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Abstract. Latent heat flux (LH F) is one of the main contributors to the global energy budget. As the density of in situ LHF
measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications
is enormous. However, to date none of the available satellite products include estimates of systematic, random, and sampling
uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching L H F'-related
pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3)
to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground refer-
ence to be bias free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor
variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large
oceanic areas. Likewise, random uncertainties are derived, which not only include a retrieval component, but also contribu-
tions from in sifzu measurement noise and the collocation procedure. A recently published random uncertainty decomposition
approach is applied to isolate the random retrieval uncertainty of all L H F'-related HOAPS parameters. It makes use of two
combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise vari-
ances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterisations on monthly
to multi-annual time scales. Results show that systematic L H F' uncertainties range between 15-50 W m with a global mean
of 25 W m™. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents.
Investigations indicate that contributions from g, (U) to the overall L H F' uncertainty are in the order of 60 % (25 %). From
an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics with a global average
of 37 W m™. In a climatological sense, their magnitudes become negligible, as do respective sampling uncertainties. Regional
and seasonal analyses suggest that largest total L H F' uncertainties are seen over the Gulf Stream and the Indian monsoon
region during boreal winter. In light of the uncertainty measures, the observed continuous global mean L H F' increase up to
2009 needs to be treated with caution. The demonstrated approach can easily be transferred to other satellite retrievals, which

increases the significance of the present work.
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1 Introduction

Exchanges of energy and moisture at the atmosphere—ocean interface represent a critical coupling mechanism within the
climate system. Specifically, latent heat fluxes (LH F’) significantly control the surface energy budget and are, in addition
to radiative fluxes, one of the main contributors to heating and cooling of the oceans. The fifth assessment report of the
Intergovernmental Panel on Climate Change (IPCC) emphasizes the role of heat transfer between ocean and atmosphere in
driving the oceanic circulation. Additionally, L H F' modifies the atmospheric stability distribution and triggers convection,
which in turn strongly impacts cloud formation and precipitation. To improve our understanding of the global energy and
water cycle variability as well as model simulations of climate variations, it is of great importance to accurately measure LH F'
over the global oceans at the highest possible resolution (e.g. Chou et al., 2004). The need for accurate surface fluxes has, for
example, been picked up by the World Climate Research Programme (WCRP), the Global Energy and Water Cycle Experiment
(GEWEX), and the Climate Variations (CLIVAR) Science Steering Group (e.g. Curry et al., 2004). Liu and Curry (2006), for
example, stress that accurate L H F' are essential for a correct forcing of ocean models and for evaluating numerical weather
prediction. Additionally, reliable long-term global L H F' data records represent a substantial input to assimilation experiments,
for instance the oceanic synthesis performed by the German contribution to Estimating the Circulation and Climate of the
Ocean (GECCO, GECCO2, e.g. Kohl and Stammer, 2008; Kohl, 2015).

Several LHF' data records exist, which differ in instrumentation, creation process, data density, as well as spatial and
temporal extent. These are either based on in sifu measurements, reanalysis, remotely sensed data, or a merged version of
these. Apart from isolated direct in situ measurements using e.g. sonic anemometers, all data methods share a need of bulk
flux algorithms such as COARE 3.0a (Fairall et al., 2003) to derive LH F'. The near-surface wind speed (U), the saturation
specific humidity at the sea surface (q;), and the near-surface specific humidity (q,) serve as input bulk parameters, on which
the parameterized L H F' primarily depend.

In particular, satellite climatologies have a vast potential for climate research applications, as they incorporate data with high
spatial resolution, cover time periods up to several decades, and provide a complete oceanic coverage over ice-free regions. Of
these, the Japanese Ocean Flux data sets with Use of Remote Sensing Observations (J-OFURO) satellite climatology (Kubota
et al., 2002), the Goddard Satellite-based Surface Turbulent Heat Flux (GSSTF) Version 3 product (Shie et al., 2012), the up-
dated version of the French Research Institute for Exploitation of the Sea (IFREMER) turbulent flux estimates (Bentamy et al.,
2013), the SeaFlux Version 1 and 2 data sets (Clayson et al., 2015), and the Hamburg Ocean Atmosphere Parameters and Fluxes
from Satellite (HOAPS) climatology (Andersson et al., 2010; Fennig et al., 2012), amongst others, include L H F'-related pa-
rameters. The HOAPS data set is a completely satellite-based, single-source climatology of precipitation, evaporation, related
turbulent heat fluxes, and atmospheric state variables over the global ice-free oceans. The usefulness of HOAPS for climato-
logical applications has been demonstrated in numerous intercomparison studies and promising results have been published by
Bentamy et al. (2003), Bourras (2006), Klepp et al. (2008), Winterfeldt et al. (2010), Andersson et al. (2011), and Stendardo

et al. (2016). In the framework of assessing sea surface freshwater fluxes, Romanova et al. (2010) conclude that HOAPS-3 is
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well suited for global applications and serves as an important and independent data set that should be included in future ocean
syntheses.

Independent of the data source, all global L H F' time series are subject to uncertainties, often of unknown magnitudes. On
the one hand, in situ LHF climatologies, which include data from buoys and ships, are known to contain biases (e.g. Wang
and McPhaden, 2001), to be of variable quality, and to be unevenly sampled. Although research vessel measurements of e.g.
q, are expected to be of good quality (e.g. Roberts et al., 2010), they are regionally limited, which also accounts for data from
moored buoys (Weller et al., 2008). Issues related to poor data densities over the Southern Ocean, amongst others, are for
example stressed in Yu and Weller (2007), Bourassa et al. (2013), and Prytherch et al. (2014). In consequence, this impedes
a meaningful discussion regarding the quality of LH F' in this climatologically important region (Josey, 2011). On the other
hand, long global reanalysis products such as ERA-Interim (Dee et al., 2011) and NCEP-NCAR (Saha et al., 2010) have a
high temporal resolution, but are not capable of resolving local-scale processes due to a lack of spatial detail (Winterfeldt
et al., 2010). Specifically over data-sparse regions, more weight is given to the atmospheric model, which is also prone to
uncertainties (e.g. Gulev et al., 2007). Thus, atmospheric reanalysis suffer from problems in their freshwater budgets (e.g.
Schlosser and Houser, 2006; Trenberth et al., 2007).

Similarly, remotely sensed LH F’ climatologies are also prone to uncertainties. In addition to calibration uncertainties and
aliasing problems (Bentamy et al., 2003), uncertainty sources either originate from uncertainties in the parameterization
(Brunke et al., 2002, 2003) or may be linked to the inaccuracy of the input bulk variables (Bourassa et al., 2013). In the
framework of an oceanic L H I assessment, Brunke et al. (2011) for example conclude that the uncertainty of HOAPS-3 LHF'
is to a great extent caused by the bulk variables due to inaccuracies of their individual retrievals. Liu and Curry (2006) reason
similarly, while assessing discrepancies of remotely sensed and reanalysis LH F' during the 1990s. Romanova et al. (2010)
recall that specifically early satellite-based products contain large uncertainties, as also shown by investigations regarding the
hydrological cycle by Mehta et al. (2005). Finally, irregular sampling from space introduces sampling uncertainties, which may
locally become substantial (e.g. Gulev et al., 2007). A current overview study by Loew et al. (2017) highlights the necessity of
a thorough satellite-based data validation and pools different approaches across communities.

To date, disagreements and/or weaknesses in data sets are often revealed by performing intercomparison studies, such as
those presented by Kubota et al. (2003), Chou et al. (2004), and Yu et al. (2011). Another example including HOAPS-3 LHF
is presented in Andersson et al. (2011), who show considerable differences on a local scale. Similar findings are published in
Iwasaki et al. (2014), who compare HOAPS-3 and other data sets to a reference climatology. Results indicate that differences
are largest close to 15° N/S, which mostly arise from differing q,.

Generally, such intercomparison studies are valuable for the research community. By this, however, the source of observed
differences remains unknown and can therefore not be attributed to a specific data set. To better quantify the quality of satellite-
based data sets, Prytherch et al. (2014) recently emphasized that comprehensive uncertainty estimates are valuable for climate
research purposes. To date, none of the above-listed, satellite-based data records are accompanied by L H F'-related uncertainty
estimates, which hampers a quality assessment of the air—sea fluxes and related parameters. Such uncertainty assessments go

beyond conventional L H F' intercomparison studies, as they allow for quantifying the data’s accuracy (systematic uncertainty)
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and precision (random uncertainty). Consistency among two data sets would for example be achieved when independent
measurements agree within their individual uncertainties, as Immler et al. (2010) formulates the benefit of such an approach.
Assimilation schemes like GECCO require such uncertainty information prior to assimilating respective fields in ocean models.

Few studies have taken on the challenge of uncertainty assessments in context of LH F'-related climatologies. Whereas
random uncertainties of ship-based L H F'-related parameters are for example discussed in Gleckler and Weare (1997), Kent
and Berry (2005), and Kent and Taylor (2006), systematic uncertainties are assessed in e.g. Kent et al. (1993) and Kent and
Taylor (1996). An example of an in situ LH F’ climatology incorporating uncertainty estimates (based on optimal interpolation)
is given by NOCS v2.0 (Berry and Kent, 2009). A satellite-related uncertainty assessment is published by Brunke et al. (2011),
who decomposed overall biases with respect to direct in situ records into a bulk variable and a residual component, the latter
which also includes the measurement uncertainty. Recently, Kinzel et al. (2016) presented an elegant approach for decomposing
random uncertainties inherent to independent data sets using triple collocation. Apart from NOCS v2.0, none of the remaining
L H F-related climatologies, irrespective of their data source, include comprehensive uncertainty information appended to the
data.

In the framework of the German Research Foundation (DFG) initiatives ’TFOR1740’ and ’FOR21740° (’ Atlantic Freshwater
Cycle’, http://for1740.zmaw.de/), the lack of uncertainty information inherent to satellite data is overcome by specifying sys-
tematic, random retrieval, and sampling uncertainties exclusively associated with HOAPS-3.3 L H F'-related parameters. This
manuscript not only introduces the methodology, but also demonstrates its application to arrive at HOAPS-3.3 LH F'-related
uncertainty estimates.

Whereas Sect. 2 introduces the data sets, Sect. 3.1 describes the procedure of matching HOAPS pixel-level data to in situ
records (double collocation analysis). This results in estimates of systematic uncertainties of L H F'-related parameters, assum-
ing the ground reference to be bias free. It is assumed that these biases depend on the unique combination of four atmospheric
predictor variables (q,, U, sea surface temperature, and vertically integrated water vapour), all of which are observed simulta-
neously from space. The results from double collocation are then binned as a function of these four state variables (regionally
independent multi-dimensional bias analysis, Sect. 3.2), resulting in bin-wise mean systematic uncertainties and, owing to their
spread, random uncertainties. The random uncertainty estimates are not only related to the satellite retrieval, but also include
contributions from the in situ source as well as the spatial and temporal matching. They can be decomposed into individual
uncertainty components (random error decomposition, Sect. 3.3) following the method published in Kinzel et al. (2016). The
approach is based on two combinations of data triplets originating from three independent sources (both HOAPS and in situ
data, multiple triple collocation), which are evaluated in terms of their variances of differences and permit the isolation of the
required retrieval-related uncertainty component. Rigorous error propagation to the instantaneous L H F'-related data is per-
formed subsequently, which allows to quantify both systematic and random retrieval uncertainties of L H F' themselves (Sect.
3.4). Aggregating these instantaneous uncertainty measures allows for presenting monthly to multi-annual uncertainty distri-
butions. Specifically regarding monthly mean sampling uncertainties (Sect. 3.5), the approach by Tomita and Kubota (2011) is

employed. All uncertainty components are presented in Sect. 4, which includes regional and seasonal differentiations. Section
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4 also comprises a trend analysis applying the derived uncertainty estimates. A summary and a brief outlook regarding ongoing
work are provided in Sect. 5.

The introduced methods can easily be transferred to other retrievals, highlighting the value of this study. The described
sequence particularly allows for assigning L H F'-related systematic and random uncertainties to instantaneous HOAPS-3.3
satellite data, which is not available for any other satellite data record to date. It extends the procedure described in Kinzel et al.
(2016), as it is not restricted to g,-related uncertainties, presents aggregated uncertainty distributions, and (next to random

uncertainties) captures both systematic and sampling components.

2 Data
2.1 HOAPS-3.3 Pixel-Level Data Records

Apart from the sea surface temperature (SST), all HOAPS parameters are derived from intercalibrated Special Sensor Mi-
crowave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave radiometers, which are
installed aboard the polar orbiting satellites of the United States Air Force Defense Meteorological Satellite Program (DMSP).
HOAPS provides consistently derived global fields of freshwater flux related parameters. Regarding sensor specifications and
orbital paths, the reader is referred to e.g. Andersson et al. (2010).

Here, the focus lies on HOAPS-3.3, which has been produced as an extension to the HOAPS-3.2 data set (Andersson et al.,
2010; Fennig et al., 2012) in the framework of the ongoing DFG research activity. Its extensive documentation is available
online (Fennig et al., 2013). HOAPS-3.3 covers the time period from 1987 to 2015, during which a total number of nine satellite
instruments were in operational mode (F8-F18). The spatial resolution of the pixel-level data is channel-dependent. For SSM/I,
it varies from 69 km by 43 km (19 GHz channel) to 37 km by 28 km (37 GHz). Likewise, it ranges from 74 km by 47 km (19
GHz channel) to 41 km by 31 km (37 GHz) for SSMIS sensors. Compared to HOAPS-3.2, HOAPS-3.3 has been temporally
extended up to 2015 and is based on a pre-release of the CM SAF SSM/I and SSMIS FCDR. This reprocessing included
a homogenization of the radiance time series by means of an improved inter-sensor calibration with respect to the DMSP
F11 instrument. Earth incidence angle normalization corrections were applied, following a method described by Fuhrhop and
Simmer (1996). Since the HOAPS-3.1 release, HOAPS is hosted by the EUMETSAT Satellite Application Facility on Climate
Monitoring (CM SAF), whereupon its further development is shared with the University of Hamburg and the Max Planck
Institute for Meteorology (Hamburg). In this study, the pixel-level HOAPS-3.3 data in sensor resolution is used, which implies
that no aggregation for gridding purposes has been applied.

HOAPS-3.3 g, relies on a direct, four-channel retrieval algorithm by Bentamy et al. (2003), which is based on a modified
version of the two-step multi-channel regression model by Schulz et al. (1993) and its refinement by Schliissel (1996). 1000
globally collocated pairs of SSM/I brightness temperatures (TBs) and ship data between 1996-97 were used to estimate the

new values for the coefficients in the Schulz model.
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To account for the non-linearity of the problem, the HOAPS-3.3 U algorithm uses a neural network approach with three
layers after Krasnopolsky et al. (1995) to derive the wind speed at 10 m above sea level (a.s.l.). The network was trained
with a composite data set of buoy measurements, which was compiled using matchups of SSM/I F11 TBs and near-surface
wind speed measurements from the National Oceanographic and Atmospheric Administration (NOAA) National Data Buoy
Center (NDBC) and the Tropical Atmosphere Ocean (TAO) array between 1997-98. Radiative transfer simulations based on
radiosonde profiles served as input for the training data set (Andersson et al., 2010).

HOAPS-3.3 SST is based on the AVHRR Pathfinder Version 5.2 and is obtained from the US National Oceanographic Data
Center and the Group for High Resolution Sea Surface Temperature (http://pathfinder.nodc.noaa.gov). The data is an updated
version of the Pathfinder Version 5.0 and 5.1 collection described in Casey et al. (2010). A static bias correction of +0.17 K has
been applied to HOAPS-3.3 SST data in order to revert the Pathfinder Version 5.2 skin correction and thus achieve consistency
with Version 5.0 used in HOAPS-3.2.

HOAPS-3.3 sea surface saturation specific humidity g is derived by applying the Magnus formula (Murray, 1967) to SST,
while accounting for a constant salinity correction factor of 0.98.

HOAPS-3.3 LHF is based on the Coupled Ocean—Atmosphere Response Experiment (COARE) 2.6a bulk flux algorithm.
With minor modifications of physics and parameterizations, the algorithm is published as COARE-3.0a by Fairall et al. (2003).
It includes atmospheric stability calculations, which necessitate surface air temperatures as input. These are estimated by
assuming a constant relative humidity of 80 % (Liu et al., 1994) and air-sea temperature difference of 1 K (Wells and King-
Hele, 1990). A constant sea surface pressure of 1013.25 hPa is prescribed within the bulk flux algorithm. COARE-3.0 is widely
accepted within the scientific community; its benefits are for example presented in the framework of an intercomparison study

by Brunke et al. (2003).
2.2 DWD-ICOADS Data Archive

Hourly in situ measurements of U, ¢s, and ¢, (bulk parameters, as of now) have been provided by the Marine Climate Data
Center of the German Meteorological Service (DWD), supervised by the Marine Meteorological Office (Seewetteramt, SWA).
While data prior to 1995 is excluded due to a comparatively poor in sifu data coverage, the data set used here includes measure-
ments up to 2008. It comprises global high-quality shipborne measurements as well as data provided by drifting and moored
buoys. In case of data gaps within the SWA archive, the in sifu data basis was extended at SWA by available International
Comprehensive Ocean—Atmosphere Data Set (ICOADS) measurements (Version 2.5, Woodruff et al., 2011). A comprehensive
literature overview on research applications involving [COADS data is given by Freeman et al. (2016). Both SWA and ICOADS
records contain hourly global measurements obtained from ships, moored and drifting buoys as well as near-surface measure-
ments of oceanographic profiles. Several quality checks were performed at SWA prior to using the merged DWD-ICOADS
data, which resulted in quality index assignments to each observation. Details regarding the flagging procedures carried out at
SWA are given in Kinzel et al. (2016).

In preparation for the uncertainty analyses, further filtering and correcting procedures to both ship and buoy data were carried

out. Regarding ship records, annual lists of Voluntary Observing Ships (VOS) metadata (Kent et al., 2007) were employed.
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Most of the supplementary buoy metadata was extracted from the Data Buoy Cooperation Panel, which particularly includes a
fleet of moored buoy arrays operated by NDBC. Metadata of the Global Tropical Moored Buoy Array, such as TAO-TRITON
(Pacific-), PIRATA (Atlantic-), and RAMA (Indian Ocean) were obtained from the Pacific Marine Environment Laboratory
(PMEL).

ICOADS VOS estimates of g, are based on wet bulb temperature measurements, typically using mercury thermometers,
which are often exposed in either (ventilated) screens or sling psychrometers (Kent et al., 2007). ¢, is eventually derived by
applying the psychrometric formula. By contrast, g, estimates of buoys originate from measurements of air temperature and
relative humidity. For this study, g, of both VOS and buoys were not corrected to the HOAPS-3.3 reference of 10 m a.s.l,,
assuming neutral stratification. A discussion related to this approach is published in Kinzel et al. (2016). It is in line with
Prytherch et al. (2014), who conclude that a conversion to 10 a.s.l. (neutral stability) substantially adds to the noise in the
resulting in situ q,. The aspect of correcting ¢, with respect to height and stratification is also elucidated in Bentamy et al.
(2003) and Bentamy et al. (2013), whereas correction effects are presented in Kent et al. (2014). The authors for example
quantify the height correction effect due to continuously increasing measurement platform heights between 1971-2006 to be
0.11 g kg™'. However, this effect is masked by bias corrections associated with measurement techniques, which are thought to
be 2-3 times larger.

DWD-ICOADS VOS U are either measured using anemometers (likewise for buoys) or are estimated from the sea state,
depending on the preference of the country recruiting the VOS (Kent et al., 2007). By means of the measured wind speed and
direction, the true wind speeds are derived considering the ship’s speed and direction. If a specific anemometer height was not
given, it was estimated from the annual global mean height difference with respect to the thermometer platform. For each year,
this single height difference value is based on all contributing ship records with complete metadata information. Prior to 2002,
no thermometer heights were available; consequently, the height difference was set to 6 m (average between 2002-2008). In
case both sensor heights were unknown, the linear fits shown in Table 4 of Kent et al. (2007) were used to derive anemometer
heights based on available ship length metadata. It was assumed that these ship type dependent linear fits (Kent et al., 2007,
their Fig. 11) introduce negligible uncertainties to the sensor height derivation. Given the anemometer heights of both VOS and
buoys, in situ wind speeds were corrected to the HOAPS-3.3 standard height of 10 m a.s.l. to remove inhomogeneities, using
the iterative equivalent neutral stability approach of Fairall et al. (2003). With the exception of e.g. (stable stratified) upwelling
regimes or local instabilities, the equivalent neutral stability assumption is valid over vast regions of the open oceans. The
correction using a neutral wind equivalent profile has been suggested by e.g. Shearman and Zelenko (1989). It is argued that in
case of VOS, the omission of a correction would lead to a positive wind speed bias, as the average wind sensor height is given
by 18 m (Kent et al., 2014). By contrast, buoy U would be low-biased.

VOS S ST measurement techniques differ in terms of platform, measurement depth, and extent of automation. Strictly speak-
ing, in situ SST are sub-surface temperatures and thus differ from the HOAPS-3.3 Pathfinder SST', which are treated as a skin
SST for the surface flux calculations. This necessitates an in situ cool-skin correction as a function of wind speed, following
Donlon et al. (2002). Their Equation (2) was applied, omitting all records subject to wind speeds below 2 m s™!' (corrected to

10 m a.s.l.), as the exponential fit introduces additional uncertainty for very calm conditions. On average, the SST" correction
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reduced the DWD-ICOADS S ST by approximately 0.17 K. Moreover, the warm layer part of the COARE 3.0 algorithm is not
implemented in HOAPS-3.3 due to the lack of a continuous diurnal cycle information on the surface radiation budget from the
SSM/T and SSMIS measurements. To be directly comparable to the in situ counterpart, all in situ measurements taken during
local daytime were excluded. As only night-time in sifu measurements during non-calm conditions were considered, the sea
water temperature gradient within the uppermost meters of the water column is thought to be negligible. A SST correction
with respect to the sensor depths was therefore omitted for both VOS and buoys, independent of the measurement platform.

All VOS data processing described above was carried out for research vessels (so-called ’special ships’) and merchant vessels
only due to vast data amounts and in order to minimize in sifu uncertainties. In case of multiple triple collocation analysis (Sect.
3.3), buoy records were excluded to ensure having a consistent, globally distributed data set as the ground reference for the
random decomposition procedure. It is argued that the vast amount of remaining triplets authorizes this restriction.

Despite strict filtering and correcting procedures, in sifu measurement uncertainties related to sensor types, measurement
heights and positions, and solar radiation contamination may remain (e.g. Bourassa et al., 2013). Assessments regarding the
quality of the reference data are beyond the scope of this article. The in sifu data basis is therefore considered as the bias-freebias
free, ground reference. This assumption is in line with calibration and validation approaches of Bentamy et al. (2003), Jackson
et al. (2009), and Bentamy et al. (2013), amongst others. As will be shown in Sect. 3.2, the HOAPS systematic uncertainties
presented in this work are interpreted as upper limit estimates. Therefore, the assumption of a bias free ground reference does
not violate our main conclusions, although a small contribution to the systematic uncertainties may be caused by the in situ

reference.

3 Methodology

This Section describes the technical background for deriving systematic, random, and sampling uncertainties inherent to
HOAPS-3.3. In a first step, HOAPS LH F'-related pixel-level records are matched to DWD-ICOADS measurements (dou-
ble collocation analysis, Sect. 3.1). Assuming the ground reference to be bias free, this allows for investigating the systematic
uncertainty structure as a function of four atmospheric state variables, namely q,, U, sea surface temperature, and vertically
integrated water vapour (multi-dimensional bias analysis, Sect. 3.2). Resulting random uncertainties, however, are not exlu-
sively satellite-related, as they include contributions from in situ measurement noise and collocation. They can be corrected for,
following the recently published approach of Kinzel et al. (2016) (random uncertainty decomposition, Sect. 3.3). The method
is based on two combinations of independent data triplets including both pixel-level HOAPS-3.3 data as well as in situ records,
which are analysed in terms of their variances of differences. In consequence, all HOAPS L H F'-related instantaneous data is
equipped with both systematic and random retrieval uncertainty estimates, which can be aggregated for gridding purposes and
displayed as e.g. monthly or multi-annual means. When aggregating, sampling uncertainties additionally become important.
However, it will be shown that they receive considerably less weight compared to the systematic uncertainty measures (Sect.
3.5). The sequence of analyses allows for a complete HOAPS-3.3 uncertainty characterization of LH F'-related parameters on

various time scales (Sect. 4), which goes beyond what has been published on L H F'-related climatologies to date.
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3.1 Double Collocation Analysis

In preparation for uncertainty calculations, a double collocation analysis is performed for the time period of 2001-2008,
resulting in paired matchups of L H F'-related HOAPS-3.3 and in sifu data. Although HOAPS-3.3 lasts until 2015, collocations
between 2009-2015 were not performed, as the DWD-ICOADS data archive only lasts until 2008. The collocated pairs are
based on the so-called nearest neighbor approach; that is, HOAPS-3.3 pixels are assigned to respective in situ observations
closest in time and space. Parameter-independent collocation criteria of Az = 50 km and At = 60 min are chosen. These are
more restrictive than those derived in e.g. Kinzel (2013). Due to the vast amount of available matchups this is justifiable and
ensures that e.g. strong spatial and/or temporal gradients associated with fronts are discarded from further analysis.

Figure 1 (left) presents the resulting collocation density for 2001-2008, exemplarily for g,. Matchups mainly occur in
coastal regions (associated with buoys) and along major shipping lanes. By contrast, the Southern Ocean considerably lacks
high-quality in situ measurements. The amount of U and g, collocations exceeds those shown in Fig. 1 (left). For brevity, their
distributions are not shown.

Figure 2a-d exemplarily shows scatter density plots of the g, bias (2001-2008) as a function of the atmospheric state pa-
rameters ¢, ("hair"), U ("wind"), SST ("asst"), and vertically integrated water vapour ("wvpa"), resulting from the double
collocation analyses. Overall, 13.8 million matchups contribute to each subplot. The illustrated bins are not equidistant; in fact,
their width depends on the data density of the matchups. This implies that 5% of all collocated pairs are assigned to a single
bin, respectively. Analogously to Fig. 2, one-dimensional bias analyses are performed for both dU and dgs (not shown).

For g, values between 7-12 g kg™! , HOAPS-3.3 overestimates near-surface specific humidities (see Fig. 2a). Overestimations
are also observed in the inner tropics, where ¢, is in the order of 20 g kg™!. In return, biases are negative for polar (< 5 gkg!) and
subtropical (12—17 g kg'') humidity regimes. The latter region is also subject to largest random uncertainties, which exceed 2 g
kg™!'. See Kinzel et al. (2016) and Prytherch et al. (2014) for more details on the analysis of HOAPS-3.3 g, and its resemblance
to GSSTF3 g, (Shie et al., 2012). The spatial distribution of these ¢, biases are shown in Fig. 1 (right). Specifically the
underestimations (overestimations) over subtropical (tropical) oceans are well resolved. Humidity biases as a function of wind
speed are illustrated in Fig. 2b. The distribution is somewhat linear, where low (high) wind regimes are over-(under-)estimated
in HOAPS-3.3. In contrast to the remaining atmospheric state parameters, the random uncertainty decreases fairly linearly with
increasing wind speeds. The ¢, bias distribution as a function of SST (Fig. 2¢) resembles that of the g,-dependent distribution
(Fig. 2a) regarding regimes of over- and underestimation. A dependency of dg, on the total integrated water vapour (Fig. 2d)
shows only few distinct features. Most matchups coincide with values below 20 kg m2. With the exception of smallest values,
these result in positive biases with respect to HOAPS-3.3. As the abscissa and ordinate variables in Fig. 2 are correlated, we
investigated the contribution from artificial biases by illustrating dq, as a function of in situ q,, U, and SST'. Results indicate
that the percental difference of the mean bin values (black squares) of HOAPS and DWD-ICOADS range between 6-10% (not
shown). We are therefore confident that our approach is robust. However, we are aware of these pseudo biases due to errors

in the in situ records (e.g. Stoffelen, 1998) , specifically in the tail regimes, which consequently leads to an increase of the
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HOAPS uncertainty estimates presented in Sect. 4. Two-sided regression analyses could further reduce these spurious biases,
which are envisaged for future HOAPS uncertainty characterizations.

A comparison of e.g. Fig. 2a and b indicates that the simple one-dimensional bias analyses may be misleading when it comes
to HOAPS-3.3 g,-related uncertainty characterizations. Average ¢, off the Arabian Peninsula, for example, are in the order
of 14-15 g kg'' (not shown). According to Fig. 2a, this is associated with a HOAPS-3.3 ¢, underestimation, as is also seen
in Fig. 1 (right). At the same time, climatological mean wind speeds are as low as 3—5 m s™' (not shown), which goes along
with a HOAPS-3.3 g, overestimation (Fig. 2b). This is no contradiction, but rather indicates that the HOAPS-3.3 g, retrieval
seems to encounter challenges for specific humidity and wind regimes. Furthermore, a constraint to one-dimensional analyses
implies for example that parts of the random uncertainties illustrated in Fig. 2a (bars) receive a systematic component in Fig. 2b
(squares). This conclusion motivates to proceed with multi-dimensional bias analyses, where all possible atmospheric states, i.e.
combinations of the four chosen atmospheric state parameters, are accounted for simultaneously. This approach finally allows
for separating systematic from random uncertainties. Results illustrated in Fig. 2 can therefore be considered as a preliminary
stage of the four-dimensional bias analyses introduced in Sect. 3.2, where each of the four atmospheric state variables (Fig. 2,

x-axes) represent one dimension.
3.2 Multi-Dimensional Bias Analyses

The bulk formula for LH F' is given by

LHF:paLVCEU(QS_Qa)v (1

where p,, is the density of moist air and Ly the latent heat of vaporization. p, is derived as a function of HOAPS-3.3 ¢,
and near-surface air temperature. Likewise, Ly is computed simultaneously as a function of HOAPS-3.3 SST'. Assuming
uncertainties in p, and Ly to be negligible and according to standard error propagation, the overall LH F' uncertainty is a
function of the systematic and random uncertainties introduced by the remaining parameters.

As to the Dalton Number Cg, the estimates of Fairall et al. (2003) are applied by assigning 5 % (10 %) of systematic
uncertainty of C'x for wind speeds smaller (larger) than 10 m s!. For wind speeds exceeding 20 m s™', the estimate of Gleckler
and Weare (1997) of 12 % is taken on. Independently of U, random uncertainties of 20 % are assigned, as proposed by Gleckler
and Weare (1997).

In case of U, g5, and q,, the uncertainties are assumed to depend on the concurrent atmospheric state. The combination of
Ga, U, SST, and vertically integrated water vapour is thought to represent the concurrent atmospheric state best. Therefore,
the one-dimensional consideration presented in Sect. 3.1 is expanded by creating four-dimensional look up tables (LUTs) in-
cluding 20* entries, respectively. The dimension is reflected in the exponent, whereas its base represents the amount of bins per
dimension. As described in Sect. 3.1, these bins are not equidistant. In case of dg,, bin means of each of the four dimensions
are indicated by the x-values of the black squares shown in Fig. 2a-d, respectively. The values of all four dimensional vectors

are essential for assigning instantaneous, absolute differences (HOAPS-3.3 minus in sifu) to the correct LUT. By averaging the
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content of each bin, systematic and fofal random uncertainties finally result as a function of the four atmospheric state param-
eters. The approach of processing-is therefore geophysically motivated, but implemented in a statistical manner. Processing
absolute measures of the observed differences allows for moving from a simple bias analysis to an uncertainty characterization.
The resulting systematic uncertainties ;which-are-shown throughout Sect. 4 ;can therefore be treated as an upper boundary of
a more simple bias distribution.

The multi-dimensional uncertainty characterization approach overcomes the issues introduced by data-sparse regions, such
as the Southern Ocean and the tropical oceans (e.g. Kent and Berry, 2005). Here, it is knowingly turned away from the
dependency on matchup density, which implies that the LUTs are valid on a global scale. Due to the immense data availability,
their pairwise input biases are confined to matchups from 2001-2008 (dq,, dU) and 1998-2001/2006-2008 (dgs). A thorough
elucidation of the multi-dimensional bias analysis is presented in Kinzel et al. (2016), exemplarily for HOAPS-3.2 ¢, (Sect.
2c and Fig. 5, left therein). Here, it is applied to all three bulk parameters, which results in both systematic and tofal random

uncertainty LUTs.
3.3 Random Uncertainty Decomposition

The total random uncertainties introduced in Sect. 3.2 (and also those represented by the black error bars in Fig. 2) include
random uncertainties associated with the collocation procedure (E¢) and in situ measurement noise (F;,s) (e.g. Bourras,
2006). To isolate the random retrieval uncertainty, E; %, which is exclusively HOAPS-related, multiple triple collocation
(MTC) analysis is applied to matchups of U, g5, and g, for the time period 1995-2008. This section briefly summarizes the
concept of random uncertainty decomposition. For more mathematical and technical details, the reader is referred to Kinzel
etal. (2016).

MTC analysis includes a twofold triple collocation (TC, introduced by Stoffelen, 1998), whereupon double collocated data
described in Sect. 3.1 serves as input. Triplets incorporating two independent in situ measurements and one HOAPS-3.3 pixel
represent the first arrangement, whereas a single in situ record and two HOAPS-3.3 pixels of independent satellite instruments
form the second triplet structure (see Fig. 1 in Kinzel et al. (2016)). The collocation criteria applied in Sect. 3.1 are adopted
and data poleward of 60° N/S is excluded to avoid biases associated with sea ice effects.

Subsequent to a bias correction with respect to the in situ measurements, the variances of differences between two indepen-
dent data sources X and Y, that is Vxy, are calculated following O’Carroll et al. (2008).

Given three data sources and two types of TCs, this results in six combinations of Vxy. Next, error models for both ship
and satellite records are defined (Kinzel et al., 2016) . In case of ship records, these include E;,, s, whereas for satellite records,
they incorporate satellite sensor noise (£, synthetically derived) and retrieval model uncertainty (Ej;). Applying these error
models to the derived Vxy, while explicitly accounting for error correlation terms, results in six equations incorporating £,
FEy, En, and E¢. These equations are successively solved for all random uncertainty sources as a function of U, g5, and
qq, that is for 20 individual bins per parameter. Each of these bins include thousands of triple collocated matchups. Finally,
Erar = +/(Ewm)?+ (En)? is the required random satellite retrieval uncertainty, which is derived for all 20 bins as a function

of U, qs, and q,.
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MTC is a powerful tool to decompose fotal random uncertainties (i.e., Esym = E] 5% + Eins + E¢) inherent to L H F-related

bulk parameters in order to isolate the random retrieval contribution £, 2['. Depending on the magnitude of the respective bulk

parameter, the fractional contribution from E]/). to E,y, is finally derived. That is, each entry of the total random uncertainty

LUTs introduced in Sect. 3.2 is "adjusted’.

Section 4.1 presents a statistical summary of the instantaneous, decomposed random uncertainties inherent to U, g5, and q,.
3.4 Deriving HOAPS-3.3 LHF-Related Uncertainties

The uncertainties in LH F' are caused by uncertainties in all bulk input parameters contributing to Eq. (1). Assuming the
underlying parameterizations to be correct, L H F' uncertainties can thus be derived by carrying out standard error propagation.
These uncertainty estimates are assigned to each HOAPS pixel, depending on the four atmospheric state parameters.

Total instantaneous L H F’ uncertainties, o, i, are derived as follows:

_ [(OLHF\® ) (OLHE ? s o, (OLHFOLHF )
OLHF = 81' Uw 8y Uy T:L‘y a.T ay Uw0y7

where x and y are place holders of U, ¢, g4, and Cg. 14, is the correlation coefficient between x and y. For each combination
of x and y, the average of daily global mean correlation coefficients between 1995 and 2008 is applied. Global mean coefficients
are preferential compared to instantaneous 7, for two reasons. First, the amount of instantaneous data for a specific region
is limited, which may distort the results of the correlation analysis. Second, omitting all correlation-related terms in Eq. (2)
modifies o F,sys by merely 0.5 =5 W m? (not shown), which indicates that these terms do not receive much weight after
all.

o and oy are fotal uncertainties in 2 and y. These can be decomposed into systematic and random components. Note that
the random component has been corrected for collocation and in situ uncertainty effects (see Sect. 3.3) and already represents

the random retrieval uncertainty E7 2.

OLHF\® , . (OLHF\’ OLHF\> e
( ax > Jg - < 81‘ ) Ug,sys+<8m) O—g,”r’et'r‘,fr’an (N 1/2> . (3)

N is the number of HOAPS-3.3 satellite observations (N=1 for instantaneous L H F' uncertainties). In case of temporal and

spatial averaging over a sufficiently long time period, the random component becomes negligibly small. Sampling uncertainties

do not exist on an instantaneous basis and are therefore not considered in Eqgs. (2)-(3).
3.5 Sampling Uncertainty

In addition to systematic and random uncertainties, inhomogeneous sampling may occur, specifically when temporal resolu-
tion in observations are coarse. As remotely sensed data is measured at selected times only, temporal sampling uncertainties

therefore become an issue (Gulev et al., 2010), as the diurnal cycle may not be captured correctly.
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Daily mean sampling uncertainties of HOAPS-3.3 L H F'-related parameters are derived, using high-resolution buoy mea-
surements. Overall, data of eight tropical (PMEL, hourly resolution) and 15 extratropical (NDBC, 10-minute resolution)
moored buoys account for a possible climate regime dependency. All chosen buoy records comprise several years of data
(1995-2008) and hardly show temporal data gaps. Here, the approach by Tomita and Kubota (2011) is followed to derive
the sampling uncertainties by simulating two satellite data overpasses per day, using the buoy values. In case of U and SST,
records are corrected for sensor heights and cool skin effects, respectively, as explained in Sect. 2.2. In situ L H F' are computed
by means of the COARE-2.6a algorithm (Fairall et al., 2003). Daily means of ’true’ buoy data are derived by averaging all daily
buoy records, where only high-quality data (indicated by quality flags 1-2) is considered. The weighted average of the two clos-
est (in time) ’true’ buoy observations to local satellite overpasses corresponds to the so-called ’simulated’ satellite data record
(Tomita and Kubota, 2011, their Fig. 2). All daily sampling uncertainties are derived as a function of the number of simultane-
ously operating SSM/I instruments. These daily values form the basis for the monthly averages of selected parameters (Ej,,,,),
which are outlined in Table 2 (Sect. 4.4). The estimates are global means; an earlier, regime-dependent investigation resulted

in negligible differences. This implies that monthly mean systematic uncertainties do not exhibit a latitudinal dependency.

4 Results and Discussion
4.1 Magnitudes of HOAPS-3.3 Decomposed Random Uncertainties

Table 1 presents a statistical summary of the instantaneous random uncertainty decomposition for the bulk parameters U, g,
and ¢, following the approaches described in Sect. 3.1 to 3.3. Note that E is not included, as its synthetically derived value
remains constant throughout the respective parameter range (for procedure, see Kinzel et al., 2016). Asterisked values indicate
global mean weighted averages and pooled variances of Kent and Berry (2005), resulting from a semivariogram approach.
These are based on their Fig. 1, taking the illustrated grid averaged random uncertainties, the standard deviation as well as
the number of observations into account. In the following, individual contributions to the overall random uncertainties are
discussed, but not shown in terms of supplementary figures.

E780(q,) ranges between 0.7 and 1.8 g kg™!, where minima (maxima) are found below 5 g kg! (between 13-17 g kg™') q,
regimes. Whereas largest relative uncertainties are associated with polar g, values (3-5 g kg!), lowest relative contributions
below 10 % are confined to the inner tropics (20 g kg™!). On average, both E.(¢,) and Ej,,,(q,) are approximately half the
size of E"%(q,). The average of E;,,4(q,) is 0.4 g kg™! below the mean estimate of Kent and Berry (2005). It is hypothesized
that the lower estimate of E,,5(q,) is a direct consequence of the rigorous in situ filtering procedure prior to MTC analysis.
The difference may furthermore be triggered by the fact that Kent and Berry (2005) include data records dating back to the
1970s and 1980s, which may imply that ship records are included which do not fulfill the here applied quality control stan-
dards. In contrast to E72/%.(q,), Eins(qs) increases rather linearly with g, which implies that smallest (largest) random in situ

measurement uncertainties are found for lowest (highest) g,. In contrast, £.(g,) shows a similar distribution as E]2}.(q,), yet
with considerably smaller amplitude. These random collocation uncertainties range between 0.4 and 0.7 g kg™!, corresponding

to 3—18 %. A graphical illustration of the ¢, random uncertainty decomposition is shown in Kinzel et al. (2016) (their Fig. 2).
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In case of U, all random uncertainties tend to be larger compared to g, in a relative sense. In contrast to ¢, all three relative
uncertainties exhibit a clear increase over large ranges of U, where minima and maxima in E.(U) (E;,s(U), E.(U)) range
between 1.0-2.6 m s (1.5-2.3 m s}, 0.8-2.0 m s’!). Whereas ETSN(U) and Eyps(U) are fairly constant for moderate wind
speeds before continuously increasing, E.(U) seems to already saturate for mean wind speeds in the order of 10 m s™ (not
shown). Similar to E;,s(q,), the E;,s(U) estimate of Kent and Berry (2005) is roughly 40 % larger. Again, this difference
is suspected to arise from the differences in the data set compositions. Kent and Berry (2005) furthermore elucidate that no
corrections for height or adjustments to the Beaufort scale have been applied to their data, which would have caused a reduction
in random uncertainty of 13 & 1 %, according to the authors. Yet, E;,,s(U) almost exclusively represents the largest contribution
to the random uncertainty budget of U. For all random uncertainty sources, strong wind regimes are linked to smallest relative
uncertainties in the order of 12—15 %. In low-wind regimes, however, relative uncertainties exceed 50 % to even 100 %.

Both absolute and relative contributions from gs-related random uncertainties remain well below those of ¢,. Global mean

ran
retr

the value published in e.g. McClain (1989), who estimated the global RMSE of AVHRR-derived SST to be in the order of
0.6-0.7 K (£ 0.4-0.5 g kg'"). Similar to E72"(U), E"%"(qs) (Eins(¢s)) shows a positive proportionality with largest values

retr retr

values of all three random uncertainty sources are in the order of 0.5-0.6 g kg''. Regarding E"%"(qs), this is comparable to

of 09 g kg‘1 1s5¢g kg‘l). As for E;,5(U), Eins(qs) exceeds E72(qs), specifically for g5 larger than 8 g kg’l. In contrast

retr

to q,, relative uncertainties are smallest in extratropical regimes with contributions of merely few percent. Largest relative

uncertainties remain well below those of ¢, and are in the order of 8—14 %.
4.2 Global Patterns of HOAPS-3.3 Random Retrieval Uncertainties

The results presented in Sect. 4.1 are expanded by showing the global patterns of E£¢/ in two-dimensional space.

Depending on the time period and thus on the number of SSM/I and SSMIS instruments in operation, the monthly global
mean sum of instantaneous observations per 0.5°x0.5° grid cell ranges from approximately 90 (1988) to 650 (2006). In con-
sequence, monthly means of E7Z/ are considerably below the systematic counterpart (see scaling effect of IV in Eq. (3)).

Specifically from 1991 onwards, monthly globally averaged E 2 of LH F'-related parameters only reach 0.5-3 %. This

retr

ran
retr

reduction becomes even more striking when investigating multi-annual or even climatological means; L H F'-related E; 2. vir-
tually vanish on these scales. An increase (decrease) in these climatological random uncertainty values often directly results
from a decrease (increase) in the number of pixel-level observations and thus not from a physical change due to shifts in the
climate. This implies that results of trend analyses in random uncertainties, for example, may be misinterpreted. Therefore, the
attention is drawn to the pixel-level (instantaneous) random uncertainty fields. This instantaneous point of view causes their
orders of magnitude to be similar to the results of £/ presented in Table 1. Note that the global averages shown in Fig. 3
in form of text strings are cosine-weighted, whereas the means illustrated in Table 1 do not take a regional dependency into
account.

Figure 3 shows the instantaneous E)S/. patterns of HOAPS-3.3 LH F-related parameters between 1988 and 2012. The

magnitudes presented in Figure 3a are below those shown in Fig. 2a, as the random uncertainties have been corrected for the

impact of E;,5(q,) and E.(q,) (Sect. 3.3). Maxima above 1.5 g kg’1 are located over all subtropical ocean basins, where ¢, is
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in the order of 1317 g kg'!. A reduction within the inner tropics is clearly resolved, specifically over the warm pool region.
ETa% (q,) sharply decreases poleward to values of 0.6-0.9 g kg™!. The global mean instantaneous E"%/%(q,) takes on a value of

1.2 gkg!.

The distribution of instantaneous £ %

Tan (U) (Fig. 3b) shows a rather reversed pattern of g, and closely resembles the clima-

tological distribution of U itself. The global mean is given by 1.0 m s'. Global maxima cover large areas of the extratropical
oceans, specifically over the Southern Ocean. Here, averages partly exceed 1.5 m s*'. However, this results in less than 15
% retrieval uncertainty in a relative sense (not shown). In contrast, instantaneous E7%/)(U) remain low (that is, below 0.8
m s™') over the (sub-) tropical ocean basins. This also applies to the warm pool area, which indicates a maximum in relative
contribution close to 20 % due to climatological low wind speeds (not shown).

The pattern of instantaneous E,¢f%(gs) (Fig. 3c) resembles that of g,. However, the global mean magnitude of 0.3 g kg!

represents only 25 % of the atmospheric counterpart. Absolute maxima in the order of 0.4 g kg™ are located over the Indo-

Pacific warm pool region, which stands in contrast to the local E%/

T2 (¢e) minimum in that region. The comparatively small

E7¢1(gs) also find expression in the low global mean relative uncertainty of 2 % (not shown). Values exceeding 4 % are

confined to the extratropical ocean basins on both hemispheres.

ran
Instantaneous £},

(LHF) (Fig. 3d) show a strong proportionality to the climatological mean L H F’ pattern. In that respect,
maxima are generally located over the subtropical central parts of all ocean basins (specifically the Indian Ocean) as well as
along the western boundary currents. In these areas, values are found in excess of 50 W m™. Apart from extratropical minima,
low values in the tropics are confined to the eastern margins of the basins and the warm pool region.

Figure 3e shows the instantaneous random uncertainty of L F' relative to its natural variability. For each grid box, this vari-
ability is derived as the difference between the 5th and 95th percentile of instantaneous L H F' observations between 2000-2008
(F13 platform only). Globally averaged, the relative random uncertainty equals to 17 %. Due to the large range of L H F' along
the western boundary currents (WBCs) and over the Central Indian Ocean, the absolute maxima seen in Fig. 3d are not resolved
in Fig. 3e. Largest relative uncertainties exceeding 25 % are confined to the Southern Central Tropical Pacific and along the

equatorial Atlantic.
4.3 Global Patterns of HOAPS-3.3 Climatological Uncertainties

Figure 4 shows the distribution of the climatological uncertainties (E.;,,) for LH F" and its related bulk parameters. F j;,, is
defined grid point wise as the mean root mean squared sum of instantaneous Ej, s, IS/, and Fg,,, between 1988-2012. As

the contribution from E7¢). and Ej,,, converges towards 0% due to the vast number of observations, Figure 4a-e can also be
treated as the systematic uncertainty distribution.

In an absolute sense, Fig. 4a mirrors the bias distribution shown in Fig. 2a. F ;. (q,) (Fig. 4a) generally range between
0.4-0.9 g kg!, where the global mean of 0.63 g kg™! is approximately half the size of the instantaneous random counterpart
shown in Fig. 3a. Maxima are found over the tropical central and western Pacific Ocean as well as the Caribbean and off
the easternmost tip of South America. In the framework of a LH F' intercomparison study, Smith et al. (2011) argue that

satellite products have difficulties estimating g, due to persistent stratus clouds, as observed west of Peru over the tropical
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eastern Pacific. This conclusion may be the cause for the elevated systematic uncertainties over the tropical eastern Pacific.
In contrast, minima are located along both extratropical belts poleward of 50-60° N/S. Isolated minima also lie over the
subtropical eastern margins of all ocean basins in the vicinity of 15-30° N/S, specifically over the Pacific basin. Interestingly,
regions of comparatively low systematic uncertainties often coincide with regional maxima in random uncertainties (compare
Fig. 3a). According to Fig. 2a, biases are smallest for climatological mean ¢, of 4-5 g kg™! and 13 g kg™, which fits well to the
mentioned minima in Fig. 4a. Likewise, absolute bias maxima for ¢, of 10 gkg™! and 16-17 g kg'! are resolved in both Fig. 2a
and Fig. 4a.

The global mean of E.;,,(U) shown in Fig. 4b equals to 0.81 m s™!. On the one hand, maxima exceeding 1 m s™! are located
along the extratropical storm tracks, specifically over the northern hemisphere. On the other hand, local maxima are found
along broad regions at 30° S and further equatorward over the Central Indian Ocean, off the Arabian Peninsula (both monsoon-
related), and the central Northern Tropical Pacific. With the exception of the Southern Ocean, this is in line with Brunke
et al. (2011), who conclude that reanalysis -, satellite -, and combined data sets tend to overestimate wind speeds compared
to in situ records of inertial dissipation wind stresses, specifically over strong wind regimes. Monsoon-related characteristic
features of Indian Ocean L H F' variability, which also exhibit an impact on climatological uncertainties, are elucidated in e.g.
Mohanty et al. (1996). Minima in the order of 0.5 m s™' are mostly confined to the eastern margins of all ocean basins (Fig.
4b). The maxima over the northern hemispheric storm track are associated with climatological mean wind speeds of 9—11 m
s'. This range also reveals largest positive biases in the one-dimensional bias consideration with respect to the in situ source
(analogously to Fig. 2, but not shown for U). This also targets the maximum over the central Northern Tropical Pacific and
all southern hemispheric maxima along 40-50° S. Although climatological mean wind speeds maximise over the Southern
Ocean, respective systematic uncertainties rather show a slight poleward decrease. Again, this is in line with results from the
one-dimensional dU analysis (not shown), which indicates that systematic uncertainties reduce for wind speeds above 12 m
s'!. Likewise, absolute bias minima are associated with low wind regimes in the order of 4-6 m s!. Climatologically lowest
wind speeds of 2—4 m s! are for example found along the Pacific coast of Central America (15° N), over the Arabian Sea,
and over the Indo-Pacific warm pool region. HOAPS-3.3 tends to underestimate these wind speeds, as is mirrored in moderate
Eetim(U) (Fig. 4b).

The climatological uncertainty estimates illustrated in Fig. 4b exceed those found in e.g. scatterometer records in comparison
to buoy measurements (e.g. Verhoef et al., 2017). On the one hand, this is linked to the fact that estimates in Fig. 4b should be
treated as upper-beundary-upper boundary uncertainty estimates. On the other hand, scatterometers are specifically designed
to derive near-surface wind speeds at highest accuracy. Passive microwave measurements, in return, allow for a much broader
range of applications, which is a unique feature of HOAPS. An inclusion of scatterometer data into the HOAPS wind speed
retrieval was not envisaged, due to differing overflight times and data coverage, that is additional uncertainties of unknown
magnitude. Further potential uncertainty sources, which may contribute to the distribution shown in Fig. 4b, target currents,
sea states, and the treatment of air mass density (i.e., the concept of stress-equivalent wind speeds, e.g. de Kloe et al., 2017).

E.im(qs) covers the range of 0.1-0.6 g kg'! and its global average is given by 0.23 g kg'! (Fig. 4c). The pattern reflects a

latitudinal dependency, which is equivalent to smallest (largest) biases towards the poles ((sub-) tropics). This observation is
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not generally valid, as is shown by the comparatively low values over large parts of the Eastern Tropical Pacific and Atlantic.
Distinct maxima are found over the Arabian Sea and along northwestern Australia, the Caribbean, and west of Madagascar.
Narrow bands of elevated systematic uncertainty are also resolved along the WBCs. With the exception of the WBCs, the
regions of maxima are exposed to ¢, in the range of 2022 g kg™!.

Figure 4d shows the resulting E.;;,,(LH F'). It closely resembles that of the global mean LH F' pattern itself with values
ranging between roughly 15-50 W m and a global mean of 25 W m. Relating this pattern to Fig. 4a-c shows a substantial
contribution of E.;,,(q,) to the absolute maximum of E.;;,,(LHF') in the Northern/Southern Tropical Central Pacific, the
Caribbean, and the western tropical South Atlantic (compare Fig. 4a). However, due to the large climatological mean LH F,
respective relative systematic uncertainties of g, are merely in the order of 5-7 %. Correspondingly, imprints of E;;,,,(U) are
clearly seen along the WBCs, the Central Indian Ocean (10-15 % in a relative sense), and off the Arabian Peninsula (partly
exceeding 15 %) (Fig. 4b). Likewise, the maxima in E.;;,,,(LHF') over the Arabian Sea, along the northwestern coast of
Australia, and close to Madagascar show the footprint of E ;;,,(qs) (Fig. 4c). However, relative systematic uncertainties in g,
generally do not exceed 2.5 %. Locally, isolated E;;,, (L H F') maxima are resolved along 35° S. Specifically over the Agulhas
Current, Santorelli et al. (2011) conclude that different satellite data sets show discrepancies, as they are not able to properly
handle strong L H F" associated with storm systems and potential L H F' amplifications due to dry air advection northwards from
the Antarctic (Grodsky et al., 2009). Furthermore, note that the maximum in the Arabian Sea is somewhat special, in as much
as climatological mean L H F' in this region are elevated, yet not extraordinarily large. This striking uncertainty maximum may
be linked to occasionally occuring advection of hot, dry air masses from the deserts, which poses problems to the HOAPS-3.3
satellite retrieval. This hypothesis is strengthened by the fact that Iwasaki et al. (2014) show largest deviations in HOAPS-3 g,
with respect to their reference climatology, which are not seen in the remaining data sets.

Figure 4e relates E.;;,,(LHF) to its natural variability (compare Sect. 4.2). The global average is in the order of 12 %.
Apart from the WBC regimes and the Southern Ocean, largest relative uncertainties are in line with the E ;,,(LH F') maxima

illustrated in Fig. 4d.
4.4 Monthly Mean HOAPS-3.3 Sampling Uncertainties

Table 2 summarizes the average of monthly mean sampling uncertainties of several L H F'-related HOAPS-3.3 parameters
as a function of concurrently operating SSM/I instruments. From a climatological perspective, all magnitudes are negligibly
small compared to respective systematic uncertainties. S'S7T -related parameters show largest sampling uncertainties when three
SSM/I instruments are simultaneously operating. This is not contradictory, as HOAPS-3.3 SST are AVHRR-based and thus
not linked to the coverage of SSM/I instruments. Regarding the main bulk parameters, orders of magnitude closely resemble
those of monthly mean scaled E] /). (not shown). It is concluded that their relative contribution to the monthly mean uncertainty

budget is in the order of merely 1-2 %. However, one should keep in mind that sampling uncertainties become essential on

considerably shorter time scales, i.e., in the framework of daily analyses.
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4.5 Fractional contributions to total HOAPS-3.3 L H F' uncertainty

Simply comparing Fig. 4a-c to Fig. 4d allows for qualitatively assessing which L H F'-related parameter contributes most to
E.;;m(LHF). However, this does not permit a quantitative conclusion. Following a modified version of the *Q-term’ approach
demonstrated in Bourras (2006), E.;;,,(LH F') is decomposed into fractions associated with U, ¢, g4, and Cg. Results indicate
that the global mean contribution from E;;,,,(q,) is largest (60 %). This specifically targets the Central Northern and Southern
Tropical Pacific, the Caribbean, the regime off the eastern tip of South America, as well as the Central Indian Ocean. This
finding is in line with that of Iwasaki et al. (2014), who show that HOAPS-3 ¢, contributes most to the observed deviation in
FE with respect to their reference climatology.

On average, the contribution from E;;,,,(U) takes on a value of 25 %. Local hotspots are considerably larger, especially
over the Arabian Sea, along the WBCs, and off Northwestern Australia. The fractional contributions due to both E;;,,(qs) and
Eim(Cg) equal to 7.5 %, respectively. F.;;mm(qs) is largest over the Arabian Sea (S.ST retrieval issues due to dust particles),
whereas F ., (CE) maximises over the Central Indian Ocean and along the North Atlantic WBC. The latter has also been
shown by Bourassa et al. (2013), in as much as accuracy issues in C tend to occur over very low and very high wind speed
regimes.

All findings are in line with Bourras (2006), Liu and Curry (2006), Grodsky et al. (2009), and Santorelli et al. (2011), who
conclude that the main L H F' uncertainty sources are related to the accuracy of g, (and U). Similar conclusions are drawn by
e.g. Tomita and Kubota (2006), who show that the main source of discrepancy between tropical satellite and buoy estimates
may be attributed to the accuracy of g,. The findings of the above-quoted studies are restricted to either regional analyses,
considerably shorter investigation periods, and/or comparatively thin reference data bases. Again, this points at the high value

of the presented HOAPS-3.3 uncertainty analyses.
4.6 Regional and Seasonal HOAPS-3.3 Uncertainty Analyses

Global mean ES and Egpip, of LH F-related HOAPS-3.3 parameters are fairly constant in time throughout the whole cli-
matology (Figs. 3-4). Absolute deviations from the global mean LH F' (q,, U) uncertainty become as large as 18 % (3 %, 8
%). Apart from seasonal signals, these are footprints of distinct local anomalies. On the one hand, these anomalies seem to
originate from events that temporarily modify the global climate. On the other hand, Figs. 3-4 resolve considerable regional
variability. Therefore, the aim is to (1) identify climate features that are manifested in both temporal and spatial uncertainty
anomalies and discuss their origin (descriptive only). At the same time, (2) regional uncertainty differences shall be highlighted
by focusing on climate hotspots (Fig. Sa-c).

Regarding (1): The imprints of moderate to strong El Nifio events during boreal spring 1998 and 2010 are manifested in
LH F-related E;,, and E7%. During these events, wind speeds over the Pacific upwelling regime are 1.5-2.0 m s! below
the climatological average. As has been mentioned in Kinzel et al. (2016), this causes an increase in systematic uncertainties
in U. Along with an enhanced E;;,,(qs), the respective E ;. (LH F') over the Pacific upwelling regime reaches 25 W m?,

specifically during boreal spring 1998. This is approximately 10 W m™ above the seasonal mean and more than 50 % of

18



10

15

20

25

30

35

climatological mean LH F. As q, are anomalously high with 20 g kg™, E"%"(q,) is up to 0.2 g kg™' below the seasonal mean

(see Fig. 2 in Kinzel et al. (2016) for clarification).
By contrast, global minima in E.j;,,(LHF') and E73)

ren(LHF') are confined to boreal autumn 1991, taking on a mean value

of 20 W m™ and 33 W m, respectively. These estimates are 20 % and 11 % below their climatological averages and are
associated with absolute minima in HOAPS-3.3 LH F'. The comparatively small systematic component is induced by E¢jir,(U)
(Ee1im(qs)) of -8 % (-14 %). The absolute minimum in LH F' and its uncertainties during 1991 is a footprint of the Mount
Pinatubo eruption, which caused low-biased SST" due to AVHRR aerosol issues and thus unrealistically low near-surface
humidity gradients (Romanova et al., 2010). Amongst others, this shortcoming in the HOAPS-3.3 climatology has already
been picked up by Andersson et al. (2011).

Regarding (2): Figures 5a-c summarize the ranges of seasonal, regime-dependent uncertainty distributions. The color-coded
boxes in Figures 5Sa-c represent the expected parameter ranges when considering multi-annual (1988-2012) means of system-
atic uncertainty contributions, that is E.;;,,. At the same time, the error bars indicate the instantaneous random uncertainty
components, that is £¢/.. Both are shown separately, as they are independent of each other. With few exceptions, the random
uncertainty contributions exceed the systematic counterpart, as is also mirrored in Figures 3 and 4.

Figure 5a indicates that the total uncertainty ranges in g, are largest in (sub-) tropical regimes, concurrent to high g,.
In contrast to the Pacific upwelling region (red) and the Southern Ocean (cyan), the seasonal g, variability over the Indian
monsoon regime (green), the North Atlantic basin (dark blue), and specifically the North Atlantic western boundary current
(brown) is striking. This also finds expression in differences in absolute uncertainties of up to 0.6 g kg™' between January and
July. Largest uncertainties are in the order of +-2.40 g kg™! and are confined to the Indian summer monsoon season, whereas
smallest uncertainties around +1 g kg™' occur over the Southern Ocean.

Climatological regional wind speeds range between 4.5-11 m s (Fig. 5b). As for q,, the seasonality is most pronounced
over the Indian monsoon region, WBC, and the North Atlantic. Largest total uncertainties exceeding =2 m s throughout the
year are observed over the Southern Ocean, which is primarily due to large E7S/.(U) (compare Fig. 3b). The Indian monsoon
region is somewhat special, in as much as summertime total uncertainties are largest on a global scale, while wintertime ranges
are almost 50 % lower.

Figure 5c presents regionally dependent LH F' and associated uncertainty ranges. As for Fig. 5a-b, seasonality is most
distinct over the North Atlantic, WBC, and the Indian monsoon region. Largest E.;;,,(LHF) exceeding +35 W m? are
confined to the WBC regime (specifically during winter) and the monsoon region (climatological average, compare also Fig.
4d). Total uncertainty ranges maximise along the WBC, where £65-95 W m are to be expected, which is 2-3 times larger
compared to the ranges observed along the Pacific upwelling regime. Grodsky et al. (2009), for example, recall that an accurate
representation of LH F' along the Gulf Stream is challenging due to strong surface currents and SST gradients as well as
intraseasonal dependencies of how the stratified atmospheric boundary layer amplifies air-sea interactions. This reasoning may
also apply to the Agulhas and Kuroshio region. The wintertime WBC uncertainty maximum is particularly caused by vast
ETSL(LHF) of up to £60 W m? (see also signal in Fig. 3d). By contrast, regional E.;,,(LH F") become largest in the Indian

monsoon region, where their climatological average is in the order of 40 W m™ (compare also Fig. 4d).
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4.7 Uncertainty Application: Trends in HOAPS-3.3 LH F

Figure 6 shows the HOAPS-3.3 global monthly mean LH F' (thin black line) between 1988-2012 (70° S-70° N, cosine-
weighted average). The global minimum below 80 W m™? during boreal summer 1991 is linked to the Mount Pinatubo eruption.
Overall maxima in the order of 110 W m™? occur during 2008 and 2009.

The bold black line in Fig. 6 shows the annual running mean climatology of HOAPS-3.3 LH F'. On average, it increases by
roughly 4.5 W m (4.7%) per decade (dark red line). If uncertainty ranges were discarded, this trend would be considered as
significant at the 95 % level (p<0.00001, based on a two-tailed t-test). The addressed uncertainty estimates are illustrated as
grey shadings and represent 4-1 standard deviation of the 12-month running mean . ;;,, (global average). They take on a mean
value of £+ 17 W m™. A Bayesian approach to linear regression is applied including LH F uncertainty estimates following
Kelly (2007), which yields a large range of linear trends (light red lines). Although the majority has a positive slope, some even
indicate a climatological decrease in LH F'. In light of the illustrated uncertainty range, the mean upward trend in HOAPS-3.3
LHF (dark red line) should therefore be treated with caution, as the magnitude of linear increase lies well within the grey
shaded area.

The overall increase in L H F" has been elucidated in several studies concerning various L H F' data sets (e.g. Liu and Curry,
2006; Yu and Weller, 2007; Santorelli et al., 2011; Yu et al., 2011; Iwasaki et al., 2014). The authors attribute it to increases in
both ¢ (i.e., SST') and U, whereas the latter may be linked to stronger Hadley and Walker Circulations (Cess and Udelhofen,
2003). The global mean increase of 9 W m between 1981 and 2002, as is e.g. seen in Objectively Analyzed Air-Sea Heat
Fluxes (OAFlux, Yu and Weller (2007)), is in the order of 10 %, which is in line with findings of Santorelli et al. (2011) and
those illustrated in Fig. 6 of the present work.

Figure 6 also shows that recent global means decrease again. Time series analyses for single satellite instruments suggest that
this is a physical signal (i.e., associated with either multi-annual variability or a climate signal), rather than being associated
with intercalibration issues among SSM/I and SSMIS instruments. Additionally, the decrease may also be attributed to the slight
negative S.ST bias from 2011 onwards. This bias is caused by anomalously high NOAA-19 sensor noises, which themselves
may be traced back to erroneous flag assignments during cloud detection. This is thought to cause up to 5-10 % reduction in
LHF. Closer investigations that involve other L H F' climatologies exceed the scope of this study, but are needed to interpret
this gradual decay.

First intercomparisons of HOAPS-3.3 LH F' to in situ and further satellite climatologies have been carried out, where pre-
liminary results indicate that nearly all compared data sets lie within the uncertainty range presented in Fig. 6 (not shown).
A more detailed intercomparison study is envisaged; it will benefit from uncertainty estimates available in NOCSv2.0 and
allow for concluding whether global mean deviations among the data sets lie within or outside of the HOAPS-3.3 prescribed

uncertainty range.
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5 Conclusions and Outlook

By means of multi-dimensional bias and MTC analyses, a universal approach for characterizing systematic, random retrieval,
and sampling uncertainties inherent to HOAPS-3.3 L H F'-related parameters has been presented. The multi-dimensional ap-
proach overcomes the issues of sparse data densities in remote regions, as it expresses the uncertainties as a function of the
ambient atmospheric conditions. At the same time, MTC enables a decomposition of random uncertainty sources to isolate the
contribution from the satellite retrieval. Both methods represent the main procedures to arrive at pixel-level uncertainty infor-
mation, which essentially increases the value of HOAPS-3.3. As to sampling uncertainties, monthly mean estimates have been
calculated following the approach of Tomita and Kubota (2011). To conclude, HOAPS-3.3 can be considered as the first LH F'
satellite-only climatology including instantaneous and gridded uncertainty estimates. As the method can be easily transferred
to other retrievals, it lays the foundation for uncertainty characterizations of further LHF-related data sets, which increases the
significance of this work.

It has been shown that maxima of systematic uncertainties (E.;;,,) reach up 50 W m2, specifically over the large regions
of the subtropical oceans (mainly g,-induced) and along the western boundary currents (mainly U-induced). Instantaneous
random retrieval uncertainties (E£7%) maximise along 20-30° N/S with values up to 60 W m, clearly showing the footprint
of random uncertainties of ¢,. From a climatological perspective, all random retrieval uncertainty components contribute to
the total uncertainty by merely 1-2 % on a monthly basis (and even less for longer periods), which also accounts for respective
sampling uncertainties. Considerable regional and seasonal variability of LH F' uncertainty ranges have been resolved from
an instantaneous point of view, with maxima over the Gulf Stream and Indian monsoon region during boreal winter. Climate
events, such as strong El Nifio signals and the Mount Pinatubo eruption, are well manifested in both systematic and random
LHF uncertainties, even on a global scale. In light of the available uncertainty estimates, it has been shown that the positive
trend in global mean LH F' during the last 25 years lies within the derived uncertainty boundaries and needs to therefore be
treated with caution.

Results of the Q-term analysis presented in Sect. 4.5 and other studies suggest that more effort is necessary to improve the
q, retrieval. This would ultimately reduce the overall L H F' uncertainty, which, according to e.g. Bourras (2006), ought to
be below 10 W m? for a quantitative use over the global oceans. An increase in the reliability of HOAPS-3.3 LH F-related
parameters could for example be achieved by referring to a new ground truth reference. Freeman et al. (2016), for example,
recently presented a new version of ICOADS (release 3.0, up to 2014), highlighting its improvements compared to earlier
versions, which target topics such as data quality, data traceability, and data base extension. Apart from new in situ reference
data, the effect of approximations in bulk flux parameterizations should also be picked up, as has been done in detail in Brodeau
et al. (2017). Amongst others, this concerns implications of sensor height corrections, algorithm choices, the g5 reduction due
to the salinity effect, cool skin/ warm layer effects, and the assumption of constant sea level pressure.

According to Andersson et al. (2011), the E-P budget of HOAPS-3.2 is not closed. This also accounts for HOAPS-3.3, with
a climatological mean value of 0.45 mm d' (1988-2012, 70° S-70° N). Long-term run-off estimates are summarized and

published by the Global Runoff Data Center (GRDC), adding up to a mean value of 0.34 mm d! (Wilkinson et al., 2014).
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According to Andersson et al. (2011), the uncertainty of these run-off estimates is in the order of 10-20 %. Comparing these
values to the HOAPS-3.3 global freshwater flux leaves an imbalance of approximately 0.10 mm d-', which is 0.30 mm d!
below the HOAPS-3.2 estimate and can be evaluated as an improvement towards closing the global freshwater flux imbalance.
As E.;,(E) is in the order of 4= 0.6 mm d', the imbalance clearly lies in the range of freshwater flux uncertainty. Keeping
this uncertainty range in mind sheds new light on the conclusion by Iwasaki et al. (2014) that the HOAPS-3 freshwater budget
(including river run off) is largest compared to the remaining data sets. A unit conversion from mm d! to kg year™!' allows for
qualitatively estimating, whether the intercompared data sets in Iwasaki et al. (2014) (their Figure 6a) lie within the derived
uncertainty range of HOAPS. As 0.6 mm d! corresponds to roughly 0.8%10'7 kg year'!, we conclude that all satellite and
hybrid related time series lie within the uncertainty range. This does not account for the reanalyses; according to the authors,
these tend to overestimate E, which is associated with the underlying bulk flux algorithm.

Recall, however, that uncertainty estimates of HOAPS-3.3 precipitation have not been accounted for in this quantitative
estimation. Generally, the availability of remotely sensed precipitation uncertainty estimates is complicated by sparse reference
data and its intermittency. A recent study by Burdanowitz et al. (2016) presents an automatic phase distinction algorithm for
optical disdrometer data. Together with a continuously growing high-quality in situ data base of ship-based precipitation
measurements (OceanRAIN, Klepp (2015)), it will serve as a valuable basis for a characterization of HOAPS-3.3 precipitation
and hence freshwater flux uncertainty ranges in the near future.

Future work also aims at investigating trends in water vapour transports (WVT), using HOAPS-3.3 monthly mean freshwater
fluxes. Sohn and Park (2010), for example, demonstrated that trends in WVT can be used to examine circulation changes and
conclude that the large-scale Hadley Circulation has experienced an increase in strength since 1979. Similarly, Durack et al.
(2012) recently highlighted a considerable water cycle intensification during global warming. Available uncertainty estimates
will allow for quantifying the WVT uncertainty range, the necessity of which has been picked up by e.g. Sohn et al. (2004).

A new version of HOAPS-3.3, that is HOAPS 4.0, has been released in October 2017 (Andersson et al., 2017). Major
changes compared to HOAPS-3.3 include a temporal extension up to 2014, a new S.ST" product (Version 2 of the NOAA Op-
timum Interpolation S.ST" (OISST) product, Reynolds et al. (2007)), and the implementation of a 1D-Var retrieval for several
geophysical parameters. Preliminary results suggest that the new U estimates have improved compared to HOAPS-3.3 in terms
of bias and RMSD behaviour relative to in situ ground reference data. In consequence, estimates of LH F' and E have been

updated, along with L H F'-related uncertainty estimates.

Data availability: HOAPS-3.3 is a prolongation of HOAPS-3.2 and is based on a pre-release of the CM SAF SSM/I and SSMIS
FCDR. It was created in the framework of the DFG FOR1740 research activity for internal use. The monthly mean HOAPS-3.2

climatology and the respective FCDR are publicly available and may be downloaded free of charge (http://www.cmsaf.eu/EN/Products/DOI

Instantaneous and gridded HOAPS-3.3 data are available upon request from the author.
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Table 1. Absolute and relative random statistical measures resulting from the multi-dimensional LUTs, i.e., MTC and random uncertainty
decomposition (Sect. 3.2, 3.3). ’stddev’ = standard deviation, *abs’ = absolute, ’rel” = relative. Apart from the L H F'-related bulk parameters
themselves (U, gs, and g,), global mean ranges of the random retrieval- (E,.¢;,.), random collocation- (F.), and random in situ measurement
uncertainty (F;,s) are shown. Relative measures result from bin-wise relative uncertainty calculations. For comparison, the asterisks indicate

respective estimates published in Kent and Berry (2005), which are based on a semivariogram approach.

parameter / stat. measure mean stddev min (abs) ‘ min (rel) ‘ max (abs) | max (rel)
qa [2kg'] 8.8 4.4 2.8 / 19.3 /
Eréir(ga) 1.0 0.3 0.7 6 % 1.8 24 %
E.(qa) 0.5 0.1 0.4 3% 0.7 18 %
Eins(qa) 0.5[0.9%] | 0.3 [0.3%] 0.1 4 % 1.2 7 %
Ums'] 7.9 3.6 1.8 / 15.4 /
ENShU) 1.4 0.4 1.0 12 % 2.6 63 %
E.(U) 1.4 0.3 0.8 12 % 2.0 44 %
Eins(U) 1.8 [2.5%] | 0.2 [0.4%] 1.5 15 % 2.3 111 %
gs [gkeg!] 10.2 5.7 4.5 / 243 /
B8 (gs) 0.5 0.2 0.2 2 % 0.9 9 %
E.(qs) 0.5 0.1 0.4 2 % 0.6 14 %
FEins(gqs) 0.6 0.5 <0.1 1% 1.5 8 %
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Table 2. Average of monthly mean HOAPS-3.3 L H F'-related sampling uncertainties (Esy.p) as a function of simultaneously operating
SSM/I instruments (1995-2008). g, = "hair", U = "wind", gs = "hsea", LH F' = "late", SST = "asst", E = "evap", air temperature = "tair".
All magnitudes are negligible compared to the instantaneous random (E;¢{;.) and climatological uncertainties (E.;;m ) presented in Sect. 4.2
and 4.3.

# of satellites / parameters "hair" [g kg'l] "wind" [ms™] "hsea" [g kg'l] "late'" [W m'z] "asst" [K] "evap' [mm dah "tair'' [K]
0.05 0.14 0.04 23 0.04 0.08 0.08
0.03 0.12 0.04 1.9 0.03 0.07 0.05
0.03 0.11 0.05 1.8 0.04 0.06 0.04

Figure 1. Left panel: Global map showing the distribution of collocated g, measurements (HOAPS versus high-quality in situ) between
2001-2008. Overall, more than 13.8 million matchups contribute to this density map. Note that the colorbar is logarithmic. Right panel:
Two-dimensional illustration of the near-surface humidity biases dg, (HOAPS minus in situ, 2001-2008) shown in Fig. 2. Note that the

colorbar is not linear.
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Figure 2. Scatter density plots of g, bias (HOAPS-3.3 minus in situ, g kg'l) as a function of (a) ¢, ("hair"), (b) U ("wind"), (c) SST ("asst"),
and (d) vertically integrated water vapour ("wvpa"), based on global double collocations between 2001 and 2008. The black squares and error
bars represent bin-averaged systematic uncertainties (significant at the 95 % level) and their standard deviations, whereby each bin contains 5
% of all double collocated matchups. Note that the bars include random uncertainty contributions from the satellite retrieval, the collocation

procedure, and the in situ measurement uncertainty. (a) is a revised version of Fig. 3 published in Kinzel et al. (2016).
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identical to allow for direct comparisons.

Figure 3. Temporal averages (1988-2012) of HOAPS-3.3 instantaneous
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instantaneous random uncertainty of HOAPS-3.3 "wind"
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instantaneous random uncertainty of HOAPS-3.3 "late"
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the range between the 5th and 95th percentile of instantaneous LH F' between 2000-2008. The global averages (text strings) were derived
by considering a latitudinal cosine-dependency. All patterns result from the multi-dimensional bias analyses, MTC, random uncertainty

decompositions, and, in case of (d), uncertainty propagation described in Sect. 3.2-3.4. Note that the color bar ranges of (a) and (c) are

of (a) g ("hair"), (b) U ("wind"), (c) gs ("hsea"), and (d) LHF
("late"). (e) Relative random retrieval uncertainty of HOAPS-3.3 L H F' with respect to its natural variability. This variability is defined as



climatological uncertainty of HOAPS-3.3 "hair"
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Figure 4. HOAPS-3.3 climatological total uncertainties (F¢iim ) of (a) g, ("hair"), (b) U ("wind"), (c) gs ("hsea"), and (d) LH F' ("late").
and Esmp (1988-2012). (e) Climatological mean relative Ecyim (LH F')

Eciim is defined as the mean root mean squared sum of Fys, Eyofy,

with respect to its natural variability. This variability is defined as the range between the 5th and 95th percentile of instantaneous LH F'
between 2000-2008. The global averages (text strings) were derived by considering a latitudinal cosine-dependency. All patterns result from

the multi-dimensional bias analyses and subsequent uncertainty propagations described in Sect. 3.2 and 3.4. Note that the color bar ranges

of (a) and (c) are identical to allow for direct comparisons.
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Figure 5. (a) Expected ranges of g, ("hair") as a function of different regions and seasons. The color—coded boxes show E¢;;, (1988-2012),
retr (1988-2012). The following regions are presented:
, 35-65° N, dark blue), North Atlantic Western boundary current (WBC, 60-80° W, 30-40° N
brown), Southern Ocean (50-60° S, cyan), Pacific upwelling regime (80-100° W, 5° N-5° S, red), and Indian Monsoon region (50-75° E,

15-30° N, green). (b) As for (a), but for U ("wind"). (c) As for (a), but for LHF’ ("late").

whereas the bars indicate the average instantaneous random uncertainty component

global (orange), North Atlantic (60° W-5° E
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Timeseries of monthly mean HOAPS—3.3 LHF and its tota
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Figure 6. The thin (thick) black line shows the monthly (annual running mean) time series of HOAPS-3.3 LHF' (70° S-70° N, cosine-
weighted average). The dark red line illustrates the linear trend, which takes on a value of 4.5 W m™ per decade (p<0.00001, based on a
two-tailed t-test). The grey shading represents &= 1 standard deviation ("stddev") of the annual running mean E.;;., (global average). The

light red regression lines were iteratively derived following Kelly (2007) by taking + 1 stddev of E;;., into account.
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