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Abstract. Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) 

for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud 

optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS-V6), cloud 10 

scattering and absorption are in the radiative transfer forward model, and AIRS single-footprint thermal infrared data are used 

directly rather than cloud-cleared spectra (which are calculated using 9 adjacent AIRS infrared footprints). Coincident MODIS 

cloud data are used for cloud a priori. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval 

from ~45 km to ~13.5 km at nadir, but as microwave data are not used, retrieval is not made at altitudes below thick clouds. An 

outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to 15 

AIRS-V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above 

clouds. Initial comparisions of temperature, water vapor and relative humidity profiles against coincident radiosondes show good 

agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed. 

1 Introduction 

An advantage of hyperspectral nadir measurement in the thermal infrared over the microwave is higher vertical resolution of 20 

retrieved temperature and water vapor. Operational instruments such as the Atmospheric Infrared Sounder on the EOS Aqua 

platform (AIRS; Aumann et al., 2003), the Infrared Atmospheric Sounding Instruments on Metop-A and –B (IASI; Blumstein et 

al., 2004), and the Cross-track Infrared Sounder on Suomi NPP (CrIS; Han et al., 2013) provide global radiance data for 

assimilation into weather forecasting and reanalysis models, and profile retrievals for process studies. Perhaps the largest 

complication for global retrievals (and assimilation) using infrared spectra is near-ubiquitous, highly variable cloud absorption 25 

and scattering in the instrument field-of-view (FOV). This is illustrated in Figure 1, which shows sample brightness temperature 

spectra observed by AIRS in nine adjacent footprints from Level 1b data (that is, radiance data calculated from the raw counts on 

the AIRS detectors). Most of the variation between the spectra is from differences in cloud-top temperature and cloud optical 

depth, and to a lesser extent, cloud particle radius as seen on the AIRS footprint. Two general approaches have been used in 

obtaining profile retrievals from cloudy infrared spectra. The first has been “cloud-clearing,” where the temperature and trace gas 30 

fields (including water vapor) are treated as constant across adjacent thermal infrared footprints, and only the cloud field varies. 

A Level 2 cloud-free infrared spectrum is calculated from these cloudy Level 1b spectra, and then used for profile retrievals over 

a larger field-of-regard (FOR) (e.g., Susskind et al., 2011.) Cloud-clearing simplifies (and speeds) calculations as the forward 

model does not incorporate scattering or absorption by clouds. However, by combining retrieval footprints and assuming 

constant non-cloud quantities, cloud-clearing can mask significant horizontal gradients, particularly in water vapor, which can 35 

have a much shorter horizontal length scale than temperature especially in low- and midlatitudes (e.g., Kahn and Teixeira, 2009).  
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The other approach that accounts for clouds is to include cloud absorption and scattering in a retrieval forward model. Advances 

in efficient cloud scattering algorithms and ever-increasing computing power hold the promise of incorporating explicit cloud 

effects in forward models for routine, operational retrievals. Several methods and software packages have been developed for the 

calculation of outgoing radiance in the presence of clouds: Optimal Spectral Sampling (OSS; Moncet et al., 2015), The 

Havermann-Taylor Fast Radiative Transfer Code (HT-FRTC; Havermann 2006), The Principal Component-based Radiative 5 

Transfer Model (PCRTM; Liu, 2005), Discrete Ordinate Algorithm for Radiative Transfer (DISORT; Laszlo et al., 2016), Vector 

Linearized Discrete Ordinate Radiative Transfer (VLIDORT; Spurr, 2006), the Community Radiative Transfer Model (CRTM; 

Han et al., 2006), the Radiative Transfer for the Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder 

algorithm (RTTOV; Saunders et al., 2013), the Standalone AIRS Radiative Transfer Algorithm (SARTA) coupled to the 

Parameterization of Clouds for Long-Wave Scattering in Atmospheric Models (PCLSAM) (SARTA Two-Slab; DeSouza-10 

Machado et al., 2017) and, as used in this work, SARTA + Delta-Four Stream (SARTA-D4S; Ou et al., 2013).  

While incorporating cloud effects usually makes for a more complicated and computationally expensive radiative transfer 

calculation, the horizontal resolution of retrieved species can be improved compared to cloud-cleared results. Several methods 

have been employed for direct use of cloudy infrared spectra in atmospheric retrievals. Among them are combining channel 

radiances into “super-channels” using empirical orthogonal functions (Liu et al., 2009), neural networks (Blackwell, 2005), and 15 

parameterization of frequency-dependent non-scattering optical depths (Kulawik et al., 2006a). Recently, DeSouza-Machado et 

al. (2017) presented an optimal estimation scheme using their SARTA Two-Slab forward model. Here we describe a new 

retrieval scheme, Optimal Estimation Retrieval System for AIRS (“AIRS-OE”) that can use the Level 1b radiances of single 

AIRS footprints, without cloud-clearing, for the retrieval of temperature profiles (Tatm), H2O volume mixing ratio profiles, skin 

temperatures (Tsfc), effective cloud optical depths over an AIRS field-of-view (τeff), cloud-top temperatures (Tcldtop) and effective 20 

particle radii (reff). CO2 and O3 profiles, while not the primary constitutents examined or validated here, are also retrieved to 

improve spectral fitting and temperature results. The goal is to improve the horizontal resolution of retrievals by using the less-

processed Level 1b AIRS infrared radiance (at ~13.5 km nadir horizontal resolution), rather than the ~45 km resolution Level 2 

cloud-cleared radiance produced by the currently-operational Version 6 (“AIRS-V6”) retrieval algorithm (Susskind et al., 2003; 

2014.) Additional differences of AIRS-OE from the current AIRS-V6 retrieval include:	
  25 

(1) Cloud optical depth, effective particle radius, and cloud-top temperature are now explicitly in the forward model, and 

are retrieved along with temperature and water vapor profiles. A priori cloud information for cloud retrieval is 

calculated from the MYD06 dataset of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, co-

located on the EOS-Aqua platform (Platnick et al., 2003, 2017).  

(2) For a priori temperature profiles, skin temperature and water vapor profiles, we use European Center for Medium-30 

Range Weather Forecasting (ECMWF) 6-hour analyses linearly interpolated by time and space to the AIRS observation, 

where the AIRS-V6 retrieval uses a neural network trained on AIRS radiances and ECMWF re-analyses (Blackwell, 

2005). Emissivity is retrieved in AIRS-V6. For AIRS-OE, emissivity is currently taken from monthly tables (over land) 

and formulae (over ocean) and not retrieved (see Sec. 3.2.3), although emissivity retrieval may occur in future versions. 
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(3) In a departure from the singular-value-decomposition technique of AIRS-V6, which does not use an a priori covariance, 

the new retrieval uses an optimal estimation scheme (e.g., Rodgers, 2000), similar to that of the nadir-sounding 

Tropospheric Emission Sounder (TES; Bowman et al., 2006).  

(4) Retrievals of atmospheric constituents are made simultaneously, rather than sequentially as in AIRS-V6.  

(5) AIRS-OE uses only the thermal infrared data from AIRS, and does not use ~45 km nadir resolution microwave data 5 

from the co-located Advanced Microwave Sounding Unit (AMSU). Profiles cannot be retrieved below IR-opaque 

clouds effectively covering a pixel. However, unlike AIRS-V6, temperature, water vapor etc. are not assumed to be 

uniform across the nine AIRS footprints in an AMSU field-of-regard (FOR).  

In this paper, we give a very brief overview of the AIRS and MODIS instruments, and outline the retrieval and the information 

content analysis. Some sample cloud property results are presented, and we show an intial comparison with near-coincident 10 

measurements by Cloudsat/CALIPSO. We then compare temperature, water vapor and relative humidity results to those of the 

operational AIRS-V6 retrieval, and with sets of near-coincident high quality radiosondes.  

2 Instrument and Spectral Data 

The Atmospheric Infrared Sounder (AIRS) instrument is a thermal infrared grating spectrometer, with 2378 channels  between 

3.7 and 15.4 µm.  In sun-synchronous, polar orbit on the EOS Aqua satellite, AIRS delivers approximately 2.9 million spectral 15 

observations every 24 hours. AIRS was designed for co-located measurements with the Advanced Microwave Sounding Unit 

(AMSU) microwave instrument, with nine AIRS observations (each with nadir horizontal resolution of ~13.5 km) in a 3 x 3 grid 

over a single AMSU observation with a nadir horizontal resolution of ~45 km (Aumann et al., 2003). AIRS was designed to 

provide global data on weather and climate processes, and is a key antecedent to the IASI and CrIS spectrometers.  

As noted, operational Level 2 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as a priori for 20 

cloud-top temperature, and during daytime observation, cloud optical depth and particle radius. Co-located with AIRS on EOS-

Aqua, MODIS observes in 36 spectral bands from 0.4 to 14.4 µm with horizontal resolutions (depending on band) ranging from 

250 m to 1 km at nadir. Details about the MODIS cloud optical properties in the MYD06 data set are found in Platnick et al. 

(2017). Prior to use, the MODIS cloud data are mapped and weighted over the AIRS footprint as described below in Sec. 3.2.2. 

3 AIRS-OE Retrieval overview 25 

Figure 2 shows a simplified block diagram of the AIRS-OE retrieval procedure. For convenience to the reader, blocks are 

annotated with the Section numbers of this paper where a more detailed description can be found. Input parameters are described 

below in Sect. 3.1 through 3.5. A brief description of the retrieval itself is in Sect. 3.6, followed by information content analyses 

(3.7) and quality control filters (3.8). 

3.1 Optimal estimation cost function  30 

The mathematical basis for optimal estimation retrievals is described by Rodgers (2000). Implementation is similar to that of 

TES (Bowman et al, 2006) with significant differences in the treatment of clouds. The retrieval algorithm minimizes the 

difference between an observed and a forward-modelled radiance, subject to a quadratic constraint, through the cost function: 

𝐶 = 𝐲 − 𝐅(𝐱,𝐛) 𝐒ℇ!! 𝐲 − 𝐅(𝐱,𝐛) !! + 𝐳 − 𝐳! 𝐒!!! 𝐳 − 𝐳! !! (1) 

where:  35 

y is the vector of measured radiances, 
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F(𝐱, b) is the forward-model radiance, 

𝐱 is the “full” state vector, described below,  

b contains additional variables needed (but not retrieved) and observational metadata (e.g., scan angle) for calculating 

radiances, 

𝐳 is the “retrieval” state vector, described below, 5 

𝐳! is the a priori retrieval state vector,  

 𝐒ℇ!! is the inverse radiance noise covariance, and 

𝐒!!! is the inverse covariance of the a priori 𝐳! . 

(Note that we accent a retrieved quantity with a caret, e.g., 𝐳, to distinguish it from the “true” quantity, z.) The measurement error 

covariance, 𝐒ℇ, contains the radiance noise error covariance from the instrument. It can also contain other random radiance error 10 

sources, such as those from forward model calculations, although these have not been included in this study. We discuss the 

measurement error covariance used below in Sec. 3.3. The a priori state vector, 𝐳!, is also the first guess in a retrieval. The full 

state vector, 𝐱, has as many elements for each retrieved profile constituent (Tatm, H2O, O3 and CO2) as there are layers in the 

forward model at or above ground, plus those for retrieved scalar quantities, Tsfc, Tcldtop, τcld and reff. There are a maximum of 100 

layers filled in our forward model from the surface upwards, on its fixed pressure grid with level pressures from 1100 to 0.1 mb 15 

(as described in Strow et al., 2003). The pressure layers are constructed as the log-mean of the upper and lower pressures levels:  

𝑃!"#$% =
!!!!!

!" !! !!
 (2) 

Following Bowman et al. (2006), the forward-model layer gridding must be fine enough for calculation of the observed radiance, 

but is usually much finer than the vertical resolution of a retrieved profile. The retrieval state vector, z, has a reduced number of 

layers, which varies by constituent, to reflect a lower vertical resolution. (A maximum 42 layers are retrieved for Tatm, 28 for 20 

H2O, 10 for CO2 and 9 for O3.) The retrieved state vector, 𝐳, is mapped to the full state vector, 𝐱 when the forward model is 

called to calculate a radiance: 

𝐱 = 𝐌𝐳 (3) 

In our retrieval, the matrix M performs a piecewise linear interpolation by log pressure from the lower number of layers in 𝐳 to 

the higher number of layers in 𝐱. For gas profiles, τcld, and reff, logarithmic quantities are used in the state vector to ensure that 25 

their linear values always remain positive as input to the forward model during retrieval iterations. Retrievals for Tatm, Tsfc, and 

Tcldtop are linear quantities. The state vector thus usually contains both linear and logarithmic elements. Description and 

determination of the different elements of the cost function are described in the sections below. 

3.2 A priori information 

3.2.1 Temperature profile, water vapor, surface temperature, ozone and carbon dioxide 30 

Initial guess profiles for Tatm, H2O, Tsfc, and surface pressure (the latter remaining fixed during the retrieval) are derived from 

ECMWF analysis data, at 0.25° and 6 hour resolution, linearly interpolated in time and space to that of the observed footprint, 

with vertical profiles linearly interpolated by the logarithm of the retrieval pressure gridding. Initial O3 profiles are calculated 

from the climatology of McPeters et al. (2007). A priori CO2 profiles are calculated by formulae developed by G. C. Toon 

(personal communication), and are similar to those used by the Total Carbon Column Observing Network (Wunch et al., 2011). 35 
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3.2.2 MODIS cloud a priori information and mapping to AIRS footprint 

For a priori data on Tcldtop, τcld and reff in each AIRS observation, weighted averages of MODIS Level 2 data are made over the 

AIRS spatial response function (SpatialRF). An average AIRS SpatialRF is first calculated for the observation (see Schreier et 

al., 2010). The SpatialRF varies by scan angle and spectral channel, and we make a simple average of the SpatialRF using only 

the channels used in the retrieval. Using formulae described by Pagano et al. (2015), the spatial response is mapped over the 5 

target scene with an approximate resolution of 0.5 km at nadir. MODIS data from the MYD06_L2 (Aqua) product are then 

mapped in the vicinity of the AIRS observation. These data have a horizontal resolution of about 1 km at nadir. The mapped 

AIRS SpatialRF is then spatially interpolated onto this MODIS horizontal mapping, and normalized to sum to unity.  

Once the AIRS and MODIS footprints are colocated, MODIS retrieval fields for (1 km) cloud-top temperature, cloud optical 

thickness, and cloud effective radius are extracted and mapped (as data are available). Figure 3 illustrates a sample MODIS 10 

Tcldtop, τcld and reff field overlaid by the AIRS SpatialRF. Weighted averages and weighted standard deviations of the MODIS 

Tcldtop and reff are then calculated on the interpolated AIRS SpatialRF, excluding MODIS cloud-free pixels. Calculations are 

similar for τcld, except cloud-free pixels are included in the averaging calculation as having an optical depth of zero. From the 

MODIS Cloud_Mask_1km field, we extract and similarly map the cloud mask status (0 = undetermined, 1 = determined), cloud 

mask cloudiness (0 = confidently cloudy or fill if status flag = 0, 1 = probably cloudy, 2 = probably clear, 3 = confidently clear) 15 

and thin cirrus flags (0 = yes or fill if status flag = 0, 1 = no). The weighted averages of these flags over the AIRS scene are used 

to decide (a) if the scene is clear, (b) a cirrus cloud too thin for a confident MODIS retrieval of its cloud-top temperature is in the 

scene, but retrieval by AIRS should be attempted using an assumed cloud-top temperature a priori, or (c) retrieval in a cloudy 

scene will be attempted using the averaged MODIS cloud data as a priori. We categorize AIRS scenes as clear, thin cirrus, or 

cloudy (noting that MODIS does not report τcld and reff at night), and set a priori cloud data accordingly. We describe the criteria 20 

for these bins in turn, and the cloud a priori selected for them. 

Clear 

An AIRS scene is treated as clear if  

(a) the average for the Cloud Mask Status Flag is greater than 0.95, and 

(b) the average Cloud Mask Cloudiness is greater than 2.5, and 25 

(c) the average Thin Cirrus Flag is greater than 0.9. 

In this case, no cloud information is in the retrieval or full state vector, and the retrieval algorithm goes directly to retrieve Tatm, 

Tsfc, H2O, O3 and CO2. 

Thin cirrus daytime and nightime 

A scene is considered to have thin cirrus but of unknown temperature if the average Thin Cirrus Flag is ≤ 0.9 and either the 30 

following are true: 

 (a) Cloud-top temperature cannot be calculated because of missing values, or 

 (b) both average cloud mask status > 0.95 and Cloud Mask Cloudiness > 2.8. 

In this case, we assume a default a priori Tcldtop of 230K. For daytime scenes, the initial τcld is set to 0.1. For nightime, the initial 

optical depth thickness is set to 1. For both day and night, we set the initial reff at 40 µm. 35 

Cloudy scenes daytime and nighttime 

A scene is treated as cloudy (ice or water cloud) if the weighted average of the MODIS cloud-top temperature on the AIRS 

footprint can be calculated.  The result is used as the a priori Tcldtop.  If τcld can be calculated, it is used as the a priori, but is set to 
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no less than 1x10-3. If a τcld cannot be calculated during daytime, then the a priori τcld is set to 1x10-3. (This lower limit was set to 

examine retrieval sensitivity for τcld, which can depend not only on the true τcld itself, but also the thermal contrast with the 

ground. Initial tests indicate that the lower limit for any sensitivity to τcld is ~0.005.) At nighttime, the a priori τcld is 1. If the 

weighted average of the MODIS reff can be calculated, it is used as the a priori. If the average cannot be calculated, or if it is 

nightime, the default reff is 40 µm. Lookup tables for cloud absorption and scattering parameters had a particle radii range from 5 5 

to 85 µm; reported cloud absorption and scattering parameters outside this range rely on extrapolated parameters, and results 

may not be reliable. 

3.2.3 Emissivity  

Wavelength-dependent surface emissivities are input as fixed parameters, and are not retrieved or modified; this may be revised 

in future versions of AIRS-OE. For ocean emissivity, we use the National Center for Environmental Prediction – Environmental 10 

Modeling Center (NCEP/EMC) Infrared Sea Surface Emissivity (IRSSE) formulae and coefficients (van Delst, 2003), calculated 

for channel frequency, view angle and wind speed, with the latter estimated from the ECMWF analysis (described above). Land 

emissivity is from the Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin - Madison Global 

Infrared Land Surface Emissivity Database (Seemann et al., 2007). These are monthly maps of land emissivity at 10 wavelengths 

from 3.6 to 14.3 µm, gridded spatially by 0.05°. This spatial gridding is smaller than the AIRS footprint, so we spatially 15 

interpolate the emissivity to the coincident MODIS gridding (described in Sect. 3.1.2 and as illustrated in Fig. 3). If the target 

scene is a mixed land/ocean surface, we calculate the ocean emissivities (as above) and use them to fill in the ocean parts of the 

MODIS grid. With the emissivities at the 10 wavelengths on the MODIS gridding, the AIRS SpatialRF is used to calculate 

weighted averages. Emissivities for each AIRS retrieval channel are then calculated by interpolation by wavelength from these 

weighted averages. As the emissivitity database does not extend prior to calendar year 2003, we (arbitrarily) use the data from 20 

2003 for observations made in 2002.  

3.3 A priori covariances 

In this initial evaluation of the retrieval described here, a priori covariances (Sa in Eq. 1) are listed in Table 2. The covariances 

are ad hoc, but guided by previous experience with AIRS and TES retrievals. We recommend caution in applying resultant 

errors, although they may still be useful in comparing results between retrievals. Note that H2O, O3, CO2, τcld and reff are 25 

retrieved as loge quantities, and the covariances of their logarithms are used.  

Off-diagonal elements of the covariance matrices are created using assumed length scales: 

𝜎!"! = 𝜎!𝜎!exp −
𝑧! − 𝑧!
𝑙

 

 (4) 

where: 

𝜎!"!  is the off-diagonal covariance for layers i and j, 30 

𝜎! ,𝜎! are the square roots of the on-diagonal covariances, 

zi, zj are the estimated altitudes, and 

l is the assumed length scale. 
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The off-diagonal length scale for temperature and water vapor was kept low (0.5 km) as this tended to reduce unrealistic 

retrievals at layers below clouds from adversely affecting retrievals above clouds. (This is discussed further in Sect. 3.9 below.) 

Covariance matrices are calculated individually for each constituent and then “stacked” into a larger matrix for use in the 

simultaneous retrieval. At present, we are not using covariances between constituents (say, between temperature and water 

vapor), but this will be investigated for use in later versions.  5 

Measurement error covariance (𝐒ℇ in Eq. 1) is taken directly from the radiometric noise reported in the AIRS Level 1b product 

(see Pagano et al., 2003). This is reported channel-by-channel, without correlations between them. For this study, 𝐒ℇ is a 

diagonal matrix, and we have assumed the noise to be uncorrelated across channels, Gaussian, and not scene-dependent. A study 

by Tobin et al. (2007), using Principle Component Analysis on AIRS radiance data, showed the contribution from correlated 

error can be significant depending on the detector array on the AIRS focal plane. (See also Pagano, 2002.) Channel radiance 10 

error can be dependent on the channel radiance in the shortwave above ~2200 cm-1, but these channels are not used in this study. 

Only a minor dependence of the radiance error on channel radiance is observed in the midwave (~1200 to 1700 cm-1) and there is 

effectively no dependence for channels below ~1200 cm–1. Channels exhibiting non-Gaussian “popping” are flagged, and 

excluded from analysis of an observation (see Weiler et al., 2005).  

As noted above in Sec. 3.1, random errors in the calculated radiances from the forward model (briefly described below in Sec. 15 

3.4) are not added into the measurement error covariance as used in this study. The random errors from the “non-cloudy” part of 

forward model may be smaller than the noise error from the AIRS instrument for most channels (see, for example, Fig. 2 in 

DeSouza-Machado et al., 2017), but significant random error may be introduced from the calculation of the cloud absorption and 

emission, and these require further investigation. It is planned that future versions of the algorithm will include estimates of the 

random error from the forward model, and the correlated (that is, off-diagonal) parts of the radiometric noise covariance. 20 

3.4 Forward model 

The forward model is the Standalone AIRS Radiative Transfer Algorithm (SARTA) (Strow et al., 2003; 2006), supplemented 

with a delta-four-stream (D4S) calculation for cloud transmissivity (Ou et al., 2013). This joint SARTA+D4S forward model has 

been used to retrieve ice cloud parameters from single-footprint AIRS observations (Kahn et al., 2014), and of three forward 

models tested, using SARTA+D4S produced the lowest biases in temperature and water vapor compared to coincident sondes in 25 

clear scenes. Here, we use this model to additionally retrieve water cloud properties. For ice clouds, scattering parameters are 

from Baum et al. (2007). For water clouds, we use Mie scattering parameters calculated using formulae from Mishchenko et al. 

(2002).  

Within the SARTA+D4S forward model, SARTA calculates the cloud-free gaseous transmissivities for each pressure layer and 

retrieval channel given the temperature and gas profiles, emissivity, scan angle, etc. The D4S code calculates the cloud 30 

transmissivities for retrieval channels given a cloud-top temperature, optical depth and particle size. As each pressure layer in the 

forward model is assumed homogeneous, the gaseous transmissivity for each channel is multiplied with that of the cloud to 

produce a combined transmissivity within a single layer. Note that this assumes the cloud can be modelled to “fit” in one vertical 

layer, no matter how thick the cloud. The forward model layer selected for this is the tropospheric layer, lowest in pressure, with 

an atmospheric temperature higher than or equal to the cloud-top temperature (or the next lower-pressure layer if there the 35 

absolute difference between the cloud-top temperature and the layer temperature is less).  

Only cirrus parameters are used at cloud-top temperatures below 253.15 K, while only Mie cloud parameters are used at 

temperatures above 273.15 K. Between these temperatures, we use a sliding weight between Mie and cirrus-derived cloud. This 

approach may overestimate the amount of ice occurrence as the majority of cloud tops within the temperature range of mixed 
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phase and supercooled clouds (233 - 273 K) is mostly liquid according to lidar estimates of phase (e.g., Hu et al., 2010). This 

transition of phase was tested by changing the lower boundary of this “mixed phase” range in the retrieval from 253.15 K to 

233.15 K, and reprocessing a test granule (#44, Sept. 6, 2002, described below). Changes were scattered and isolated in retrieved 

Tatm, H2O and relative humidity (the calculation of which is described in Sec. 3.7.3), and were largest in the boundary layer, with 

about 7% of retrieved relative humidities changing by more than ±5% at ~900 mb. For clouds where the MODIS-derived a priori 5 

cloud-top temperature was less than 273.15 K, about 9% of Tcldtop changed by more than ±5 K, and 24% of τcld changed by more 

than ±10%. However, at low to moderate optical depths (≲ 1) these changes tended to happen in regions where there was a high 

standard deviation in the MODIS-derived average cloud-top temperature over the AIRS FOV (> 20 K), which is more likely to 

contain a mixture of ice-only, liquid-only and mixed-phase clouds. Put simply, the clouds in such scenes are more complicated to 

model, and more investigation is warranted. 10 

This forward modelling of temperature, trace gases and cloud properties, while computationally fast, is best suited for optically 

and geometrically thin clouds, and may not be well suited for thick clouds, or where significant cloud formations occupy 

different heights within an AIRS pixel. In this initial effort, these scenes often, but not always produce retrievals with poor 

spectral fits (described below in Sections 3.7.4 and 3.8) and are filtered out in quality control. We discuss possible ways to 

improve the forward modelling of clouds in Sec. 6., but we note here that in future versions it may be useful to include an 15 

“effective Mie cut-off temperature” as a retrieved parameter in the state vector. Put another way, minimization of the cost 

function, Eq. 1., would be used to modify the temperature range of the transition from supercooled water to ice clouds. This may 

more effectively model clouds that contain a mixture of cirrus and supercooled water droplets.  

3.5 Retrieval channels 

Table 2 lists the spectral channels used in AIRS-OE retrievals. This channel list is similar to that for AIRS-V6, except only 20 

longwave channels were used (< 1650 cm-1). We found that using channels in the shortwave region of the AIRS bandpass would 

often result in retrievals not converging, or producing unrealistic retrieval quantities. This may be partly related to the shortwave 

channel radiance noise error being too low in scenes where the radiance was high, as described above in Sec. 3.3, with the 

algorithm failing to “fit” the calculated spectrum within the underestimated noise of these channels. This also may be related to 

errors in calculating outgoing radiation from reflected sunlight, which remains a challenge in the near-infrared, particularly in 25 

cloudy scenes because of uncertainties in the scattering/absorption ratio (Nakajima and King, 1990; Nakajima et al., 1991).  

For O3, we do not use the 9.6 µm band as its inclusion often results in a failure for the retrieval to converge. (As noted by 

Kulawik et al. (2006b) for the TES retrieval, difficulty in finding a global minimum can happen when retrieving all species at 

once.) However, including ozone in the retrieval (through its weak absorption within the 14 µm CO2 band) but not including the 

strong 9.6 µm band improves the overall fitting, with fewer failed retrievals. Comparisons of H2O and Tatm with validation 30 

measurements also improves (not shown). We therefore retrieve O3 only as an “interferent” gas solely to improve the fitting 

within the 14 µm CO2 region, and these O3 retrievals are not recommended for further study. 

3.6 Retrieval by minimization of cost function 

After setting the different elements of the cost function (Eq. 1) as described above, the retrieval is performed by iteratively 

minimizing the cost function by modifying the retrieval state vector 𝐳  with a combination Gauss-Newton/Levenberg-Marquardt 35 

solver. Formulae are described by Bowman et al. (2006), applying the algorithm of Moré (1977). (See also Sarkissian, 2001.)  

A simultaneous retrieval of τcld, Tcldtop, reff, Tsfc, Tatm, H2O, O3 and CO2 is made.  Convergence tests are as described in Sect. 

IV.B(2) of Bowman et al. (2006), setting the threshold value, ε, of 0.2. If a given retrieval cannot converge within a specified 
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number of iterations, or both the level 2 norm of the trust region (“Δ” in Moré, 1997) and linearity measure (“ρ”) within the 

Levenberg-Marquardt solver fall below 10-3, the algorithm is halted and flagged as non-convergent. Converged retrievals are 

analysed for information content and quality-control (QC) checked as described below. 

3.7 Information content and error estimation 

3.7.1 Averaging kernels 5 

We assume that the retrieval is nearly linear in the vicinity of the solution, although we caution we have not formally evaluated 

this assumption. The Jacobian is defined as the matrix of derivatives of the outgoing radiance to changes in each element of the 

state vector,  

𝐊! =
∂F(x,  b)
∂z

= !𝐅(𝐌𝐳,𝐛)
!𝐳

 (5) 

and is calculated by finite difference for each retrieval iteration. The gain, 𝐆!, is a measure of the sensitivity of the retrieval, 𝐳, to 10 

changes in the radiance: 

𝐆! =
!𝐳
!𝐅
= 𝐊!

!𝐒!!!𝐊! + 𝐒!!! !!𝐊!
!𝐒!!! (6) 

The gain is multiplied by the Jacobian to produce the averaging kernel matrix, A, which is a measure of the sensitivity of the 

retrieval vector, 𝐳, to changes in the true state, z: 

𝐀 = !𝐳
!𝐳
=    !𝐳

!𝐅
!𝐅
!𝐳
= 𝐊!

!𝐒!!!𝐊! + 𝐒!!! !!𝐊!
!𝐒!!!𝐊! (7) 15 

This is a square matrix dimensioned n × n, where n is the number of elements of the state vector, and as described below, is 

useful in calculating the error covariance of the retrieval. Each element of the averaging kernel matrix is a measure of the 

sensitivity for one retrieved member of a state vector (z!) to the changes in the true value of that member (z!), or to the true 

value of a different member (z!). That is, 

 20 

A!,! =
!!!
!!!

 (8) 

Figure 4 shows a sample averaging kernel from a simultaneous retrieval taken during daytime September 6, 2002 at 18.1°N, 

133.8°E, over the Pacific Ocean south of Japan (within the same granule depicted in Fig. 1 of Kahn et al., 2014). A thin cirrus 

cloud is retrieved with a Tcldtop equal to 220 K (~155 mb) and a τcld of 0.42. The axes indicate the retrieval pressure layers for 

each constituent, and are not set on a regular altitude or pressure scale. Tatm, Tsfc and Tcldtop are retrieved as linear quantities, but 25 

H2O, O3, CO2, and τcld and reff are retrieved as their natural logarithms and their partial derivatives are reported as such. Note that 

the color scale is restricted to emphasize the weaker sensitivities. The diagonal of the averaging kernel indicates the sensitivity of 

a constituent to changes of its true self, while (as will be seen) off-diagonals (within the same constituent) have information on 

the vertical resolution of the retrieval.  

A row of the averaging kernel contains measures of the sensitivity of a single element of the state vector to changes in the true 30 

values of itself and other elements. Note how in this retrieval, looking across the row for Tsfc, the retrieved surface temperature 

can be sensitive to changes (and errors) in the true surface temperature itself, the lower tropospheric temperature profile, and the 

cloud-top temperature. There is little to no sensitivity to changes in H2O, CO2, and O3. By contrast, most rows for CO2 indicate 

retrieval sensitivity to changes in its true self and also changes in all other retrieved constituents.  
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A column of the averaging kernel contains measures of the sensitivity of the entire retrieval state vector to changes in a single 

true state vector element. For example, looking up the Tsfc column, all constituent retrievals are affected somewhere (even if only 

weakly) by sensitivity to changes in the true surface temperature. By contrast, looking at the columns for CO2, changes in the 

true CO2 tend to affect the retrieved CO2 but not other constituents.  

The averaging kernel can be subdivided to provide sensitivity data on scalar values (e.g., Tsfc and individual cloud properties), or 5 

sensitivity and vertical resolution for individual profiles. Figure 5 shows the retrievals, individual averaging kernels and ancillary 

information for the Tatm and H2O profiles (using the parts of the averaging kernel matrix that are 𝜕𝐓!"#/𝜕𝐓!"# and 𝜕𝐥𝐧  [𝐇𝟐𝐎]/

𝜕𝐥𝐧  [𝐇𝟐𝐎], respectively.) The leftmost panel shows the a priori and retrieved temperature profile, along with the estimated error 

(discussed below). For clarity, the error is shown as a separate line (with a separate axis) rather than an error bar. The second 

panel shows the rows of the Tatm averaging kernel, along with its row sums. An averaging kernel can be examined to better 10 

understand the sensitivities of the measurement and retrieval. Note, for example, that the temperature averaging kernel rows are 

comparatively low in the boundary layer (≳ 750 mb), indicating lowered sensitivity to changes in the true temperature, but 

sensitivity increases at altitudes above this in the free troposphere.  These changes in sensitivity affect the error (in the leftmost 

panel) which reaches a minimum in the region about 380 mb. The row sum of an averaging kernel row is a rough, but useful 

indicator of how much a retrieval relies on the data for its results (see Sec 3.1.5 of Rodgers, 2000). A row sum near unity 15 

indicates that the retrieval at that layer relies mostly from the observed spectral data, while a value near zero indicates mostly 

reliance on the a priori.   

While the row sums are indicative of how much information came from the observation, they do not indicate vertical resolution. 

Indeed, a visual inspection of the temperature averaging kernel rows in the left panel of Figure 5 shows that while the row sums 

are high in the region between about 300 to 100 mb, the widths of the peaks are much broader than those below at higher 20 

pressures. To estimate vertical resolution, we use a simple full-width-at-half-maximum calculation for each averaging kernel 

row, using a Gaussian fit and assuming a 7 km scale height in converting pressure to altitude. (Other approaches are described in 

Ch. 3.3 of Rodgers, 2000.) From this fitting approach, shown in the third panel of Figure 5, the vertical resolution is about 1 to 

1.5 km from the ground to about 300 mb, above which the resolution of the Tatm retrieval quickly degrades. The fitting approach 

used here is not useful at pressures less than about 200 mb where the rows of the Tatm averaging kernel become much flatter, and 25 

can be double-peaked when crossing the tropopause. 

The right three panels of Figure 5 show the H2O a priori, retrieval and error, averaging kernel with row sums, and estimated 

vertical resolution. (As the logarithm of the H2O volume mixing ratio is retrieved, the upper and lower errors of the retrieval in 

linear space are slightly different. They are shown as separate lines rather than error bars for clarity.) As with Tatm, the averaging 

kernel at pressures greater than 750 mb indicates lower sensitivity in the boundary layer. Sensitivity improves and is fairly 30 

constant between 750 mb up to about 200 mb, above which sensitivity decreases and effectively disappears at 100 mb. The 

rightmost panel of Figure 5 shows the approximate vertical resolution. The “flattened” averaging kernels near the boundary layer 

leads to a local maximum in the vertical resolution of ~3.5 km is seen at about 800 mb, but the averaging kernel rows become 

more sharply defined at lower pressures. This improved definition is reflected in the vertical resolution, which is about 1.8 km at 

700 mb, and steadily increases above to a maximum of 4.3 km at 175 mb. 35 

Note for an AIRS retrieval, an averaging kernel is scene dependent. Sensitivities at different layers depend on the amounts of 

trace gases present, the temperature lapse rate, the particulars of the cloud field, the view angle, and the spectral channels 

employed. Scene dependence has been noted in studying averaging kernels and vertical resolution from the (Version 5) AIRS 

operational results (Maddy and Barnet, 2008.) Since the AIRS-OE retrievals are simultaneous and not sequential, the averaging 
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kernel describes dependencies within and between retrievals of different constituents, and can be used to more robustly calculate 

uncertainties as described below.   

 3.7.2 Error estimation 

The smoothing error covariance measures the uncertainty in the fine structure of the retrieval due to the measurement’s limited 

vertical resolution. However, as we have an averaging kernel from a joint retrieval, the smoothing error also indicates how the 5 

uncertainty in one retrieved constituent affects the uncertainty in another:  

𝐒! = 𝐀 − 𝐈! 𝐒! 𝐀 − 𝐈! ! (9) 

(See Sect. V(B) of Bowman et al., 2006, and Sections 3.4 and 4.1 of Rodgers, 2000.)   

The retrieval noise error covariance calculates the impact of the radiance noise on the retrieval: 

𝐒! = 𝐆!𝐒!𝐆!! (10) 10 

Again, as noted in Sec. 3.3 and as used here, 𝐒! is a diagonal matrix; future versions of the retrieval will include off-diagonal 

components and estimates of the forward model random error to more accurately reflect the error covariance. With substitutions, 

these terms can be added to provide the covariance of the maximum a posteriori solution: 

𝐒 = 𝐊!
!𝐒!!!𝐊! + 𝐒!!! !! (11) 

with the square roots of the diagonal reported as errors for the state vector. Note also that the total retrieval error does not include 15 

any systematic errors from the forward model (e.g., those due to instrumental lineshape errors, spectral biases or other errors that 

are correlated across observations), although we note the SARTA model is “tuned” to better match outgoing radiances as 

calculated from coincident measurements and analyses (see Strow et al., 2006). We again emphasize that since our a priori 

covariances are ad hoc, caution should be observed in using the reported errors. 

For this initial version of our algorithm, we have not implemented code to calculate the model parameter error, which contains 20 

the uncertainty from parameters affecting the retrieval, but are not retrieved themselves (e.g., surface pressure, emissivity, scan 

angle, etc.):  

𝐒!" = 𝐆!𝐊!"#$%𝐒!,!"#$% 𝐆!𝐊!"#$%
! + 𝐆!𝐊!"#$𝐒!,!"#$ 𝐆!𝐊!"#$

! +⋯  (12) 

In this case, the total retrieval error covariance would be the sum of Eqs. (11) and (12): 

𝐒!"! = 𝐒 +   𝐒!" (13) 25 

The addition of the model parameter error (Eq. 12) is planned for future development.  

For constituents retrieved in logarithmic space, the error reported for the i’th element, 𝜖!, is the error in the logarithm of the 

retrieved value, 𝐳!, with the range [lower, upper] of the retrieval in linear space being: 

exp 𝐳! − 𝜖! , exp 𝐳! + 𝜖!  (14) 

3.7.3 Calculation of Relative Humidity and Error 30 

In calculating relative humidity (RH), we use the layer retrievals of temperature and water vapor. Eqs. (2.5) and (2.21) of 

Wagner and Pruß (2002) are used to determine saturation pressures of water vapor over liquid and ice. At temperatures between 

253.15 and 273.15K, we set saturation pressure as a sliding-scale weighted average of those over ice and over water. The relative 

humidity error calculation uses recalculated RHs adding the errors from the temperature and (separately) the positive, linear 
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value of the water vapor error (the right-hand side of Eq. 14). We report the relative humidity uncertainty as the root-sum-of-

squares of the differences between these re-calculated relative humidities and the reported values. 

3.7.4 Chi Square Fitting Parameter 

The chi square fitting parameter, 𝜒!, is a goodness-of-fit statistic of how well a spectrum’s radiance is fitted within the bounds of 

the radiance error:  5 

𝜒! = !
!

𝐲!!   𝐅 𝐱,𝐛 !
!!

!
!
!!!                  (15) 

where N is the number of channels, and 𝜀! is the radiance error in channel i. A 𝜒! ≫ 1 indicates a poor spectral fit to the 

observed radiance. While the 𝜒! does not directly enter into the error characterization, it is used in quality control as described 

below. 

3.8 Quality control (QC) filtering 10 

Retrievals that do not meet the following three criteria are filtered out: 

1. Normal convergence within the maximum specified number of iterations, 

2. Chi square fitting parameter, 𝜒! < 3, and  

3. Retrievals in layers with Tatm > (Tcldtop – 10 K) require a surface temperature averaging kernel > 0.6. 

The first criterion is to avoid waste of computational resources on poorly- or non-converging retrievals. The second criterion is to 15 

avoid reporting profiles with poor spectral fits. This often happens under ice cloud conditions when the cloud optical depth is 

high (≳  20); it’s likely that the radiative transfer is incorrectly calculated because a cloud is assumed to “fit” in one vertical 

model layer while in reality, thick clouds extend over many model layers. Poor spectral fits can also often occur when there was 

a high standard deviation, ≳  20K, of the MODIS 1 km cloud-top temperature weighted over the AIRS spatial response function. 

Again, we suspect that this poor fitting is from limitations in our forward model which is limited to one cloud layer; the radiative 20 

transfer calculation can be inadequate when there were several cloud tops at different temperatures within the AIRS footprint. 

The third criterion is a means to remove layers of a profile that have unphysical values of the relative humidity calculated from 

the retrieved temperature and water vapor; these are usually in or near the boundary layer. We again note that a cloud’s 

transmissivity is incorporated in only one layer of the forward model vertical pressure grid, no matter how thick the cloud. We 

hypothesize that this can lead to erroneous outgoing radiances for temperature and water vapor channels in regions at or below 25 

moderately thick clouds, which in turn, produces erroneous Jacobians and averaging kernels. However, surface temperature 

retrievals appear to more correctly give a low-to-zero averaging kernel under moderate-to-thick cloud optical depths. We 

therefore require that retrievals at layers below clouds must “see” the surface (determined by the Tsfc averaging kernel having a 

minimum of 0.6). For retrievals above clouds where the surface temperature averaging kernel is less than 0.6, an additional 

thermal contrast provided by 10 K buffer between the cloud top and the lowest profile layer to pass quality control eliminates 30 

more unphysical retrievals. Most, but not all of the retrievals that produce unphysically high relative humidities are eliminated by 

this method, usually in the boundary layer. 
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4 Results   

For initial examination of cloud, temperature and H2O profile retrievals for this effort, we use results of an AIRS daytime granule 

(#44) over the subtropical western Pacific Ocean from September 6, 2002. This is the same granule examined and discussed in 

detail by Kahn et al. (2014) for AIRS-V6 cloud products. This granule has a large mix of cloud types and weather regimes, 

including a tropical cyclone to the west, and a mix of low and mid-level clouds from the center to the east and to the south. For 5 

an AIRS granule, there are 90 observations on the cross-track, and 135 observations along-track. Here, the yield of retrievals 

passing quality control for at least some layers is ~56% of 12150 observations. In the following sub-sections, we compare our 

results to those of different algorithms operating on the same scenes. “MODIS-avg” retrievals are from the MODIS 1 km pixels 

(MYD06 dataset) in a weighted average over the AIRS SpatialRF, as described above in Sect. 3.2.2. 

4.1 Cloud-top temperature, effective cloud optical depth, and effective cloud particle radius  10 

Figure 6 displays cloud-top temperatures (Tcldtop), effective optical depths (τeff), and effective particle radii (reff) from the a priori 

(left column) and AIRS-OE retrievals (center column) from the granule described above, along with retrieval averaging kernels 

(right column). With few exceptions, the a priori are generated from co-located MODIS-avg retrievals. Retrieved quantities have 

similar fields to their a priori. As indicated by the averaging kernels, sensitivity is enhanced for ice clouds, which is likely 

because of the higher thermal contrast with the surface. For all clouds as they get thicker, their infrared radiation is more 15 

dominant in the window channels, producing a more confident retrieval. An examination (not shown) indicates that the Tcldtop 

averaging kernels reach ~0.5 at cloud optical depths of about 0.4 for ice clouds, and between 1 and 2 for water clouds. (An 

averaging kernel of 0.5 indicates that roughly half the information of the retrieval is from the spectral data and half is from the a 

priori.) We do note, however, that the retrievals can fail quality control at or near the thick center of the cyclone, likely for 

reasons described in Sect. 3.4. 20 

4.2 Comparison with CloudSat/CALIPSO 

We make an additional “snapshot” comparison with (multilayer) cloud observations by the combined CloudSat cloud profiling 

radar (Stephens et al., 2002) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satllite Observations lidar (CALIPSO; Winker 

et al., 2007), using the 2B-CLDCLASS-LIDAR product (Wang et al., 2013). Figure 7 compares AIRS-OE cloud-top retrievals 

against near-coincident CloudSat/CALIPSO (CsC) observations, using the same date and region as in Figure 2 of Wang et al. 25 

(2016), who compared MODIS cloud classifications and CsC profiles. (As did Wang et al. (2016), the horizontal axis is ordered 

by decreasing latitude.) The upper two panels show AIRS-OE cloud optical depths and cloud-top temperatures from a daytime 

July 31, 2009 swath over the Pacific (latitude on the horizontal axis) with the CsC transect overlaid. The third panel shows the 

vertical extent of the clouds from CsC (in grey). Superimposed are the approximate cloud-top altitudes of the QC-passed AIRS 

observations (no more than one per AIRS cross-track) closest to the CsC transect. (Note that the distance between the center of 30 

an AIRS observation and the closest CsC observation can be up to 7.5 km). The AIRS observations in this panel are colored by 

the AIRS-OE retrieved cloud optical depth. The bottom panel again shows the CsC cloud layer and AIRS-OE cloud-top 

altitudes, but colored by the AIRS-OE cloud-top temperature averaging kernel, which can be used as a measure of confidence in 

the AIRS cloud-top altitude.  

Similar to the (1 km footprint) MODIS retrieval on the same transect (see Figure 2 of Wang et al., 2016), AIRS-OE retrieves 35 

cloud tops at a lower altitude than CsC for the thicker regions of the cirrus clouds (marked “A” and “B” in Figure 7). This is 

similar to comparisons of AIRS Version 5 cloud retrievals to CsC by Kahn et al. (2008), citing Holz et al. (2006) in how infrared 

retrievals of cirrus tend to place the cloud-top 1 to 2 km or more below the physical cloud top. The retrieval does not pass quality 
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control at a few points over the deep convective core, likely because radiance spectra above such deep clouds can be poorly 

calculated by our forward model. Significant differences in cloud-top altitude are notable along the thin cirrus between about 5° 

and 12° (“C”), with retrieved optical depths of about unity or less. However, a close examination of the cloud-top temperature 

and cloud optical depth fields in the upper panels between 10°N and 5°N show that the CloudSat/CALIPSO transect is on the 

edge of a thin north-south aligned strip of ice cloud, and the center of the closest AIRS observations to the CsC transect were 5 

between 2 to 5 km apart, so some sampling bias may be present. Similarities and differences shown in Figure 7 may be broadly 

similar to previous AIRS/MODIS/CloudSat/CALIPSO comparisons (e.g., Kahn et al., 2007; 2008), but here it illustrates the 

feasibility of forward-modeling clouds explicitly in a hyperspectral IR retrieval, simultaneous with temperature and trace gases.  

4.3 Temperature, water vapor and relative humidity profiles   

Figure 8 presents maps of Tatm (top row), H2O (middle row) and a calculated relative humidity (RH; bottom row) at the 918 mb 10 

layer for the September 6, 2002 granule discussed above. For comparison, the left column shows results from the operational 

AIRS-V6 retrievals, interpolated by log(pressure) to the AIRS-OE retrieval layer.  Note that the AIRS-V6 retrievals used cloud-

cleared radiances on the AMSU footprint, each point covering an area approximately nine times that of a single AIRS infrared 

footprint. The second column shows the initial guess for each retrieval quantity, calculated by linear interpolation in time and 

space and vertically by log(pressure) from 6 hour ECMWF analyses. The third column shows the AIRS-OE retrievals passing 15 

the quality control criteria described in Sec 3.7. The fourth column shows the estimated error of the AIRS-OE retrieval. Note that 

H2O is presented in volume mixing ratio, not mass mixing ratio. Comparing AIRS-OE relative humidity to its a priori or AIRS-

V6 shows significant local differences in relative humidity, and many unphysically high RH values (> 100%) throughout the 

region studied. We note, however, that the calculated error for the AIRS-V6 relative humidity at this layer is fairly high, with a 

median of 28.7% with an interquartile range (IQR, that is, the range between the 25th and 75th percentiles) of 26.0 to 31.8%. The 20 

AIRS-OE relative humidity is biased high compared to AIRS-V6, with a median bias of 8.5% (IQR = -1.3 to 19.1%).  

At 525mb (Figure 9), qualitative agreement for Tatm, H2O, and RH is improved compared to 918 mb across the ECMWF-derived 

a priori, AIRS-V6 and AIRS-OE. However, the AIRS-OE retrieval for H2O begins to depart from the a priori to more closely 

resemble the AIRS-V6 retrieval. For example, the a priori shows a smaller region of higher water vapor to the east of drier air 

near 30°N and 135°E ( “A”) while AIRS-V6 and AIRS-OE show this region to be larger. The AIRS-OE median relative 25 

humidity error is 16.1% (IQR = 12.0 to 19.9%), smaller than that at the 918 mb layer. Regional biases in the H2O and RH of 

AIRS-OE compared to AIRS-V6 can again be readily seen, although the median RH bias is reduced to 0.4 % (IQR = -4.4 to 

6.7%).  

At 321 mb (Figure 10), the AIRS-OE temperature field shows a much broader region of cold air than either AIRS-V6 or the a 

priori (dark blue overlaid by “A”). However, the H2O and RH fields of AIRS-V6 and AIRS-OE more resemble each other than 30 

the a priori, and the additional horizontal resolution of AIRS-OE allows sharper boundaries to be seen between dry and wet 

regions. Although there are still many missing pixels in AIRS-OE, there is improved definition in the boundaries between lower 

and higher values of the H2O volume mixing ratio (“B” in upper left). For relative humidity, note that the region of humid air 

near 32°N and 140°E in AIRS-V6 (“C”) is more fully resolved as three small but distinct regions in AIRS-OE. The median error 

of the AIRS-OE relative humidity is 13.1% (IQR = 7.2 to 19.7%). The median bias of the AIRS-OE relative humidity compared 35 

to AIRS-V6 is 0.1% (IQR = –4.0 to 7.2%), similar to the 525 mb layer.  

As a test of the algorithm’s sensitivity to the infrared spectrum, Figure 11 compares the 321 mb retrieval of relative humidity 

under different a priori. The left panels show the relative humidites calculated from Tatm and H2O a priori as interpolated from 

ECMWF analyses (as above), a climatology, and the neural-net a priori of the current AIRS-V6 retrieval scheme. The right 
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panels show the AIRS-OE relative humidity retrievals from these different a priori. In all cases, MODIS-avg data are used as 

cloud a priori. While showing some differences in the details, all retrieval relative humidity fields show a similar structure, 

indicating good sensitivity of the retrieval in the free troposphere over the ocean.  

A rough estimation of the sensitivity as a function of pressure in shown Figure 12, using averages of the row sums of the Tatm and 

H2O averaging kernels from quality control-passed layers. The left panel of the Figure 12 shows these profiles using ECMWF 5 

data as a priori. (Results using climatology or the neural net, as in Figure 11, were similar.) Error bars are 1σ standard deviations. 

The right panel shows the yield of quality control-passed retrievals. Temperature retrievals generally indicate a low-to-moderate 

sensitivity at the surface, but increase with altitude to about 600 mb, then show high sensitivity upwards through 100mb. 

Similarly, water vapor sensitivity is low to moderate at the surface, but quickly increases with altitude. Sensitivity is high from 

about ~850 mb to about 225 mb, above which it markedly decreases and is small across the 100 mb level. The right-hand graph 10 

shows yield increasing with altitude, as more retrievals become available above the cloud tops. It should be emphasized that the 

sensitivity of the retrieval of a constituent, as indicated by the averaging kernel and its row sums, is dependent not only on the 

strength of the Jacobians (Eq. 5), but also the size of the a priori covariance (Sec. 3.1). As the a priori covariances used in this 

study are ad hoc, the sensitivity of the AIRS-OE retrieval (as illustrated by, say, Fig. 12) could change as the a priori covariances 

variances are refined in future versions. 15 

5 Comparison with radiosondes 

5.1 MAGIC campaign sondes 

AIRS-OE retrievals of temperature and water vapor are compared with radiosonde profiles from the ship-based Marine ARM 

GPCI Investigation of Clouds (MAGIC) campaign of September, 2012 through October, 2013. Sondes were launched from a 

Department of Energy Atmospheric Radiation Measurement mobile facility atop a container ship travelling between Honolulu 20 

and Los Angeles. An extensive description of the MAGIC field campaign, and comparison of AIRS-V6 and ECMWF ERA-

Interim reanalysis water and temperature results with MAGIC has been reported by Kalmus et al. (2015). Figure 13 illustrates 

the location of the sondes matched to AIRS (launched within 3 hours and 100 km of an AIRS observation), colored by the 

number of successful retrievals at 321 mb; anywhere from 3 to 105 successful AIRS-OE observations are achieved as matchup to 

a single sonde.  25 

Whether an AIRS-OE retrieval is successful at a particular pressure layer depends in large extent on the particularities of the 

cloud cover, and so the number of successful retrievals can vary widely for matched radiosondes. For example, of the 210 

MAGIC sondes that were coincident with AIRS observations, an average of 41 ± 26 (1σ) AIRS-OE successful retrievals were 

made for each sonde at 321 mb, while at 918 mb, an average 29 ± 25 retrievals were made (not shown). Simply taking a global 

average (or even a global median) of the differences between AIRS retrievals and sonde observations can introduce significant 30 

sampling biases, with clear or nearly clear areas over-represented. We also found that average bias could often be significantly 

skewed by retrieval outliers – usually because the water vapor and relative humidity were unphysically high. Thus, to calculate 

an overall bias between AIRS-OE and the MAGIC sondes, and compare this to the a priori and AIRS-V6 results, we report the 

“median of the medians,” calculated in this manner:  

(a) For the ensemble of a priori and QC-passed retrievals for a single sonde, we calculate the median Tatm bias, RH bias, 35 

and relative bias in H2O (e.g., [AIRS – sonde] / sonde) in %). 
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(b) We do the the same as above for AIRS-V6 observations, but only where a successful AIRS-OE retrieval is within an 

AIRS-V6 footprint, and only layers that have an AIRS-V6 quality control of 0 (best) or 1 (good). As there can be up to 

nine AIRS-OE retrievals within an AIRS-V6 footprint, an AIRS-V6 retrieval is only entered once in calculating the 

median to avoid over-counting. 

Note that these criteria for matching up sondes and AIRS-V6 observations are different from Kalmus et al. (2015), so caution 5 

should be taken in comparing results here with that work. Also, since the inclusion of an AIRS-V6 profile in calculations 

depends on the QC result of an AIRS-OE retrieval, these data should not be taken as validation of AIRS-V6 results. Note also 

that the AIRS-V6 uses a different a priori than AIRS-OE, and the AIRS-V6 a priori is not shown or compared here. 

Figure 14 illustrates the median temperature profile differences between the a priori, AIRS-OE, and AIRS-V6 retrievals for Tatm, 

the relative difference for H2O, and the difference in RH compared to the MAGIC sondes. Thin lines indicate the 25th and 75th 10 

percentiles of the distributions. For temperature, AIRS-OE (blue line) shows a negative bias of 0.65K at the surface, and 

increasing to a maximum of 0.9K at 865mb. The positive bias continues to about 400 mb, and is higher than either the a priori or 

AIRS-V6. Between 400 mb and 200 mb, the AIRS-OE retrieval is within 0.3K, as are the a priori and AIRS-V6. For water 

vapor, the (global median) relative bias of AIRS-OE retrievals stays within 10% of the sondes from the surface to about 800 mb, 

where it increases to about a 20% bias at 525 mb, decreases to a 3% bias at 321 mb, and then increases again, as do the a priori 15 

and AIRS-V6 retrievals. For the bias in relative humidity, except for a local minimum of -4% at 840 mb, biases are positive and 

tend to be within 5% up to 200mb, but this good agreement may be partly due to compensating biases in temperature and water 

vapor.  

5.2 Tropical Western Pacific (TWP),  Southern Great Plains (SGP) and North Slope of Alaska (NSA) sondes  

For these comparisons, we use AIRS observations co-located with high quality radiosondes launched from ground-based sites of 20 

the U. S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facilities. Inclusion criteria 

and median bias calculations are similar to those for the MAGIC sondes (Sec. 5.1).  Figure 15 illustrates the median temperature 

biases, water vapor relative biases and relative humidity biases for the ECMWF analysis-derived a priori, and the AIRS-OE and 

AIRS-V6 retrievals over the TWP site at Nauru, the SGP site in Oklahoma, and the NSA site in Alaska.  

For temperature, all three sites show AIRS-OE median biases for temperature below ±1 K, and median relative biases for H2O to 25 

mostly within ±15% . At TWP, AIRS-OE generally shows larger biases compared to the a priori for temperature, but is similar to 

the ECMWF-derived a priori for H2O and relative humidity from about 800 mb up to about 200 mb. At SGP, AIRS-OE shows a 

of high bias of ~0.7 K between the surface to 400 mb, but slightly improves upon the a priori water vapor for most of the 

troposphere, except near 700mb. AIRS-OE relative humidity biases compare well with the a priori. At NSA between about ~800 

and ~220 mb, AIRS-OE temperature biases are low (less than ±0.25 K) at altitudes above ~800 mb, as are water vapor relative 30 

biases (less than ±7%). Relative humidities are improved compared to the a priori from the surface to about 400 mb. While again 

we caution that the results in Figure 15 should not be taken as validation for AIRS-V6, we note that the single footprint retrieval 

AIRS-OE results generally compare well with the cloud-cleared spectra results of AIRS-V6.  

6 Summary and Discussion 

We have presented a new retrieval scheme for the AIRS instrument, AIRS-OE, which uses MODIS results as cloud parameter a 35 

priori, and a forward model that incorporates cloud effects in its radiative transfer. As AIRS-OE directly uses Level 1b spectra in 
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retrievals, and not Level 2 cloud-cleared spectra as done in AIRS-V6, it improves the nadir horizontal resolution over AIRS-V6 

from ~45 km to ~13.5 km. Focusing on cloud parameters, and temperature and water vapor profiles, we have presented some 

initial comparisons to currently operational AIRS Version 6 products. The improved horizontal resolution has been shown to 

provide greater detail in water vapor and relative humidity fields in the free troposphere. As AIRS-OE rests on an optimal 

estimation framework, and includes simultaneous retrieval of profiles and scalar variables, it has an information content analysis 5 

that operates both within an atmospheric parameter (e.g., uncertainties in the temperature profile) and across different 

atmospheric parameters (e.g., uncertainties in water vapor due to uncertainties in temperature). Initial comparisons against co-

incident radiosondes indicate that retrieval biases for temperature and water vapor profiles are at least competitive with AIRS-

V6.  

Some aspects of this new retrieval need development. More realistic clouds in the forward model, with multiple cloud decks or 10 

clouds that extend over several model layers, will likely allow more footprints to be successfully analysed. A better a priori τcld at 

nighttime may be made by comparing brightness temperatures in the window channels to the a priori surface temperature, similar 

to Kulawik et al. (2006a). Noting the work of DeSouza-Machado et al. (2017), it may be useful combining MODIS and  

numerical weather prediction cloud data to determine an a priori for the cloud-top height, particle size, optical depth (or 

liquid/ice column) and horizontal and vertical extent of cloud in the AIRS FOV. Improved cloud results will hopefully better 15 

leverage and compliment the spatial coverage and horizontal resolution of MODIS, and the vertical precision and detail of 

CloudSat/CALIPSO. A forward model incorporating scattering by dust and other aerosols (as previously done for AIRS by 

DeSouza-Machado et al., 2006; 2010) would open more regions for analyses. (See also Maddy et al., 2012.) Efforts can be made 

in better modeling the outgoing daytime radiance of the shortwave channels of AIRS (> 2200 cm-1) and improving the radiance 

noise error estimate, so we can more fully exploit the spectral range of the instrument, particularly near the 4 µm CO2 band. An 20 

observation-based a priori covariance (including cross-species covariances), specific to region and season, would provide 

improved constraints and more realistic retrieval errors. Adding in retrieval linearity estimates, such as those described in Sec 5.1 

of Rodgers (2000), would help in flagging those retrievals where the error estimation may be suspect. A method of assigning 

ground-level snow and ice conditions to observations is needed – possibly from the co-located AMSU microwave instrument or 

other near-real-time data (see Pope et al., 2014). Addition of effective emissivity retrievals will likely be necessary to improve 25 

results over “difficult” regions, such as deserts or mountains. If the emissivity field is highly variable within the AIRS FOV (say, 

on a coastline), weighting by the MODIS cloud mask can help determine an a priori emissivity as it affects the AIRS observation 

by taking cloud cover into account. The algorithm could be extended to better retrieve O3 using its 9.6 µm band, as well as 

retrieve CH4, CO and other gases within the AIRS bandpass. Successful implementation of these improvements may be 

challenging (or at least time-consuming) but could prove useful not just to single-footprint retrieval from AIRS, but to other 30 

instruments such as CrIS and IASI.  

Since the design stage of the AIRS instrument in the 1990’s, increased computing power and advances in modeling cloudy 

spectra allow new approaches to utilize the high spectral resolution output of existing infrared sounders. The horizontal 

resolution gained by avoiding cloud-clearing can provide more nuanced data for water vapor, especially where it is highly 

variable at smaller spatial scales. Even with the algorithmic liens described, initial results presented here indicate AIRS-OE 35 

retrievals on cloudy infrared spectra can compare well with operational AIRS-V6 retrievals that require cloud-clearing. 

Additional improvements in execution speed and data handling are needed before this work can become operational like AIRS-

V6. However, with some 16 billion AIRS infrared spectra since launch in 2002, numerous opportunities are available for 

targeted studies with this new algorithm. 
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Constituent Covariance along diagonal Covariance off diagonal length 

scale (km) 

Temperature profile (2K)2 0.5 

H2O [log(1.4)]2 from ground to 100mb 

then gradually reduced to 

[log(1.01)]2 at 50 mb and above 

0.5 

Surface temperature (2K)2 N/A 

O3 [log(1.1)]2 from ground to 100 

mb then gradually increasing to 

[log(1.2)]2 at 50 mb and above. 

3.0 

CO2 [log(1.02)]2 3.5 

Cloud optical depth (t) [log(2.)]2 . N/A 

Cloud-top temperature (4K)2 if cloud-top temperature 

can be calculated from MODIS 

 

(25K)2 if cloud-top temperature 

cannot be calculated from 

MODIS, but MODIS data 

indicate thin cirrus 

N/A 

Cloud particle size [log(2.)]2 N/A 

	
  

Table 1: A priori covariances used for retrievals.  
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Table 2:  Retrieval Channels (cm-1) 

662.02 678.57 700.77 718.87 752.09 820.84 1384.47 1513.83 
664.51 681.46 701.05 719.17 753.38 839.92 1389.39 1519.07 
666.26 681.72 702.74 719.46 753.70 847.14 1392.15 1521.05 
666.77 689.49 703.87 719.76 755.00 849.57 1397.13 1524.35 
667.27 689.76 704.43 720.94 755.32 880.40 1407.77 1541.77 
667.78 691.12 706.13 721.54 758.26 917.30 1419.15 1544.48 
668.28 691.39 706.99 721.83 768.88 937.90 1427.22 1547.20 
668.54 692.75 707.84 723.03 769.89 948.18 1432.47 1551.30 
668.79 693.02 708.70 723.32 773.28 979.13 1436.57 1554.04 
669.04 694.12 709.56 724.52 776.36 1121.00 1441.88 1556.10 
669.55 694.40 711.00 726.32 778.08 1134.46 1462.09 1560.24 
669.81 694.67 711.29 732.61 779.11 1218.49 1468.82 1563.02 
670.06 695.77 712.74 734.15 790.33 1225.13 1471.91 1572.09 
670.57 696.05 714.19 738.48 793.89 1310.18 1474.38 1586.26 
672.10 697.43 714.48 740.03 795.68 1315.47 1479.36 1598.50 
673.64 697.71 715.94 742.85 798.92 1340.19 1483.74 1605.05 
675.19 698.82 717.40 746.01 801.10 1367.25 1493.21  
676.75 699.10 717.99 747.60 803.65 1376.88 1498.96  
677.01 699.38 718.28 749.20 804.75 1379.58 1500.88  
678.31 699.66 718.58 750.48 811.79 1381.21 1502.16  
	
  

Table 2: AIRS retrieval channel frequencies used for this study. 
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Figure 1: AIRS Level 1b brightness temperature observations of adjacent cloudy spectra. Data are from daytime Granule 44, Sept. 6, 2002. 
Average cloud-top temperatures and cloud optical depths are estimated from coincident MODIS L2 retrievals, averaged on the AIRS spatial 
response function (see Sect. 3.2.2 in text.) 

  5 
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Figure 2: Simplified block diagram of AIRS-OE retrieval algorithm for cloudy scenes. Blocks are annotated with section numbers from this 
paper for further information. 

Interpolate AIRS spatial 
response function (SRF) on 
coincident MODIS footprints. 
(3.2.2)

Calculated weighted average 
of MODIS cloud-top 
temperature, cloud optical 
depth and effective cloud 
radius on AIRS SRF. (3.2.2)

Interpolate ECMWF 
temperature and H2O profiles, 
and skin temperature to AIRS 
time/location. (3.2.1)

Use climatology for O3 and 
CO2 at AIRS time/location. 
(3.2.1)

Construct state vector and 
covariance matrix. (3.1; 3.3)

Estimate emissivity for AIRS 
time/location. (3.2.3)

Construct and minimize cost function 
for simultaneous retrieval of 
temperature, H2O, O3, and CO2 
profiles, skin temperature, cloud 
optical depth, cloud effective radius 
and cloud-top temperature. (3.6)

Fitting χ2 < 3?
 

(3.7.4; 3.8)

Surface temperature
averaging kernel > 0.6?

(3.8)

Convergence

Reject retrieval as poorly fit.No

Yes

No Keep retrievals at layers above 
cloud-top temperature minus 10K. 
Reject retrievals at layers below.

Yes

Keep retrievals at all layers.

Input AIRS L1b spectrum, 
noise error and metadata for 
selected channels. (Sec. 3.5) 

SARTA+D4S forward model (3.4)

Expand state vector ˆ to forward 
model vertical grid. (Eqn. 3)
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Figure 3: Sample MODIS fields of cloud-top temperature, cloud optical depth and effective particle size overlaid with the AIRS Spatial 
Response Function (SpatialRF) interpolated to the MODIS grid. Data are daytime observations over ocean from September 6, 2002. For this 
example, the weighted averages over the AIRS SpatialRF are 211.3 K for cloud-top temperature, 4.26 for optical depth, and 29.5 µm for 
effective particle radius.  5 
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Figure 4: Sample averaging kernel from simultaneous retrieval. A row of the averaging kernel matrix is a measure of the sensitivity of the 
retrieved value to changes in the “true” value of itself and other parameters, shown in the columns, assuming the retrieval is in a near- linear 
regime. A column indicates the sensitivity of the retrieved state vector to a change in the true value of a single retrieval parameter. The color 
scale has been limited to better show the weaker sensitivities.  5 
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Figure 5: Sample retrieval profiles, errors, averaging kernels, row sums of the averaging kernels, and approximate vertical resolutions for 
temperature (left panels) and water vapor volume mixing ratio (right panels). Each colored line in the averaging kernel panels is from a partial 
row of the averaging kernel (e.g., the rows of 𝝏𝐓𝒂𝒕𝒎/𝝏𝐓𝒂𝒕𝒎 and 𝝏𝐥𝐧[𝐇𝟐𝐎]/𝝏𝐥𝐧[𝐇𝟐𝐎], as seen in Fig. 4.)  

  5 
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Figure 6: Sample a priori, AIRS-OE retrievals and AIRS-OE averaging kernels of cloud-top temperature (Tcldtop), effective optical depth (τeff) 
and effective particle radius (reff). Data are from AIRS (daytime) Granule 44, September 6, 2002. 

 5 



30 
 

 
Figure 7: Comparison of AIRS-OE approximate cloud-top altitude with CloudSat/CALIPSO (CsC). Top panel: AIRS-OE cloud-top 
temperature with CsC transect. Second panel: AIRS-OE cloud optical depth. Third panel: CsC cloud layer altitudes (grey) with approximate 
AIRS-OE cloud-top altitudes, colored by retrieved optical depth. Bottom panel: Same as third panel, but points colored by cloud-top 
temperature averaging kernels. Data are from daytime observations, July 31, 2009 over the Pacific ocean.  5 
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Figure 8: AIRS V6 retrieval, and AIRS-OE a priori, retrievals and errors for temperature, water vapor and relative humidity (RH) at 918 mb 
for (daytime) Granule 44, September 6, 2002.  
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Figure 9: AIRS V6 retrieval, and AIRS-OE a priori, retrievals and estimated errors for temperature, water vapor and relative humidity (RH) at 
525 mb for (daytime) Granule 44, September 6, 2002. 
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Figure 10: AIRS V6 retrieval, and AIRS-OE a priori, retrievals and errors for temperature, water vapor and relative humidity (RH) at 321 mb 
for (daytime) Granule 44, September 6, 2002. Note that unlike Figures 8 and 9, water vapor mixing ratio is on a logarithmic scale. 
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Figure 11: AIRS-OE relative humidity (calculated from retrieved temperature and water vapor) at 318 mb using different a priori. The left 
panels show the relative humidity calculated from the a priori, while the right panels show the retrieval. The top row uses an ECMWF analysis-
derived a priori linearly interpolated in time, space and log pressure to the AIRS observation. The second row uses a climatology. The third row 5 
uses the neural-net calculation (on the AIRS-AMSU footprint) that is used with the operational AIRS V6 retrieval. Note that while the different 
a priori were used for temperature, skin temperature and water vapor, the same MODIS-derived cloud data (cloud-top temperature, cloud 
optical depth and cloud particle radius) were used as a priori for the cloud retrievals.  
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Figure 12: Average row sums of temperature and water vapor averaging kernels (left panel) and percentage yield of quality control-passed 
retrievals (right panel) for (daytime) Granule 44, September 6, 2002. A priori for temperature and water vapor were from ECMWF. Error bars 
are 1σ standard deviations. For clarity, some error bars are not shown. 

  5 
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Figure 13: MAGIC sonde launch locations that were matched to coincident AIRS observations. Points are colored by the number of QC-
passed AIRS-OE retrievals of water vapor at 321 mb. AIRS observations were within 3 hours and 100 km of sonde launch.  
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Figure 14: AIRS-OE, AIRS-Version 6 and a priori profile biases from MAGIC radiosondes. Left panel: Median temperature difference (minus 
sonde). Middle panel: median relative difference in water vapor ([AIRS – sonde] / sonde in %). Right panel: Median difference in relative 
humidity (in %). Thin lines represent 25th and 75th percentiles. AIRS observations were within 3 hours and 100 km of sonde launch, and only 
those retrieval layers passing quality control were counted. In total, 8633 AIRS profiles were matched to 210 sonde profiles. See Sec. 5.1 for 5 
description of data aggregration before calculation of medians.  
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Figure 15: AIRS-OE, AIRS-Version 6 and (AIRS-OE) a priori profile differences from radiosondes launched from the Tropical Western 
Pacific site (top row), Southern Great Plains (middle row), and North Slope of Alaska (bottom row). Left column: Median temperature 
differences (minus sonde). Middle column: median relative difference in water vapor ([AIRS – sonde] / sonde in %). Right column: median 
difference in relative humidity (in %). Thin lines represent 25th and 75th percentiles. AIRS observations were within 3 hours and 100 km of 5 
sonde launch and only those retrieved layers passing quality control were counted. The a priori for AIRS-V6 is not shown. See Sec. 5.1 for 
description of data aggregration before calculation of medians.  


