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Abstract. Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing

applications. The imaging technique of UV SO2 cameras is commonly used for monitoring of SO2 emissions from volcanoes

and anthropogenic sources (e.g. power plants, ships). The camera systems capture the emission plumes at high spatial and

temporal resolution. This allows to retrieve the gas velocities in the plume directly from the images. The latter can be measured

at a pixel level using optical flow (OF) algorithms. This is particularly advantageous under turbulent plume conditions. How-5

ever, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We

present a new method to identify ill-constrained OF motion-vectors and replace them using the local average velocity vector.

The latter is derived based on histograms of the retrieved OF motion-fields. The new method is applied to two example datasets

recorded at Mt. Etna (Italy) and Guallatiri (Chile). We show that in many cases, the uncorrected OF yields significantly un-

derestimated SO2 emission-rates. We further show, that our proposed correction can account for this and that it significantly10

improves the reliability of optical flow based gas velocity retrievals.

In the case of Mt. Etna, the SO2 emissions of the north-east crater are investigated. The corrected SO2 emission-rates range

between 4.8 − 10.7kg/s (average: 7.1 ± 1.3kg/s) and are in good agreement with previously reported values. For the Gual-

latiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission-rates are

between 0.5 − 2.9kg/s (average: 1.3 ± 0.5kg/s) and provide the first report of SO2 emissions from this remotely located and15

inaccessible volcano.

1 Introduction

Studying and monitoring of gas emissions is highly desirable since the emitted gases can have substantial environmental im-

pacts. This includes both natural and anthropogenic sources such as volcanoes, industrial areas, power plants, urban emissions

or wildfires. The measurements can help to better assess regional and global impacts of the emissions, for instance, related to20

air-quality standards and pollution monitoring or climate impacts (e.g. Schwartz, 1994, Robock, 2000, IPCC, 2013). Sulfur

dioxide (SO2), in particular, is a toxic gas emitted both by anthropogenic and natural sources (e.g. power plants, ships, volca-
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noes). The pollutant has various impacts, both of socio-environmental and economic nature (e.g. human health, agriculture)

and on the climate (e.g. being a precursor of stratospheric sulfur aerosols, Wigley, 1989). Furthermore, SO2 is an important

monitoring parameter related to volcanic risk assessment (e.g. Fischer et al., 1994, Caltabiano et al., 1994).

Passive remote sensing techniques are commonly used for monitoring of gas emissions from localised emitters (or point5

sources). The instruments are based on the principle of light absorption and typically measure path integrated concentrations

(column densities, CDs) of the gases. Instrumentation can be ground, airborne and satellite based and can cover wavelengths

ranging from the near ultraviolet (UV) up to thermal long-wave infrared (LWIR), either using solar or thermal radiation as light

source. Note that the term “point-source" is not clearly defined and may, in some cases, refer to scales of several kilometres

(e.g. a whole city in case of space based observations), and in other cases, to only a few metres (e.g. a power-plant chimney for10

ground based near-source measurements).

Gas emission-rates (or fluxes) of the sources are typically retrieved along a plume transect ` by integrating the product of

the measured CDs with the local gas velocities in the plume. The latter may be estimated using meteorological weather data

(e.g. Frins et al., 2011) or using correlation techniques (e.g. Williams-Jones et al., 2006, Johansson et al., 2009) in case the

measurements are performed at a moderate sampling rate (e.g. spectroscopic instrumentation such as COSPEC or scanning15

DOAS instruments, e.g. Moffat and Millan, 1971, Platt and Stutz, 2008) and at sufficient source distance.

A more recent measurement technique is based on camera systems which are equipped with wavelength selective filters

(e.g. McElhoe and Conner, 1986, Mori and Burton, 2006, Prata and Bernardo, 2014, Kuhn et al., 2014, Dekemper et al.,

2016). The imaging devices can be used to create instantaneous CD maps of the measured species (e.g. SO2, NO2) at high20

spatial resolution and at sampling rates potentially down into the sub-Hz regime (dependent on the optical setup and lighting

conditions). This allows to study high frequency variations in the emission signals or to investigate individual sources separately

(e.g. Tamburello et al., 2013, D’Aleo et al., 2016). As a result, the cameras are often pointed at source-vicinity, where the plumes

can show turbulent behaviour, mostly a result of aerodynamic effects and buoyancy. The resulting velocity fields often deviate

significantly from the meteorological background wind field. Luckily, the high resolution of the imaging systems allows us to25

account for these spatial and temporal fluctuations by directly measuring the projected 2D velocity fields using optical flow

(OF) algorithms (e.g. Krueger et al., 2013, Bjornsson et al., 2013, Peters et al., 2015, Lopez et al., 2015, Stebel et al., 2015,

Kern et al., 2015).

OF algorithms can detect motion at the pixel-level by tracking distinct image features in consecutive frames. In the following,

the basic principles of the OF computation are briefly introduced, as well as different optimisation strategies (see e.g. Jähne,30

1997, Fleet and Weiss, 2006, Fortun et al., 2015 for a comprehensive introduction into the topic). OF algorithms are based on

the assumption that a certain image quantity, such as the brightness I or the local phase φ, is conserved between consecutive

frames. Then, a continuity equation of the form

∂tg+f∇ijg = 0 (1)
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can be used to describe the apparent motion of brightness (or phase) patterns between two frames. Here, f = [u, v]T denotes

the flow vector in the detector coordinate system i, j. g is the conserved quantity (e.g. I, φ),∇ij = [∂i, ∂j ]
T and ∂t denote the

spatial and temporal differentiation operators. Eq. 1 is typically referred to as the optical flow constraint (OFC) equation and

can be solved numerically per image-pixel, for example, using a least-squares or a total least-squares optimisation scheme. The

OFC states an ill-posed problem, as it seeks to find the two velocity components u and v from a single constraint (i.e. I or φ, cf.5

Eq. 1). This is commonly referred to as the aperture problem and is typically accounted for by introducing further constraints

that impose spatial coherency to the flow field. These can be subdivided into local and global constraints, or a combination

of both (e.g. Bruhn et al., 2005). Local methods (e.g. Lucas and Kanade, 1981) apply the coherency constraint only within a

certain neighbourhood around each pixel (the size of this aperture can usually be set by the user). Thus, for pixel-positions that

do not contain at least one trackable feature within the neighbourhood specified by the aperture size, the algorithm will fail to10

detect motion. We shall see below, that this can be a fundamental problem for the emission-rate analysis using plume imagery,

in case extended homogeneous plume regions coincide with a retrieval transect `. The problem is less pronounced for OF algo-

rithms using global constraints (e.g. the algorithm by Horn and Schunck, 1981 which is used in Kern et al., 2015), which can

propagate reliable motion vectors over larger image areas. However, note that, dependent on the optimisation strategy, global

regularisers are often more sensitive to noise (e.g. Barron et al., 1994) and are typically computationally more demanding (e.g.15

Fleet and Weiss, 2006).

Most of the modern OF algorithms include a multi-scale analysis where the flow-field is retrieved from coarse to fine features,

using image pyramids combined with suitable warping techniques (e.g. Anandan, 1989). This can significantly increase the

robustness of the results and is of particular relevance in case of large displacements (i.e. several image-pixels, e.g. Beauchemin

and Barron, 1995, Fleet and Weiss, 2006).20

Optical flow inter-comparison benchmarks (e.g. Baker et al., 2011, Menze and Geiger, 2015) can provide useful informa-

tion to assess the performance (e.g. accuracy) and applicability (e.g. computational demands, availability of source-code) of

different OF algorithms. Particularly important for the emission-rate analysis is the computational efficiency as well as the per-

formance within homogeneous image-regions. As discussed above, the latter may be optimised via the incorporated coherency25

constraints (e.g. by increasing the local averaging neighbourhood around each pixel) or by performing a multi-scale analysis.

However, this can significantly increase in the required computation times (e.g. Fleet and Weiss, 2006) and may therefore be

inapplicable, especially for near-real time analyses.

Given these challenges, in many cases the choice of a suitable OF algorithm will be a trade-off between computational30

efficiency and the performance within homogeneous image-regions. In order to rule out potential failures in the OF retrieval,

it is therefore highly desirable to assess the OF performance before calculating the emission-rates. In this paper, we propose a

new method, which analyses an OF displacement-vector-field (DVF) in order to identify and correct for potentially unphysi-

cal OF motion-estimates. The correction is performed in a localised manner, within a specific region-of-interest (ROI) in the

images (e.g. in proximity to a plume transect `). It measures the local-average-velocity-vector (LAVV) within the ROI, based35
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on distinct peaks in histograms computed from the local DVF. The strengths of the method are 1) that it is independent of

the choice of the OF algorithm and 2) that the additional computational demands are small compared to the OF computation

time. The new method is introduced using the Farnebäck optical flow algorithm (Farnebäck, 2003) which showed promising

results in Peters et al. (2015) and which is freely available in the OpenCV library (e.g. Bradski, 2000). We use two different

volcanic datasets recorded at Mt. Etna, Italy and Guallatiri, Chile to show, that our method can successfully detect and correct5

for unphysical OF motion estimates during the emission-rate analysis.

The paper is organised as follows: Sect. 2 starts with a short introduction into the technique of UV SO2 cameras and the

required data analysis. Sect. 2.2 provides information about the two datasets (i.e. technical setup, measurement locations),

followed by details regarding the image analysis of both datasets (Sect. 2.3). The proposed correction for optical flow based10

velocity retrievals is introduced in Sect. 2.4. In Sect. 3 the retrieved SO2 emission-rates for the Etna and Guallatiri datasets are

presented and compared to results based on 1. the uncorrected OF DVF and 2. assuming a constant global plume velocity using

the cross-correlation lag of integrated plume intersections (e.g. McGonigle et al. (2005)). A summary and discussion is given

in Sect. 4, followed by our conclusions.

2 Methodology15

2.1 UV SO2 cameras

UV SO2 cameras measure plume optical densities (ODs) in two wavelength windows of about 10nm width using dichroic

filters. The two filters are typically centered around 310 nm (SO2 “on-band" filter, i.e. sensitive to SO2 absorption) and, at

nearby wavelengths, around 330 nm (SO2 “off-band" filter). The latter is used for a first order correction of aerosole scattering

in the plume (e.g. Kern et al., 2010). An apparent absorbance (AA) of SO2 can then be calculated based on the ODs measured20

in both channels:

τAA = τon − τoff = ln

(
I0
I

)
on
− ln

(
I0
I

)
off
. (2)

Here, I , I0 denotes the measured plume and corresponding background intensities, respectively. Note that all quantities

in Eq. 2 are a function of the detector pixel position i, j (e.g. τAA→ τAA(i, j)). The calibration of the measured AA values

(i.e. conversion into SO2 column densities SSO2(i, j)) can be performed using SO2 calibration cells or using data from a DOAS25

spectrometer viewing the plume (Lübcke et al., 2013) or a combination of both. The SO2 emission-rates are typically calculated

along a suitable plume cross section (PCS) ` in the SO2-CD images SSO2(i, j) (e.g. a straight line) by performing a discrete

integration of the form:

Φ(`) = f−1
M∑
m=1

SSO2(m) ·veff(m) · dpl(m) ·∆s(m), (3)
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where m denotes interpolated image coordinates (i, j) along `, f is the camera focal length, dpl is distance between the

camera and the plume and ∆s(m) is the integration step length (for details see Gliß et al., 2017). The effective velocity

veff(m) = 〈v̄(m) · n̂(m)〉 (4)

is measured relative to the normal n̂ of ` (i.e. constant in case of straight retrieval lines) using the corresponding velocity

vector v̄(m). The velocities, if retrieved from the images, represent averages along the line-of sight (LoS) of each pixel (see5

e.g. Krueger et al., 2013 for a derivation). Since the velocity components in LoS direction cannot be measured from the images,

the measured velocities are approximately underestimated by a factor of cos(α) (α being the angle between plume direction

and image plane). However, to first order (and at small angles α), this cancels out since the length of the LoS inside the plume

(and thus, the measured SO2 CDs) increases by approximately the same cos(α) factor (Mori and Burton, 2006).

2.2 Example data10

The proposed method to correct for unphysical OF velocity vectors is applied to two volcanic datasets recorded at Mt. Etna

(Italy) and Guallatiri volcano (Chile). Both datasets were recorded using a filter-wheel based UV SO2 camera including a

DOAS spectrometer. Details about the technical setup for both datasets are summarised in Table 1.

Table 1. Instrumental setup during both campaigns

Etna Guallatiri

C
am

er
a

UV Camera Hamamatsu C8484-16C Hamamatsu C8484-16C

On-band filter Asahi UUX0310 Omega Optical, 310BP10

Off-band filter Asahi XBPA330 Omega Optical, 325BP12

UV lens (focal length) 25 mm 50 mm

D
O

A
S

Spectrometer Ocean Optics USB 2000+ Avantes AvaSpec-ULS2048x64

T-stabilisation No (ambient) 20◦

Telescope f = 100mm, f/4 f = 100mm, f/4

Optical fiber 400µm 400µm

2.2.1 Etna data

Mt. Etna is a stratovolcano situated in the eastern part of the island of Sicily, Italy. We present a short UV camera dataset15

recorded on 16.09.2015 between 07:06 – 07:22 UTC (see Table 1 for a technical setup of the instruments used for the observa-

tions). The data was recorded during a field campaign which took place about 2.5 months prior to a major eruptive event (i.e.

in early December 2015, e.g. Smithsonian-Institution, 2013a). The volcano showed quiescent degassing behaviour during all
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Figure 1. Left: Etna overview map showing position and viewing direction of the camera (camera cfov, fov) which was located on a roof-top

in the town of Milo. Also indicated is the summit area (source) and the plume azimuth (plume direction). Right: example SO2-CD image

of the Etna plume including two PCS lines (orange / blue) used for emission-rate retrievals and two corresponding offset lines (green, red),

that are used for cross-correlation based plume velocity retrievals (cf. Appendix B4). Position and extent of the DOAS-FOV for the camera

calibration is indicated by a green spot. Note that the displayed plume image is size reduced by a factor of two (Gauss pyramid level 1).

days of the campaign. The measurements were performed from the roof-top of a building located in the town of Milo, about

10.3km from the source. An overview map is shown in Fig. 1.

Plume conditions

During the 15 minutes of data, the meteorological conditions were stable showing a slightly convective plume of the Etna5

north-east crater (NEC) advected downwind (into the left image half, cf. Fig. 1). The emissions of the other craters are more

diffuse and could not be fully captured since they were partly covered by the volcanic flank. Therefore, we kept the focus on

the NEC emissions which were investigated along two example PCS lines located at two different positions downwind of the

source (orange / blue lines in Fig. 1). A video of the Etna emissions is shown in supplementary video no. 1.

2.2.2 Guallatiri data10

Guallatiri (18◦ 25′ 00′′ S, 69◦ 5′ 30′′ W, 6.071 m a.s.l.) is a stratovolcano located in the Altiplano, northern Chile. The last

confirmed eruptive events date back to 1960 (Smithsonian-Institution, 2013b). Due to its remote location little is known about

the volcano.

The presented data are part of a short field campaign between 20 and 22 November 2014. During the three days, the volcano

showed quiescent degassing behaviour from the central crater and from a fumarolic field on the SW flank of the volcano. Due15

to frequent cloud abundances, only a small fraction of the acquired data was suited for the investigation of the SO2 emissions. A
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Figure 2. Left: Guallatiri overview map showing position and viewing direction of camera (camera cfov, fov), summit area (source) as well

as the plume azimuth (plume direction). Right: example SO2-CD image of the Guallatiri emissions including two PCS lines used to retrieve

SO2 emission-rates from the central crater (orange) and from a fumarolic field (blue) located behind the flank in the viewing direction. An

additional line (magenta) is used to estimate gas velocities using a cross-correlation algorithm (relative to blue PCS line, cf. Appendix B4).

Position and extent of the DOAS-FOV is indicated by a green spot. Note that the displayed plume image is size reduced by a factor of two

(Gauss pyramid level 1).

cloud free time window between 14:48 – 14:59 UTC on 22/11/2014 was chosen (see Table 1 for details about the instrumental

setup). An overview map is shown in Fig. 2. The measurements were performed at a distance of 13.3km away from the source.

Plume conditions

Compared to Etna, the Guallatiri emissions showed rather turbulent behaviour with strong variations in the local velocities.5

The central crater plume, in particular, changed its overall direction significantly over time which can be seen in supplementary

video no. 2. Emission rates were retrieved along two (connected) PCS lines in the young plume shown in Fig. 2. The lines were

chosen such that the emissions from the central crater and the fumarolic field could be investigated separately.

2.3 Data analysis

The image analysis was performed using the Python software Pyplis (Gliß et al., 2017). In a first step, all images were cor-10

rected for electronic offset and dark current followed by a first order correction for the signal dilution effect. The latter was

applied based on Campion et al., 2015 using suitable volcanic terrain features in the images to retrieve an estimate of the atmo-

spheric scattering extinction coefficients in viewing direction of the camera. The extinction coefficients were used to correct

the measured radiances of plume image pixels for the scattering contribution. The latter were identified using an appropriate τ

threshold applied to on-band OD images.15
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The sky background intensities (required to for the retrieval of AA images, Eq. 2) were determined using on / off sky refer-

ence images (SRI) recorded close in time to the plume image data. The background retrieval was done using the background

modelling methods 6 (Etna) and 4 (Guallatiri) of the used analysis software Pyplis (Gliß et al., 2017, cf. Table 2 therein). Varia-

tions in the sky background intensities and curvature between the plume images and SRI were corrected both in horizontal and

vertical direction using suitable gas (and cloud) free sky reference areas in the plume images. All AA images were corrected5

for cross detector variations in the SO2 sensitivity using a correction mask calculated from cell calibration data as outlined by

Lübcke et al. (2013). The AA images were calibrated using plume SO2-CDs retrieved from a co-located DOAS instrument

(cf. Table 1, see Sect. B1 for details regarding the DOAS retrieval). Position and extent of the DOAS-FOV within the camera

images are shown in Figs. 1 (Etna) and 2 (Guallatiri) and were identified using the Pearson correlation method described in

Gliß et al. (2017).10

The gas velocities in the plume were retrieved both using the Farnebäck OF algorithm and the cross correlation method

outlined in McGonigle et al. (2005). Nonphysical OF motion vectors along the emission-rate retrieval lines were identified and

corrected for using the proposed OF histogram method, which is described in Sect. 2.4. Note that for the analysis all images

were downscaled by a factor of 2 (using a Gaussian pyramid approach).15

2.3.1 Etna

The required plume distances for the emission-rate retrieval were derived from the camera location and viewing direction

and assuming a meteorological wind direction of (0 ± 20)◦ (north-wind, cf. Fig. 1). The latter was estimated based on visual

observation. The camera viewing direction was retrieved using the position of the south-east (SE) crater in the images. The

signal dilution correction was performed using atmospheric scattering extinction coefficients retrieved 20 minutes prior to the20

presented observations (i.e. from one on and one off-band image recorded at 06:45 UTC, cf. Fig. 10 in Gliß et al., 2017). During

this time the camera was pointed at a lower elevation angle and the images contained more suitable terrain features for the

correction. Extinction coefficients of εon = 0.0743km−1 and εoff = 0.0654km−1 could be retrieved and were used to correct

plume image pixels. The latter were identified from on-band OD images using a threshold of τon = 0.05. The dilution corrected

AA images were calibrated using the DOAS calibration curve shown in Appendix B2. The linear calibration polynomial25

was retrieved prior to the analysis using camera AA-values that were not corrected for the signal-dilution effect and the

corresponding SO2-CDs measured with the DOAS spectrometer (for details see Appendix B2).

2.3.2 Guallatiri

The plume distances were retrieved per pixel column assuming a meteorological wind direction of (320± 15)◦. The latter was

estimated based on visual observation combined with a MODIS image (see supplementary material) recorded at 15:05 UTC,30

in which the plume could be identified. The viewing direction of the camera was retrieved based on the geographical location

of the summit area in the images.
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The dilution correction was performed using scattering extinction coefficients of εon = 0.0855± 0.0012km−1 and εoff =

0.0710± 0.0008km−1. The latter were retrieved between 14:48 – 14:59 UTC using images from a second UV camera, which

was equipped with a f = 25mm lens (i.e. a wider FOV) and hence, contained more suitable topographic features for the

retrieval. Plume pixels for the dilution correction were identified from on-band OD images using a threshold of τon = 0.02. An

example dilution corrected SO2-CD image is shown in Fig. 2. The DOAS calibration curve is shown in Appendix B2. Figure5

2 shows an example dilution corrected and calibrated SO2-CD image.

2.3.3 Radiative transfer effects

Both the Etna and Guallatiri data were recorded at long distances (> 10km). Consequently, the applied dilution correction

accompanies relatively large uncertainties of statistical nature, which we estimate to ±50%, based on Campion et al. (2015).

Furthermore, in-plume radiative transfer (e.g. multiple scattering due to aerosols, SO2 saturation, see e.g. Kern et al., 2013)10

may have affected the results to a certain degree. However, both plumes showed only little to no condensation. We therefore

assess the impact of aerosol multiple scattering negligible. In the case of Etna, SO2 saturation around 310 nm may induce a

small systematic underestimation in the SO2 emission-rates. This is due to the comparatively large observed SO2-CDs of up

to 5 · 1018 cm−2. The impact of SO2 saturation is, however likely compensated to a certain degree, since the DOAS SO2-CDs

(used to calibrate the camera) were retrieved at less affected wavelengths between ∆λ0 ≈ (315 − 326)nm (cf. Appendix15

B1). The same fit-interval is used in Gliß et al. (2015) who performed MAX-DOAS measurements of the Etna plume under

comparable conditions. They account for SO2 saturation by using the weak SO2-bands between ∆λ1 ≈ (350 − 373)nm (see

also Bobrowski et al., 2010) and find relative deviations of about 10 % between the two wavelength ranges and for SO2-CDs

exceeding 5 · 1018 cm−2 (i.e. ∆λ0

∆λ1
≈ 0.9 cf. Fig. A3 in Gliß et al., 2015). We therefore estimate the impact of SO2 saturation

to be below 20 % for our data.20

2.4 Optical flow histogram analysis

We developed a method to improve optical flow (OF) based gas velocity retrievals needed for the analysis of SO2 emission-

rates (Eq. 3) using UV camera systems. The OF analysis of an image pair yields dense displacement vector fields (DVF’s) of

the observed gas plumes. In some areas of the image, the DVF represents the actual physical motion of gas in the plume, while

other image areas may contain unphysical motion vectors (e.g. in low-contrast plume regions, cf. Sect. 1). The proposed method25

aims to identify all successfully constrained motion vectors and from these, derives an estimate of the average (or predominant)

velocity vector in the plume. The latter is then used to replace unphysical motion vectors in the DVF. We recommend to perform

the analysis in a localised manner, within a specific region-of-interest (ROI) since the velocity fields can show large fluctuations

over the entire image (e.g. change in direction or magnitude).

Figure 3 shows an example DVF (left) retrieved from the Etna plume including an example rectangular ROI (top). Two further30

images show the corresponding OF displacement orientation angles ϕ (middle) and flow vector magnitudes |f | (bottom).

HistogramsM (i.e.Mϕ,M|f |) of the motion field are plotted in the right panels, respectively, and were calculated considering

all image-pixels belonging to the displayed ROI. From the images and histograms, certain characteristics become clear:
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1. Image regions containing unphysical motion estimates are characterised by (local) random orientation and short flow

vectors (cf. sky background pixels).

2. These unphysical motion vectors manifest as a constant offset inMϕ and as a peak at the lower end ofM|f |.

3. Image regions showing reliable motion estimates, on the other hand, are characterised by (locally) homogeneous orien-

tation ϕ and magnitudes |f | exceeding a certain minimum length |f |min.5

4. These successfully constrained motion vectors manifest as distinct peaks inMϕ andM|f |.

5. The width of these peaks can be considered a measure of the local fluctuations, or the variance, of the velocities (e.g. a

very narrow and distinct peak inMϕ would indicate a highly directional movement).

Based on these histogram peaks, the proposed method derives the local predominant displacement vector (PDV) |f | . A

detailed mathematical description of the analysis is provided in Appendix A. In the following, the most important steps of the10

analysis are described.

The retrieval of the PDV starts with a peak analysis of Mϕ and investigates whether a distinct and unambiguous peak can

be identified in the histogram. If this is the case, the expectation value for the local movement direction ϕµ and the angular

confidence interval Iϕ are retrieved based on the position and the width of the main peak in Mϕ (using the 1st and 2nd

moments of the distribution). The analysis ofMϕ involves a peak-detection routine based on a Multi-Gauss parametrisation.15

The latter is done to ensure that the retrieved parameters ϕµ and Iϕ are not falsified due to potential additional peaks in

the distribution (e.g. a cloud passing the scene, e.g. illustrated in Fig. 12). Based on the analysis ofMϕ, a second histogram

M|f | is determined, containing the displacement magnitudes |f | of all vectors matching the angular confidence interval Iϕ
and exceeding the required minimum magnitude |f |min. Also here, an expectation value |f |µ and confidence interval I|f | are

estimated based on the 1st and 2nd moments of the histogram.20

The analysis yields four parameters pROI = (ϕµ, ϕσ, |f |µ, |f |σ) which are used to calculate the predominant displacement

vector (PDV) within the corresponding ROI:

f̄(ROI) = [|f |µ · sin ϕµ, |f |µ · cos ϕµ]T . (5)

The projected plume velocity vector for the ROI can then be calculated as:

v̄(ROI) = f̄(ROI) ·
dpl∆pix

f ·∆t
, (6)25

where f and ∆pix denote lens focal length and the pixel pitch of the detector, and dpl is the distance between the camera and

the plume. Ill-constrained motion vectors in the DVF can then be identified with a certain confidence based onMϕ andM|f |.
In this article, the method is demonstrated using the OpenCV (Bradski, 2000) Python implementation of the Farnebäck OF

algorithm (Farnebäck, 2003, also used in Peters et al., 2015). It is pointed out, though, that it can be applied to DVFs from any

motion estimation algorithm.30
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Figure 3. Example output of the Farnebäck optical flow algorithm including a rectangular ROI (top). Two further images show the corre-

sponding orientation angles ϕ (middle) and magnitudes |f | (bottom) of the DVF. Corresponding histogramsMϕ andM|f | are plotted on

the right, respectively, and include all pixels in the displayed ROI. The histograms are plotted both including (dashed lines) and excluding

(red / blue shaded areas) short flow vectors (i.e. |f |> |f |min = 1.5pix. The orientation angles are plotted in an interval−180◦ ≤ ϕ≤+180◦

where −90◦, +90◦ correspond to −i,+i directions, respectively and 0◦ to the vertical upwards direction (−j). The DVF was calculated

using two consecutive AA images (∆ t= 4.0s) of the Etna plume, recorded on 16/09/2015 at 07:14 a.m.
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2.4.1 Applicability and uncertainties

The proposed method offers an efficient solution to identify flow vectors containing actual gas movement and separate them

from unphysical results in the DVF. The method is based on a local statistical analysis of the histogramsMϕ andM|f |. A

number of quality criteria were defined in order to ensure a reliable retrieval of the local displacement parameters:

C1: A minimum fraction rmin of all pixels in the considered ROI is required to exceed the minimum magnitude |f |min.5

The latter can, for instance, be set equal one or can be estimated based on the flow vector magnitudes retrieved in a

homogeneous image area (e.g. randomly oriented sky background areas in Fig. 3).

C2: The same minimum fraction rmin of pixels is required to match the angular expectation range specified by Iϕ (at a

certain confidence level nσ, cf. Appendices A and B3).

C3: If additional peaks are detected in Mϕ, they are required to stay below a certain significance value S. The latter is10

measured relative to the main peak based on the integral values (cf. Appendix A3 and Fig. 12).

If any of these constraints cannot be met, the analysis is aborted. The settings used in this study are summarised in Table 2.

Please note that the method cannot account for any uncertainties intrinsic to the used OF algorithm since these directly

propagate to the derived histogram parameters. It is therefore recommended, to assess the performance of the used OF algo-15

rithm independently and before applying the histogram correction (see e.g. Baker et al., 2011, Menze and Geiger, 2015). The

Farnebäck algorithm used in this study showed sufficient performance both in Peters et al. (2015) and in the KITTI benchmark

(cf. Menze and Geiger, 2015). The latter find that the algorithm yields correct velocity estimates in about 50 % of all cases

(approximately 1σ). Here, “correct" means, that the disparity between a retrieved flow-vector endpoint and its true value does

not exceed a threshold of 5 %. We therefore assume that the majority (i.e. ≈ 3σ) of all successfully constrained flow vectors20

lie within a disparity radius of 15%. Based on this, we assume an intrinsic, conservative uncertainty of 15% for the effective

velocities (Eq. 4) retrieved from successfully constrained flow vectors. Note that this is a somewhat arbitrary choice of the in-

trinsic uncertainty of the Farnebäck algorithm, solely based on the findings of Menze and Geiger (2015). However, we remark

again, that it is beyond the scope of this paper to verify the accuracy of the Farnebäck algorithm, which we use to illustrate

the performance of our new post analysis method. For all ill-constrained motion vectors which are replaced by the PDV , we25

assume a conservative uncertainty based on the width nσ of the histogram peaks (cf. Appendices B3 and B5.1).

Finally, we point out that the proposed histogram correction does not constitute any significant additional computational de-

mands. For our data (i.e. 1344×1024pix) and on an Intel i7, 2.9 GHz machine, the required computation time for the correction

is typically less than 0.1s. In contrast, the Farnebäck OF algorithm itself typically requires 1.5 s (same specs.) and can be con-

sidered fast, in comparison with other solutions (e.g. Baker et al. (2011)).30
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3 Results

The new method was applied to the Etna and Guallatiri datasets introduced in Sect. 2.2. SO2 emission-rates (Eq. 3) of both

sources were retrieved as described in Sect. 2.3 along the corresponding PCS lines (cf. Figs. 1 and 2). In order to assess the

performance of the proposed correction we use the following three methods to estimate the gas velocities in the plume:

1. glob: based on cross-correlation analysis at position of PCS line ` (i.e. the estimated velocity is applied to all pixels on5

` and to all images of the time series).

2. flow_raw: using raw output from the Farnebäck algorithm (i.e. without correction for erroneous flow vectors).

3. flow_hybrid: using reliable optical flow vectors, identify and replace unphysical vectors using the DVF from the his-

togram analysis.

Figure 4. Left: Example flow vector field (blue lines with red dots) of the Farnebäck optical flow algorithm for the Etna plume at 07:13 UTC

including the two PCS lines (blue / orange) and the corresponding ROIs used for the histogram analysis (semi-transparent rectangles).

Middle, right: histograms of orientation anglesMϕ and vector magnitudesM|f | for both lines (bar plot), determined using condition S7

in Appendix A1. TheMϕ histogram (middle) also includes fit results of the Multi-Gauss peak detection (thick solid lines). The retrieved

histogram parameters (ϕµ, |f |µ) and expectation intervalsMϕ,M|f | are indicated with solid and dashed vertical lines, respectively. From

the corrected DVF, average effective velocities of veff = (3.9± 0.5)m/s (orange line) and veff = (4.4± 0.8)m/s (blue line) were retrieved.

Note that in the left image 1) vectors shorter than 1.5 pixels are excluded, 2) the displayed vector lengths were extended by a factor of 3 and

3) only every 15th pixel of the DVF is displayed.
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Table 2 (in Appendix B3) summarises all relevant settings for the OF based velocity retrievals. Note, that the required minimum

magnitude for successfully constrained motion vectors was set per image and ROI using the lower end of I|f | at 1σ confidence.

In order to assess the impact of unphysical motion vectors on the retrieved SO2 emission-rates, we define the ratio κ:

κ=
χpix ok

χall
, (7)

where χall corresponds to the SO2 integrated-column-amount (ICA) considering all pixels on ` while χpix ok corresponds to the5

SO2 ICA considering only pixels showing reliable flow vectors. κ= 1, for instance, means that all motion vectors on ` are

considered reliable. The ROIs for the OF histogram analysis were defined for each PCS line individually (based on the position

and orientation of the line).

3.1 Etna results

The OF gas velocities in the plume were calculated from on-band OD (τon) images, since the OF algorithm showed best per-10

formance for the on-band OD images (based on visual inspection before the analysis). Figure 4 shows an example DVF of the

Etna plume and the corresponding histogramsMϕ andM|f |. Along the orange line, the OF algorithm performs considerably

well with only 7 % of the velocity vectors found ill-constrained. If not corrected for, these unphysical motion vectors would

result in an underestimation of only 1 % in the SO2 emission-rates. For the blue line, on the contrary, a total of 45 % of the

pixels on ` were found unreliable. Moreover, many of these are located in regions showing large SO2-CDs. Hence, the impact15

is considerably large and, if not corrected for, would induce an underestimation of 33 % in the SO2 emission-rates.

Figure 5. Time series of retrieved PDV parameters ϕµ and |f |µ (dashed lines) for the two Etna PCS lines (same colours, cf. Fig. 1) and

corresponding values after applying interpolation and smoothing (solid lines). The expectation intervals Iϕ and I|f | are plotted as shaded

areas.
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Prior to the emission-rate analysis, the proposed histogram method was applied to all τon images in order to retrieve time series

of the four correction parameters p = (ϕµ, ϕσ, |f |µ, |f |σ). Missing data points (i.e. where the required constraint parameters

were not met, cf. Sect. 2.4.1) were interpolated. The results were averaged in time using a combined median filter of width 3 (to

remove outliers) and a Gaussian filter (σ = 5, to remove high frequency variations in the retrieved DVF’s). The results of this

pre-analysis are shown in Fig. 5. Due to the stable meteorological conditions the retrieved parameters show only little variation5

with average values of ϕµ = (−58.3 ± 5.1)◦ and |f |µ = (0.93 ± 0.09)pix / s (orange line) and ϕµ = (−78.5 ± 3.1)◦ and

|f |µ = (1.04 ± 0.06)pix / s (blue line).

Figure 6 shows the results of the SO2 emission-rate analysis for both PCS lines and the three different velocity retrieval

methods. Further included are the corresponding effective velocities (average along `, 2nd panel) and the retrieved κ values10

(Eq. 7). The latter indicates the percentage impact of unphysical OF motion vectors on the SO2 emission-rates. The plotted

uncertainties in the SO2 emission-rates and the effective velocities (shaded areas) were calculated as described in Appendix

B5.

SO2 emission-rates between 4.9 − 9.7kg/s (average: 7.1kg/s) and 4.8 − 10.7kg/s (average: 7.8kg/s) were retrieved along

the orange and blue line, respectively, using the proposed flow_hybrid method. The slightly higher values in the aged plume are15

Figure 6. Time series of Etna emission-rates (top panel), showing emissions of the young (left) and the aged (right) plume of the NE crater

(orange / blue colours, respectively) using the two PCS lines shown in Fig. 1. Emission rates were retrieved using the three different velocity

retrieval methods described above. Uncertainties (shaded areas) are only plotted for the flow_hybrid method and the cross-correlation method

(“glob"). Further included are time series of effective velocities (Eq. 4, middle panel) and κ values (Eq. 7, bottom) retrieved from the proposed

histogram analysis.

15



Figure 7. Relative deviations of retrieved SO2 emission-rates shown in Fig. 6 for the “young_plume" (top) and the “aged_plume" (bottom)

PCS lines using the same colour codes as in Fig. 6. The ratios are plotted relative to the results of the proposed flow_hybrid method.

Results based on the cross-correlation analysis tend to be slightly larger (by about +14%) while the uncorrected OF velocities often yield

underestimated SO2 emission-rates (up to 62%).

likely due to the fact, that this line captures more of the emissions from the other Etna craters (cf. supplementary video no. 1).

The corrected OF emission-rates show good agreement with the results using the cross-correlation velocities (glob method).

The latter, however, tend to be slightly increased by about +14% (cf. Fig. 7). The flow_raw method (i.e. uncorrected OF ve-

locities), on the contrary, often yields significantly decreased SO2 emission-rates, especially in situations where unphysical OF

motion vectors coincide with either of the retrieval lines (i.e. low κ value, cf. Fig. 4). The latter show rather strong fluctuations5

between consecutive frames (i.e. local scatter in the κ values) with an average impact of κ = (0.68± 0.15). These fluctuations

are due to the somewhat random nature of the initial problem. Namely, that the occurrence (and position) of regions containing

unphysical motion vectors can change significantly between consecutive frames (cf. Fig. 4). These unphysical fluctuations (in

the estimated gas velocities) directly propagate to the SO2 emission-rates (retrieved using the flow_raw method) and are thus,

not to be misinterpreted with actual (high-frequency) variations in the SO2 emission-rates.10

Relative deviations of the three methods are shown in Fig. 7 (normalised to the results from the proposed flow_hybrid

method). The cross-correlation based retrievals (glob) tend to yield slightly larger SO2 emission-rates (by +14% on average)

while the uncorrected OF (flow_raw) often shows underestimated results (by−20% on average). However, we point out again,

that the these underestimations generally show a rather strong variability. This includes cases showing considerably large un-

derestimations (up to 62%) and other cases, where the OF algorithm appears to perform sufficiently (i.e. ∆Φ = 1 in Fig. 7).15
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Figure 8. Left: Example output of the Farnebäck optical flow algorithm for the Guallatiri emissions at 14:48 UTC including the two example

PCS lines (blue / orange line) and the corresponding ROIs. Middle and right: Histograms of magnitudesMϕ and orientation anglesM|f |
used to retrieve the expectation intervals Iϕ and I|f | and the corresponding PDV in each ROI, respectively (cf. Eq. 5). From the latter,

effective velocities of veff = (3.1 ± 0.5)m/s (crater, orange) and veff = (1.8 ± 0.6)m/s (fumaroles, blue) were retrieved. Note that in the

left image 1) vectors shorter than 1.5 pixels are excluded, 2) the displayed vector lengths were extended by a factor of 2 and 3) only every

15th pixel of the DVF is displayed.

3.2 Guallatiri results

The OF gas velocities for the Guallatiri data were retrieved using the on-band OD images. An example DVF is shown in Fig. 8.

Here, the two sources are clearly separable, showing a convective central crater plume (approx. location at cols. i ≈ 50 − 80)

and the emissions from the fumarolic field located behind the volcanic flank (i ≈ 100−300). Further included are the results of

the proposed OF histogram analysis, which was performed relative to the two displayed PCS lines used for the SO2 emission-5

rate analysis (cf. Fig. 2).

In this example, the OF algorithm performed considerably well. The uncorrected OF would therefore result in a small

underestimation of 6 % (crater) and 3 % (fumaroles) in the SO2 emission-rates. The different plume characteristics of both

sources can be clearly identified based on the displayed histogram distributions. The central crater plume (orange colours)

is almost vertically rising (ϕ= (−12.4 ± 17.5)◦) and reaches velocity magnitudes of up |v|max = 4.5m/s. The fumarolic10

emissions (blue colours) are less convective (ϕ= (+55.6 ± 17.4)◦ ) and show slightly smaller velocities with maximum

magnitudes of |v|max = 3.4m/s.

The time series of the interpolated and smoothed displacement parameters for both PCS lines is shown in Fig. 9. Compared

to Etna, the two plumes show considerably more variability both in orientation and in the velocity magnitudes (cf. Figs. 5 and

9). The resulting average values are ϕµ = (12.6 ± 16.8)◦ and |f |µ = (1.17 ± 0.33)pix / s (crater) and ϕµ = (15.9 ± 13.1)◦15
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Figure 9. Time series of retrieved PDV parameters ϕµ and |f |µ (dashed lines) for the two Guallatiri PCS lines (same colours, cf. Fig. 8)

and the corresponding values after applying interpolation and smoothing (solid lines). The expectation intervals Iϕ and I|f | are plotted as

shaded areas.

and |f |µ = (1.30 ± 0.13)pix / s (fumaroles). Due to the rather strong temporal variations, the emissions of both sources could

not always be successfully separated using the two (fixed) PCS lines. This can be seen in supplementary video no. 2, which

shows the evolution of SO2 emission-rates for both PCS lines.

The results of the emission-rate analysis are shown in Fig. 10, again, including effective velocities and κ values for both

PCS lines (cf. Fig. 6). As in the Etna example, the SO2 emission-rates were calculated using the three different velocity5

retrieval methods introduced above (i.e. glob, flow_raw, flow_hybrid). In general, similar trends can be observed. The uncor-

rected OF often causes significant underestimations in the SO2 emission-rates. It furthermore accompanies rather strong (and

unphysical) high-frequency fluctuations which are propagated to the SO2 emission-rates (see Sect. 3.1 for a discussion). The

cross-correlation velocity analysis could only successfully be applied to the emissions from the fumarolic field (cf. Fig. 2 and

Sect. B4), since the central crater plume showed too strong fluctuations both in space and time. The corresponding emission-10

rates of the fumarole emissions (Fig. 10, right, purple colours) show good agreement with the flow_hybrid method.

The SO2 emission-rates, which were calculated based on the proposed flow_hybrid method, show only little variation in the

central crater emissions with values ranging between 0.1 − 1.5kg/s (Fig. 10, left). The corresponding fumarole emissions,

however, show rather strong variations with peak emission-rates of 2.5kg/s (at 14:55 UTC), even exceeding the observed

central crater amounts. The sum of both sources yields total SO2 emission-rates of Φtot = 1.3 ± 0.5kg/s with peak emissions15
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Figure 10. Guallatiri SO2 emission-rates from the summit crater (left, orange colours) and the fumarolic field (right, blue colours) using

the two PCS lines shown in Fig. 2. Uncertainties (shaded areas) are only plotted for the flow_hybrid and the glob (cross-correlation based

velocity) retrieval methods. Further included are the corresponding effective velocities (from the flow_hybrid method) and the OF quality

factors κ (Eq. 7). The central crater emissions show only little variability (Φ ≈ 0.6kg/s) while the fumarolic emissions are characterised by

a comparatively strong emission “event" at 14:55 UTC showing peak emissions of 2.5kg/s.

of up to 2.9kg/s.

Relative deviations of the retrieved SO2 emission-rates between the three velocity methods are shown in Fig. 11. As in the case

of Etna, the cross-correlation based results (glob, fumaroles) tend to be slightly increased (here: +23%) while the uncorrected

OF (flow_raw) results in an average underestimation of −20%.

4 Summary and discussion5

4.1 Corrected gas velocities

The proposed histogram correction could be successfully applied to the two example datasets from Mt. Etna and Guallatiri.

Especially the rather turbulent Guallatiri case clearly demonstrated the necessity of localised gas velocity retrievals (both in

the spatial and temporal domain). We showed, that the Farnebäck OF algorithm is (generally) able to resolve the 2D velocity

fields in great detail. However, we also showed that unphysical OF motion vectors often induce significant underestimations10

in the retrieved SO2 emission-rates. For both datasets, the proposed histogram method was able to account for this issue

and resulted in more robust SO2 emission-rate retrievals (cf. Figs. 7 and 11). The corrected results show good coincidence

with SO2 emission-rates based on the assumption of a global constant velocity (retrieved using a cross-correlation algorithm).
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Figure 11. Relative deviations of Guallatiri emission-rates shown in Fig. 10. The deviations are plotted as ratios normalised to the results from

the proposed method (flow_hybrid), both for the crater (top, no cross-correlation results available) and for the fumarolic emissions (bottom).

The average ratios are 1.23± 0.32% (fumaroles, glob) and 0.85± 0.12 (crater, flow_raw) and 0.75± 0.22% (fumaroles, flow_raw). Again,

the latter show a rather strong variability between the images.

However, the limitations of the cross-correlation method could be clearly demonstrated in the case of the turbulent Guallatiri

plume.

4.2 Retrieved SO2 emission-rates

The retrieved Etna emission rates of ∼ 8kg/s (∼ 700t/d) are at the lower end of typically observed values (> 1000t/d, e.g.

Salerno et al., 2009), ranging from a few up to several hundred kg/s, dependent on the activity (e.g. Edner et al., 1994, D’Aleo5

et al., 2016). The comparatively low values may be partly due to the fact, that mainly the emissions of the NEC were captured,

which nonetheless appeared to be the strongest source during the observation period. The presented time series of about 15 min

duration is too short to infer any reliable conclusions related to the state of activity. Nonetheless, it may be noted, that the mea-

surements were recorded about two months prior to a major eruptive event, and that indications of decreased pre-eruptive SO2

emissions have been observed before at Mt. Etna (e.g. Caltabiano et al., 1994). A longer record of Etna’s SO2 emissions (i.e.10

during the months of Sept. – Dec. 2015) would hence be desirable, in order to evaluate whether these low emission-rates were

characteristic for the time period prior to the eruption.

In the case of Guallatiri, these are the first SO2 emission-rates reported in the literature. This makes the retrieved emission

rates of ∼ 1.5kg/s (peak: ∼ 3.0kg/s) an important finding of this study. However, also in this case, the presented time series15

is rather short and hence not suited to infer typical emission characteristics of the volcano. Future investigations are highly de-
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sirable in order to infer more detailed information related to the emission characteristics of Guallatiri (e.g. long term averages).

Conducting these is obviously more challenging than in the Etna case due to the remote location of the volcano. Space based

observations of this considerably weak source may be an option in the future, but appear to be difficult with currently available

instrumentation (e.g. Carn et al., 2016).

5

5 Conclusions

In this article, a new method for image based gas velocity measurements in plumes was presented. The success of the method

lies in the extraction of quantitative information about gas dynamics inside an emission plume by using the physical informa-

tion present in a remotely recorded video-image-sequence. The method is based on local gas velocity retrievals using optical

flow (OF) algorithms. OF algorithms are a powerful tool for measuring the plume velocities in great detail. However, an intrin-10

sic weakness of such algorithms is that they rely on contrast in the images. Hence, they often yield unphysical motion estimates

in low-contrast image regions (e.g. in the center of an extended, homogeneous plume). We showed, that this weakness is unac-

ceptable for applications relying on accurate velocity measures at specific image coordinates (such as the discussed application

of camera based SO2 emission-rate retrievals).

The proposed method aims to address this issue based on a local post-analysis of an OF displacement-vector-field (DVF).15

The central idea is to separate reliable from unreliable motion vectors in the DVF. This is done based on distinct peaks in

histograms of the DVF, allowing to derive the local average velocity vector. The latter can then be used as a replacement for

unphysical results in the DVF. The relevance of the correction was discussed using the example of SO2 emission-rate retrievals

from UV camera data. Specifically, the SO2 emissions of Mt. Etna (Italy) and Guallatiri (Chile) were investigated using two

short example datasets (of about 15 minutes each). The gas velocities were analysed using the Farnebäck OF algorithm. Based20

on these data we find, that unphysical motion vectors occur rather frequently and hence, often induce significantly underesti-

mated SO2 emission-rates. We further show, that the correction provides an efficient solution to this problem, resulting in more

reliable velocity estimates and hence, in more robust SO2 emission-rate retrievals. The proposed method therefore provides an

important and useful extension for OF based gas velocity retrievals.

6 Data and code availability25

The analysis of the UV camera data was performed using the software Pyplis v0.12.0 (Gliß et al., 2017). The Etna data

corresponds to the example dataset of Pyplis and can be downloaded from the website. The Guallatiri data, as well as the

analysis scripts for both datasets can be provided upon request.

Appendix A: Detailed description of histogram analysis

The proposed histogram analysis of local optical flow DVF’s includes the following steps.30
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A1 Retrieval of local displacement parameters

S1 Extraction of all displacement vectors f = [∆ i,∆j]T within specified ROI: F = {f |f ∀(i, j) ∈ ROI}, where i, j de-

notes pixel coordinates in the image. Note that the considered pixels in the ROI may be further restricted, for instance by

applying an intensity threshold (e.g. we use a τon threshold to identify plume pixels).

S2 Determination of magnitude |f |=
√

∆ i2 + ∆j2, and orientation angle ϕ(f) = atan2(∆ i,∆j) of all vectors in F .5

S3 Extraction of all vectors in F exceeding a certain magnitude threshold |f |min: F ′ = {f : f ∈ F ∧ |f |> |f |min}.

S4 Calculation of orientation angle histogram Mϕ(F ′ ,∆ϕ) of vectors in F ′ (with the histogram bin-width ∆ϕ).

S5 Perform multi-peak analysis ofMϕ using Multi-Gauss fit (for details see next Sect. A2).

S6 Use Multi-Gauss fit result to check, whether an unambiguous peak can be identified inMϕ. If this is the case, estimate

the expectation interval Iϕ = [ϕµ−nϕσ,ϕµ+nϕσ] from 1. and 2. moment ofMϕ (with n specifying a certain confidence10

level).

S7 Extraction of all flow vectors matching angular expectation interval Iϕ: F ′′ = {f : f ∈ F ′ ∧ ϕ(f) ∈ Iϕ} .

S8 Calculation of displacement length histogram M|f |(F
′′ ,∆|f |) from vectors in F ′′ (with ∆|f | being the bin-width in

units of pixel displacements).

S9 Determine average displacement length |f |µ and standard deviation |f |σ using first and second moment of M|f |.15

A2 Multi-Gauss fitting routine

The Multi-Gauss fitting routine is used to detect and parametrise distinct peaks in a given orientation histogram Mϕ calculated

from a DVF. The parametrisation is performed by fitting a number K of superimposed Gaussians of the form

fK(ϕ; p) =

K∑
k=1

N (ϕ;Ak,µk,σk) (A1)

toMϕ, with the Normal distribution20

N (ϕ;A,µ,σ) =A · e−
(ϕ−µ)2

2σ2 (A2)

and the corresponding parameter vector p = (p1, . . . , pK) = ((A1, µ1, σ1), . . . , (AK , µK , σK)). In order to achieve a phys-

ically more reliable result in the optimisation, we recommend to restrict the individual pk to certain expectation ranges, for

instance:

– Minimum required amplitude: Ak > Ak,min (e.g. to avoid fitting all noise peaks)25

– Lower threshold for standard deviation: σk > ∆ϕ

2
√

2ln2
(FWHM must equal or exceed histogram bin resolution)

– Peak position in angular range: µk ∈ {−180, 180}
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Figure 12. Top: Example fit result (blue line) of a multi-peak analysis applied to synthetic data (blue crosses). Bottom: corresponding fit

residual. The dataset consists of three Gaussian Normals including Gaussian noise (with σnoise = 9 counts). Two overlapping peaks are located

at µ=−110(A= 150, σ = 25) and µ=−50(A= 300, σ = 20) (forming the predominant peak) and one additional peak at µ= 90(A=

150, σ = 10) with a significance of 16%. Expectation parameters (ϕµ, ϕσ) are indicated with solid and dashed vertical lines, respectively.

The latter were retrieved as described in Appendix A3, both including and excluding the additionally detected peak at µ= 90, in red and

green colours, respectively.

– Define upper limit for allowed number of superimposed Gaussians: K ≤ Kmax

A routine to perform this fit was written in Python and is implemented in the software package Pyplis (class MultiGaussFit).

The algorithm aims to find the minimum number K of Gaussians required to meet the constraint C : Rpp(i)≤Ak,min, where

Rpp(i) is the peak-to-peak value of the current fit residual R(i) = fK(ϕ,p)−Mϕ at iteration step i. If no additional peaks

are found inR(i), the latest optimised parameter vector p is assumed sufficient. Else, p is extended by all additionally detected5

peaks (inR(i)) and the least-squares fit is re-applied until the optimisation constraint C is fulfilled, or until a break constraint is

met (e.g. maximum iteration reached, or maximum number of allowed Gaussians). An exemplary fit result is shown in Fig. 12.

A3 Retrieval of main peak parameters from Multi-Gauss fit result

The Multi-Gauss parametrisation of Mϕ allows to identify the most prominent peak in the distribution (which may be a

superposition of several Normals) and separate it from potential additional peaks. The latter can have significant impacts on10

the retrieved statistical parameters ϕµ, ϕσ (cf. Fig. 12).

Numerically, the retrieval of the main peak parameters from a given fit result vector p is performed as follows:
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1. For a given Gaussian pk in p, find all fitted Gaussians within a specified confidence interval (nσ)k around pk and

calculate the integral value Ik of the local overlap (Ik corresponds to the number of vectors belonging to the main peak).

2. Do step 1. for all detected Gaussians in p, resulting in a vector IK of length K containing integral values of the local

overlaps.

3. Find the main peak position based on the index k∗ showing the largest integral value (in IK)5

4. Retrieve main peak parameters by calculating first and second moment of the corresponding local overlap pk∗ : p′ =

{pk : µ(pk) ∈ [ϕmin, ϕmax]} with ϕmin, ϕmax = µk∗ ± (nσ)k∗ (e.g. the two overlapping peaks at index −74 in Fig. 12).

5. Retrieve mean and standard deviation of p′ based on the first and second moment of the resulting main peak distribution

fK′(ϕ; p′) (cf. Eq. A1), i.e.:

ϕµ =

π∫
−π

ϕfK′(ϕ; p′)dϕ (A3)10

ϕσ =

√√√√√ π∫
−π

(ϕ − µϕ)2 fK′(ϕ; p′)dϕ (A4)

resulting in an estimate of the predominant displacement direction in the ROI:

ϕglob(ROI) = (ϕµ ± ϕσ) (A5)

Appendix B: Emission rate analysis supplementary information

B1 DOAS SO2 retrieval15

The DOAS spectra from both datasets (Etna, Guallatiri) were analysed using the software DOASIS (Kraus, 2006). All spectra

were corrected for electronic offset and dark current and were analysed using a clear sky Fraunhofer reference spectrum (FRS)

recorded close in time (to keep potential O3 interferences at a minimum). In addition, a Ring spectrum, determined from the

FRS, was fitted as well as the absorption cross sections (XS) of SO2 (Hermans et al., 2009) and O3 (Burrows et al., 1999).

The latter were convolved with the instrumental line-spread-function (using the measured 334.15nm mercury line). FRS and20

Ring were linked to each other and were allowed a slight shift of 0.2 nm and squeeze of 2%. The same shift and squeeze was

allowed for the two XS, which were also linked. The retrieval was performed between 314.6 − 326.4nm. A third order DOAS

polynomial was fitted to account for broadband extinction and an additional zero order offset polynomial (fitted in intensity

space) was included to account for instrumental effects (e.g. stray light).

B2 Camera calibration25

Figure 13 shows the DOAS calibration curves retrieved for both datasets. The camera AA values correspond to the pixels

covered by the DOAS-FOV shown in Figs. 1 and 2. Prior to the calibration, the camera images and the DOAS data were
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Figure 13. DOAS calibration curves of Etna data (left) and Guallatiri data (right) retrieved from AA images (not dilution corrected) within

the image region covered by the DOAS-FOV (cf. Figs. 1 and 2). The corresponding SO2-CDs retrieved with the DOAS instrument are plotted

on the y-axis. Y-axis offsets were corrected for during the calibration of the AA images.

merged in time. Note that the calibration data displayed in Fig. 13 is not corrected for the signal-dilution effect. In order

to calibrate the dilution corrected AA-images, the fitted calibration polynomial was extrapolated into the AA regime of the

dilution corrected images. This is based on the assumption that the calibration curve remains linear also at larger optical

densities, which is justified by the considerably good plume conditions (low to no condensation) and the low to moderate

range of observed SO2-CDs (cf. Sect. 2.3.3, see also Kern et al., 2013). Furthermore, this calibration method assumes that the5

retrieved DOAS SO2-CDs exhibit approximately the same amount of signal dilution as the camera imagery. This is justified

by the fact, that the DOAS analysis was applied in a wavelength range coinciding with the on / off-band regime of the camera

filters (cf. previous Sect. B1).
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B3 Settings for optical flow retrieval

All relevant settings for the optical flow based gas velocity retrievals are summarised in Table 2

Table 2. Applied settings for Farnebäck algorithm (OpenCV implementation) and relevant parameters for the histogram post analysis.

Parameter E
tn

a

G
ua Description

Fa
rn

eb
ac

k
pyr_scale 0.5 0.5 Multi-scale analysis: downscale factor

levels 4 4 Multi-scale analysis: pyramid levels

winsize 20 20 Size of (gaussian) averaging neighbourhood

iterations 5 5 Number of iterations

poly_n 5 5 Size of neighbourhood for polynomial expansion

poly_sigma 1.1 1.1 Standard deviation of smoothing kernel for poly. exp.

H
is

to
an

al
ys

is

∆ϕ [◦] 15 20 Bin width ofMϕ

∆|f | [pix] 1 1 Bin width ofM|f |
|f |min [pix] 1.5 1.5 Required minimum magnitude

nσ 3 3 Confidence level for retrieval of I|f |
τmin 0.15 0.02 τ threshold for identifying plume pixels

rmin 0.1 0.1 See Sect. 2.4.1

S 0.2 0.2 See Sect. 2.4.1

B4 Results velocity cross-correlation

B4.1 Etna

Cross correlation based gas velocities were retrieved for each of the two PCS lines, using two additional lines shifted by 405

pixels in the normal direction (cf. Fig. 1). Velocities of vglob = 4.14m/s and vglob = 4.55m/s could be retrieved for the young

(orange) and aged (blue) plume, respectively. The results of the cross-correlation analysis (ICA time series) are shown in

Fig. 14 in Appendix B4.

B4.2 Guallatiri

Figure 15 shows the result of the velocity cross-correlation analysis using the blue (fumarole) PCS retrieval line (cf. Sect. 3.2)10

resulting in a gas velocity of vglob = 3.49m/s. The same velocity was assumed for the central crater plume (orange retrieval

line in Fig. 2), where the cross-correlation algorithm did not succeed.
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Figure 14. Result of velocity cross-correlation analysis for the Etna data. Left: Example plume AA image including two PCS lines (orange /

blue) and corresponding offset lines (green / red) used for the analysis. Middle, right: corresponding time series of the integrated AA values

along the two PCS lines (original: dashed, shifted using correlation lag: solid) and along the offset lines (solid) using the same colour scheme.

Figure 15. Result of velocity cross-correlation analysis for Guallatiri data. Left: Example plume on-band OD image (τon) including the PCS

(blue) and offset line (magenta) used for the analysis. Right: corresponding time series of integrated on-band ODs (dashed blue / magenta)

and further, the shifted PCS signal corresponding to the retrieved correlation lag of 18.0 s (solid blue). Note that here, the velocity analysis

was applied using a time series of on-band OD images rather than the τAA which was used in Fig. 14.

B5 SO2 emission-rate uncertainties

Uncertainties in the presented emission-rates (shaded areas in Figs. 6 and 10 top) were calculated based on Eq. 3 using Gaussian

error propagation. Uncertainties in the plume distance (from uncertainty in plume azimuth and camera viewing direction), in

the retrieved SO2-CDs (from slope error the calibration polynomial) and in the effective gas velocities (Eq. 4) were considered.

The latter were assumed constant for cross-correlation based velocities using ∆vglob = 1.5m/s. For the optical flow based5

retrievals, the uncertainties were estimated per image and PCS line as described in Sect. 2.4.1. Note, that uncertainties resulting

from potential radiative transfer effects were not included. These are discussed in Sect. 2.3.3.

B5.1 Sensitivity to the chosen histogram analysis settings

The sensitivity of the retrieved emission-rates (cf. Sect. 3) to the input parameters |f |min and nσ of the proposed histogram

correction method (cf. Appendix B3) was investigated. These two parameters have the largest impact on the results since they10

determine, which flow vectors are considered ill-constrained and which ones not. The sensitivity analysis was performed using
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Figure 16. Sensitivity of SO2 emission-rates as a function of the chosen input settings |f |min (y-axis) and the confidence level n (x-axis).

The investigated value ranges are 0 – 4 pixels for |f |min and 1 – 3 for the n and the deviations are plotted as percentage deviations ∆ΦSO2

from the average SO2 emission-rate retrieved from this study. The latter amounts to 2.4kg/s (not dilution corrected, see text). The analysis

was performed using the average SO2 emission-rates retrieved from 30 images of the Etna dataset.

the proposed flow_hybrid method applied to 30 images from the Etna dataset that were not corrected for the signal-dilution

effect, since the latter is irrelevant for this study (all other analysis settings are the same as described in Sect. 2.3). Figure 16

shows the results of this investigation. The choice of n has a rather small impact on the emission-rates, whereas the choice of

|f |min impacts within a range of approximately ±17%. However, considering the more realistic interval of 1 – 2 for |f |min, the

impact is less than 8 %.5

Competing interests. The authors declare that they have no conflict of interests.

Acknowledgements. We wish to thank the Atmosphere and Remote Sensing group from the Institute of Environmental Physics in Heidelberg,

Germany, for support during the Etna field campaign in 2015. We acknowledge the support of F. Prata and H. Murray (Thomas) in planning

and conducting the measurements at Guallatiri. Useful discussions with T. Skauli and A. Donath related to the methodology are highly

acknowledged. The work of K. Stebel and A. Kylling was partly supported by the European Research Council (ERC) under the European10

Union’s Horizon 2020 research and innovation programme under grant agreement No 670462 (COMTESSA). J. Gliß acknowledges the

Norwegian Institute for Air Research (NILU) and the Graduate Center of the University of Oslo (UNIK) for financial support. Finally,

we wish to thank the reviewer C. Kern and one anonymous reviewer as well as J. Joiner as Editor for their very valuable comments and

suggestions as well as support during the review phase.

28



References

Anandan, P.: A computational framework and an algorithm for the measurement of visual motion, International Journal of Computer Vision,

2, 283–310, doi:10.1007/BF00158167, 1989.

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R.: A Database and Evaluation Methodology for Optical Flow,

International Journal of Computer Vision, 92, 1–31, doi:10.1007/s11263-010-0390-2, 2011.5

Barron, J. L., Fleet, D. J., and Beauchemin, S. S.: Performance of optical flow techniques, International Journal of Computer Vision, 12,

43–77, doi:10.1007/BF01420984, 1994.

Beauchemin, S. S. and Barron, J. L.: The Computation of Optical Flow, ACM Comput. Surv., 27, 433–466, doi:10.1145/212094.212141,

1995.

Bjornsson, H., Magnusson, S., Arason, P., and Petersen, G. N.: Velocities in the plume of the 2010 Eyjafjallajökull eruption, Journal of10

Geophysical Research: Atmospheres, 118, 11,698–11,711, doi:10.1002/jgrd.50876, 2013.

Bobrowski, N., Kern, C., Platt, U., Hörmann, C., and Wagner, T.: Novel SO2 spectral evaluation scheme using the 360 – 390 nm wavelength

range, Atmospheric Measurement Techniques, 3, 879–891, doi:10.5194/amt-3-879-2010, 2010.

Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Software Tools, 2000.

Bruhn, A., Weickert, J., and Schnörr, C.: Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods, Interna-15

tional Journal of Computer Vision, 61, 211–231, doi:10.1023/B:VISI.0000045324.43199.43, 2005.

Burrows, J., Richter, A., Dehn, A., Deters, B., Himmelmann, S., and Orphal, J.: Atmospheric remote-sensing reference data from GOME -

2. Temperature-dependent absorption cross sections of O-3 in the 231-794 nm range, J. Quant. Spectrosc. Radiat. Transfer, 61, 509–517,

doi:10.1016/S0022-4073(98)00037-5, 1999.

Caltabiano, T., Romano, R., and Budetta, G.: SO2 flux measurements at Mount Etna (Sicily), Journal of Geophysical Research: Atmospheres,20

99, 12 809–12 819, doi:10.1029/94JD00224, 1994.

Campion, R., Delgado-Granados, H., and Mori, T.: Image-based correction of the light dilution effect for SO2 camera measurements, Journal

of Volcanology and Geothermal Research, 300, 48 – 57, doi:10.1016/j.jvolgeores.2015.01.004, 2015.

Carn, S., Clarisse, L., and Prata, A.: Multi-decadal satellite measurements of global volcanic degassing, Journal of Volcanology and Geother-

mal Research, 311, 99 – 134, doi:10.1016/j.jvolgeores.2016.01.002, 2016.25

D’Aleo, R., Bitetto, M., Delle Donne, D., Tamburello, G., Battaglia, A., Coltelli, M., Patanè, D., Prestifilippo, M., Sciotto, M., and Aiuppa,

A.: Spatially resolved SO2 flux emissions from Mt Etna, Geophys. Res. Lett., 43, 7511–7519, doi:10.1002/2016GL069938, 2016.

Dekemper, E., Vanhamel, J., Van Opstal, B., and Fussen, D.: The AOTF-based NO2 camera, Atmospheric Measurement Techniques, 9,

6025–6034, doi:10.5194/amt-9-6025-2016, 2016.

Edner, H., Ragnarson, P., Svanberg, S., Wallinder, E., Ferrara, R., Cioni, R., Raco, B., and Taddeucci, G.: Total fluxes of sulfur dioxide from30

the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption

spectroscopy, Journal of Geophysical Research: Atmospheres, 99, 18 827–18 838, doi:10.1029/94JD01515, 1994.

Farnebäck, G.: Two-Frame Motion Estimation Based on Polynomial Expansion, pp. 363–370, Springer Berlin Heidelberg, Berlin, Heidel-

berg, doi:10.1007/3-540-45103-X_50, 2003.

Fischer, T. P., Morrissey, M. M., Marta Lucia Calvache, V., Diego Gomez, M., Roberto Torres, C., Stix, J., and Williams, S. N.: Correlations35

between SO2 flux and long-period seismicity at Galeras volcano, Nature, 368, 135–137, doi:10.1038/368135a0, 1994.

Fleet, D. and Weiss, Y.: Optical Flow Estimation, pp. 237–257, Springer US, Boston, MA, doi:10.1007/0-387-28831-7_15, 2006.

29

http://dx.doi.org/10.1007/BF00158167
http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1007/BF01420984
http://dx.doi.org/10.1145/212094.212141
http://dx.doi.org/10.1002/jgrd.50876
http://dx.doi.org/10.5194/amt-3-879-2010
http://dx.doi.org/10.1023/B:VISI.0000045324.43199.43
http://dx.doi.org/10.1016/S0022-4073(98)00037-5
http://dx.doi.org/10.1029/94JD00224
http://dx.doi.org/10.1016/j.jvolgeores.2015.01.004
http://dx.doi.org/10.1016/j.jvolgeores.2016.01.002
http://dx.doi.org/10.1002/2016GL069938
http://dx.doi.org/10.5194/amt-9-6025-2016
http://dx.doi.org/10.1029/94JD01515
http://dx.doi.org/10.1007/3-540-45103-X_50
http://dx.doi.org/10.1038/368135a0
http://dx.doi.org/10.1007/0-387-28831-7_15


Fortun, D., Bouthemy, P., and Kervrann, C.: Optical flow modeling and computation: A survey, Computer Vision and Image Understanding,

134, 1 – 21, doi:10.1016/j.cviu.2015.02.008, image Understanding for Real-world Distributed Video Networks, 2015.

Frins, E., Ibrahim, O., Casaballe, N., Osorio, M., Arismendi, F., Wagner, T., and Platt, U.: Ground based measurements of SO2 and NO2

emissions from the oil refinery "la Teja" in Montevideo city, Journal of Physics: Conference Series, 274, 012 083, http://stacks.iop.org/

1742-6596/274/i=1/a=012083, 2011.5

Gliß, J., Bobrowski, N., Vogel, L., Pöhler, D., and Platt, U.: OClO and BrO observations in the volcanic plume of Mt. Etna – implications on

the chemistry of chlorine and bromine species in volcanic plumes, Atmospheric Chemistry and Physics, 15, 5659–5681, doi:10.5194/acp-

15-5659-2015, 2015.

Gliß, J., Stebel, K., Kylling, A., Dinger, A., Sihler, H., and Sudbø, A.: Pyplis - A Python Software Toolbox for the Analysis of SO2 Camera

Data, Preprints, doi:10.20944/preprints201710.0085.v1, under review for publication in journal Geosciences (MDPI), 2017.10

Hermans, C., Vandaele, A., and Fally, S.: Fourier transform measurements of SO2 absorption cross sections: I. Temperature depen-

dence in the 24 000–29 000 cm−1 (345–420 nm) region, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 756–765,

doi:10.1016/j.jqsrt.2009.01.031, 2009.

Horn, B. K. and Schunck, B. G.: Determining optical flow, Artificial Intelligence, 17, 185 – 203, doi:10.1016/0004-3702(81)90024-2, 1981.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the15

Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

doi:10.1017/CBO9781107415324, www.climatechange2013.org, 2013.

Jähne, B.: Digital Image Processing: Concepts, Algorithms, and Scientific Applications, Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 4th edn., http://www.springer.com/br/book/9783662031742, 1997.

Johansson, M., Galle, B., Zhang, Y., Rivera, C., Chen, D., and Wyser, K.: The dual-beam mini-DOAS technique—measurements of volcanic20

gas emission, plume height and plume speed with a single instrument, Bulletin of Volcanology, 71, 747–751, doi:10.1007/s00445-008-

0260-8, 2009.

Kern, C., Kick, F., Lübcke, P., Vogel, L., Wöhrbach, M., and Platt, U.: Theoretical description of functionality, applications, and limitations

of SO2 cameras for the remote sensing of volcanic plumes, Atmospheric Measurement Techniques, 3, 733–749, doi:10.5194/amt-3-733-

2010, 2010.25

Kern, C., Werner, C., Elias, T., Sutton, A. J., and Lübcke, P.: Applying UV cameras for SO2 detection to distant or optically thick volcanic

plumes, Journal of Volcanology and Geothermal Research, 262, 80–89, doi:10.1016/j.jvolgeores.2013.06.009, 2013.

Kern, C., Sutton, J., Elias, T., Lee, L., Kamibayashi, K., Antolik, L., and Werner, C.: An automated SO2 camera system for continuous, real-

time monitoring of gas emissions from Kı̄lauea Volcano’s summit Overlook Crater, Journal of Volcanology and Geothermal Research,

300, 81–94, doi:10.1016/j.jvolgeores.2014.12.004, 2015.30

Kraus, S.: DOASIS: A framework design for DOAS, Ph.D. thesis, Ph.D. Thesis, 2006.

Krueger, A., Stremme, W., Harig, R., and Grutter, M.: Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part

2: Wind propagation and emission rates, Atmospheric Measurement Techniques, 6, 47–61, doi:10.5194/amt-6-47-2013, 2013.

Kuhn, J., Bobrowski, N., Lübcke, P., Vogel, L., and Platt, U.: A Fabry-Perot interferometer-based camera for two-dimensional mapping of

SO2 distributions, Atmospheric Measurement Techniques, 7, 3705–3715, doi:10.5194/amt-7-3705-2014, 2014.35

Lopez, T., Thomas, H., Prata, A., Amigo, A., Fee, D., and Moriano, D.: Volcanic plume characteristics determined using an infrared imaging

camera, Journal of Volcanology and Geothermal Research, 300, 148 – 166, doi:10.1016/j.jvolgeores.2014.12.009, 2015.

30

http://dx.doi.org/10.1016/j.cviu.2015.02.008
http://stacks.iop.org/1742-6596/274/i=1/a=012083
http://stacks.iop.org/1742-6596/274/i=1/a=012083
http://stacks.iop.org/1742-6596/274/i=1/a=012083
http://dx.doi.org/10.5194/acp-15-5659-2015
http://dx.doi.org/10.5194/acp-15-5659-2015
http://dx.doi.org/10.5194/acp-15-5659-2015
http://dx.doi.org/10.20944/preprints201710.0085.v1
http://dx.doi.org/10.1016/j.jqsrt.2009.01.031
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1017/CBO9781107415324
www.climatechange2013.org
http://www.springer.com/br/book/9783662031742
http://dx.doi.org/10.1007/s00445-008-0260-8
http://dx.doi.org/10.1007/s00445-008-0260-8
http://dx.doi.org/10.1007/s00445-008-0260-8
http://dx.doi.org/10.5194/amt-3-733-2010
http://dx.doi.org/10.5194/amt-3-733-2010
http://dx.doi.org/10.5194/amt-3-733-2010
http://dx.doi.org/10.1016/j.jvolgeores.2013.06.009
http://dx.doi.org/10.1016/j.jvolgeores.2014.12.004
http://dx.doi.org/10.5194/amt-6-47-2013
http://dx.doi.org/10.5194/amt-7-3705-2014
http://dx.doi.org/10.1016/j.jvolgeores.2014.12.009


Lübcke, P., Bobrowski, N., Illing, S., Kern, C., Alvarez Nieves, J. M., Vogel, L., Zielcke, J., Delgado Granados, H., and Platt, U.: On the

absolute calibration of SO2 cameras, Atmospheric Measurement Techniques, 6, 677–696, doi:10.5194/amt-6-677-2013, 2013.

Lucas, B. D. and Kanade, T.: An iterative image registration technique with an application to stereo vision, in: In IJCAI81, pp. 674–679,

1981.

McElhoe, H. B. and Conner, W. D.: Remote Measurement of Sulfur Dioxide Emissions Using an Ultraviolet Light Sensitive Video System,5

Journal of the Air Pollution Control Association, 36, 42–47, doi:10.1080/00022470.1986.10466043, 1986.

McGonigle, A. J. S., Hilton, D. R., Fischer, T. P., and Oppenheimer, C.: Plume velocity determination for volcanic SO2 flux measurements,

Geophysical Research Letters, 32, doi:10.1029/2005GL022470, L11302, 2005.

Menze, M. and Geiger, A.: Object Scene Flow for Autonomous Vehicles, in: Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3061–3070, http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Menze_Object_Scene_Flow_2015_CVPR_10

paper.html, 2015.

Moffat, A. J. and Millan, M. M.: The applications of optical correlation techniques to the remote sensing of SO2 plumes using sky light,

Atmospheric Environment (1967), 5, 677–690, doi:10.1016/0004-6981(71)90125-9, 1971.

Mori, T. and Burton, M.: The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes, Geophys-

ical Research Letters, 33, doi:10.1029/2006GL027916, 2006.15

Peters, N., Hoffmann, A., Barnie, T., Herzog, M., and Oppenheimer, C.: Use of motion estimation algorithms for improved flux measurements

using SO2 cameras, Journal of Volcanology and Geothermal Research, 300, 58 –69, doi:10.1016/j.jvolgeores.2014.08.031, 2015.

Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy: Principles and Application, Springer, doi:10.1007/978-3-540-75776-4,

2008.

Prata, A. J. and Bernardo, C.: Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera, Atmospheric Measurement20

Techniques, 7, 2807–2828, doi:10.5194/amt-7-2807-2014, 2014.

Robock, A.: Volcanic eruptions and climate, Reviews of Geophysics, 38, 191–219, doi:10.1029/1998RG000054, 2000.

Salerno, G., Burton, M., Oppenheimer, C., Caltabiano, T., Randazzo, D., Bruno, N., and Longo, V.: Three-years of SO2 flux measurements

of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses and uncertainties in flux retrieval, Journal of

Volcanology and Geothermal Research, 183, 76 – 83, doi:10.1016/j.jvolgeores.2009.02.013, 2009.25

Schwartz, J.: Air Pollution and Daily Mortality: A Review and Meta Analysis, Environmental Research, 64, 36 – 52,

doi:10.1006/enrs.1994.1005, 1994.

Smithsonian-Institution: Global Volcanism Program, 2013. Etna (211060) in Volcanoes of the World, v. 4.5.6., Venzke, E (ed.)., Smithsonian

Institution, doi:10.5479/si.GVP.VOTW4-2013, 2013a.

Smithsonian-Institution: Global Volcanism Program, 2013. Guallatiri (355020) in Volcanoes of the World, v. 4.5.6., Venzke, E (ed.)., Smith-30

sonian Institution, doi:10.5479/si.GVP.VOTW4-2013, 2013b.

Stebel, K., Amigo, A., Thomas, H., and Prata, A.: First estimates of fumarolic SO2 fluxes from Putana volcano, Chile, using an ultraviolet

imaging camera, Journal of Volcanology and Geothermal Research, 300, 112–120, doi:10.1016/j.jvolgeores.2014.12.021, 2015.

Tamburello, G., Aiuppa, A., McGonigle, A. J. S., Allard, P., Cannata, A., Giudice, G., Kantzas, E. P., and Pering, T. D.: Periodic volcanic

degassing behavior: The Mount Etna example, Geophys. Res. Lett., 40, 4818–4822, doi:10.1002/grl.50924, 2013.35

Wigley, T. M. L.: Possible climate change due to SO2-derived cloud condensation nuclei, Nature, 339, 365–367, doi:10.1038/339365a0,

1989.

31

http://dx.doi.org/10.5194/amt-6-677-2013
http://dx.doi.org/10.1080/00022470.1986.10466043
http://dx.doi.org/10.1029/2005GL022470
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Menze_Object_Scene_Flow_2015_CVPR_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Menze_Object_Scene_Flow_2015_CVPR_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Menze_Object_Scene_Flow_2015_CVPR_paper.html
http://dx.doi.org/10.1016/0004-6981(71)90125-9
http://dx.doi.org/10.1029/2006GL027916
http://dx.doi.org/10.1016/j.jvolgeores.2014.08.031
http://dx.doi.org/10.1007/978-3-540-75776-4
http://dx.doi.org/10.5194/amt-7-2807-2014
http://dx.doi.org/10.1029/1998RG000054
http://dx.doi.org/10.1016/j.jvolgeores.2009.02.013
http://dx.doi.org/10.1006/enrs.1994.1005
http://dx.doi.org/10.5479/si.GVP.VOTW4-2013
http://dx.doi.org/10.5479/si.GVP.VOTW4-2013
http://dx.doi.org/10.1016/j.jvolgeores.2014.12.021
http://dx.doi.org/10.1002/grl.50924
http://dx.doi.org/10.1038/339365a0


Williams-Jones, G., Horton, K. A., Elias, T., Garbeil, H., Mouginis-Mark, P. J., Sutton, A. J., and Harris, A. J. L.: Accurately measuring

volcanic plume velocity with multiple UV spectrometers, Bulletin of Volcanology, 68, 328–332, doi:10.1007/s00445-005-0013-x, 2006.

32

http://dx.doi.org/10.1007/s00445-005-0013-x

