrors the bias distribution shown in Fig. 2a. E;;,,(q,) (Fig. 4a) generally range between
0.4-0.9 g kg!, where the global mean of 0.63 g kg'! is approximately half the size of the instantaneous random counterpart
shown in Fig. 3a. Maxima are found over the tropical central and western Pacific Ocean as well as the Caribbean and off
the easternmost tip of South America. In the framework of a LH F' intercomparison study, Smith et al. (2011) argue that
satellite products have difficulties estimating g, due to persistent stratus clouds, as observed west of Peru over the tropical
eastern Pacific. This conclusion may be the cause for the elevated systematic uncertainties over the tropical eastern Pacific.
In contrast, minima are located along both extratropical belts poleward of 50-60° N/S. Secondly;isolated-minima-Isolated
minima also lie over the subtropical eastern margins of all ocean basins in the vicinity of 15-30° N/S, specifically over the
Pacific basin. Interestingly, regions of comparatively low systematic uncertainties often coincide with regional maxima in
random uncertainties (compare Fig. 3a). According to Fig. 2a, biases are smallest for climatological mean ¢, of 4-5 g kg™! and
13 g kg'!, which fits well to the mentioned minima in Fig. 4a. Likewise, absolute bias maxima for ¢, of 10 gkg' and 16-17 g
kg™ are resolved in both Fig. 2a and Fig. 4a.

The global mean of Ecji,,, (U) isshown in Fig. 4b —Jts-global-mean-equals to 0.81 m s On the one hand, maxima exceeding
1 m s™!' are located along the extratropical storm tracks, specifically over the northern hemisphere. On the other hand, local
maxima are found along broad regions at 30° S and further equatorward over the Central Indian Ocean, off the Arabian
Peninsula (both monsoon-related), and the central Northern Tropical Pacific. With the excepDIFDELCMDtion of the Southern
Ocean, this is in line with Brunke et al. (2011), who conclude that reanalysis -, satellite -, and combined data sets tend to

scompared to in situ records of inertial dissipation
wind stresses, specifically over strong wind regimes. Monsoon-related characteristic features of Indian Ocean LH I variability,

overestimate wind speeds

which also exhibit an impact on climatological uncertainties, are elucidated in e.g. Mohanty et al. (1996). Minima in the order
of 0.5 m s! are mostly confined to the eastern margins of all ocean basins (Fig. 4b). The maxima over the northern hemispheric
storm track are associated with climatological mean wind speeds of 9—11 m s™'. This range also reveals largest positive biases
in the one-dimensional bias consideration with respect to the in situ source (analogously to Fig. 2, but not shown for U).
This also targets the maximum over the central Northern Tropical Pacific and all southern hemispheric maxima along 40-50°
S. Although climatological mean wind speeds maximise over the Southern Ocean, respective systematic uncertainties rather
show a slight poleward decrease. Again, this is in line with results from the one-dimensional dU analysis (not shown), which
indicates that systematic uncertainties reduce for wind speeds above 12 m s!. Likewise, absolute bias minima are associated

with low wind regimes in the order of 4-6 m s”'. Climatologically lowest wind speeds of 2—4 m s™! are for example found along
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the Pacific coast of Central America (15° N), over the Arabian Sea, and over the Indo-Pacific warm pool region. HOAPS-3.3
tends to underestimate these wind speeds, as is mirrored in moderate F ;.. (U) (Fig. 4b).

The climatological uncertainty estimates illustrated in Fig. 4b exceed those found in e.g. scatterometer records in comparison
to buoy measurements (e.g. Verhoef et al., 2017). On the one hand, this is linked to the fact that estimates in Fig. 4b should
be treated as upper-boundary uncertainty estimates. On the other hand, scatterometers are specifically designed to derive near-
surface wind speeds at highest accuracy. Passive microwave measurements, in return, allow for a much broader range of
applications, which is a unique feature of HOAPS. An inclusion of scatterometer data into the HOAPS wind speed retrieval
was not envisaged, due to differing overflight times and data coverage, i.e., additional uncertainties of unknown magnitude.
Further potential uncertainty sources, which may contribute to the distribution shown in Fig. 4b, target currents, sea states, and
the treatment of air mass density (i.e., the concept of stress-equivalent wind speeds, e.g. de Kloe et al., 2017).

E.im(qs) covers the range of 0.1-0.6 g kg! and its global average is given by 0.23 g kg'! (Fig. 4c). The pattern reflects a
latitudinal dependency, which is equivalent to smallest (largest) biases towards the poles ((sub-) tropics). This observation is
not generally valid, as is shown by the comparatively low values over large parts of the Eastern Tropical Pacific and Atlantic.
Distinct maxima are found over the Arabian Sea and along northwestern Australia, the Caribbean, and west of Madagascar.
Narrow bands of elevated systematic uncertainty are also resolved along the WBCs. With the exception of the WBCs, the
regions of maxima are exposed to ¢, in the range of 2022 g kg™!.

Figure 4d shows the resulting E.;;,,(LH F'). It closely resembles that of the global mean LH F' pattern itself with values
ranging between roughly 15-50 W m2 and a global mean of 25-+25 W m™. Relating this pattern to Fig. 4a-c shows a substantial
contribution of E.;,(q,) to the absolute maximum of E.;,,(LHF') in the Northern/Southern Tropical Central Pacific, the
Caribbean, and the western tropical South Atlantic (compare Fig. 4a). However, due to the large climatological mean LH F,
respective relative systematic uncertainties of ¢, are merely in the order of 5-7 %. Correspondingly, imprints of F.;;,,(U) are
clearly seen along the WBCs, the Central Indian Ocean (10-15 % in a relative sense), and off the Arabian Peninsula (partly
exceeding 15 %) (Fig. 4b). Likewise, the maxima in F;,,(LHF') over the Arabian Sea, along the northwestern coast of
Australia, and close to Madagascar show the footprint of E.;;,,(gs) (Fig. 4c). However, relative systematic uncertainties in g,
generally do not exceed 2.5 %. Locally, isolated E;;,,,(L H F') maxima are resolved along 35° S. Specifically over the Agulhas
Current, Santorelli et al. (2011) conclude that different satellite data sets show discrepancies, as they are not able to properly
handle strong L H F" associated with storm systems and potential L H F' amplifications due to dry air advection northwards from
the Antarctic (Grodsky et al., 2009). Furthermore, note that the maximum in the Arabian Sea is somewhat special, in as much
as climatological mean L H F in this region are elevated, yet not extraordinarily large. This striking uncertainty maximum may

be linked to occasionally occuring advection of hot, dry air masses from the deserts, which poses problems to the HOAPS-3.3

satellite retrieval. This hypothesis is strengthened by the fact that Iwasaki et al. (2014) show largest deviations in HOAPS-3

with respect to their reference climatology, which are not seen in the remaining data sets.
Figure 4e relates E.;;,,(LHF) to its natural variability (compare Sect. 4.2). The global average is in the order of 12 %.

Apart from the WBC regimes and the Southern Ocean, largest relative uncertainties are in line with the E. ;,,(LH F') maxima

illustrated in Fig. 4d.
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4.4 Fraectional-contributions-te-tetal-LH F-uneertaintyMonthly Mean HOAPS-3.3 Sampling Uncertainties

Table 2 summarizes the average of monthly mean sampling uncertainties of several LI I-related HOAPS-3.3 parameters
as a function of concurrently operating SSM/I instruments. From a climatological perspective, all magnitudes are negligibly.
small compared to respective systematic uncertainties. 397 -related parameters show largest sampling uncertainties when three
SSM/L instruments are simultaneously operating. This is not contradictory, as HOAPS-3.3 55T are AVHRR-based and thus
not linked to the coverage of SSM/L instruments. Regarding the main bulk parameters, orders of magnitude closely resemble
those of monthly mean scaled F,¢/;. (not shown). Itis concluded that their relative contribution to the monthly mean uncertainty.
budget is in the order of merely 1-2 %. However, one should keep in mind that sampling uncertainties become essential on
considerably shorter time scales, i.c.. in the framework of daily analyses.

4.5 Fractional contributions to total HOAPS-3.3 L H F' uncertaint

Simply comparing Fig. 4a-c to Fig. 4d allows for qualitatively assessing which L H F'-related parameter contributes most to
FE.im(LHF). However, this does not permit a quantitative conclusion. Following a modified version of the *Q-term’ approach
demonstrated in Bourras (2006), E;;, (L H F') is decomposed into fractions associated with U, g, g4, and Cg. Results indicate
that the global mean contribution of E j;,,(q,) is largest (60 %). This specifically targets the Central Northern and Southern
Tropical Pacific, the Caribbean, the regime off the eastern tip of South America, as well as the Central Indian Ocean. This
finding is in line with that of Iwasaki et al. (2014) , who show that HOAPS-3

On average, the contribution by E.;;,,,(U) takes on a value of 25 %. Local hotspots are considerably larger, especially over

contributes most to the observed deviation in

the Arabian Sea, along the WBCs, and off Northwestern Australia. The fractional contributions due to both E;;,,(¢s) and
FEoim(CE) equal to 7.5 %, respectively. Eem(qs) is largest over the Arabian Sea (SST retrieval issues due to dust particles),
whereas F.j;,(Cg) maximises over the Central Indian Ocean and along the North Atlantic WBC. The latter has also been
shown by Bourassa et al. (2013), in as much as accuracy issues in C'g tend to occur over very low and very high wind speed
regimes.

All findings are in line with Bourras (2006), Liu and Curry (2006), Grodsky et al. (2009), and Santorelli et al. (2011), who
conclude that the main L H F' uncertainty sources are related to the accuracy of ¢, (and U). Similar conclusions are drawn by

e.g. Tomita and Kubota (2006), who show that the main source of discrepancy between tropical satellite and buoy estimates may

be attributed to the accuracy of q,. -The findings of the

above-quoted studies are restricted to either regional analyses, considerably shorter investigation periods, and/or comparatively

thin reference data bases. Again, this points at the high value of the presented HOAPS-3.3 uncertainty analyses.
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4.6 Regional and Seasonal AnalysisHOAPS-3.3 Uncertainty Analyses

Global mean zpmand-E 5 -and Fyyy, of LH F-related HOAPS-3.3 parameters are fairly constant in time throughout
the whole climatology - ing-isele i tods abs Figs. 3-4). Absolute deviations from the global mean

LHF (q,, U) uncertainty become as large as 18 % (3 %, 8 %).

Next-to-Apart from seasonal signals, these are footprints of distinct local anomalies. On the one hand, these anomalies seem
to originate from events that temporarily modify the global climate. On the other hand, Figures-Figs. 3-4 resolve considerable
regional variability. Therefore, the aim is to (1) identify climate features that are manifested in both temporal and spatial
uncertainty anomalies and discuss their origin (descriptive only). At the same time, (2) regional uncertainty differences shall
be highlighted by focusing on climate hotspots (Fig. Sa-c).

Regarding (1): The imprints of moderate to strong El Nifio events during boreal spring 1998 and 2010 are manifested in
LH F-related E;,, and E7%. During these events, wind speeds over the Pacific upwelling regime are 1.5-2.0 m s! below
the climatological average. As has been mentioned in Kinzel et al. (2016), this causes an increase in systematic uncertainties
in U. Along with an enhanced E;;,,,(qs), the respective E;,,(LH F') over the Pacific upwelling regime reaches 25 W m’z&
specifically during boreal spring +998whieh-1998. This is approximately 10 W m™? above the seasonal mean and more than 50
% of climatological mean LH F. As q, are anomalously high with 20 g kg'!, E"%(q,) is up to 0.2 g kg'! below the seasonal

mean (see Fig. 2 in Kinzel et al. (2016) for clarification).

By contrast, global minima in E¢j;, (LH F) and E]2)

retr(LH F') are confined to boreal autumn 1991, taking on a mean value of

20 W m? (33 W m2), respectively. These estimates are 20 % (11 %) below their climatological averages and are associated with
absolute minima in HOAPS-3.3 LH F'. The comparatively small systematic component is induced by E¢;;m(U) (Ec1im(qs)) of
-8 % (-14 %). The absolute minimum in L H F" and its uncertainties during 1991 is a footprint of the Mount Pinatubo eruption,
which caused low-biased SST due to AVHRR aerosol issues and thus unrealistically low near-surface humidity gradients
(Romanova et al., 2010). Amongst others, this shortcoming in the HOAPS-3.3 climatology has already been picked up by
Andersson et al. (2011).

Regarding (2): Figures 5a-c summarize the ranges of seasonal, regime-dependent uncertainty distributions. The color-coded
boxes in Figures 5a-c represent the expected parameter ranges when considering the-multi-annual (1988-2012) means of
systematic uncertainty contributionst, that is E.;;,»). At the same time, the error bars indicate the instantaneous-instantaneous
random uncertainty components¢, that is £7°¢/)). Both are shown separately, as they are independent of each other. With few
exceptions, the random uncertainty contributions exceed the systematic counterpart, as is also mirrored in Figures 3 e-and
4eand 4.

Figure 5a indicates that the total GreFzm—+4ofo-uncertainty ranges in g, are largest in (sub-) tropical regimes, concurrent
to high g,. In contrast to the Pacific upwelling region (red) and the Southern Ocean (cyan), the seasonal ¢, variability over
the Indian monsoon regime (green), the North Atlantic basin (dark blue), and specifically the North Atlantic western boundary

current (brown) is striking. This also finds expression in differences in absolute uncertainties of up to 0.6 g kg'! between
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January and July. Largest uncertainties are in the order of £2.40 g kg'! and are confined to the Indian summer monsoon
season, whereas smallest uncertainties around 41 g kg™! occur over the Southern Ocean.

Climatological regional wind speeds range between 4.5-11 m s (Fig. 5b). As for q,, the seasonality is most pronounced
over the Indian monsoon region, WBC, and the North Atlantic. Largest total uncertainties exceeding +2 m s™! throughout the
year are observed over the Southern Ocean, which is primarily due to large E¢/(U) (compare Fig. 3b). The Indian monsoon
region is somewhat special, in as much as summertime total uncertainties are largest on a global scale, while wintertime ranges
are almost 50 % lower.

Figure 5c presents regionally dependent LH F' and associated uncertainty ranges. As for Fig. 5a-b, seasonality is most
distinct over the North Atlantic, WBC, and the Indian monsoon region. Largest E;;,,(LHF) exceeding +35 W m? are
confined to the WBC regime (specifically during winter) and the monsoon region (climatological average, compare also Fig.
4d). Total uncertainty ranges maximise along the WBC, where +65-95 W m are to be expected, which is 2-3 times larger
compared to the ranges observed along the Pacific upwelling regime. Grodsky et al. (2009), for example, recall that an accurate
representation of LH F along the Gulf Stream region-is challenging due to strong surface currents and SST" gradients as well
as intraseasonal dependencies of how the stratified atmospheric boundary layer amplifies air-sea interactions. This reasoning
may also apply to the Agulhas and Kuroshio region. The wintertime WBC uncertainty maximum is particularly caused by vast
Eran(LHF) of up to 60 W m™ (see also signal in Fig. 3d). By contrast, regional E;,,(LH F) become largest in the Indian

monsoon region, where their climatological average is in the order of 40 W m™ (compare also Fig. 4d).
4.7 Uncertainty Application: Trends in HOAPS-3.3 LH F’

Figure 6 shows the HOAPS-3.3 global monthly mean LH F' (thin black line) between 1988-2012 (70° S-70° N, cosine-
weighted average). The global minimum below 80 W m™ during boreal summer 1991 is linked to the Mount Pinatubo eruption.
Overall maxima in the order of 110 W m™? occur during 2008 and 2009.

The bold black line in Fig. 6 shows the annual running mean climatology of HOAPS-3.3 LH F'. On average, it increases
by roughly 4.5 W m? (4.7%) per decade (dark red line). If uncertainty ranges were discarded, this trend would be considered
as significant at the 95 % level (p<0.00001, based on a two-tailed t-test). The addressed uncertainty estimates are illustrated
as grey shadings and represent £1 standard deviation of the 12-month running mean elimatological-uneertainty-I;,,, (global
average). They take on a mean value of + 17 W m™2,

A Bayesian approach to linear regression is applied including L H F' uncertainty estimates following Kelly (2007), which
yields a large range of linear trends (light red lines). Although the majority has a positive slope, some even indicate a climato-
logical decrease in LH F'. In light of the illustrated uncertainty range, the mean upward trend in HOAPS-3.3 LH F' (dark red
line) should therefore be treated with caution, as the magnitude of linear increase lies well within the grey shaded area.

The overall increase in L H F has been elucidated in several studies concerning various L H F' data sets —Amengst-others;it

aadv datected-by 1-and : A for-HOAP Connio at ¢ 6 [ hao-at A and—reans
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The authors attribute it to increases in both ¢, (i.e., SS7') and U, whereas the latter may be linked to stronger Hadley
and Walker Circulations (Cess and Udelhofen, 2003). i i i

QGeaﬂ—aJrﬂ&eﬂglﬁHeea}—LhLF—deefease&ﬁHh&The lobal mean increase of 9 W m™ between 1981 and 2002, as is e.g. seen

in Objectively Analyzed Air-Sea Heat Fluxes (OAFlux, Yu and Weller (2007) ) are-in-line-with-findings{rom-a-model-study
by-Held-and-Seden(2006)-Yu and Weller (2007) present results from an OAFIux analysis and highlight the concurrent rapid

warming of global SST (e.g. Levitus et al., 2005) and associated increasing g5, especially over the North Atlantic. Concurrently, ¢, decrea:

is in the order of 10 %, which is in line with the-findings-findings of Santorelli et al. (2011) and those illustrated in F1g 65

of the present work.
Figure 6 also shows that recent global means decrease again. Time series analyses for single satellite instruments suggest that

this is a physical signal (i.e., associated with either multi-annual variability or a climate signal), rather than being associated
with intercalibration issues among SSM/I and SSMIS instruments. However;-its-deerease-may-Additionally, the decrease may
also be attributed to the slight negative SST" bias from 2011 onwards. This bias is caused by anomalously high NOAA-19
sensor noises, which themselves may be traced back to erroneous flag assignments during cloud detection. This is thought to
cause up to 5-10 % reduction in LH F'. Closer investigations that involve other L H I’ climatologies exceed the scope of this
study, but are needed to interpret this gradual decay.

First intercomparisons of HOAPS-3.3 LH F' to in situ and further satellite climatologies have been carried out, where pre-
liminary results indicate that nearly all compared data sets lie within the uncertainty range presented in Fig. 6 (not shown).
A more detailed intercomparison study is envisaged; it will benefit from uncertainty estimates available in NOCSv2.0 and
allow for concluding whether global mean deviations among the data sets lie within or outside of the HOAPS-3.3 prescribed

uncertainty range.

5 Conclusions and Outlook

By means of multi-dimensional bias and MTC analysisanalyses, a universal approach for characterizing systematic, random re-

trieval, and sampling uncertainties inherent to HOAPS-3.3 L H F'-related parameters has been presented. The multi-dimensional

approach overcomes the issues of sparse data densities in remote regions, as it expresses the uncertainties as a function of the
ambient atmospheric conditions. At the same time, MTC enables a decomposition of random uncertainty sources to isolate
the contribution of the satellite retrieval. Both methods represent the main procedures to arrive at pixel-level uncertainty
information, which essentially increases the value of HOAPS-3.3ean-therefore-, As to sampling uncertainties, monthly mean
estimates have been calculated following the approach of Tomita and Kubota (2011) . To conclude, HOAPS-3.3 can be con-
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sidered as the first LH F' satellite-only climatology including instantaneous and gridded uncertainty estimates. As the method

can be easily transferred to other retrievals, it lays the foundation for uncertainty characterizations of further LHF-related data
sets, which increases the significance of this work.

It has been shown that maxima of systematic uncertainties (F.;;,,) reach up 50 W m, specifically over the large regions
of the subtropical oceans (mainly g,-induced) and along the western boundary currents (mainly U-induced). Instantaneous
random retrieval uncertainties (E%) maximise along 20-30° N/S with values up to 60 W m, clearly showing the footprint
of random uncertainties of ¢,. From a climatological perspective, all random retrieval uncertainty components contribute to
the total uncertainty by merely 1-2 % on a monthly basis (and even less for longer periods), which also accounts for respective
sampling uncertainties. Considerable regional and seasonal variability of LH F' uncertainty ranges have been resolved from
an instantaneous point of view, with maxima over the Gulf Stream and Indian monsoon region during boreal winter. Climate

events, such as strong El Nifio signals and the Mount Pinatubo eruption, are well manifested in both systematic and random

L H F uncertainties, even on a global scale. In light of the available uncertainty estimates, it has been shown that the positive

trend in global mean LH F' during the last 25 years lies within the derived uncertainty boundaries -

Results of the Q-term analysis presented in Sect. 4.5 and other studies suggest that more effort is necessary to improve the
q, retrieval. This would ultimately reduce the overall L H F' uncertainty, which, according to e.g. Bourras (2006), ought to be
below 10 W m™ for a quantitative use over the global oceans. In-the framework-of the HOAPS-4.0 release this-value has-also

n-declared-as-the-targetrequirement-for-the-global-mean-LHFAn increase in the reliability of HOAPS-3.3 L H F'-related

parameters could for example be achieved by referring to a new ground truth reference. Freeman et al. (2016), for example,
recently presented a new version of ICOADS (release 3.0, up to 2014), highlighting its improvements compared to earlier
versions, which target topics such as data quality, data traceability, and data base extension. Apart from new in situ reference
data, the effect of approximations in bulk flux parameterizations should also be picked up, as has been done in detail in Brodeau
et al. (2017). Amongst others, this concerns implications of sensor height corrections, algorithm choices, the g5 reduction due
to the salinity effect, cool skin/ warm layer effects, and the assumption of constant sea level pressure.

According to Andersson et al. (2011), the E-P budget of HOAPS-3.2 is not closed. This also accounts for HOAPS-3.3, with
a climatological mean value of 0.45 mm d' (1988-2012, 70° S-70° N). Long-term run-off estimates are summarized and
published by the Global Runoff Data Center (GRDC), adding up to a mean value of 0.34 mm d! (Wilkinson et al., 2014).
According to Andersson et al. (2011), the uncertainty of these run-off estimates is in the order of 10-20 %. Comparing these
values to the HOAPS-3.3 global freshwater flux leaves an imbalance of approximately 0.10 mm d"', which is 0.30 mm d!

below the HOAPS-3.2 estimate and can be evaluated as an improvement towards closing the global freshwater flux imbalance.
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As E.jim(E) is in the order of + 0.6 mm d'!, the imbalance clearly lies in the range of freshwater flux uncertainty. Keeping

this uncertainty range in mind sheds new light on the conclusion by Iwasaki et al. (2014) that the HOAPS-3 freshwater budget

is largest compared to the remaining data sets. A unit conversion from mm d! to k

-1

uncertainty range of HOAPS. As 0.6 mm d*! corresponds to roughly 0.8%10'7 kg year!, we conclude that all satellite and
hybrid related time series lie within the uncertainty range. This does not account for the reanalyses; according to the authors
these tend to overestimate E, which is associated with the underlying bulk flux algorithm.

Recall, however, that uncertainty estimates of HOAPS-3.3 precipitation have not been accounted for in this quantitative

estimation. Generally, the availability of remotely sensed precipitation uncertainty estimates is complicated by sparse reference

data and its intermittency.

poleward-ef40°N/S—-A recent study by Burdanowitz et al. (2016) presents an automatic phase distinction algorithm for optical

disdrometer data. Together with a continuously growing high-quality in sifu data base of ship-based precipitation measurements

(OceanRAIN, Klepp (2015)), it will serve as a valuable basis for a characterization of HOAPS-3.3 precipitation and hence
freshwater flux uncertainty ranges in the near future. Aeeuracy-assessments-of globalrainfall-estimates-ean-also-be-achieved

Future work also aims at investigating trends in water vapour transports (WVT), using HOAPS-3.3 monthly mean freshwater
fluxes. Sohn and Park (2010), for example, demonstrated that trends in WVT can be used to examine circulation changes and
conclude that the large-scale Hadley Circulation has experienced an increase in strength since 1979. Similarly, Durack et al.
(2012) recently highlighted a considerable water cycle intensification during global warming. Available uncertainty estimates

will allow for quantifying the WVT uncertainty range, the necessity of which has been picked up by e.g. Sohn et al. (2004).

A new version of HOAPS-3.3, that is HOAPS 4.0, has been released in October 2017 (Andersson et al., 2017) . Major
changes compared to HOAPS-3.3 include a temporal extension up to 2014, a new 5,57 product (Version 2 of the NOAA
Optimum _Interpolation SST" (OISST) product, Reynolds et al. (2007) ), and the implementation of a 1D-Var retrieval for
several geophysical parameters. Preliminary results suggest that the new U estimates have improved compared to HOAPS-3.3
in terms of bias and RMSD behaviour relative to in situ ground reference data. In consequence, estimates of LA 7 and £ have
been updated, along with L/ I”-related uncertainty estimates.

Data availability: HOAPS-3.3 is a prolongation of HOAPS-3.2 and is based on a pre-release of the CM SAF SSM/I and SSMIS
FCDR. It was created in the framework of the DFG FOR 1740 research activity for internal use. The monthly mean HOAPS-3.2

climatology and the respective FCDR are publicly available and may be downloaded free of charge (http://www.cmsaf.eu/EN/Products/DOI

Instantaneous and gridded HOAPS-3.3 data are available upon request from the author.
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Table 1. Absolute and relative random statistical measures resulting from the multi-dimensional LUTs, i.e., MTC and random uncertainty
decomposition (Sect. 3.2, 3.3). ’stddev’ = standard deviation, *abs’ = absolute, ‘rel” = relative. Apart from the L H F'-related bulk parameters
themselves (U, ¢s, and q,), global mean ranges of the random retrieval- (F;.2f,.), random collocation- (E.), and random in situ measurement
uncertainty (E;y,s) are shown. Relative measures result from bin-wise relative uncertainty calculations. For comparison, the asterisks indicate

respective estimates published in Kent and Berry (2005), which are based on a semivariogram approach.
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Table 2. Menthty-Average of monthly mean HOAPS-3.3 L H F-related sampling uncertainties (/s,,,) as a function of simultaneously
operating SSM/I instruments (1995-2008). g, = "hair", U = "wind", ¢; = "hsea", LHF = "late", SST = "asst", I/ = "evap", air temperature
rTan

= "tair". All magnitudes are negligible compared to the instantaneous random (E}.¢;;.) and climatological uncertainties (Ec;4,) presented in

Sect. 4.2 and 4.4.

# of satellites / parameters "hair" [g kg'l] "wind" [ms™] "hsea" [g kg'l] "late" [W m™] "asst" [K] "evap" [mm dah "tair'' [K] ‘
1 0.05 0.14 0.04 2.3 0.04 0.08 0.08
0.03 0.12 0.04 1.9 0.03 0.07 0.05
3 0.03 0.11 0.05 1.8 0.04 0.06 0.04
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Figure 1. Left panel: Global map showing the distribution of collocated g, measurements (HOAPS versus in situ) between 2001-2008.

Overall, more than 13.8 million matchups contribute to this density map. Note that the colorbar is logarithmic. Right panel: Two-dimensional

(HOAPS minus in situ, 2001-2008) shown in Fi

illustration of the near-surface humidity biases d . 2. Note that the colorbar is not linear.
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Figure 2. Scatter density plots of g, bias (HOAPS-3.3 minus in situ, g kg'l) as a function of (a) ¢, ("hair"), (b) U ("wind"), (c) SST ("asst"),
and (d) water vapour path ("wvpa"), based on global double collocations between 2001 and 2008. The black squares and error bars represent
bin-averaged systematic uncertainties (significant at the 95 % level) and their standard deviations, whereby each bin contains 5 % of all
double collocated matchups. Note that the bars include random uncertainty contributions by the satellite retrieval, the collocation procedure,

and the in situ measurement uncertainty. (a) is a revised version of Fig. 3 published in Kinzel et al. (2016).
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Figure 3. Temporal averages (1988-2012) of HOAPS-3.3 instantaneous F,.¢f,. of (a) g, ("hair"), (b) U ("wind"), (¢) ¢s ("hsea"), and (d) LH F’
("late"). (e) Relative random retrieval uncertainty of HOAPS-3.3 L H F' with respect to its natural variability. This variability is defined as
the range between the 5th and 95th percentile of instantaneous LH F' between 2000-2008. The global averages (text strings) were derived
by considering a latitudinal cosine-dependency. All patterns result from the multi-dimensional bias analyses, MTC, random uncertainty
decompositions, and, in case of (d), uncertainty propagation described in Sect. 3.2-3:33.4. Note that the color bar ranges of (a) and (¢) are
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Figure 4.

HOAPS-3.3 climatological total uncertainties (Ec;im) of (a) o ("hair"), (b) U ("wind"), (c)
gs ("hsea"), and (d) LHF ("late"). E.j;y, is defined as the mean root mean squared sum of Fg,., Frofr., and Fg,, (1988-2012). (e)

Climatological mean relative E.;;m (L H F') with respect to its natural variability. This variability is defined as the range between the 5th
and 95th percentile of instantaneous L H F' between 2000-2008. The global averages (text strings) were derived by considering a latitudinal

cosine-dependency. All patterns result from the multi-dimensional bias analyses and subsequent uncertainty propagations described in Sect.

3.2 -and 3.4. Note that the color bar ranges of (a) and (c) are identical to allow for direct comparisons.
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Figure 5. (a) Expected ranges of g, ("hair") as a function of different regions and seasons;-while-considering-both-. The color—coded boxes

show Erim and-(1988-2012), whereas the bars indicate the average instantaneous random uncertainty component £y.c;,. (1988-2012). The
following regions are presented: global (orange), North Atlantic (60° W—5° E, 35-65° N, dark blue), North Atlantic Western boundary
current (WBC, 60-80° W, 30-40° N, brown), Southern Ocean (50-60° S, cyan), Pacific upwelling regime (80-100° W, 5° N-5° S, red), and
Indian Monsoon region (50-75° E, 15-30° N, green). i i

indieate-the-random-uneertainty-component—(b) As for (a), but for U ("wind"). (c) As for (a), but for LH F' ("late").
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Timeseries of monthly mean HOAPS-3.3 LHF and its total uncertainty range
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Figure 6. The thin (thick) black line shows the monthly (annual running mean) time series of HOAPS-3.3 LHF' (70° S-70° N, cosine-
weighted average). The dark red line illustrates the linear trend, which takes on a value of 4.5 W m™ per decade (p<0.00001, based on a
two-tailed t-test). The grey shading represents &= 1 standard deviation ("stddev") of the annual running mean E.;;, (global average). The
light red regression lines were iteratively derived following Kelly (2007) by taking + 1 stddev of E;;., into account.
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