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Abstract. Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone 1 

(O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate 2 

spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-3 

cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field 4 

calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the 5 

area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the 6 

collocation calibration method. Field validation of sensor O3 measurements to minute resolution reference observations resulted 7 

in R2 and root mean squared errors (RMSE) of 0.95 – 0.97 and 4.4 – 5.9 ppbv, respectively. Using the deployment data, ozone 8 

concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values 9 

between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences 10 

were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each 11 

hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations 12 

during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in 13 

this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone 14 

than they would assume based on current regulatory monitoring. 15 

1 Introduction 16 

Tropospheric ozone formation and destruction is a complex chemical process involving a series of interdependent chemical 17 

reactions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the presence of ultraviolet (UV) radiation (Jacob, 18 

2000). The reactants are produced and consumed both naturally and through anthropogenic activities, as well as through 19 

atmospheric chemical reactions. In urban areas, the sources of these emissions and their impact on ozone formation vary in time 20 

and space. For example, trucks and cars, acting as mobile sources of primarily NOx and VOCs, respectively, contribute to the 21 

formation and/or destruction of ozone depending on mixing ratios of each and the presence of UV radiation. Due to the health 22 

implications of increased ozone exposures, local, regional and national regulatory bodies have the obligation to measure, report 23 

and mitigate ambient ozone levels according to the National Ambient Air Quality Standards (NAAQS) (EPA, 2013).  24 

 25 

The equipment employed at air quality monitoring stations (AQMS) is relatively expensive (>$100k/station) and requires 26 

substantial resources to maintain (e.g., technical expertise, shelter, land and power). As such, increasing the spatial resolution of 27 

the AQMS network is not readily feasible. Thus, one benefit of low-cost, portable sensing technology is the ability to collect data 28 

at more locations, increasing spatial resolution of existing AQMS. These technologies typically range in cost of $1-5k yet often 29 

require significant data retrieval and processing resources in addition to extensive characterization of the sensor in a given 30 

application. These technologies, in virtually all applications, still depend on reference grade measurements or standards in order 31 

to fulfil most research objectives.  As such, many view these tools not as replacements of regulatory measurements but rather a 32 

supplement to them (Clements et al., 2017). Detecting pollutant variability between the regulatory AQMS supports the idea that 33 

more detailed information can be obtained by increased monitoring between existing stations. 34 

 35 

Regulatory monitoring for compliance with the ozone NAAQS is undertaken as dictated by the Code of Federal Regulations, which 36 

states, “The goal in locating monitors is to correctly match the spatial scale represented by the sample of monitored air with the 37 

spatial scale most appropriate for the monitoring site type, air pollutant to be measured, and the monitoring objective.” (EP A, 38 
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2006). Ozone monitoring site types include: highest concentration, population oriented, source impact, general/background and 39 

regional transport, and welfare-related impacts. Siting involves choosing a monitoring objective, selecting a location that best 40 

achieves those goals, and determining a spatial scale that fits the monitoring objective.  41 

 42 

The minimum number of ozone monitoring sites required by the US Environmental Protection Agency (EPA) via the Code of 43 

Federal Regulations (CFR) in the Riverside and San Bernardino counties is three, given the population is between four and ten 44 

million. As of 2013, there were 20 active regulatory sites measuring ozone in Riverside and San Bernardino counties (California 45 

Air Resources Board, 2013). While this monitor density is more than sufficient for regulatory requirements, recent studies suggest 46 

that the current spacing is not sufficient to capture high spatial resolution of concentration variations (Bart et al., 2014; Moltchanov 47 

et al., 2015). This variability could potentially be used to inform exposure assessment for health studies as well as improve our 48 

understanding of pollutant sources and fate (Simon et al., 2016; Lin et al., 2015; Blanchard et al., 2014). 49 

 50 

Networks of air quality sensors have been deployed in various settings. Moltchanov et al. (2015) measured O3, NO2 and VOCs in 51 

Haifa, Israel in the summer of 2013 to test the viability of sensor networks measuring small scale (100s of meters) intra-urban 52 

pollution. Two of the sites used in that study, sites A and B, had correlations between 0.82 and 0.94 with each other, but correlations 53 

between A or B and a third site, C, were much lower, between 0.04 and 0.72. Their finding of spatiotemporal variability on a 54 

neighbourhood scale means that spatiotemporal variability on the scale of <10km can also be expected. This finding of spatial 55 

variability at that temporal and spatial scale was not linked with robust in-field sensor validation that would ensure the result was 56 

actual concentration differences instead of measurement artifacts. Sensor validation is an important component of using low-cost 57 

sensors because they are subject to drift and confounding species. Drift is the change in measured concentration with time because 58 

of factors inherent to the sensor, not necessarily the environment that is being measured. Many metal-oxide sensors have been 59 

found to be affected by high temperatures and humidity (Rai et al., 2017). In 2013, Williams et al. (2013) quantified a tungstic 60 

oxide ozone sensor in the lab while addressing some of the main drawbacks associated with metal oxide (MOx) ozone sensors (i.e. 61 

drift/long term stability, material degradation and sensitivity fluctuations). The ozone sensors in that study were held in a 62 

temperature-controlled environment, as the tungsten oxide sensor’s conductivity varies strongly with temperature and may affect 63 

the concentrations. In the work presented here, temperature was included as a term in the model in an effort to address this issue 64 

after, rather than before, data collection. Researchers also deployed these gas semiconductor sensors in British Columbia over 65 

roughly 10,000 km2 for three months finding low errors (3 ±2 ppbv) between hourly averaged sensor and reference instruments 66 

while documenting the challenges of using, in this instance, wireless sensor networks (Bart et al, 2014). Lin et al. (2015) 67 

demonstrated high correlations (0.91) between tungsten oxide semiconductor ozone sensors and hourly averaged Federal Reference 68 

Method (FRM) chemiluminescence gas analyzer measurements in Edinburgh, UK with similar magnitudes. While many of these 69 

studies show good agreement between metal oxide sensors and reference instruments; there is still a need for uncertainty estimation 70 

and framing of the deployment results in light of those uncertainties. 71 

 72 

Here we specifically seek to answer the question, are these metal oxide sensors able to detect significant differences on scales that 73 

are smaller than current EPA reference stations, given their quantification uncertainty? This study is unique in that the Inland 74 

Empire region of the greater Los Angeles frequently experiences high levels of ozone resulting in nonattainment of the NAQQS 75 

ozone standard. The combination of abundant sunlight and high VOC concentrations in the presence of NOx is conducive for the 76 

formation of ozone. The Pacific inversion layer over southern California and mountains that form a natural basin act together  to 77 

keep pollutants from dissipating (Littman and Magill, 1953). Moreover, the regional air quality regulatory body, South Coast Air 78 
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Quality Management District (SCAQMD), has expressed increased interest in low-cost air quality sensor applications and recently 79 

installed the nation’s first testing center for such technologies.  As such, Riverside, CA is an ideal test bed to answer our research 80 

question.  81 

2 Methods 82 

This field study was conducted within a 200 km2 area of northwestern Riverside county, California, a region frequently designated 83 

as nonattainment for failing to meet requirements for ozone and particulate matter  designated by the EPA (EPA, 2016). Thirteen 84 

low-cost ozone monitors were deployed within an 8 km radius in Riverside in the summer of 2015 (Fig. 1). These monitors were 85 

sited in the cities of Riverside and Jurupa Valley with the aid of SCAQMD. Sites were chosen based on availability and power 86 

access. Ten locations were identified (Fig. 1) representing a variety of site conditions ranging from univers ity campuses and 87 

residential neighbourhoods to commercial and industrial zones. Within this area, there are two regulatory AQMS that measure O3: 88 

Rubidoux and Mira Loma. The transportation authority in California, Caltrans, records traffic volume information for many lar ge 89 

highways. Annual average daily traffic (AADT) is recorded at many road intersections. On two major roads in the study area in 90 

this region, specifically Hwy 91 and Hwy 60, the averaging of all the milepost traffic count data between junctions shows AADTs 91 

of 180,500 and 220,500, respectively (“2015 Traffic Volumes”, 2017). Van Buren Avenue does not have AADT data. However, 92 

it has two lanes each way, while the other highways have more than four. In general, there is a large number of vehicles traveling 93 

around and through this study area daily; these vehicles likely represent the dominant sources of NOx, and VOCs, precursors to 94 

ozone formation. 95 

 96 

 97 

 98 

Figure 1. (a) A map of the deployment area. The  crosses indicate U-Pod locations, with the AQMS labelled by name and (b) a timeline 99 

of project phases, from calibration to deployment. Validation overlapped with the deployment time period. 100 
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2.1 Low-Cost Monitor 101 

Measurements were taken using the University of Colorado U-Pod air quality monitoring platform (mobilesensingtechnology.com) 102 

described in previous work (Piedrahita et al. 2011). Briefly, the U-Pod consists of an Arduino data acquisition system and a suite 103 

of environmental sensors enclosed in a small, ventilated, portable case (Fig. 2). Specifically, O3 is measured using a metal oxide 104 

(MOx) sensor, (MiCS 2611, SGX Tech. formerly e2v ~ $11). Enclosure air temperature and relative humidity were also measured. 105 

U-Pod locations were verified using an on-board GPS chip and all data were saved to a micro SD card. Logged data were collected 106 

into minute medians to match the highest temporal resolution of nearby regulatory air quality stations. Median values were used 107 

to reduce the influence of outliers within each minute. Duplicate O3 sensors were included in most U-Pods to investigate sensor 108 

variability and model performance. 109 

 110 

MOx sensors operate through reduction/oxidation processes at the gas-semiconductor surface resulting in changes in electrical 111 

resistance (Barsan and Weimar, 2001; Korotcenkov et al. 2007). This change in resistance is in part a function of the concentration 112 

of the target gas (i.e., ozone) in the surrounding air, as well as temperature and humidity. Comprehensive reviews of MOx gas 113 

sensors (Korotcenkov et al., 2007) and experimental tests (Masson et al., 2015; Rai et al., 2017) document potential concerns of 114 

using sensors in long term ambient monitoring campaigns and other sensing applications. A variety of environmental factors such 115 

as long-term exposure to water causing hydration of the oxide surface layer can lead to drift in the sensing chemistry, as well as 116 

cross sensitivity to other oxidizing species like NOx. This poses special concern for conditions amenable to condensation. The 117 

MiCS 2611 datasheet warns specifically of overheating, a cause of sensor degradation or possibly permanent damage. Heating 118 

power supplied to the sensing resistor at 80mW is recommended to keep this element at 430°C (e2v MiCS-2611). Lower sensor 119 

resistor temperatures can result in decreased sensitivity and longer response times making measurements of heater  element voltage 120 

and/or well-regulated circuits valuable in regards to long term sensor integrity (Masson et al., 2015). The magnitude and sources 121 

of sensor variability from this study are discussed further in Sect. 3.1.   122 

 123 

 124 

 125 

 126 

Figure 2. Demonstration of the U-Pod layout (a), including sensor locations and other features. (b) A photo of the field calibration 127 

collocation at Rubidoux AQMS. 128 

http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-monitoring-network-plan/aaqmnp-rubidoux.pdf?sfvrsn=11
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2.2 Field Calibration  129 

Sensors were calibrated using a field calibration technique commonly employed with low-cost sensor networks which involves 130 

collocating sensors with a reference grade monitor for an extended period of time prior to and/or directly following a field 131 

deployment (Piedrahita et al, 2011). The concept of field calibration is straightforward: develop regressions between the reference 132 

measurement and gas sensor signal using combinations of concurrently collected environmental data. All U-Pods were calibrated 133 

at the SCAQMD Rubidoux AQMS (elev. 248m above sea level) for three weeks, July 22 – Aug 10, prior to the field deployment. 134 

The Rubidoux station sampling scale is classified as “urban” for ozone and is located 119 m from Hwy. 60 (SCAQMD, 2015). 135 

Reference ozone is measured using a designated Federal Equivalent Method (FEM) Thermo 49i dual cell UV photometric monitor. 136 

This monitor is equipped with temperature and pressure compensation, which adjusts for changes in sensor signal due to changes 137 

in the sample gas. Numerous field calibration relationships were developed using a suite of custom MATLAB codes. This process  138 

involves performing linear and nonlinear regressions using sensor signal, measured U-Pod enclosure temperature, absolute 139 

humidity and time (to account for sensor drift) against the reference gas concentrations. MOx sensor signals are the ratio of 140 

instantaneous resistance to a reference resistance defined during the field calibration. To evaluate the resulting regression fit, we  141 

used coefficient of determination (R2), root mean square error (RMSE) and explored residuals with relation to each input variable, 142 

specifically looking for normal distributions. An interaction term between temperature and ozone concentration improved the 143 

model fit at higher mixing ratios leading to overall higher correlations, lower error, and improved residual distributions (s ee Table 144 

1 in Sect. 3). The best performing model for ozone during calibration incorporates temperature, absolute humidity, and time, and 145 

is also referred to as the linear 4T model (Eq. 1).  146 

 147 

𝑆 = 𝑝1 + 𝐶𝑝6(𝑇 + 𝑝2 ) + 𝑇𝑝3+ 𝐴𝑝4 + (𝑡 − 𝑡𝑜)𝑝5        (1) 148 

 149 

In Equation 1, S is the sensor signal in R/Ro, where R is the sensor resistance and Ro is a specific normalizing resistance value. C 150 

is the pollutant concentration in ppbv, T is the temperature in Kelvin, A is absolute humidity in mole fraction, t-t0 is the duration 151 

since the start of the calibration and the p variables are coefficients determined by the regression minimising least squares. 152 

Throughout this paper, concentration refers to the ozone mixing ratio. In this model, a global absolute humidity term was employed; 153 

this absolute humidity was calculated using Rubidoux reference station temperature and relative humidity, and a constant pressure, 154 

and was used in all U-Pods throughout the measurement campaign. The values of these coefficients are described in Sect. 3.1. 155 

 156 

2.3 Field Deployment 157 

Following the field calibration, the U-Pods were relocated throughout the study area to the sites shown in Fig. 1. Sites were chosen 158 

based on availability and zoning. A mix of industrial, residential and commercial areas were selected including a university campus 159 

and public parks. U-Pod D7 remained at Rubidoux station while D0 and D5 were relocated to Mira Loma Reference station for 160 

the purpose of validation.  161 

2.4 Field Validation of Model Performance 162 

To quantify the performance of the calibration model coefficients, a nearly three month long validation dataset was collected 163 

comparing reference grade gas concentration measurements to sensor data after applying the model coefficients to the raw sensor 164 

data. Previous air quality sensor campaigns have either had mixed results when performing validation in the field or no validation 165 

was included. Moreover, no study, to our knowledge, has validated ozone sensor measurements to reference grade monitors at one-166 
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minute resolution. Two validation approaches were investigated. First, we compared sensor measurements to reference grade 167 

observations in the same location as was used for the field calibration. Second, we compared sensor measurements to reference 168 

grade observations in a different location from the field calibration site. The second approach can be used to address error associated 169 

with site specific confounders, such as NOx or transient temperature effects present away from the initial collocation site. U-Pod 170 

D7 was validated using the first approach, as it remained at Rubidoux AQMS for the duration of the deployment. U-Pods D0 and 171 

D5 were moved from Rubidoux AQMS, after the calibration, to Mira Loma AQMS and validated using the second approach. The 172 

outcome of the field validation is presented in the results. 173 

3 Results 174 

3.1 Field Calibration Results 175 

 Calibration results for various models showing correlation and RMSE of the calibrated ozone data against the reference monitor 176 

data are provided in Table S1. For the sake of simplicity, results from the overall best performing model, see Eq. 1, are shown in 177 

Table 1. R2 values and errors (RMSE) range from 0.97 – 0.99 and 1.8 – 3.9 ppbv, respectively.  178 

 179 

Table 1: Field calibration results of the model, see Eq. 1, for ozone sensors showing R2 and RMSE with the reference monitor data. 180 

Two O3 entries means there are two different sensors in the same U-Pod. 181 

U-Pod 

ID D0 D3 D4 D5 D6 D7 D8 DA DB DC DD DE DF 

Sensor 1 

R2, 

RMSE 
0.98, 
3.1 

0.98, 
3.0 

0.98, 
2.6 

0.99, 
2.7 

0.98, 
3.5 

0.98, 
2.8 

0.98, 
3.0 

0.97, 
3.9 

0.98, 
2.8 

0.99, 
2.6 

0.99, 
1.8 

0.97, 
3.4 

0.98, 
3.1 

Sensor 2 

R2, 

RMSE 
0.98, 
3.2 

0.98, 
3.0 

0.98, 
2.7 

0.98, 
3.0 

0.99, 
2.4 

0.98, 
3.0  

0.97, 
3.9  

0.98, 
2.7 

0.99, 
1.8 

0.98, 
2.9 

0.98, 
3.0 

 182 

Figure 3 illustrates the calibration results for U-Pod D0. Residuals were calculated as modeled minus reference instrument 183 

concentrations.  The normally distributed residuals shown in panel c were indicative of an unbiased model. Residuals were plotted 184 

versus various model parameters to assess bias in the model performance as a function of the predictors. The slightly negative 185 

slope of the trend line in panel e indicated under predicting at increasing absolute humidity whereas positive slopes in panels d and 186 

f shows the opposite trend, slight over-prediction at higher values of concentration and temperature. The R2 and RMSE values for 187 

the calibration of this sample U-Pod were 0.97 and 2.9 ppbv respectively.  188 



8 
 

 189 

Figure 3. Example calibration results for one ozone sensor in U-Pod D0. Panel (a) shows the modeled ozone sensor time series (red) 190 

with the reference measurements (blue) along with the model expression below and (b) shows a scatterplot of the minute 191 

measurements, (c) the distribution of residuals and the relationship between residuals and model variables: (d) concentration, (e) 192 

absolute humidity, (f) temperature, and (g) time. 193 

 194 

The quickly expanding sensor community has been convening to discuss practical and theoretical considerations of low-cost sensor 195 

applications in the modern landscape identifying a need for increased understanding of inter-sensor variability (Clements el al., 196 

2017). Few groups have thoroughly investigated the physiochemical relationships governing MOx (and more specifically tin oxide) 197 

sensor operating principles. Yet, Barsan and Weimar (2001) and subsequently Masson et al. (2015) lay forward an in-depth 198 

discussion on MOx conduction models and how those models incorporate chemical kinetics and semiconductor electrical 199 

properties in explaining sensor signals. Masson et al. focused particular attention to temperature effects finding ambient 200 

temperature to be one of the most significant confounders in ambient air monitoring using CO sensors (MiCS-5525).  Petersen et 201 

al. explored the experimental effects of power supply fluctuations on O3 (MiCS-2614) and NO2 (MiCS-5914) sensors as it relates 202 

to acute sensor response and long term sensor stability finding different responses from sensors exposed to the same environment 203 

– crediting these differences to mainly manufactural discrepancies (Petersen et al., 2017). 204 
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Additional insight into this effort can be gleamed by exploring the results of sensor-specific model parameters from the nearly 205 

three-week calibration period of this study. To directly compare model parameters (i.e., coefficients), standardized regression 206 

coefficients were generated by rescaling model input variables from 0 to 1. Rescaling was achieved by dividing the difference 207 

between each variable data point from its respective distribution minimum by the maximum difference measured (e.g., [vi-208 

vmin]/[vmax-vmin]). This process allows one to directly compare the magnitude of one predictor variable to any other; an advantage 209 

of dimensionless analysis. Figure 4 shows the fractional contribution of each model parameter during the calibration period towards 210 

estimating the sensor signal (R/Ro). Concentration (reference, ppbv) and the concentration temperature interaction term combined 211 

explain 86% of the predictive capability of Eq.1 for the average sensor used in this campaign.  The temporal drift coefficient (p5) 212 

contributes less than one percent to the overall regression indicating minimal signal drift during the 19 days of calibration and also 213 

explaining the minimal improvements in the descriptive statistics from the “Linear 3” and “3T” models to the calibration models 214 

including a temporal drift term (e.g., “Linear 4” and “4T”, see Table S1). Absolute humidity, temperature and the intercept, 215 

combined, are less than 15% of the total predictive contribution. Figure 4 acts as visual evidence as to the significance of the 216 

concentration-temperature interaction feature in this sensor model and perhaps other gas-specific MOx sensor models. This 217 

interaction term could be capturing what Masson et al. discovered when performing MOx sensor signal regressions with 218 

temperature and CO reference gases; namely, “this improvement of fit with concentration coincides with the observation that the 219 

response data [R/Ro] becomes more linear with temperature as concentration is increased” (Masson et al., 2015). Figure S1 220 

illustrates the inter-sensor standardized regression coefficient variability. 221 

 222 

 223 

Figure 4: Average relative effect size of model parameters predicting sensor signal (R/Ro) from standardized regression coefficients. 224 

The direction of the parameter effect is shown in the legend (+ or -). 225 

 226 

It is important to note that the reference resistance, Ro, which is the resistance in clean air, had moderately high inter sensor 227 

variability; a coefficient of variance (standard deviation divided by the mean) of 0.92. This reference resistance corresponds to the 228 

minimum resistance at 25 °C, and each sensor has a different Ro.  Differences in Ro could possibly be explained by sensor age or 229 

even MOx nanostructure as posed by some research (Sun et al., 2012).  Manufacturer heterogeneity, sensor age and lifetime 230 

exposure to oxidants are posed as potentially contributing to this variation but more investigation is recommended in future 231 

sampling (Rai et al., 2017). 232 

 233 
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3.2 Deployment Data Filtering and Processing 234 

Some temperature and humidity values were experienced by the U-Pods during the deployment that were not experienced during 235 

the calibration time period. This means that the environmental parameter space sampled during the calibration time did not cover 236 

the parameter space experienced during the deployment. Deployment data were filtered for conditions that would require 237 

extrapolation, an example of which is shown in Fig. 5. Because ozone measurements are dependent on temperature and humidity, 238 

one way to reduce error in the deployment data is to only use ozone data points whose temperature and humidity were in range of 239 

that of the calibration data.  All U-pod data from the deployment period were filtered to eliminate points that had temperature and 240 

relative humidity values out of the ranges recorded during calibration. The global absolute humidity in Fig. 5a is the same for all 241 

U-Pods. Normally, the absolute humidity would be calculated for each U-Pod using its individual recorded temperature, relative 242 

humidity, and pressure. However, during the deployment, the relative humidity sensors failed in several U-Pods. The relatively 243 

high chance of sensor failure in the field is one of the limitations of low cost sensor networks. Four of the U-Pods experienced RH 244 

values below zero. However, the RH sensor sets these values to zero. Therefore, there was no way to recover any data below ze ro. 245 

All of the U-Pods experienced, at some point, at least one week of missing data. Because of this, temperature and relative humidity 246 

data from Rubidoux AQMS, along with a constant pressure value, were used to calculate the global absolute humidity for the 247 

Riverside area for each minute. During calibration, the same values of absolute humidity were used for each U-Pod, but 248 

temperatures were U-Pod specific.  249 

 250 

 251 

Figure 5. Example filtering for a U-Pod (D3) showing lower absolute humidity (a) and higher temperatures (b) occurred during the 252 

deployment than during the calibration. The data cut point shows where minimum and maximum values of the variables included in 253 

the data were excluded.  254 

  255 

In addition, deployment data were filtered for maximum values of O3. In some instances, the ozone data spikes to unrealistically 256 

high levels. The 95th percentile of the absolute differences between the two reference stations during the calibration period was 11 257 

ppbv. The maximum one-minute value recorded by either station during this time was 160 ppbv. As such, we employed 171 ppbv 258 

as a realistic maximum level of ozone to expect across the study area.  Concentrations that were over this threshold were removed. 259 

No minimum filtering was needed for O3.  260 

 261 

Lastly, data were filtered using consecutive differences. Data were omitted when they fell more than eight standard deviati ons 262 

away from the mean consecutive difference in values. This is a standardized way to cut out spikes in data caused by power control 263 
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issues. The results of the deployment data filtering, including percent of data lost, are shown in Table S2. Most U-Pods (except D8 264 

and DB) have two ozone sensors. For U-Pods with two ozone sensors, only one was used for the analysis. The data from the 265 

calibration time period for each sensor was compared to the reference data at Rubidoux. Whichever sensor had the highest 266 

correlation and lowest RMSE with the reference was chosen for subsequent analysis. 267 

 268 

U-Pod DD was omitted from this analysis due to a lack of data. This pod lost almost 46% of its data after the filtering process  and 269 

collected significantly less data than the others due to site security issues. U-Pods D4, D5, D6, D8 and DF required a modification 270 

be made to their electronics boards. This modification to the U-Pod system appeared to have shifted ozone baseline signal values 271 

resulting in biased values for D5 (see Sect. 3.3 below). In a conservative effort, all U-Pods that were modified as described above 272 

were removed from the subsequent ozone analysis. Since some U-Pods were at the same location, the removal of these U-Pods 273 

resulted in the loss of three sites from the study. All the remaining sites were left with one U-Pod each. 274 

3.3 Validation of Field Calibration 275 

Validation of the field calibration models was achieved by deploying U-Pods next to reference instruments during times when the 276 

others were spread out over the study area. The validation time period (Aug 11 – Oct 25) overlapped with the deployment time 277 

period (Aug 17 – Oct 20). Coefficients generated from the regression models (Table S1) were applied to the filtered data from D7, 278 

D0 and D5. The best performing model was selected based on R2, RMSE and residual distributions. Ozone concentrations were 279 

best modeled over the entire validation time period using the model shown in Eq. 1, similar to what was observed for the calibration. 280 

The purpose of this comparison was to verify that the model that resulted in the best statistics for the calibration, also did so for 281 

the deployment time period. In order to gain a better understanding of the dependency of model performance on the selection of 282 

the validation data, we randomly selected 10% of the validation data and calculated validation statistics for this subset of the 283 

validation period and repeated this process 200 times. This iterative method allows us to assess the sensitivity of the validation 284 

statistics to the data randomly selected. The resulting distributions for the performance metrics are shown in Table 2. Tight 285 

distributions show little dependence on the data selected. Detailed results from the entire validation period are presented in Figs. 286 

S2, S3 and S4 for pods D0, D5 and D7, respectively. 287 

 288 

Table 2. Overall validation sensitivity results showing mean residuals, median residuals, R2 and RMSE of sensor measurements against 289 

Rubidoux or Mira Loma AQMS O3 (ppbv) observations. Two-hundred iterations of 10% randomly selected minute-data were used for 290 

validation statistics (± 1 SD). 291 

U-Pod ID mean 

residual 

median 

residual 

mean R2 

 

mean 

RMSE 

validation method 

D7 O3 Sensor 1 2.4 ±0.1 1.2 ±0.1 0.965 ±0.001 5.6 ±0.1 Same location 

D7 O3 Sensor 2 2.8 ±0.1 1.5 ±0.1 0.963 ±0.001 5.9 ±0.1 Same location 

D0 O3 Sensor 1 0.7 ±0.1 0.8 ±0.1 0.974 ±0.001 4.4 ±0.1 Different location 

D0 O3 Sensor 2 1.1 ±0.1 1.0 ±0.1 0.971 ±0.001 4.9 ±0.1 Different location 

*D5 O3 Sensor 1 5.5 ±0.1 5.1 ±0.1 0.971 ±0.001 5.0 ±0.1 Different location 

*D5 O3 Sensor 2 6.4 ±0.1 3.9 ±0.1 0.953 ±0.001 7.2 ±0.1 Different location 

 *D5 experienced an electrical issue resulting in data omission from analysis 292 

 293 
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The first validation method (U-Pod in the same location as the reference station, D7) would be expected to have better validation 294 

statistics than U-Pods validated using the second method (U-Pod relocated to a different location, D0 and D5) because the 295 

environmental conditions (e.g., temp, humidity, distance to roadway and other site-specific conditions) encountered by the pods 296 

were the same as the reference for the first validation method. However, in viewing the statistics, this is not the case as both O3 297 

sensors in D0 show better or similar performance to the Mira Loma station reference data than the two sensors in D7 compared to 298 

the Rubidoux station reference concentrations. For transparency, validation results from D5 were presented in Table 2 to show the 299 

effect of the electrical modification; the mean residuals for D5 are biased at 5.5 and 6.4 ppbv and much higher than those from D7 300 

and D0. The mean RMSE from D0 and D7 sensors in Table 2 can be equated to the overall U-Pod uncertainty for the deployment. 301 

 302 

Organizations using or planning to use sensors to monitor ambient air quality are interested in how frequently sensors require 303 

calibration as to keep them within a specified “tolerance” of reference-grade measurements.  As a precautionary note, durations 304 

between suggested calibrations are highly dependent on the environment, quality and robustness of the calibration, and gas species 305 

of interest. The validation statistics presented so far have been aggregated over the entire deployment period (or have been selected 306 

at random) in the case of the iterative validation described above. However, to further inform the sensor community on how robust 307 

calibration models can be through time and environmental space (e.g., humidity and temperature), validation was performed 308 

independently for the first week and last full week of the deployment and the results for each week are shown below in Fig. 6.  309 

 310 
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 311 

Figure 6: Validation results from the (a) first week and (b) ninth week of the deployment period for D7 ozone sensors separated by the 312 

red line. Subpanels (i) show a scatterplot of sensor 1 and reference  measurements with warmer shading showing a higher density of 313 

points, (ii) show a scatterplot of sensor 2 and reference measurements with warmer shading showing a higher density of points , (iii) 314 

Depict residuals over time for sensor 1 with RMSE, (iv) depict residuals over time for sensor 2 with RMSE, (v) is a histogram of 315 

residuals with mean and median residual for sensor 1, (vi) is a histogram of residuals with mean and median residual for sens or 2. 316 

 317 

Within the first week of the validation (panel a), the range of reference ozone concentrations (~0 to 115 ppbv) is much larger than 318 

those found in week nine (panel b, ~0 to 80 ppbv) although the Pearson’s correlation coefficients (R) are remarkably high (≥0 .98) 319 

for both sensors in both weeks (i, ii). The red lines are 1:1 lines, not lines of best fit. The residuals plotted as a function of time 320 

over each week (iii, iv) are similar in magnitude but by week nine (b; v-vi) there is a slight bias (mean = 2.7-3.0 ppbv) towards 321 

higher sensor measurements even though the RMSEs are lower in week nine (3.9 and 4.2 ppbv) than in week one (6.3 and 6.7 322 

ppbv). Calibrations performed more frequently than every 9 weeks may reduce slight shifts in mean residuals. Monthly calibrations 323 

could balance monitoring resources and quality of ozone sensor data for a region like Riverside, but should be done on a case-by-324 

case basis.  325 

 326 
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Figure 6 has two identifiable deviations from the 1:1 line. These two events, identifiable as the “claws” in week one (shown in 327 

panel (a (i-ii)), demonstrate higher reference measurements than both D7 sensors leading to large residuals. These claws are 328 

separated in time but each claw is a single event (consecutive measurements) lasting one and eight hours in duration. To explore 329 

these claws further, a scatterplot for each sensor colored by temperature and humidity at each time point were created (Fig. S5). 330 

They show that the two events visible for D7 occur at drastically different temperatures and humidity. The first (lower) claw has 331 

low temperature and high humidity, and the second has the reverse conditions.  This finding provides evidence for a separate 332 

confounding variable, as it is not the same condition in temperature or humidity that causes these under predictions in ozone 333 

measurements. In future studies, the U-Pod could be outfitted with sensors to detect other possibly confounding gasses, such as 334 

NOx or VOCs.  335 

 336 

SCAQMD performed nightly precision checks (PC) consisting of measuring the ozone concentration of a known gas standard that 337 

typically ranges between 90-100 ppbv for one hour. When PC measurements deviated more than 5% from expected values  338 

(corresponding to approximately 5 ppbv), subsequent data would be flagged and a work order would be generated for service or 339 

calibration. Values that are within 5% of the standard would not be flagged. This serves as a reference point for the quality of the 340 

reference ozone measurements. During validation, O3 sensors had measurement error (RMSE), median residual and mean residual 341 

ranges of 4.3 – 7.3, 1.7 – 5.2, and 0.6 – 6.5 respectively. Both median and mean of the residuals were calculated to assess bias. As 342 

discussed earlier, D5 experienced an electrical issue during the calibration period which resulted in a clear bias throughout  the 343 

validation dataset. This particular electrical issue points to the challenges of using such sensor platforms in an ambient monitoring 344 

context, a topic widely discussed in the air sensor community (Kumar et al. 2015). Median bias for the other U-Pods was relatively 345 

small and on the order of 1-2 ppbv.  346 

3.4 Deployment Data 347 

As mentioned above, U-Pods were deployed, spread out across 200 km2 area in Riverside, CA; as such, the aim of our data analysis 348 

is to present spatial differences of U-Pod measurements that include measurement uncertainty, and thus allow us to understand the 349 

ability of the sensors to detect variability. To examine this spatial variability, we computed the R2 values and median absolute 350 

differences for all possible U-Pod pairs. Unless otherwise stated, median minute time resolution data recorded during the 351 

approximately 10 week deployment were used in the following analysis. The model coefficients obtained during the calibration 352 

time period (collocation with the reference monitor) were applied to all data during both the calibration and deployment time 353 

periods. Applying the model to the data collected during the collocation yields the best possible accuracy of the U-Pod sensors, as 354 

the model is being applied to the data from which it was derived. As such, comparisons of deployment data to collocation data are 355 

useful to assess the variability observed when the U-Pods are deployed vs. when they are collocated. This allows us to observe 356 

actual spatial and temporal differences. In all following figures, hours of the day are given in local time. 357 

 358 

The U-Pods sampled for approximately 2900 hours total, 58% of which consisted of the deployment period data. The medians of 359 

ozone value distributions during the calibration range from 29-30 ppbv. During calibration, the 5th and 95th percentiles ranged from 360 

2-5 ppbv and 70-83 ppbv, respectively. During deployment, the median ozone values were between 14 and 31 ppbv while the 5th 361 

and 95th percentile ranges were 0-6 ppbv and 67-99 ppbv, respectively. 362 

 363 

Ozone concentrations experience a diurnal cycle. This cycle usually incorporates low ozone at night and during the early morning, 364 

and a peak in concentration sometime during the day. Gao (2007) used hourly ozone measurements recorded over southern 365 



15 
 

California from June 16th to October 15th, 1997 and found that ozone began to increase in the region around 8:00, peak between 366 

noon and 15:00, and then undergo reduction until about 21:00.  The precursors to forming ozone: sunlight, VOCs and NOx also 367 

have daily cycles, that in turn affect the ozone cycle profile (Gao, 2007). Figure 7 shows the diurnal cycle for ozone based on 368 

concentrations collected during this study. 369 

 370 

Figure 7. The diurnal cycle of ozone during the deployment. Distributions are concentrations from all U-Pods during each hour. 371 

Whiskers indicate the 5th and 95th percentile, with + marks falling outside of this range. The box boundaries span the 25 th to 75th 372 

percentiles. 373 

 374 

Figure 7 offers context of what the temporal variability in ozone concentrations in this study looks like. There are trends in ozone 375 

concentrations across Southern California that would be expected. Ozone is lowest from midnight to 6:00. Then the accumulation 376 

period takes place between 6:00 and 14:00. Peak concentrations occur between 14:00 and 16:00, and for the remaining hours, 377 

concentrations decrease again.  378 

 379 

In order to assess spatial variability, we examined the R2 values for all possible U-Pod pairs for each hour of the day. The larger 380 

the spread and smaller the magnitude of the R2 values, the more spatial variability was likely present in that hour across the study 381 

region. Figure 8 shows correlation information between U-Pods for each hour of the day for ozone. For this plot, all data were 382 

binned by hour. Then within those bins, correlations were performed for every possible U-Pod pair. As such, each boxplot consists 383 

of 21 points.  384 
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 385 

Figure 8. Each boxplot is a collection of the R2 values between every pair of U-Pods for each hour of the  day. There are 21 points in 386 

each boxplot. Medians of distributions are marked by horizontal lines. Whiskers indicate the 5 th and 95th percentile, with + marks 387 

falling outside of this range. The box boundaries span the 25 th to 75th percentiles. The “all” category includes all hours of the day. 388 

 389 

U-Pod ozone measurements are more correlated to each other during calibration than deployment. The R2 values between 390 

collocated pods are very high, with their medians varying from 0.92-0.99 ppbv. Conversely, spatially distributed pods were less 391 

correlated with each other, leading to R2 distribution medians between 0.52 and 0.86. The “all” category in Fig. 8 represents the 392 

R2 values between U-Pods, without binning by hour. The medians for the calibration and deployment in this column, respectively, 393 

are 0.99 and 0.93 ppbv, with slightly more skewness towards lower R2 in the deployment distribution. It is only when binning by 394 

hour that greater differences are seen. U-Pods are most different from each other during the hours from 21:00 to 3:00, and at 9:00. 395 

U-Pods are most similar around 5:00 and between 11:00 and 19:00. Relationships in R2 values between pods are changing most 396 

quickly through time between 3:00 and 11:00, and again between 19:00 and 21:00. 397 

 398 

Absolute O3 concentration differences between pairs of U-Pods were also examined to understand temporal and spatial variability. 399 

Figure 9 shows distributions of median absolute differences. All the minute median data were time-matched and binned by hour. 400 

Hourly datasets were paired to include every possible U-Pod pair. Within the time matched pairs, the median absolute difference 401 

between the two U-Pods was calculated. The distributions in Fig. 9 consist of those 21 points for each hour. The median values of 402 

these boxplots increase during the middle of the day, with two major increases observed at hours 10:00 and 15:00, and were lower 403 

during the night and early morning.  404 

 405 
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 406 

Figure 9. Distributions of medians of absolute differences between all pairs of pods for each hour of the day. Whiskers show 95% 407 

intervals. The black line connects the medians of the deployment. The “all” category includes all hours of the day.  408 

 409 

We expected that times of day where the spatial variability was the lowest (R2 highest) the smallest values of absolute differences 410 

would be observed. In other words, the deployment medians in Figs. 8 and 9 were expected to have an inverse relationship. There 411 

is an increase in R2 while there is a decrease in absolute median differences around 4:00 to 5:00. There is also an increase in the 412 

differences that correspond to increasing R2 with a peak around 9:00. The absolute median differences reach their minimums and 413 

maximums later than the R2 values reach theirs by a few hours. Sometimes however, this inverse relationship between large R2 and 414 

smaller differences does not appear. The second jump in median absolute differences between 15:00 and 17:00 was not reflected 415 

in reduced R2 values during those same hours. From 6:00 to 10:00, the slope for the deployment medians in Fig. 9 is steep, 416 

indicating that pod differences were increasing quickly across the region, and over that same time period the spatial correlation 417 

was lower. The slope between 13:00 and 15:00 looks similar, but the R2 values were roughly stable and relatively high. In other 418 

words, we observed spatial concentration differences and low correlation during the morning commute times, but in the afternoon 419 

when we observed the maximum concentration differences, we also observed relatively high spatial correlation. Absolute 420 

differences are growing during the morning period and into the afternoon, but since the whole area is experiencing accumulation, 421 

there is an increase in correlation as well. Furthermore, although Fig. 7 shows high concentrations during the day, Fig. S6 422 

demonstrates that percent differences at these times are lower.   423 

 424 

Towards the end of daylight hours, between 16:00 and 20:00, the medians of absolute concentration differences have a decreasing 425 

trend in time of day, which should be indicating that the U-Pods are becoming more similar because their differences are smaller. 426 

However, in the same hours and later, the R2 values between all U-Pods decrease over time and remain low during the night, 427 

indicating that U-Pods are more different from each other than during the afternoon. Some studies have assumed negligible ozone 428 

precursor spatial differences in the first hours of the day and therefore spatial ozone homogeneity during the early morning hours 429 

(Moltchanov et al., 2005; Jiao et al., 2016). Figure 9 shows that the range of spatial absolute differences in O3 is smallest at night. 430 

However, Fig. 8 suggests that spatial correlation at night is relatively low, causing concern for assumptions about the homogeneity 431 

of ozone concentrations at night for this location, although this assumption could be valid for other areas (Moltchanov et al., 2015). 432 

http://www.sciencedirect.com/science/article/pii/S0048969714013813
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Furthermore, the discrepancy between low absolute differences, but also low R2 values may show that correlations alone are not 433 

enough to determine how similar two sites are. The actual differences in concentrations can reveal elements of spatial variability 434 

not captured by correlations, especially since correlations can be influenced by leveraging fewer high data points. 435 

 436 

To further understand the factors impacting the observed spatial variability, we examined U-Pods individually in more detail. We 437 

undertook this investigation by comparing each U-Pod to a common reference U-Pod, to illuminate differences between locations 438 

in a normalized way. If no spatial variability was observed, then comparing two U-Pods’ ozone measurements would show a 1:1 439 

relationship with spread near the RMSE values determined in the validation (4.4-5.9 ppbv). To explore this analysis, D7 was used 440 

for normalization. U-Pod D7 was never moved from Rubidoux station throughout the project and as such was employed in the 441 

validation effort mentioned previously. This U-Pod was used as the normalization instead of an AQMS reference monitor in order 442 

to compare two similar types of measurement. The U-Pod to U-Pod comparisons are shown with the differences between 443 

calibration period trends and deployment trends in Fig. 10 as well as hourly patterns in Fig. 11. 444 

 445 

Figure 10. U-Pod D7 ozone concentrations are plotted on the x-axis and other U-Pod ozone concentrations recorded at the same times 446 

are on the y-axis. The sets are color coded according to time period their data were taken, and each color is fit with a linear line.  447 

 448 

In Fig. 10, the calibration data points, representing collocated O3 measurements, are consistently more densely grouped than the 449 

red data points which show the spatial deployment data. This further demonstrates that individual U-Pods were observing spatial 450 

differences in O3.  Also, D0, DA, DB, and DE have interesting deviations of O3 concentrations away from the central cloud of 451 

deployment points, in the form of curved areas away from the center line. The deployment trend line slopes  (solid line) are lower 452 

than the calibration slopes (dotted line). As such, D7 at the Rubidoux site typically measured higher O3 than the other U-Pods that 453 

were spatially deployed (excluding DC and DA). 454 

 455 
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Examining the data in this way allows for detailed comparison of U-Pods at different sites. For example, sites D0, D3 and DE were 456 

not more than 1.8 km away from each other, near Van Buren Blvd. in the north west of the project area, and all were less than 1.2 457 

km from the road. Therefore, one might expect data from these U-Pods to be very similar. Indeed, D0 and DE have similar data 458 

cloud shapes in Fig. 10. However, data from D3 looks to be rather different. This could indicate that a localized source is affecting 459 

the ozone concentrations at that site. Perhaps a local emission of NO was scavenging ozone at Industrial Zone 1 as a result of 460 

industrial operations. Alternatively, this difference could be caused by unique meteorological conditions at this site. However, 461 

when investigated further, the lower ozone values of D3 compared to D7 also appears more pronounced on weekdays (Fig. S7) 462 

reinforcing the hypothesis of industrial activities causing such differences. 463 

 464 

U-Pod DA was the farthest away from the other monitors (~7.5km from any other U-Pod, in the north east), while DC and DB 465 

were closer together (3 km). However, it was DA and DB that have a similar spread of data around the 1:1 line, and a similar curve 466 

of data points below the main data cloud. In other words, DA and DB were more similar than DC and DB even though these two 467 

U-Pods were closer together. A possible explanation for this may be proximity to roads; DC is closest (0.6 km) to highway 91, a 468 

major freeway. Another explanation could be the environment these pods are in. DB and DA are in areas with industrial activity, 469 

whereas DC is in a more residential location.  470 

 471 

Temporal variation in ozone values can be visually examined in more detail by singling out certain hours of data, compared to  the 472 

full set. Figures 11 and 12 demonstrate this concept. 473 

 474 

 475 

Figure 11. Data from D3, at Industrial Zone 1, plotted against D7 (at Rubidoux). In each scatterplot, colored data in the legend 476 

represents four hours of the day, and the black data represents the complete deployment dataset (all hours). The black line is a 1:1 line, 477 

not a line of best fit. 478 

 479 
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Figure 10 and 11 show that the deployment data for D3 is consistently lower when compared to D7 than the other U-Pods. D3 is 480 

7 km from D7, in the north of the project area. U-Pod D3 was sited at a company in an industrial area where there are potentially 481 

more VOCs in the air. This site was half a kilometer from the Van Buren roadway and as such there is also the potential for elevated 482 

levels of NOx.  The NOx reduction hypothesis posits that depending on the ratio of NOx to VOCs in an area, increasing NOx can 483 

increase or decrease the concentration of ozone. The titration of ozone with NOx can deplete concentrations of ozone. The proximity 484 

of D3 to Van Buren and the potential for increased local industrial sources of VOCs affecting the ratio, may cause ozone at D3 to 485 

appear lower when compared to that of D7. Beginning in hour 9:00 and extending through hour 12:00, there were general increases 486 

in the ozone concentrations recorded, and the points start to spread out, demonstrating significant spatial variations that are 487 

temporally relevant. From hours 13:00 to 16:00, there was less of a trend in terms of generally increasing or decreasing, and values 488 

cover a large range of ozone. From 17:00 – 20:00, we observed a reversal of the trend in the 9:00 – 12:00 hour block as ozone 489 

starts to decrease again and becomes more densely clustered. The reversed color trend from left to right in these two subplot s is 490 

very clear. Lastly, for the remaining hours of the day, the measurements become very dense and values decrease again, completing 491 

a daily cycle. 492 

 493 

 494 

Figure 12. Data from DA, located at Commercial Zone 1, plotted against D7 (Rubidoux). Each scatterplot is four hours of the day, with 495 

the black data representing the complete deployment dataset (all hours) and data points recorded within each hour bin are marked by 496 

the colors and times in the legend. The black line is a 1:1 line, not a line of best fit. 497 

 498 

Figure 12 shows the relationship between DA and D7 at varying hours during the day, highlighting some interesting observations. 499 

First, there was far less spread around the 1:1 for DA (compared to D3) indicating that ozone measurements from D7 and DA were 500 

more similar than D7 and D3. DA is similarly distanced from D7 as D3, about 7.5 km away, but still in the northern area of the 501 

study. These plots show concentrations from DA are more similar to D7 than those of D3, because there is much less deviation 502 

from the 1:1 line in data points. Also of interest is the strange claw shape on the underside of the black data cloud. The analysis in 503 



21 
 

Fig. 12 was conducted for all pods, but not all are shown here. It appears that many of these points occur mostly in hours 9:00 504 

through 11:00 for all affected U-Pods. The data points from the claws in DA occur in a few consecutive hours on three different 505 

days, similar to D7. The claw in D7 is not causing this effect in DA, because they occur at different times. One possible explanation 506 

for this may be the presence of one or more gas species that is not captured by the model which affects either the sensor directly, 507 

or the concentration of ozone in the vicinity for a short time. These gases could be localized ozone precursor emissions such as 508 

NOx or reactive organic gases (ROGs) which happen to correlate with morning rush hour. This claw-shape occurs at the D0, DB, 509 

and DE sites as well, all of which are closest to Van Buren Blvd. Also, the data within this claw shape appear to happen more  often 510 

on the weekend than on weekdays (Fig. S7). We do not have sufficient data on NOx concentrations or high-resolution traffic 511 

information to draw specific conclusions about how these may be affecting ozone at different sites. This could be an area for  future 512 

research. 513 

4 Conclusions 514 

In the region of Riverside, CA, we were able to observe spatial and temporal variability of ozone across an area of roughly 200 515 

km2. Field validation of sensor O3 measurements to minute resolution reference observations resulted in R2 and RMSE of 0.95-516 

0.97 and 4.4-7.2 ppbv. The Thermo Scientific Model 49i Ozone Analyzer that SCAQMD uses for FRM has an acceptable 517 

measurement noise of 5% of the precision gas input, or around 5 ppbv for ozone. The measurements from the MiCS 2611 ozone 518 

sensor should not be thought of as a way to replace regulatory AQMS or prevent future stations from being built, but rather 519 

supplement that information. After all, these sensors not only depend on reference grade measurements but also the quality control 520 

and assurance carried out at those stations. These low-cost sensors can help in deciding where future AQMS be erected as well as 521 

inform the existing gaps between stations. 522 

 523 

Technological difficulties of obtaining sensor data through environmental extremes, increased sensor variability with high ozone 524 

values, electrical issues and data retrieval are all issues encountered when using a U-Pod sensor network. Although the sensors 525 

themselves are low-cost, the data retrieval, validation and analysis are not. Data were retrieved on a biweekly basis which required 526 

a field visit to each site. Sensor platforms that wirelessly transmit data (or stream data) require additional hardware and may limit 527 

sensor placement yet are promising for many applications.  The U-Pod has since evolved to incorporate wireless data transmission 528 

in some units. Processing (e.g., QAQC, filtering) and analysis of these data (~2 MB/pod/day) constitutes the majority of time for 529 

such campaigns. Future projects may involve very large numbers of sensors, therefore time expenditure for this network method 530 

needs to be reduced. 531 

 532 

The highest amount of variability between U-Pods based on the R2 values of all their possible pairs to occur between 21:00 and 533 

3:00, as well as at 9:00. U-Pods are more correlated around 5:00 and the period between 11:00 and 19:00. Based on the median 534 

absolute differences between all possible U-Pod pairs, the U-Pods are most similar at 6:00, and peaks in differences (least similar) 535 

occur at 10:00 and 15:00-6:00. The uncertainty of these measurements, as determined by the validation results of D0 and D7 is 4.4 536 

– 5.9 ppbv. 537 

 538 

For future sensor research, an analysis of the amount of time spent collocating (calibrating) to the amount of time deployed 539 

(applying calibration) would be very beneficial for the sensor community. This information can inform how long sensors can be  540 

deployed in given region under given environmental conditions before recalibration is warranted. In this study, for nearly three 541 
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weeks of collocation time, sensors were deployed for more than nine weeks with only slightly variation of performance from week 542 

one to week nine.  It is important to collocate the sensors as frequently as possible while balancing other resources. Sensor 543 

quantification using different mathematical approaches to linear regression could improve the performance. Since higher values of 544 

ozone are of the greatest interest to regulators and the public from a human health standpoint, and the sensor variability increases 545 

at those higher values, perhaps the regression could be fit differently to suit those needs. An example could be to fit a pie cewise 546 

function, to better capture the low-ozone and high-ozone regimes separately, or other non-linear models. 547 

 548 

Additionally, including measurements of other compounds in the study could help to explain causes for spatial and temporal 549 

variability in both ozone. For example, including information on nitrogen oxides could help inform the effects on traffic on these 550 

compounds, while land use data could reveal the effect of vegetation or industrial operations on measurements. Furthermore, this 551 

study was conducted in an area with relatively high levels of ozone, which can be simpler to detect. Many people live in areas that 552 

have ozone levels closer to EPA required levels, though they still experience some periods of non-attainment. To make this research 553 

more relevant to all people, the next step could be to try and detect the same spatial and temporal variability in these places as well. 554 
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