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Abstract. Latent heat fluxes (LHF ) are one of the main contributors to the global energy budget. As the density of in situ LHF

measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications

is enormous. However, to date none of the available satellite products include estimates of systematic, random, and sampling

uncertainties, all of which are essential for assessing their quality. Here, this challenge is taken on by applying regionally

independent multi-dimensional bias analyses to LHF -related parameters (wind speed U , near-surface specific humidity qa,5

and sea surface saturation specific humidity qs) of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite

(HOAPS) climatology. The multi-dimensional approach overcomes the issue of sparse in situ data densities over large oceanic

areas, which makes it very promising. In connection with multiple triple collocation analyses, it is demonstrated how both

instantaneous uncertainty measures may be assigned to each pixel. A high-quality in situ data archive including buoys and

selected ships serves as the ground reference. Results show that systematic LHF uncertainties range between 15-50 W m-210

with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the

western boundary currents. Investigations indicate that contributions by qa (U ) to the overall LHF uncertainty are in the order

of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics

with a global average of 37 W m-2. In a climatological sense, their magnitudes become negligible, as do respective sampling

uncertainties. Regional and seasonal analyses suggest that largest total LHF uncertainties are seen over the Gulf Stream and15

the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous global mean

LHF increase up to 2009 needs to be treated with caution. The demonstrated approach can easily be transferred to other

satellite retrievals, which increases the significance of the present work.
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1 Introduction

Exchanges of energy and moisture at the atmosphere–ocean interface represent a critical coupling mechanism within the

climate system. Specifically, latent heat fluxes (LHF ) significantly control the surface energy budget and are, in addition

to radiative fluxes, one of the main contributors to heating and cooling of the oceans. The fifth assessment report of the

Intergovernmental Panel on Climate Change (IPCC) emphasizes the role of heat transfer between ocean and atmosphere in5

driving the oceanic circulation. Additionally, LHF modifies the atmospheric stability distribution and triggers convection,

which in turn strongly impacts cloud formation and precipitation. To improve our understanding of the global energy and

water cycle variability as well as model simulations of climate variations, it is of great importance to accurately measure LHF

over the global oceans at the highest possible resolution (e.g. Chou et al., 2004). The need for accurate surface fluxes has, for

example, been picked up by the World Climate Research Programme (WCRP), the Global Energy and Water Cycle Experiment10

(GEWEX), and the Climate Variations (CLIVAR) Science Steering Group (e.g. Curry et al., 2004). Liu and Curry (2006), for

example, stress that accurate LHF are essential for a correct forcing of ocean models and for evaluating numerical weather

prediction. Additionally, reliable long-term global LHF data records represent a substantial input to assimilation experiments,

for instance the oceanic synthesis performed by the German contribution to Estimating the Circulation and Climate of the

Ocean (GECCO, GECCO2, e.g. Köhl and Stammer, 2008; Köhl, 2015).15

Several LHF data records exist, which differ in instrumentation, creation process, data density, as well as spatial and

temporal extent. These are either based on in situ measurements, reanalysis, remotely sensed data, or a merged version of

these. Apart from isolated direct in situ measurements using e.g. sonic anemometers, all data methods share a need of bulk

flux algorithms such as COARE 3.0a (Fairall et al., 2003) to derive LHF . The near-surface wind speed (U ), the saturation

specific humidity at the sea surface (qs), and the near-surface specific humidity (qa) serve as input bulk parameters, on which20

the parameterized LHF primarily depend.

In particular, satellite climatologies have a vast potential for climate research applications, as they incorporate data with high

spatial resolution, cover time periods up to several decades, and provide a complete oceanic coverage over ice-free regions. Of

these, the Japanese Ocean Flux data sets with Use of Remote Sensing Observations (J-OFURO) satellite climatology (Kubota

et al., 2002), the Goddard Satellite-based Surface Turbulent Heat Flux (GSSTF) Version 3 product (Shie et al., 2012), the up-25

dated version of the French Research Institute for Exploitation of the Sea (IFREMER) turbulent flux estimates (Bentamy et al.,

2013), the SeaFlux Version 1 and 2 data sets (Clayson et al., 2015), and the Hamburg Ocean Atmosphere Parameters and Fluxes

from Satellite (HOAPS) climatology (Andersson et al., 2010; Fennig et al., 2012), amongst others, include LHF -related pa-

rameters. The HOAPS data set is a completely satellite-based, single-source climatology of precipitation, evaporation, related

turbulent heat fluxes, and atmospheric state variables over the global ice-free oceans. The usefulness of HOAPS for climato-30

logical applications has been demonstrated in numerous intercomparison studies and promising results have been published by

Bentamy et al. (2003), Bourras (2006), Klepp et al. (2008), Winterfeldt et al. (2010), Andersson et al. (2011), and Stendardo

et al. (2016). In the framework of assessing sea surface freshwater fluxes, Romanova et al. (2010) conclude that HOAPS-3 is
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well suited for global applications and serves as an important and independent data set that should be included in future ocean

syntheses.

Independent of the data source, all global LHF time series are subject to uncertainties, often of unknown magnitudes. On

the one hand, in situ LHF climatologies, which include data from buoys and ships, are known to contain biases (e.g. Wang

and McPhaden, 2001), to be of variable quality, and to be unevenly sampled. Although research vessel measurements of e.g.5

qa are expected to be of good quality (e.g. Roberts et al., 2010), they are regionally limited, which also accounts for data from

moored buoys (Weller et al., 2008). Issues related to poor data densities over the Southern Ocean, amongst others, are for

example stressed in Yu and Weller (2007), Bourassa et al. (2013), and Prytherch et al. (2014). In consequence, this impedes

a meaningful discussion regarding the quality of LHF in this climatologically important region (Josey, 2011). On the other

hand, long global reanalysis products such as ERA-Interim (Dee et al., 2011) and NCEP-NCAR (Saha et al., 2010) have a10

high temporal resolution, but are not capable of resolving local-scale processes due to a lack of spatial detail (Winterfeldt

et al., 2010). Specifically over data-sparse regions, more weight is given to the atmospheric model, which is also prone to

uncertainties (e.g. Gulev et al., 2007). Thus, atmospheric reanalysis suffer from problems in their freshwater budgets (e.g.

Schlosser and Houser, 2006; Trenberth et al., 2007).

Similarly, remotely sensed LHF climatologies are also prone to uncertainties. In addition to calibration uncertainties and15

aliasing problems (Bentamy et al., 2003), uncertainty sources either originate from uncertainties in the parameterization

(Brunke et al., 2002, 2003) or may be linked to the inaccuracy of the input bulk variables (Bourassa et al., 2013). In the

framework of an oceanic LHF assessment, Brunke et al. (2011) for example conclude that the uncertainty of HOAPS-3 LHF

is to a great extent caused by the bulk variables due to inaccuracies of their individual retrievals. Liu and Curry (2006) reason

similarly, while assessing discrepancies of remotely sensed and reanalysis LHF during the 1990s. Romanova et al. (2010)20

recall that specifically early satellite-based products contain large uncertainties, as also shown by investigations regarding the

hydrological cycle by Mehta et al. (2005). Finally, irregular sampling from space introduces sampling uncertainties, which may

locally become substantial (e.g. Gulev et al., 2007). A current overview study by Loew et al. (2017) highlights the necessity of

a thorough satellite-based data validation and pools different approaches across communities.

To date, disagreements and/or weaknesses in data sets are often revealed by performing intercomparison studies, such as25

those presented by Chou et al. (2004) and Yu et al. (2011). Another example including HOAPS-3 LHF is presented in Ander-

sson et al. (2011), who show considerable differences on a local scale. Similar findings are published in Iwasaki et al. (2014),

who compare HOAPS-3 and other data sets to a reference climatology. Results indicate that differences are largest close to 15◦

N/S, which mostly arise from differing qa.

Generally, such intercomparison studies are valuable for the research community. By this, however, the source of observed30

differences remains unknown and can therefore not be attributed to a specific data set. To better quantify the quality of satellite-

based data sets, Prytherch et al. (2014) recently emphasized that comprehensive uncertainty estimates are valuable for climate

research purposes. To date, none of the above-listed, satellite-based data records are accompanied by LHF -related uncertainty

estimates, which hampers a quality assessment of the air–sea fluxes and related parameters. Such uncertainty assessments go

beyond conventional LHF intercomparison studies, as they allow for quantifying the data’s accuracy (systematic uncertainty)35
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and precision (random uncertainty). Consistency among two data sets would for example be achieved when independent

measurements agree within their individual uncertainties, as Immler et al. (2010) formulates the benefit of such an approach.

Assimilation schemes like GECCO require such uncertainty information prior to assimilating respective fields in ocean models.

Few studies have taken on the challenge of uncertainty assessments in context of LHF -related climatologies. Whereas

random uncertainties of ship-based LHF -related parameters are for example discussed in Gleckler and Weare (1997), Kent5

and Berry (2005), and Kent and Taylor (2006), systematic uncertainties are assessed in e.g. Kent et al. (1993) and Kent and

Taylor (1996). An example of an in situ LHF climatology incorporating uncertainty estimates (based on optimal interpolation)

is given by NOCS v2.0 (Berry and Kent, 2009). A satellite-related uncertainty assessment is published by Brunke et al. (2011),

who decomposed overall biases with respect to direct in situ records into a bulk variable and a residual component, the latter

which also includes the measurement uncertainty. Recently, Kinzel et al. (2016) presented an elegant approach for decomposing10

random uncertainties inherent to independent data sets using triple collocation. Apart from NOCS v2.0, none of the remaining

LHF -related climatologies, irrespective of their data source, include comprehensive uncertainty information appended to the

data.

In the framework of the German Research Foundation (DFG) initiatives ’FOR1740’ and ’FOR21740’ (’Atlantic Freshwa-

ter Cycle’, http://for1740.zmaw.de/ ), the lack of uncertainty information inherent to satellite data is overcome by specify-15

ing systematic, random, and sampling uncertainties exclusively associated with HOAPS-3.3 LHF -related parameters. This

manuscript not only introduces the methodology, but also demonstrates its application to arrive at HOAPS-3.3 LHF -related

uncertainty estimates.

Once the applied data sources have been described in more detail (Sect. 2), double collocation analysis is performed (Sect.

3.1). Respective matchups serve as input to multi-dimensional bias analyses (Sect. 3.2), which result in estimates of instan-20

taneous systematic and total random uncertainty. Finally, random uncertainty decomposition (Kinzel et al., 2016) isolates the

required retrieval-related contribution from collocation and in situ measurement contributions (Sect. 3.3). Rigorous error prop-

agation to the instantaneous LHF -related data is performed subsequently, which accounts for how uncertainties in the bulk

parameters propagate into uncertainties of LHF themselves (Sect. 3.4). The described sequence allows for assigning HOAPS-

3.3 related systematic and random uncertainty estimates to the pixel-level data, which is not available for any other satellite data25

record to date. As to monthly mean sampling uncertainties (Sect. 3.5), the approach by Tomita and Kubota (2011) is employed.

All uncertainty components are presented in Sect. 4, which includes regional and seasonal differentiations. Section 4 also

comprises a trend analysis applying the derived uncertainty estimates. A summary and a brief outlook regarding ongoing work

are provided in Sect. 5. The introduced methods can easily be transferred to other retrievals, highlighting the value of this study.

30
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2 Data

2.1 HOAPS-3.3 Pixel-Level Data Records

Apart from the sea surface temperature (SST ), all HOAPS parameters are derived from intercalibrated Special Sensor Mi-

crowave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave radiometers, which are

installed aboard the polar orbiting satellites of the United States Air Force Defense Meteorological Satellite Program (DMSP).5

HOAPS provides consistently derived global fields of freshwater flux related parameters. Regarding sensor specifications and

orbital paths, the reader is referred to e.g. Andersson et al. (2010).

Here, the focus lies on HOAPS-3.3, which has been produced as an extension to the HOAPS-3.2 data set (Andersson et al.,

2010; Fennig et al., 2012) in the framework of the ongoing DFG research activity. Its extensive documentation is available

online (Fennig et al., 2013). HOAPS-3.3 covers the time period from 1987 to 2015, during which a total number of nine satellite10

instruments were in operational mode (F8-F18). The spatial resolution of the pixel-level data is channel-dependent. For SSM/I,

it varies from 69 km by 43 km (19 GHz channel) to 37 km by 28 km (37 GHz). Likewise, it ranges from 74 km by 47 km (19

GHz channel) to 41 km by 31 km (37 GHz) for SSMIS sensors. Compared to HOAPS-3.2, HOAPS-3.3 has been temporally

extended up to 2015 and is based on a pre-release of the CM SAF SSM/I and SSMIS FCDR. This reprocessing included

a homogenization of the radiance time series by means of an improved inter-sensor calibration with respect to the DMSP15

F11 instrument. Earth incidence angle normalization corrections were applied, following a method described by Fuhrhop and

Simmer (1996). Since the HOAPS-3.1 release, HOAPS is hosted by the EUMETSAT Satellite Application Facility on Climate

Monitoring (CM SAF), whereupon its further development is shared with the University of Hamburg and the Max Planck

Institute for Meteorology (Hamburg). In this study, the pixel-level HOAPS-3.3 data in sensor resolution is used, which implies

that no aggregation for gridding purposes has been applied.20

HOAPS-3.3 qa relies on a direct, four-channel retrieval algorithm by Bentamy et al. (2003), which is based on a modified

version of the two-step multi-channel regression model by Schulz et al. (1993) and its refinement by Schlüssel (1996). 1000

globally collocated pairs of SSM/I brightness temperatures (TBs) and ship data between 1996-97 were used to estimate the

new values for the coefficients in the Schulz model.

To account for the non-linearity of the problem, the HOAPS-3.3 U algorithm uses a neural network approach with three25

layers after Krasnopolsky et al. (1995) to derive the wind speed at 10 m above sea level (a.s.l.). The network was trained

with a composite data set of buoy measurements, which was compiled using matchups of SSM/I F11 TBs and near-surface

wind speed measurements from the National Oceanographic and Atmospheric Administration (NOAA) National Data Buoy

Center (NDBC) and the Tropical Atmosphere Ocean (TAO) array between 1997-98. Radiative transfer simulations based on

radiosonde profiles served as input for the training data set (Andersson et al., 2010).30

HOAPS-3.3 SST is based on the AVHRR Pathfinder Version 5.2 and is obtained from the US National Oceanographic Data

Center and the Group for High Resolution Sea Surface Temperature (http://pathfinder.nodc.noaa.gov). The data is an updated

version of the Pathfinder Version 5.0 and 5.1 collection described in Casey et al. (2010). A static bias correction of +0.17 K has
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been applied to HOAPS-3.3 SST data in order to revert the Pathfinder Version 5.2 skin correction and thus achieve consistency

with Version 5.0 used in HOAPS-3.2.

HOAPS-3.3 sea surface saturation specific humidity qs is derived by applying the Magnus formula (Murray, 1967) to SST ,

while accounting for a constant salinity correction factor of 0.98.

HOAPS-3.3 LHF is based on the Coupled Ocean–Atmosphere Response Experiment (COARE) 2.6a bulk flux algorithm.5

With minor modifications of physics and parameterizations, the algorithm is published as COARE-3.0a by Fairall et al. (2003).

It includes atmospheric stability calculations, which necessitate surface air temperatures as input. These are estimated by

assuming a constant relative humidity of 80 % (Liu et al., 1994) and air-sea temperature difference of 1 K (Wells and King-

Hele, 1990). A constant sea surface pressure of 1013.25 hPa is prescribed within the bulk flux algorithm. COARE-3.0 is widely

accepted within the scientific community; its benefits are for example presented in the framework of an intercomparison study10

by Brunke et al. (2003).

2.2 DWD-ICOADS Data Archive

Hourly in situ measurements of U , qs, and qa (bulk parameters, as of now) have been provided by the Marine Climate Data

Center of the German Meteorological Service (DWD), supervised by the Marine Meteorological Office (Seewetteramt, SWA).

While data prior to 1995 is excluded due to a comparatively poor in situ data coverage, the data set used here includes measure-15

ments up to 2008. It comprises global high-quality shipborne measurements as well as data provided by drifting and moored

buoys. In case of data gaps within the SWA archive, the in situ data basis was extended at SWA by available International

Comprehensive Ocean–Atmosphere Data Set (ICOADS) measurements (Version 2.5, Woodruff et al., 2011). A comprehensive

literature overview on research applications involving ICOADS data is given by Freeman et al. (2016). Both SWA and ICOADS

records contain hourly global measurements obtained from ships, moored and drifting buoys as well as near-surface measure-20

ments of oceanographic profiles. Several quality checks were performed at SWA prior to using the merged DWD-ICOADS

data, which resulted in quality index assignments to each observation. Details regarding the flagging procedures carried out at

SWA are given in Kinzel et al. (2016).

In preparation for the uncertainty analyses, further filtering and correcting procedures to both ship and buoy data were carried

out. Regarding ship records, annual lists of Voluntary Observing Ships (VOS) metadata (Kent et al., 2007) were employed.25

Most of the supplementary buoy metadata was extracted from the Data Buoy Cooperation Panel, which particularly includes a

fleet of moored buoy arrays operated by NDBC. Metadata of the Global Tropical Moored Buoy Array, such as TAO-TRITON

(Pacific-), PIRATA (Atlantic-), and RAMA (Indian Ocean) were obtained from the Pacific Marine Environment Laboratory

(PMEL).

ICOADS VOS estimates of qa are based on wet bulb temperature measurements, typically using mercury thermometers,30

which are often exposed in either (ventilated) screens or sling psychrometers (Kent et al., 2007). qa is eventually derived by

applying the psychrometric formula. By contrast, qa estimates of buoys originate from measurements of air temperature and

relative humidity. For this study, qa of both VOS and buoys were not corrected to the HOAPS-3.3 reference of 10 m a.s.l.,

assuming neutral stratification. A discussion related to this approach is published in Kinzel et al. (2016). It is in line with
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Prytherch et al. (2014), who conclude that a conversion to 10 a.s.l. (neutral stability) substantially adds to the noise in the

resulting in situ qa. The aspect of correcting qa with respect to height and stratification is also elucidated in Bentamy et al.

(2003) and Bentamy et al. (2013), whereas correction effects are presented in Kent et al. (2014). The authors for example

quantify the height correction effect due to continuously increasing measurement platform heights between 1971-2006 to be

0.11 g kg-1. However, this effect is masked by bias corrections associated with measurement techniques, which are thought to5

be 2-3 times larger.

DWD-ICOADS VOS U are either measured using anemometers (likewise for buoys) or are estimated from the sea state,

depending on the preference of the country recruiting the VOS (Kent et al., 2007). By means of the measured wind speed and

direction, the true wind speeds are derived considering the ship’s speed and direction. If a specific anemometer height was not

given, it was estimated from the annual global mean height difference with respect to the thermometer platform. For each year,10

this single height difference value is based on all contributing ship records with complete metadata information. Prior to 2002,

no thermometer heights were available; consequently, the height difference was set to 6 m (average between 2002-2008). In

case both sensor heights were unknown, the linear fits shown in Table 4 of Kent et al. (2007) were used to derive anemometer

heights based on available ship length metadata. It was assumed that these ship type dependent linear fits (Kent et al., 2007,

their Fig. 11) introduce negligible uncertainties to the sensor height derivation. Given the anemometer heights of both VOS and15

buoys, in situ wind speeds were corrected to the HOAPS-3.3 standard height of 10 m a.s.l. to remove inhomogeneities, using

the iterative equivalent neutral stability approach of Fairall et al. (2003). With the exception of e.g. (stable stratified) upwelling

regimes or local instabilities, the equivalent neutral stability assumption is valid over vast regions of the open oceans. The

correction using a neutral wind equivalent profile has been suggested by e.g. Shearman and Zelenko (1989). It is argued that in

case of VOS, the omission of a correction would lead to a positive wind speed bias, as the average wind sensor height is given20

by 18 m (Kent et al., 2014). By contrast, buoy U would be low-biased.

VOS SST measurement techniques differ in terms of platform, measurement depth, and extent of automation. Strictly speak-

ing, in situ SST are sub-surface temperatures and thus differ from the HOAPS-3.3 Pathfinder SST , which are treated as a skin

SST for the surface flux calculations. This necessitates an in situ cool-skin correction as a function of wind speed, following

Donlon et al. (2002). Their Equation (2) was applied, omitting all records subject to wind speeds below 2 m s-1 (corrected to25

10 m a.s.l.), as the exponential fit introduces additional uncertainty for very calm conditions. On average, the SST correction

reduced the DWD-ICOADS SST by approximately 0.17 K. Moreover, the warm layer part of the COARE 3.0 algorithm is not

implemented in HOAPS-3.3 due to the lack of a continuous diurnal cycle information on the surface radiation budget from the

SSM/I and SSMIS measurements. To be directly comparable to the in situ counterpart, all in situ measurements taken during

local daytime were excluded. As only night-time in situ measurements during non-calm conditions were considered, the sea30

water temperature gradient within the uppermost meters of the water column is thought to be negligible. A SST correction

with respect to the sensor depths was therefore omitted for both VOS and buoys, independent of the measurement platform.

All VOS data processing described above was carried out for research vessels (so-called ’special ships’) and merchant vessels

only due to vast data amounts and in order to minimize in situ uncertainties. In case of multiple triple collocation analysis (Sect.
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3.3), buoy records were excluded to ensure having a consistent, globally distributed data set as the ground reference for the

random decomposition procedure. It is argued that the vast amount of remaining triplets authorizes this restriction.

Despite strict filtering and correcting procedures, in situ measurement uncertainties related to sensor types, measurement

heights and positions, and solar radiation contamination may remain (e.g. Bourassa et al., 2013). Assessments regarding the

quality of the reference data are beyond the scope of this article. The in situ data basis is therefore considered as the bias-free,5

ground reference. This assumption is in line with calibration and validation approaches of Bentamy et al. (2003), Jackson

et al. (2009), and Bentamy et al. (2013), amongst others. As will be shown in Sect. 3.2, the HOAPS systematic uncertainties

presented in this work are interpreted as upper limit estimates. Therefore, the assumption of a bias free ground reference does

not violate our main conclusions, although a small contribution to the systematic uncertainties may be caused by the in situ

reference.10

3 Methodology

This Section describes the technical background for deriving systematic, random, and sampling uncertainties inherent to

HOAPS-3.3. By performing double collocation analysis (Sect. 3.1), multi-dimensional bias analysis (Sect. 3.2), and random

uncertainty decomposition (Sect. 3.3), pixel-level data will be equipped with both systematic and random uncertainty esti-

mates. When averaging in time, sampling uncertainties are also accounted for (Sect. 3.5). The uncertainties will be examined15

from an either instantaneous (i.e., pixel-level) or averaged (i.e., monthly or multi-annual mean) point of view, depending on

the application (Sect. 4). The longer the averaging time period, the lesser the impact of both random and sampling uncertain-

ties. This implies that on climatological scales, total uncertainties hardly differ from systematic uncertainties. The sequence of

analyses allows for a complete HOAPS-3.3 uncertainty characterization of LHF -related parameters on all time scales, which

complements the random uncertainty decomposition of qa presented in Kinzel et al. (2016).20

3.1 Double Collocation Analysis

In preparation for uncertainty calculations, a double collocation analysis is performed for the time period of 2001–2008,

resulting in paired matchups of LHF -related HOAPS-3.3 and in situ data. Although HOAPS-3.3 lasts until 2015, collocations

between 2009–2015 were not performed, as the DWD-ICOADS data archive only lasts until 2008. The collocated pairs are

based on the so-called nearest neighbor approach; that is, HOAPS-3.3 pixels are assigned to respective in situ observations25

closest in time and space. Parameter-independent collocation criteria of ∆x = 50 km and ∆t = 60 min are chosen. These are

more restrictive than those derived in e.g. Kinzel (2013). Due to the vast amount of available matchups this is justifiable and

ensures that e.g. strong spatial and/or temporal gradients associated with fronts are discarded from further analysis.

Figure 1 (left) presents the resulting collocation density for 2001-2008, exemplarily for qa. Matchups mainly occur in

coastal regions (associated with buoys) and along major shipping lanes. By contrast, the Southern Ocean considerably lacks30

high-quality in situ measurements. The amount of U and qs collocations exceeds those shown in Fig. 1 (left). For brevity, their

distributions are not shown.
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Figure 2a-d exemplarily shows scatter density plots of the qa bias (2001-2008) as a function of the atmospheric state pa-

rameters qa ("hair"), U ("wind"), SST ("asst"), and vertically integrated water vapour ("wvpa"), resulting from the double

collocation analyses. Overall, 13.8 million matchups contribute to each subplot. The illustrated bins are not equidistant; in fact,

their width depends on the data density of the matchups. This implies that 5% of all collocated pairs are assigned to a single

bin, respectively. Analogously to Fig. 2, one-dimensional bias analyses are performed for both dU and dqs (not shown).5

For qa values between 7-12 g kg-1 , HOAPS-3.3 overestimates near-surface specific humidities (see Fig. 2a). Overestimations

are also observed in the inner tropics, where qa is in the order of 20 g kg-1. In return, biases are negative for polar (< 5 g kg-1) and

subtropical (12–17 g kg-1) humidity regimes. The latter region is also subject to largest random uncertainties, which exceed 2 g

kg-1. See Kinzel et al. (2016) and Prytherch et al. (2014) for more details on the analysis of HOAPS-3.3 qa and its resemblance

to GSSTF3 qa (Shie et al., 2012). The spatial distribution of these qa biases are shown in Fig. 1 (right). Specifically the10

underestimations (overestimations) over subtropical (tropical) oceans are well resolved. Humidity biases as a function of wind

speed are illustrated in Fig. 2b. The distribution is somewhat linear, where low (high) wind regimes are over-(under-)estimated

in HOAPS-3.3. In contrast to the remaining atmospheric state parameters, the random uncertainty decreases fairly linearly with

increasing wind speeds. The qa bias distribution as a function of SST (Fig. 2c) resembles that of the qa-dependent distribution

(Fig. 2a) regarding regimes of over- and underestimation. A dependency of dqa on the total integrated water vapour (Fig. 2d)15

shows only few distinct features. Most matchups coincide with values below 20 kg m-2. With the exception of smallest values,

these result in positive biases with respect to HOAPS-3.3. As the abscissa and ordinate variables in Fig. 2 are correlated, we

investigated the contribution of artificial biases by illustrating dqa as a function of in situ qa, U , und SST . Results indicate

that the percental difference of the mean bin values (black squares) of HOAPS and DWD-ICOADS range between 6-10%

(not shown). We are therefore confident that our approach is robust. Two-sided regression analyses could further reduce these20

spurious biases.

A comparison of e.g. Fig. 2a and b indicates that the simple one-dimensional bias analyses may be misleading when it comes

to HOAPS-3.3 qa-related uncertainty characterizations. Average qa off the Arabian Peninsula, for example, are in the order

of 14–15 g kg-1 (not shown). According to Fig. 2a, this is associated with a HOAPS-3.3 qa underestimation, as is also seen

in Fig. 1 (right). At the same time, climatological mean wind speeds are as low as 3–5 m s-1 (not shown), which goes along25

with a HOAPS-3.3 qa overestimation (Fig. 2b). This is no contradiction, but rather indicates that the HOAPS-3.3 qa retrieval

seems to encounter challenges for specific humidity and wind regimes. Furthermore, a constraint to one-dimensional analyses

implies for example that parts of the random uncertainties illustrated in Fig. 2a (bars) receive a systematic component in Fig. 2b

(squares). This conclusion motivates to proceed with multi-dimensional bias analyses, where all possible atmospheric states, i.e.

combinations of the four chosen atmospheric state parameters, are accounted for simultaneously. This approach finally allows30

for separating systematic from random uncertainties. Results illustrated in Fig. 2 can therefore be considered as a preliminary

stage of the four-dimensional bias analyses introduced in Sect. 3.2, where each of the four atmospheric state variables (Fig. 2,

x-axes) represent one dimension.
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3.2 Multi-Dimensional Bias Analyses

The bulk formula for LHF is given by

LHF = ρaLV CEU(qs − qa), (1)

where ρa is the density of moist air and LV the latent heat of vaporization. ρa is derived as a function of HOAPS-3.3 qa

and near-surface air temperature. Likewise, LV is computed simultaneously as a function of HOAPS-3.3 SST . Assuming5

uncertainties in ρa and LV to be negligible and according to standard error propagation, the overall LHF uncertainty is a

function of the systematic and random uncertainties introduced by the remaining parameters.

As to the Dalton Number CE , the estimates of Fairall et al. (2003) are applied by assigning 5 % (10 %) of systematic

uncertainty of CE for wind speeds smaller (larger) than 10 m s-1. For wind speeds exceeding 20 m s-1, the estimate of Gleckler

and Weare (1997) of 12 % is taken on. Independently of U , random uncertainties of 20 % are assigned, as proposed by Gleckler10

and Weare (1997).

In case of U , qs, and qa, the uncertainties are assumed to depend on the concurrent atmospheric state. The combination of

qa, U , SST , and vertically integrated water vapour is thought to represent the concurrent atmospheric state best. Therefore,

the one-dimensional consideration presented in Sect. 3.1 is expanded by creating four-dimensional look up tables (LUTs)

including 204 entries, respectively. The dimension is reflected in the exponent, whereas its base represents the amount of bins15

per dimension. As described in Sect. 3.1, these bins are not equidistant. In case of dqa, bin means of each of the four dimensions

are indicated by the x-values of the black squares shown in Fig. 2a-d, respectively. The values of all four dimensional vectors

are essential for assigning instantaneous, absolute differences (HOAPS-3.3 minus in situ) to the correct LUT. By averaging

the content of each bin, systematic and total random uncertainties finally result as a function of the four atmospheric state

parameters. The approach of processing absolute measures of the observed differences allows for moving from a simple bias20

analysis to an uncertainty characterization. The resulting systematic uncertainties, which are shown throughout Sect. 4, can

therefore be treated as an upper boundary of a more simple bias distribution.

The multi-dimensional uncertainty characterization approach overcomes the issues introduced by data-sparse regions, such

as the Southern Ocean and the tropical oceans (e.g. Kent and Berry, 2005). Here, it is knowingly turned away from the

dependency on matchup density, which implies that the LUTs are valid on a global scale. Due to the immense data availability,25

their pairwise input biases are confined to matchups from 2001–2008 (dqa, dU ) and 1998–2001/2006–2008 (dqs). A thorough

elucidation of the multi-dimensional bias analysis is presented in Kinzel et al. (2016), exemplarily for HOAPS-3.2 qa (Sect.

2c and Fig. 5, left therein). Here, it is applied to all three bulk parameters, which results in both systematic and total random

uncertainty LUTs.

3.3 Random Uncertainty Decomposition30

The total random uncertainties introduced in Sect. 3.2 (and also those represented by the black error bars in Fig. 2) include

random uncertainties associated with the collocation procedure (EC) and in situ measurement noise (Eins) (e.g. Bourras,
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2006). To isolate the random retrieval uncertainty, Eran
retr, which is exclusively HOAPS-related, multiple triple collocation

(MTC) analysis is applied to matchups of U , qs, and qa for the time period 1995–2008. This section briefly summarizes the

concept of random uncertainty decomposition. For more mathematical and technical details, the reader is referred to Kinzel

et al. (2016).

MTC analysis includes a twofold triple collocation (TC, introduced by Stoffelen, 1998), whereupon double collocated data5

described in Sect. 3.1 serves as input. Triplets incorporating two independent in situ measurements and one HOAPS-3.3 pixel

represent the first arrangement, whereas a single in situ record and two HOAPS-3.3 pixels of independent satellite instruments

form the second triplet structure (see Fig. 1 in Kinzel et al. (2016)). The collocation criteria applied in Sect. 3.1 are adopted

and data poleward of 60◦ N/S is excluded to avoid biases associated with sea ice effects.

Subsequent to a bias correction with respect to the in situ measurements, the variances of differences between two indepen-10

dent data sources X and Y , that is VXY , are calculated following O’Carroll et al. (2008). Given three data sources and two

types of TCs, this results in six combinations of VXY . Next, error models for both ship and satellite records are defined. In

case of ship records, these include Eins, whereas for satellite records, they incorporate satellite sensor noise (EN , synthetically

derived) and retrieval model uncertainty (EM ). Applying these error models to the derived VXY results in six equations incor-

porating Eins, EM , EN , and EC . These equations are successively solved for all random uncertainty sources as a function of15

U , qs, and qa, that is for 20 individual bins per parameter. Each of these bins include thousands of triple collocated matchups.

Finally, Eran
retr =

√
(EM )2 + (EN )2 is the required random satellite retrieval uncertainty, which is derived for all 20 bins as a

function of U , qs, and qa.

MTC is a powerful tool to decompose total random uncertainties (i.e.,Esum =Eran
retr +Eins +EC) inherent to LHF -related

bulk parameters in order to isolate the random retrieval contribution Eran
retr. Depending on the magnitude of the respective bulk20

parameter, the fractional contribution of Eran
retr to Esum is finally derived. That is, each entry of the total random uncertainty

LUTs introduced in Sect. 3.2 is ’adjusted’. Section 4.1 presents a statistical summary of the instantaneous, decomposed random

uncertainties inherent to U , qs, and qa.

3.4 Deriving HOAPS-3.3 LHF-Related Uncertainties

The uncertainties in LHF are caused by uncertainties in all bulk input parameters contributing to Eq. (1). Assuming the25

underlying parameterizations to be correct, LHF uncertainties can thus be derived by carrying out standard error propagation.

These uncertainty estimates are assigned to each HOAPS pixel, depending on the four atmospheric state parameters.

Total instantaneous LHF uncertainties, σLHF , are derived as follows:

σLHF =

√(
∂LHF

∂x

)2

σ2
x +

(
∂LHF

∂y

)2

σ2
y + 2rxy

(
∂LHF

∂x

∂LHF

∂y

)
σxσy, (2)

where x and y are place holders ofU , qs, qa, andCE . rxy is the correlation coefficient between x and y. For each combination30

of x and y, the average of daily global mean correlation coefficients between 1995 and 2008 is applied. Global mean coefficients

are preferential compared to instantaneous rxy for two reasons. First, the amount of instantaneous data for a specific region
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is limited, which may distort the results of the correlation analysis. Second, omitting all correlation-related terms in Eq. (2)

modifies σLHF,sys by merely 0.5 ±5 W m-2 (not shown), which indicates that these terms do not receive much weight after

all.

σx and σy are total uncertainties in x and y. These can be decomposed into systematic and random components. Note that

the random component has been corrected for collocation and in situ uncertainty effects (see Sect. 3.3) and already represents5

the random retrieval uncertainty Eran
retr.

(
∂LHF

∂x

)2

σ2
x =̂

(
∂LHF

∂x

)2

σ2
x,sys +

(
∂LHF

∂x

)2

σ2
x,retr,ran

(
N−1/2

)2
. (3)

N is the number of HOAPS-3.3 satellite observations (N=1 for instantaneous LHF uncertainties). In case of temporal and

spatial averaging over a sufficiently long time period, the random component becomes negligibly small. Sampling uncertainties

do not exist on an instantaneous basis and are therefore not considered in Eqs. (2)-(3).10

3.5 Sampling Uncertainty

In addition to systematic and random uncertainties, inhomogeneous sampling may occur, specifically when temporal resolu-

tion in observations are coarse. As remotely sensed data is measured at selected times only, temporal sampling uncertainties

therefore become an issue (Gulev et al., 2010), as the diurnal cycle may not be captured correctly.

Daily mean sampling uncertainties of HOAPS-3.3 LHF -related parameters are derived, using high-resolution buoy mea-15

surements. Overall, data of eight tropical (PMEL, hourly resolution) and 15 extratropical (NDBC, 10-minute resolution)

moored buoys account for a possible climate regime dependency. All chosen buoy records comprise several years of data

(1995-2008) and hardly show temporal data gaps. Here, the approach by Tomita and Kubota (2011) is followed to derive

the sampling uncertainties by simulating two satellite data overpasses per day, using the buoy values. In case of U and SST ,

records are corrected for sensor heights and cool skin effects, respectively, as explained in Sect. 2.2. In situ LHF are computed20

by means of the COARE-2.6a algorithm (Fairall et al., 2003). Daily means of ’true’ buoy data are derived by averaging all daily

buoy records, where only high-quality data (indicated by quality flags 1–2) is considered. The weighted average of the two clos-

est (in time) ’true’ buoy observations to local satellite overpasses corresponds to the so-called ’simulated’ satellite data record

(Tomita and Kubota, 2011, their Fig. 2). All daily sampling uncertainties are derived as a function of the number of simultane-

ously operating SSM/I instruments. These daily values form the basis for the monthly averages of selected parameters (Esmp),25

which are outlined in Table 2 (Sect. 4.4). The estimates are global means; an earlier, regime-dependent investigation resulted

in negligible differences. This implies that monthly mean systematic uncertainties do not exhibit a latitudinal dependency.
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4 Results and Discussion

4.1 Magnitudes of HOAPS-3.3 Decomposed Random Uncertainties

Table 1 presents a statistical summary of the instantaneous random uncertainty decomposition for the bulk parameters U , qs,

and qa, following the approaches described in Sect. 3.1 to 3.3. Note that EN is not included, as its synthetically derived value

remains constant throughout the respective parameter range (for procedure, see Kinzel et al., 2016). Asterisked values indicate5

global mean weighted averages and pooled variances of Kent and Berry (2005), resulting from a semivariogram approach.

These are based on their Fig. 1, taking the illustrated grid averaged random uncertainties, the standard deviation as well as

the number of observations into account. In the following, individual contributions to the overall random uncertainties are

discussed, but not shown in terms of supplementary figures.

Eran
retr(qa) ranges between 0.7 and 1.8 g kg-1, where minima (maxima) are found below 5 g kg-1 (between 13-17 g kg-1) qa10

regimes. Whereas largest relative uncertainties are associated with polar qa values (3-5 g kg-1), lowest relative contributions

below 10 % are confined to the inner tropics (20 g kg-1). On average, both Ec(qa) and Eins(qa) are approximately half the

size of Eran
retr(qa). The average of Eins(qa) is 0.4 g kg-1 below the mean estimate of Kent and Berry (2005). It is hypothesized

that the lower estimate of Eins(qa) is a direct consequence of the rigorous in situ filtering procedure prior to MTC analysis.

The difference may furthermore be triggered by the fact that Kent and Berry (2005) include data records dating back to the15

1970s and 1980s, which may imply that ship records are included which do not fulfill the here applied quality control stan-

dards. In contrast to Eran
retr(qa), Eins(qa) increases rather linearly with qa, which implies that smallest (largest) random in situ

measurement uncertainties are found for lowest (highest) qa. In contrast, Ec(qa) shows a similar distribution as Eran
retr(qa), yet

with considerably smaller amplitude. These random collocation uncertainties range between 0.4 and 0.7 g kg-1, corresponding

to 3–18 %. A graphical illustration of the qa random uncertainty decomposition is shown in Kinzel et al. (2016) (their Fig. 2).20

In case of U , all random uncertainties tend to be larger compared to qa in a relative sense. In contrast to qa, all three relative

uncertainties exhibit a clear increase over large ranges of U , where minima and maxima in Eran
retr(U ) (Eins(U ), Ec(U )) range

between 1.0–2.6 m s-1 (1.5–2.3 m s-1, 0.8–2.0 m s-1). Whereas Eran
retr(U ) and Eins(U ) are fairly constant for moderate wind

speeds before continuously increasing, Ec(U ) seems to already saturate for mean wind speeds in the order of 10 m s-1 (not

shown). Similar to Eins(qa), the Eins(U ) estimate of Kent and Berry (2005) is roughly 40 % larger. Again, this difference25

is suspected to arise from the differences in the data set compositions. Kent and Berry (2005) furthermore elucidate that no

corrections for height or adjustments to the Beaufort scale have been applied to their data, which would have caused a reduction

in random uncertainty of 13 ± 1 %, according to the authors. Yet,Eins(U ) almost exclusively represents the largest contribution

to the random uncertainty budget of U . For all random uncertainty sources, strong wind regimes are linked to smallest relative

uncertainties in the order of 12–15 %. In low-wind regimes, however, relative uncertainties exceed 50 % to even 100 %.30

Both absolute and relative contributions of qs-related random uncertainties remain well below those of qa. Global mean

values of all three random uncertainty sources are in the order of 0.5–0.6 g kg-1. Regarding Eran
retr(qs), this is comparable to

the value published in e.g. McClain (1989), who estimated the global RMSE of AVHRR-derived SST to be in the order of

0.6–0.7 K (=̂ 0.4–0.5 g kg-1). Similar to Eran
retr(U ), Eran

retr(qs) (Eins(qs)) shows a positive proportionality with largest values

13



of 0.9 g kg-1 (1.5 g kg-1). As for Eins(U ), Eins(qs) exceeds Eran
retr(qs), specifically for qs larger than 8 g kg-1. In contrast

to qa, relative uncertainties are smallest in extratropical regimes with contributions of merely few percent. Largest relative

uncertainties remain well below those of qa and are in the order of 8–14 %.

4.2 Global Patterns of HOAPS-3.3 Random Retrieval Uncertainties

The results presented in Sect. 4.1 are expanded by showing the global patterns of Eran
retr in two-dimensional space.5

Depending on the time period and thus on the number of SSM/I and SSMIS instruments in operation, the monthly global

mean sum of instantaneous observations per 0.5◦x0.5◦ grid cell ranges from approximately 90 (1988) to 650 (2006). In con-

sequence, monthly means of Eran
retr are considerably below the systematic counterpart (see scaling effect of N in Eq. (3)).

Specifically from 1991 onwards, monthly globally averaged Eran
retr of LHF -related parameters only reach 0.5–3 %. This

reduction becomes even more striking when investigating multi-annual or even climatological means; LHF -related Eran
retr vir-10

tually vanish on these scales. An increase (decrease) in these climatological random uncertainty values often directly results

from a decrease (increase) in the number of pixel-level observations and thus not from a physical change due to shifts in the

climate. This implies that results of trend analyses in random uncertainties, for example, may be misinterpreted. Therefore, the

attention is drawn to the pixel-level (instantaneous) random uncertainty fields. This instantaneous point of view causes their

orders of magnitude to be similar to the results of Eran
retr presented in Table 1. Note that the global averages shown in Fig. 315

in form of text strings are cosine-weighted, whereas the means illustrated in Table 1 do not take a regional dependency into

account.

Figure 3 shows the instantaneous Eran
retr patterns of HOAPS-3.3 LHF -related parameters between 1988 and 2012. The

magnitudes presented in Figure 3a are below those shown in Fig. 2a, as the random uncertainties have been corrected for the

impact of Eins(qa) and Ec(qa) (Sect. 3.3). Maxima above 1.5 g kg-1 are located over all subtropical ocean basins, where qa is20

in the order of 13–17 g kg-1. A reduction within the inner tropics is clearly resolved, specifically over the warm pool region.

Eran
retr(qa) sharply decreases poleward to values of 0.6–0.9 g kg-1. The global mean instantaneous Eran

retr(qa) takes on a value of

1.2 g kg-1.

The distribution of instantaneous Eran
retr(U ) (Fig. 3b) shows a rather reversed pattern of qa and closely resembles the clima-

tological distribution of U itself. The global mean is given by 1.0 m s-1. Global maxima cover large areas of the extratropical25

oceans, specifically over the Southern Ocean. Here, averages partly exceed 1.5 m s-1. However, this results in less than 15

% retrieval uncertainty in a relative sense (not shown). In contrast, instantaneous Eran
retr)(U ) remain low (that is, below 0.8

m s-1) over the (sub-) tropical ocean basins. This also applies to the warm pool area, which indicates a maximum in relative

contribution close to 20 % due to climatological low wind speeds (not shown).

The pattern of instantaneous Eran
retr(qs) (Fig. 3c) resembles that of qa. However, the global mean magnitude of 0.3 g kg-130

represents only 25 % of the atmospheric counterpart. Absolute maxima in the order of 0.4 g kg-1 are located over the Indo-

Pacific warm pool region, which stands in contrast to the local Eran
retr(qa) minimum in that region. The comparatively small

Eran
retr(qs) also find expression in the low global mean relative uncertainty of 2 % (not shown). Values exceeding 4 % are

confined to the extratropical ocean basins on both hemispheres.
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Instantaneous Eran
retr(LHF ) (Fig. 3d) show a strong proportionality to the climatological mean LHF pattern. In that respect,

maxima are generally located over the subtropical central parts of all ocean basins (specifically the Indian Ocean) as well as

along the western boundary currents. In these areas, values are found in excess of 50 W m-2. Apart from extratropical minima,

low values in the tropics are confined to the eastern margins of the basins and the warm pool region.

Figure 3e shows the instantaneous random uncertainty of LHF relative to its natural variability. For each grid box, this vari-5

ability is derived as the difference between the 5th and 95th percentile of instantaneous LHF observations between 2000–2008

(F13 platform only). Globally averaged, the relative random uncertainty equals to 17 %. Due to the large range of LHF along

the western boundary currents (WBCs) and over the Central Indian Ocean, the absolute maxima seen in Fig. 3d are not resolved

in Fig. 3e. Largest relative uncertainties exceeding 25 % are confined to the Southern Central Tropical Pacific and along the

equatorial Atlantic.10

4.3 Global Patterns of HOAPS-3.3 Climatological Uncertainties

Figure 4 shows the distribution of the climatological uncertainties (Eclim) for LHF and its related bulk parameters. Eclim is

defined grid point wise as the mean root mean squared sum of instantaneous Esys, Eran
retr, and Esmp between 1988-2012. As

the contribution of Eran
retr and Esmp converges towards 0% due to the vast number of observations, Figure 4a-e can also be

treated as the systematic uncertainty distribution.15

In an absolute sense, Fig. 4a mirrors the bias distribution shown in Fig. 2a. Eclim(qa) (Fig. 4a) generally range between

0.4–0.9 g kg-1, where the global mean of 0.63 g kg-1 is approximately half the size of the instantaneous random counterpart

shown in Fig. 3a. Maxima are found over the tropical central and western Pacific Ocean as well as the Caribbean and off

the easternmost tip of South America. In the framework of a LHF intercomparison study, Smith et al. (2011) argue that

satellite products have difficulties estimating qa due to persistent stratus clouds, as observed west of Peru over the tropical20

eastern Pacific. This conclusion may be the cause for the elevated systematic uncertainties over the tropical eastern Pacific.

In contrast, minima are located along both extratropical belts poleward of 50–60◦ N/S. Isolated minima also lie over the

subtropical eastern margins of all ocean basins in the vicinity of 15–30◦ N/S, specifically over the Pacific basin. Interestingly,

regions of comparatively low systematic uncertainties often coincide with regional maxima in random uncertainties (compare

Fig. 3a). According to Fig. 2a, biases are smallest for climatological mean qa of 4–5 g kg-1 and 13 g kg-1, which fits well to the25

mentioned minima in Fig. 4a. Likewise, absolute bias maxima for qa of 10 g kg-1 and 16–17 g kg-1 are resolved in both Fig. 2a

and Fig. 4a.

The global mean of Eclim(U ) shown in Fig. 4b equals to 0.81 m s-1. On the one hand, maxima exceeding 1 m s-1 are located

along the extratropical storm tracks, specifically over the northern hemisphere. On the other hand, local maxima are found

along broad regions at 30◦ S and further equatorward over the Central Indian Ocean, off the Arabian Peninsula (both monsoon-30

related), and the central Northern Tropical Pacific. With the exception of the Southern Ocean, this is in line with Brunke

et al. (2011), who conclude that reanalysis -, satellite -, and combined data sets tend to overestimate wind speeds compared

to in situ records of inertial dissipation wind stresses, specifically over strong wind regimes. Monsoon-related characteristic

features of Indian Ocean LHF variability, which also exhibit an impact on climatological uncertainties, are elucidated in e.g.
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Mohanty et al. (1996). Minima in the order of 0.5 m s-1 are mostly confined to the eastern margins of all ocean basins (Fig.

4b). The maxima over the northern hemispheric storm track are associated with climatological mean wind speeds of 9–11 m

s-1. This range also reveals largest positive biases in the one-dimensional bias consideration with respect to the in situ source

(analogously to Fig. 2, but not shown for U ). This also targets the maximum over the central Northern Tropical Pacific and

all southern hemispheric maxima along 40–50◦ S. Although climatological mean wind speeds maximise over the Southern5

Ocean, respective systematic uncertainties rather show a slight poleward decrease. Again, this is in line with results from the

one-dimensional dU analysis (not shown), which indicates that systematic uncertainties reduce for wind speeds above 12 m

s-1. Likewise, absolute bias minima are associated with low wind regimes in the order of 4–6 m s-1. Climatologically lowest

wind speeds of 2–4 m s-1 are for example found along the Pacific coast of Central America (15◦ N), over the Arabian Sea,

and over the Indo-Pacific warm pool region. HOAPS-3.3 tends to underestimate these wind speeds, as is mirrored in moderate10

Eclim(U ) (Fig. 4b).

The climatological uncertainty estimates illustrated in Fig. 4b exceed those found in e.g. scatterometer records in comparison

to buoy measurements (e.g. Verhoef et al., 2017). On the one hand, this is linked to the fact that estimates in Fig. 4b should

be treated as upper-boundary uncertainty estimates. On the other hand, scatterometers are specifically designed to derive near-

surface wind speeds at highest accuracy. Passive microwave measurements, in return, allow for a much broader range of15

applications, which is a unique feature of HOAPS. An inclusion of scatterometer data into the HOAPS wind speed retrieval

was not envisaged, due to differing overflight times and data coverage, i.e., additional uncertainties of unknown magnitude.

Further potential uncertainty sources, which may contribute to the distribution shown in Fig. 4b, target currents, sea states, and

the treatment of air mass density (i.e., the concept of stress-equivalent wind speeds, e.g. de Kloe et al., 2017).

Eclim(qs) covers the range of 0.1-0.6 g kg-1 and its global average is given by 0.23 g kg-1 (Fig. 4c). The pattern reflects a20

latitudinal dependency, which is equivalent to smallest (largest) biases towards the poles ((sub-) tropics). This observation is

not generally valid, as is shown by the comparatively low values over large parts of the Eastern Tropical Pacific and Atlantic.

Distinct maxima are found over the Arabian Sea and along northwestern Australia, the Caribbean, and west of Madagascar.

Narrow bands of elevated systematic uncertainty are also resolved along the WBCs. With the exception of the WBCs, the

regions of maxima are exposed to qs in the range of 20–22 g kg-1.25

Figure 4d shows the resulting Eclim(LHF ). It closely resembles that of the global mean LHF pattern itself with values

ranging between roughly 15–50 W m-2 and a global mean of 25 W m-2. Relating this pattern to Fig. 4a-c shows a substantial

contribution of Eclim(qa) to the absolute maximum of Eclim(LHF ) in the Northern/Southern Tropical Central Pacific, the

Caribbean, and the western tropical South Atlantic (compare Fig. 4a). However, due to the large climatological mean LHF ,

respective relative systematic uncertainties of qa are merely in the order of 5–7 %. Correspondingly, imprints of Eclim(U ) are30

clearly seen along the WBCs, the Central Indian Ocean (10–15 % in a relative sense), and off the Arabian Peninsula (partly

exceeding 15 %) (Fig. 4b). Likewise, the maxima in Eclim(LHF ) over the Arabian Sea, along the northwestern coast of

Australia, and close to Madagascar show the footprint of Eclim(qs) (Fig. 4c). However, relative systematic uncertainties in qs

generally do not exceed 2.5 %. Locally, isolated Eclim(LHF ) maxima are resolved along 35◦ S. Specifically over the Agulhas

Current, Santorelli et al. (2011) conclude that different satellite data sets show discrepancies, as they are not able to properly35
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handle strong LHF associated with storm systems and potential LHF amplifications due to dry air advection northwards from

the Antarctic (Grodsky et al., 2009). Furthermore, note that the maximum in the Arabian Sea is somewhat special, in as much

as climatological mean LHF in this region are elevated, yet not extraordinarily large. This striking uncertainty maximum may

be linked to occasionally occuring advection of hot, dry air masses from the deserts, which poses problems to the HOAPS-3.3

satellite retrieval. This hypothesis is strengthened by the fact that Iwasaki et al. (2014) show largest deviations in HOAPS-3 qs5

with respect to their reference climatology, which are not seen in the remaining data sets.

Figure 4e relates Eclim(LHF ) to its natural variability (compare Sect. 4.2). The global average is in the order of 12 %.

Apart from the WBC regimes and the Southern Ocean, largest relative uncertainties are in line with the Eclim(LHF ) maxima

illustrated in Fig. 4d.

4.4 Monthly Mean HOAPS-3.3 Sampling Uncertainties10

Table 2 summarizes the average of monthly mean sampling uncertainties of several LHF -related HOAPS-3.3 parameters

as a function of concurrently operating SSM/I instruments. From a climatological perspective, all magnitudes are negligibly

small compared to respective systematic uncertainties. SST -related parameters show largest sampling uncertainties when three

SSM/I instruments are simultaneously operating. This is not contradictory, as HOAPS-3.3 SST are AVHRR-based and thus

not linked to the coverage of SSM/I instruments. Regarding the main bulk parameters, orders of magnitude closely resemble15

those of monthly mean scaledEran
retr (not shown). It is concluded that their relative contribution to the monthly mean uncertainty

budget is in the order of merely 1–2 %. However, one should keep in mind that sampling uncertainties become essential on

considerably shorter time scales, i.e., in the framework of daily analyses.

4.5 Fractional contributions to total HOAPS-3.3 LHF uncertainty

Simply comparing Fig. 4a-c to Fig. 4d allows for qualitatively assessing which LHF -related parameter contributes most to20

Eclim(LHF ). However, this does not permit a quantitative conclusion. Following a modified version of the ’Q-term’ approach

demonstrated in Bourras (2006),Eclim(LHF ) is decomposed into fractions associated with U , qs, qa, andCE . Results indicate

that the global mean contribution of Eclim(qa) is largest (60 %). This specifically targets the Central Northern and Southern

Tropical Pacific, the Caribbean, the regime off the eastern tip of South America, as well as the Central Indian Ocean. This

finding is in line with that of Iwasaki et al. (2014), who show that HOAPS-3 qa contributes most to the observed deviation in25

E with respect to their reference climatology.

On average, the contribution by Eclim(U ) takes on a value of 25 %. Local hotspots are considerably larger, especially over

the Arabian Sea, along the WBCs, and off Northwestern Australia. The fractional contributions due to both Eclim(qs) and

Eclim(CE) equal to 7.5 %, respectively. Eclim(qs) is largest over the Arabian Sea (SST retrieval issues due to dust particles),

whereas Eclim(CE) maximises over the Central Indian Ocean and along the North Atlantic WBC. The latter has also been30

shown by Bourassa et al. (2013), in as much as accuracy issues in CE tend to occur over very low and very high wind speed

regimes.
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All findings are in line with Bourras (2006), Liu and Curry (2006), Grodsky et al. (2009), and Santorelli et al. (2011), who

conclude that the main LHF uncertainty sources are related to the accuracy of qa (and U ). Similar conclusions are drawn by

e.g. Tomita and Kubota (2006), who show that the main source of discrepancy between tropical satellite and buoy estimates

may be attributed to the accuracy of qa. The findings of the above-quoted studies are restricted to either regional analyses,

considerably shorter investigation periods, and/or comparatively thin reference data bases. Again, this points at the high value5

of the presented HOAPS-3.3 uncertainty analyses.

4.6 Regional and Seasonal HOAPS-3.3 Uncertainty Analyses

Global mean Eran
retr and Eclim of LHF -related HOAPS-3.3 parameters are fairly constant in time throughout the whole cli-

matology (Figs. 3-4). Absolute deviations from the global mean LHF (qa, U ) uncertainty become as large as 18 % (3 %, 8

%). Apart from seasonal signals, these are footprints of distinct local anomalies. On the one hand, these anomalies seem to10

originate from events that temporarily modify the global climate. On the other hand, Figs. 3-4 resolve considerable regional

variability. Therefore, the aim is to (1) identify climate features that are manifested in both temporal and spatial uncertainty

anomalies and discuss their origin (descriptive only). At the same time, (2) regional uncertainty differences shall be highlighted

by focusing on climate hotspots (Fig. 5a-c).

Regarding (1): The imprints of moderate to strong El Niño events during boreal spring 1998 and 2010 are manifested in15

LHF -related Eclim and Eran
retr. During these events, wind speeds over the Pacific upwelling regime are 1.5–2.0 m s-1 below

the climatological average. As has been mentioned in Kinzel et al. (2016), this causes an increase in systematic uncertainties

in U . Along with an enhanced Eclim(qs), the respective Eclim(LHF ) over the Pacific upwelling regime reaches 25 W m-2,

specifically during boreal spring 1998. This is approximately 10 W m-2 above the seasonal mean and more than 50 % of

climatological mean LHF . As qa are anomalously high with 20 g kg-1, Eran
retr(qa) is up to 0.2 g kg-1 below the seasonal mean20

(see Fig. 2 in Kinzel et al. (2016) for clarification).

By contrast, global minima inEclim(LHF ) andEran
retr(LHF ) are confined to boreal autumn 1991, taking on a mean value of

20 W m-2 (33 W m-2), respectively. These estimates are 20 % (11 %) below their climatological averages and are associated with

absolute minima in HOAPS-3.3 LHF . The comparatively small systematic component is induced by Eclim(U ) (Eclim(qs)) of

-8 % (-14 %). The absolute minimum in LHF and its uncertainties during 1991 is a footprint of the Mount Pinatubo eruption,25

which caused low-biased SST due to AVHRR aerosol issues and thus unrealistically low near-surface humidity gradients

(Romanova et al., 2010). Amongst others, this shortcoming in the HOAPS-3.3 climatology has already been picked up by

Andersson et al. (2011).

Regarding (2): Figures 5a-c summarize the ranges of seasonal, regime-dependent uncertainty distributions. The color-coded

boxes in Figures 5a-c represent the expected parameter ranges when considering multi-annual (1988-2012) means of system-30

atic uncertainty contributions, that is Eclim. At the same time, the error bars indicate the instantaneous random uncertainty

components, that is Eran
retr. Both are shown separately, as they are independent of each other. With few exceptions, the random

uncertainty contributions exceed the systematic counterpart, as is also mirrored in Figures 3 and 4.
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Figure 5a indicates that the total uncertainty ranges in qa are largest in (sub-) tropical regimes, concurrent to high qa.

In contrast to the Pacific upwelling region (red) and the Southern Ocean (cyan), the seasonal qa variability over the Indian

monsoon regime (green), the North Atlantic basin (dark blue), and specifically the North Atlantic western boundary current

(brown) is striking. This also finds expression in differences in absolute uncertainties of up to ±0.6 g kg-1 between January and

July. Largest uncertainties are in the order of ±2.40 g kg-1 and are confined to the Indian summer monsoon season, whereas5

smallest uncertainties around ±1 g kg-1 occur over the Southern Ocean.

Climatological regional wind speeds range between 4.5–11 m s-1 (Fig. 5b). As for qa, the seasonality is most pronounced

over the Indian monsoon region, WBC, and the North Atlantic. Largest total uncertainties exceeding ±2 m s-1 throughout the

year are observed over the Southern Ocean, which is primarily due to large Eran
retr(U ) (compare Fig. 3b). The Indian monsoon

region is somewhat special, in as much as summertime total uncertainties are largest on a global scale, while wintertime ranges10

are almost 50 % lower.

Figure 5c presents regionally dependent LHF and associated uncertainty ranges. As for Fig. 5a-b, seasonality is most

distinct over the North Atlantic, WBC, and the Indian monsoon region. Largest Eclim(LHF ) exceeding ±35 W m-2 are

confined to the WBC regime (specifically during winter) and the monsoon region (climatological average, compare also Fig.

4d). Total uncertainty ranges maximise along the WBC, where ±65–95 W m-2 are to be expected, which is 2–3 times larger15

compared to the ranges observed along the Pacific upwelling regime. Grodsky et al. (2009), for example, recall that an accurate

representation of LHF along the Gulf Stream is challenging due to strong surface currents and SST gradients as well as

intraseasonal dependencies of how the stratified atmospheric boundary layer amplifies air-sea interactions. This reasoning may

also apply to the Agulhas and Kuroshio region. The wintertime WBC uncertainty maximum is particularly caused by vast

Eran
retr(LHF ) of up to ±60 W m-2 (see also signal in Fig. 3d). By contrast, regional Eclim(LHF ) become largest in the Indian20

monsoon region, where their climatological average is in the order of ±40 W m-2 (compare also Fig. 4d).

4.7 Uncertainty Application: Trends in HOAPS-3.3 LHF

Figure 6 shows the HOAPS-3.3 global monthly mean LHF (thin black line) between 1988-2012 (70◦ S-70◦ N, cosine-

weighted average). The global minimum below 80 W m-2 during boreal summer 1991 is linked to the Mount Pinatubo eruption.

Overall maxima in the order of 110 W m-2 occur during 2008 and 2009.25

The bold black line in Fig. 6 shows the annual running mean climatology of HOAPS-3.3 LHF . On average, it increases by

roughly 4.5 W m-2 (4.7%) per decade (dark red line). If uncertainty ranges were discarded, this trend would be considered as

significant at the 95 % level (p<0.00001, based on a two-tailed t-test). The addressed uncertainty estimates are illustrated as

grey shadings and represent ±1 standard deviation of the 12-month running mean Eclim (global average). They take on a mean

value of ± 17 W m-2. A Bayesian approach to linear regression is applied including LHF uncertainty estimates following30

Kelly (2007), which yields a large range of linear trends (light red lines). Although the majority has a positive slope, some even

indicate a climatological decrease in LHF . In light of the illustrated uncertainty range, the mean upward trend in HOAPS-3.3

LHF (dark red line) should therefore be treated with caution, as the magnitude of linear increase lies well within the grey

shaded area.
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The overall increase in LHF has been elucidated in several studies concerning various LHF data sets (e.g. Liu and Curry,

2006; Yu and Weller, 2007; Santorelli et al., 2011; Yu et al., 2011; Iwasaki et al., 2014). The authors attribute it to increases in

both qs (i.e., SST ) and U , whereas the latter may be linked to stronger Hadley and Walker Circulations (Cess and Udelhofen,

2003). The global mean increase of 9 W m-2 between 1981 and 2002, as is e.g. seen in Objectively Analyzed Air-Sea Heat

Fluxes (OAFlux, Yu and Weller (2007)), is in the order of 10 %, which is in line with findings of Santorelli et al. (2011) and5

those illustrated in Fig. 6 of the present work.

Figure 6 also shows that recent global means decrease again. Time series analyses for single satellite instruments suggest that

this is a physical signal (i.e., associated with either multi-annual variability or a climate signal), rather than being associated

with intercalibration issues among SSM/I and SSMIS instruments. Additionally, the decrease may also be attributed to the slight

negative SST bias from 2011 onwards. This bias is caused by anomalously high NOAA-19 sensor noises, which themselves10

may be traced back to erroneous flag assignments during cloud detection. This is thought to cause up to 5-10 % reduction in

LHF . Closer investigations that involve other LHF climatologies exceed the scope of this study, but are needed to interpret

this gradual decay.

First intercomparisons of HOAPS-3.3 LHF to in situ and further satellite climatologies have been carried out, where pre-

liminary results indicate that nearly all compared data sets lie within the uncertainty range presented in Fig. 6 (not shown).15

A more detailed intercomparison study is envisaged; it will benefit from uncertainty estimates available in NOCSv2.0 and

allow for concluding whether global mean deviations among the data sets lie within or outside of the HOAPS-3.3 prescribed

uncertainty range.

5 Conclusions and Outlook

By means of multi-dimensional bias and MTC analyses, a universal approach for characterizing systematic, random retrieval,20

and sampling uncertainties inherent to HOAPS-3.3 LHF -related parameters has been presented. The multi-dimensional ap-

proach overcomes the issues of sparse data densities in remote regions, as it expresses the uncertainties as a function of the

ambient atmospheric conditions. At the same time, MTC enables a decomposition of random uncertainty sources to isolate the

contribution of the satellite retrieval. Both methods represent the main procedures to arrive at pixel-level uncertainty informa-

tion, which essentially increases the value of HOAPS-3.3. As to sampling uncertainties, monthly mean estimates have been25

calculated following the approach of Tomita and Kubota (2011). To conclude, HOAPS-3.3 can be considered as the first LHF

satellite-only climatology including instantaneous and gridded uncertainty estimates. As the method can be easily transferred

to other retrievals, it lays the foundation for uncertainty characterizations of further LHF-related data sets, which increases the

significance of this work.

It has been shown that maxima of systematic uncertainties (Eclim) reach up 50 W m-2, specifically over the large regions30

of the subtropical oceans (mainly qa-induced) and along the western boundary currents (mainly U -induced). Instantaneous

random retrieval uncertainties (Eran
retr) maximise along 20–30◦ N/S with values up to 60 W m-2, clearly showing the footprint

of random uncertainties of qa. From a climatological perspective, all random retrieval uncertainty components contribute to
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the total uncertainty by merely 1–2 % on a monthly basis (and even less for longer periods), which also accounts for respective

sampling uncertainties. Considerable regional and seasonal variability of LHF uncertainty ranges have been resolved from

an instantaneous point of view, with maxima over the Gulf Stream and Indian monsoon region during boreal winter. Climate

events, such as strong El Niño signals and the Mount Pinatubo eruption, are well manifested in both systematic and random

LHF uncertainties, even on a global scale. In light of the available uncertainty estimates, it has been shown that the positive5

trend in global mean LHF during the last 25 years lies within the derived uncertainty boundaries and needs to therefore be

treated with caution.

Results of the Q-term analysis presented in Sect. 4.5 and other studies suggest that more effort is necessary to improve the

qa retrieval. This would ultimately reduce the overall LHF uncertainty, which, according to e.g. Bourras (2006), ought to

be below 10 W m-2 for a quantitative use over the global oceans. An increase in the reliability of HOAPS-3.3 LHF -related10

parameters could for example be achieved by referring to a new ground truth reference. Freeman et al. (2016), for example,

recently presented a new version of ICOADS (release 3.0, up to 2014), highlighting its improvements compared to earlier

versions, which target topics such as data quality, data traceability, and data base extension. Apart from new in situ reference

data, the effect of approximations in bulk flux parameterizations should also be picked up, as has been done in detail in Brodeau

et al. (2017). Amongst others, this concerns implications of sensor height corrections, algorithm choices, the qs reduction due15

to the salinity effect, cool skin/ warm layer effects, and the assumption of constant sea level pressure.

According to Andersson et al. (2011), the E-P budget of HOAPS-3.2 is not closed. This also accounts for HOAPS-3.3, with

a climatological mean value of 0.45 mm d-1 (1988–2012, 70◦ S-70◦ N). Long-term run-off estimates are summarized and

published by the Global Runoff Data Center (GRDC), adding up to a mean value of 0.34 mm d-1 (Wilkinson et al., 2014).

According to Andersson et al. (2011), the uncertainty of these run-off estimates is in the order of 10–20 %. Comparing these20

values to the HOAPS-3.3 global freshwater flux leaves an imbalance of approximately 0.10 mm d-1, which is 0.30 mm d-1

below the HOAPS-3.2 estimate and can be evaluated as an improvement towards closing the global freshwater flux imbalance.

As Eclim(E) is in the order of ± 0.6 mm d-1, the imbalance clearly lies in the range of freshwater flux uncertainty. Keeping

this uncertainty range in mind sheds new light on the conclusion by Iwasaki et al. (2014) that the HOAPS-3 freshwater budget

(including river run off) is largest compared to the remaining data sets. A unit conversion from mm d-1 to kg year-1 allows for25

qualitatively estimating, whether the intercompared data sets in Iwasaki et al. (2014) (their Figure 6a) lie within the derived

uncertainty range of HOAPS. As 0.6 mm d-1 corresponds to roughly 0.8*1017 kg year-1, we conclude that all satellite and

hybrid related time series lie within the uncertainty range. This does not account for the reanalyses; according to the authors,

these tend to overestimate E, which is associated with the underlying bulk flux algorithm.

Recall, however, that uncertainty estimates of HOAPS-3.3 precipitation have not been accounted for in this quantitative30

estimation. Generally, the availability of remotely sensed precipitation uncertainty estimates is complicated by sparse reference

data and its intermittency. A recent study by Burdanowitz et al. (2016) presents an automatic phase distinction algorithm for

optical disdrometer data. Together with a continuously growing high-quality in situ data base of ship-based precipitation

measurements (OceanRAIN, Klepp (2015)), it will serve as a valuable basis for a characterization of HOAPS-3.3 precipitation

and hence freshwater flux uncertainty ranges in the near future.35
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Future work also aims at investigating trends in water vapour transports (WVT), using HOAPS-3.3 monthly mean freshwater

fluxes. Sohn and Park (2010), for example, demonstrated that trends in WVT can be used to examine circulation changes and

conclude that the large-scale Hadley Circulation has experienced an increase in strength since 1979. Similarly, Durack et al.

(2012) recently highlighted a considerable water cycle intensification during global warming. Available uncertainty estimates

will allow for quantifying the WVT uncertainty range, the necessity of which has been picked up by e.g. Sohn et al. (2004).5

A new version of HOAPS-3.3, that is HOAPS 4.0, has been released in October 2017 (Andersson et al., 2017). Major

changes compared to HOAPS-3.3 include a temporal extension up to 2014, a new SST product (Version 2 of the NOAA Op-

timum Interpolation SST (OISST) product, Reynolds et al. (2007)), and the implementation of a 1D-Var retrieval for several

geophysical parameters. Preliminary results suggest that the new U estimates have improved compared to HOAPS-3.3 in terms

of bias and RMSD behaviour relative to in situ ground reference data. In consequence, estimates of LHF and E have been10

updated, along with LHF -related uncertainty estimates.

Data availability: HOAPS-3.3 is a prolongation of HOAPS-3.2 and is based on a pre-release of the CM SAF SSM/I and SSMIS

FCDR. It was created in the framework of the DFG FOR1740 research activity for internal use. The monthly mean HOAPS-3.215

climatology and the respective FCDR are publicly available and may be downloaded free of charge (http://www.cmsaf.eu/EN/Products/DOI/Doi_node.html).

Instantaneous and gridded HOAPS-3.3 data are available upon request from the author.
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Table 1. Absolute and relative random statistical measures resulting from the multi-dimensional LUTs, i.e., MTC and random uncertainty

decomposition (Sect. 3.2, 3.3). ’stddev’ = standard deviation, ’abs’ = absolute, ’rel’ = relative. Apart from the LHF -related bulk parameters

themselves (U , qs, and qa), global mean ranges of the random retrieval- (Eran
retr), random collocation- (Ec), and random in situ measurement

uncertainty (Eins) are shown. Relative measures result from bin-wise relative uncertainty calculations. For comparison, the asterisks indicate

respective estimates published in Kent and Berry (2005), which are based on a semivariogram approach.

parameter / stat. measure mean stddev min (abs) min (rel) max (abs) max (rel)

qa [g kg-1] 8.8 4.4 2.8 / 19.3 /

Eran
retr(qa) 1.0 0.3 0.7 6 % 1.8 24 %

Ec(qa) 0.5 0.1 0.4 3 % 0.7 18 %

Eins(qa) 0.5 [0.9*] 0.3 [0.3*] 0.1 4 % 1.2 7 %

U [m s-1] 7.9 3.6 1.8 / 15.4 /

Eran
retr(U ) 1.4 0.4 1.0 12 % 2.6 63 %

Ec(U ) 1.4 0.3 0.8 12 % 2.0 44 %

Eins(U ) 1.8 [2.5*] 0.2 [0.4*] 1.5 15 % 2.3 111 %

qs [g kg-1] 10.2 5.7 4.5 / 24.3 /

Eran
retr(qs) 0.5 0.2 0.2 2 % 0.9 9 %

Ec(qs) 0.5 0.1 0.4 2 % 0.6 14 %

Eins(qs) 0.6 0.5 < 0.1 1 % 1.5 8 %
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Table 2. Average of monthly mean HOAPS-3.3 LHF -related sampling uncertainties (Esmp) as a function of simultaneously operating

SSM/I instruments (1995-2008). qa = "hair", U = "wind", qs = "hsea", LHF = "late", SST = "asst", E = "evap", air temperature = "tair".

All magnitudes are negligible compared to the instantaneous random (Eran
retr) and climatological uncertainties (Eclim) presented in Sect. 4.2

and 4.3.

# of satellites / parameters "hair" [g kg-1] "wind" [m s-1] "hsea" [g kg-1] "late" [W m-2] "asst" [K] "evap" [mm d-1] "tair" [K]

1 0.05 0.14 0.04 2.3 0.04 0.08 0.08

2 0.03 0.12 0.04 1.9 0.03 0.07 0.05

3 0.03 0.11 0.05 1.8 0.04 0.06 0.04
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Figure 1. Left panel: Global map showing the distribution of collocated qa measurements (HOAPS versus in situ) between 2001-2008.

Overall, more than 13.8 million matchups contribute to this density map. Note that the colorbar is logarithmic. Right panel: Two-dimensional

illustration of the near-surface humidity biases dqa (HOAPS minus in situ, 2001-2008) shown in Fig. 2. Note that the colorbar is not linear.
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Figure 2. Scatter density plots of qa bias (HOAPS-3.3 minus in situ, g kg-1) as a function of (a) qa ("hair"), (b) U ("wind"), (c) SST ("asst"),

and (d) water vapour path ("wvpa"), based on global double collocations between 2001 and 2008. The black squares and error bars represent

bin-averaged systematic uncertainties (significant at the 95 % level) and their standard deviations, whereby each bin contains 5 % of all

double collocated matchups. Note that the bars include random uncertainty contributions by the satellite retrieval, the collocation procedure,

and the in situ measurement uncertainty. (a) is a revised version of Fig. 3 published in Kinzel et al. (2016).
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Figure 3. Temporal averages (1988-2012) of HOAPS-3.3 instantaneous Eran
retr of (a) qa ("hair"), (b) U ("wind"), (c) qs ("hsea"), and (d) LHF

("late"). (e) Relative random retrieval uncertainty of HOAPS-3.3 LHF with respect to its natural variability. This variability is defined as

the range between the 5th and 95th percentile of instantaneous LHF between 2000-2008. The global averages (text strings) were derived

by considering a latitudinal cosine-dependency. All patterns result from the multi-dimensional bias analyses, MTC, random uncertainty

decompositions, and, in case of (d), uncertainty propagation described in Sect. 3.2-3.4. Note that the color bar ranges of (a) and (c) are

identical to allow for direct comparisons.
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Figure 4. HOAPS-3.3 climatological total uncertainties (Eclim) of (a) qa ("hair"), (b) U ("wind"), (c) qs ("hsea"), and (d) LHF ("late").

Eclim is defined as the mean root mean squared sum of Esys, Eran
retr , and Esmp (1988-2012). (e) Climatological mean relative Eclim(LHF )

with respect to its natural variability. This variability is defined as the range between the 5th and 95th percentile of instantaneous LHF

between 2000-2008. The global averages (text strings) were derived by considering a latitudinal cosine-dependency. All patterns result from

the multi-dimensional bias analyses and subsequent uncertainty propagations described in Sect. 3.2 and 3.4. Note that the color bar ranges

of (a) and (c) are identical to allow for direct comparisons.
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Figure 5. (a) Expected ranges of qa ("hair") as a function of different regions and seasons. The color–coded boxes show Eclim (1988-2012),

whereas the bars indicate the average instantaneous random uncertainty component Eran
retr (1988-2012). The following regions are presented:

global (orange), North Atlantic (60◦ W–5◦ E, 35–65◦ N, dark blue), North Atlantic Western boundary current (WBC, 60–80◦ W, 30–40◦ N,

brown), Southern Ocean (50–60◦ S, cyan), Pacific upwelling regime (80–100◦ W, 5◦ N–5◦ S, red), and Indian Monsoon region (50–75◦ E,

15–30◦ N, green). (b) As for (a), but for U ("wind"). (c) As for (a), but for LHF ("late").
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Figure 6. The thin (thick) black line shows the monthly (annual running mean) time series of HOAPS-3.3 LHF (70◦ S-70◦ N, cosine-

weighted average). The dark red line illustrates the linear trend, which takes on a value of 4.5 W m-2 per decade (p<0.00001, based on a

two-tailed t-test). The grey shading represents ± 1 standard deviation ("stddev") of the annual running mean Eclim (global average). The

light red regression lines were iteratively derived following Kelly (2007) by taking ± 1 stddev of Eclim into account.
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