
Reply to Reviewers / Changes in the manuscript

We  thank  the  reviewer  1 for  his  constructive  comments  and  respond  to  him
individually in the following text. 

Reviewer #1: In section 1, page 3 line 24, the authors write that their approach to 
derive the relative orientation is based on the "visual sight, with no obstacles between
the cameras“. On the other hand, in section 2.3, page 7 line 12, the authors describe 
that the relative orientation is "achieved with vertical sights on the camera housing“. I 
suppose that this aims at retrieving an initial relative orientation estimation before 
refining it using the SIFT features. Given the fact, that this is a central step in this 
study and a major difference to other studies that use stars or landmarks, this 
procedure should be described in more detail and clarity. Is the visual sight used to 
eliminate the remaining degrees of freedom in the relative orientation? Maybe an 
additional figure or an extension of Fig.4 might be useful here. In addition, the two 
figures in Fig. 4 could be merged quite easily, i think.

→We agree. The following figure illustrating the installation has been added. 

Figure  1:  Top  -  VIVOTEK  FE8391-V  fisheye
camera and installation structure. Bottom - Vertical
sights on the camera housing allows visual  inter-
camera alignment in the horizontal plane.



→Left and right parts of Figure 4 are merged in one figure (now Figure 5)

Figure  5:  Ideal  camera  configuration.  Camera
coordinate systems are frontally aligned with optical
axis z1;2 oriented towards zenith. Optical centers O1,2

are in the same altitude plane. The baseline distance
is denoted b and North bearing of O1,2 axis is denoted
β. In this ideal configuration, assuming that we have
identical  pinhole  centered  cameras,  corresponding
pixels (uM

1,vM
1 ) and (uM

2,vM
2 ) are row aligned on the

imagers (i.e. vM
1 = vM

2 ).

→The following sentence (Line 12 p.7):

The orientation of  the equipment requires an additional  calibration step,  which is
algorithmic and determines the precise relative orientation of camera frames.

has been replaced by:

Initial orientation of the cameras is previously described in Figure 1 and gives an
orientation of the cameras close to the ideal frontally aligned orientation. However,
this procedure is not sufficient to perform an accurate 3D reconstruction which needs
row alignment of corresponding stereo pixels in the stereo images (see Figure 5). A
refining algorithmic step to calculate the precise relative orientation of the cameras
and consequently rectify the stereo images is then required. 

Reviewer #1: Regarding the segmentation step described in section 2.6, page 9 line
29, the authors mention that the technique is applied "when the situation allows it(e.g.
cumulus cloud field)“.  Although the authors mention on page 15 line 16, that the
current method has some limitations in case of cloud overlap and propose to use
cloud height  values  for  compensation,  the  images  shown in  Fig.  8  (t,  t+15 min)
suggest  that  even  in  a  cumulus  case,  a  clear  separation  of  clouds  using  such
contour-based methods alone might be difficult, resulting in a merged contour rather
than two separate ones. Maybe the authors could write an additional sentence about
this problem in section 2.6 already. This does not touch the presented case studies of
the segmentation, which are fine.

→ We develop the paragraph in line 22 p. 9:



[...] In our case, the main interest of this technique is to identify and georeference
individual clouds when the situation allows it. The method that we present here is a
contour-based method involving blue sky filtering which supposes that the clouds are
separated (e.g., cumulus cloud field) and that they do not overlap on the image due
to projection (this would result in merged contours).

Reviewer #1: In section 2.2, page 6 line 22, the authors mention the blur effect in the
peripheral regions of the rectified image. To my understanding, the blur effect results
from  the  mapping  of  a  given  image  region  of  the  fisheye  image  onto  a  larger
projection  area  in  the  rectified  image.  I  find  the  term  "interpolation“  misleading,
because the rectification itself  is  performed in reverse, from given rectified image
coordinates  for  which  the  corresponding  coordinates  in  the  fisheye  image  are
computed. Since such an image mapping generally never hits the center of a pixel in
the  target  image  exactly,  an  interpolation  is  applied  as  a  normal  procedure  (e.g
bilinear).

→We modify the sentence to:
[…] In this transformation, the peripheral areas are mapped from a given region of
the fisheye image onto a larger projection area in the rectified image, producing the
blur effect.

Reviewer #1: There seems to be a minor error in equation 7, where the two vectors
are written as row vectors, but have the transposition applied as in the normal co-
linearity equation, which generally assumes column vectors. As far as i can see, the
rest of the article uses column vectors (e.g. page 7 line 17). Hence, the row vector on
the right side of the essential matrix must be a column vector and vice versa.

→ We thank the reviewer for catching this error. This mistake has been corrected.

Reviewer  #1:  In  section  2.3,  page  8  line  11,  a  constraint  for  the  matrix  R  is
introduced, which enforces R to be the identity.  In general,  the matrix R is to be
computed in  the  relative  orientation  estimation  procedure  and  should  not  be  the
identity matrix. Of course, the relative orientation of the cameras in a frontally aligned
pose should be the identity, but not the matrix R, which is to be computed.

→The  use  of  a  mathematical  formalism  leads  here  to  confusion  and  has  been
deleted. The paragraph has been modified.

“This validation is necessary because the algorithm is sensitive to the stereo pixel
matching quality and can, in some cases, converge towards an incoherent minimum.
In practice, we minimize ||T − (b, 0, 0)||² + ||R − Id||² by varying subsets of matching
pixels used in step 2 (E matrix computation).”

is re-written:

Consistency step: Initial visual orientation of the cameras is achieved to be as close
as possible to the frontally aligned relative orientation (i.e., T= (b,0,0) and R = Id; see
section  2.3).  In  our  algorithm,  several  estimations of  the  essential  matrix  E,  and
consequently R and T, are achieved to avoid incorrect solutions which are due to
erroneous  or  imprecise  matches  in  the  SIFT  procedure.  These  estimations  are



obtained  by  using  several  subsets  of  the  matching  pixel  set  given  by  the  SIFT
procedure. Estimations of E matrix, which are not coherent with the R ~ Id and T ~
(b,0,0) hypothesis are then rejected. Among the coherent estimations, we choose the
one that leads to minimal corrective rotations.

Reviewer #1: In section 2.4, page 9 line 5, the authors describe a method to filter out
outlier in the reconstruction by introducing a lower and upper limit of a valid height.
This might work well for zenith regions, but for larger incidence angles mismatches
introduce a larger error in the horizontal location rather than the vertical, even of the
lower and upper limits for the height value are satisfied. In other words, a depth error
moves from a vertical error to a more and more horizontal error as the incidence
angle grows larger. This limitation should be mentioned here.

→We agree with this comment. The item page 9 line 5:

- adjusting algorithm parameters: height detection range can be limited during the
pixel matching process by setting minimum and maximum bounds for cloud height
detection ; window correlation size is adjusted to prevent speckles.

has been replaced by:

- adjusting algorithm parameters: 
-  disparity  range  is  limited  during  the  pixel  matching  process  by  setting  
minimum  and  maximum  bounds  for  cloud  height  detection.  Note  that  
disparity bounds can be related to height detection bounds with equation (Eq. 
12), even if this relationship becomes less relevant for larger incident angles 
for which larger horizontal errors occur.

 - window correlation size is adjusted to prevent speckles.

Reviewer #1: Technical Corrections:
- Page 3 line 19+20: This sentence should be reformulated. For example: "The 
calibration of each camera encompasses a mathematical description of the projection
of an incident optical ray onto the image.“
- Page 10 line 2: "contour detection and segmentation using the binarized image: ..“
- Page 10 line 18: "..., until a distance -w-here the quality...“
- Page 13 line 3: "undistorsion“ - > "undistortion“
- Page 13 line 14: Should the delta_h be sigma_h?

→ These technical corrections have been addressed.



We  thank  the  reviewer  2 for  his  constructive  comments  and  respond  to  him
individually in the following text. 

Reviewer #2: An additional limitation of the proposed setup might be in extracting 
vertical profiles of clouds, since cameras cannot see through clouds and all sky 
cameras work at zenith angle. The authors may consider discussing the impact of 
this limitation in investigating cloud’s life cycle.

→ Extracting cloud vertical profiles can be achieved at large zenith angles as long as
the cloud tops are not hidden in the projection. This has been shown by Beekmans et
al.  2016 who compared such reconstructed profiles with cloud radar profiles with
good  agreement.  However,  cloud  vertical  extension  parameter  will  be  difficult  to
follow in a lagrangian way during a single cloud trajectory. Also, cloud life cycles can
be followed simply following the projected area that increases and decreases with
cloud formation and dissipation or converges into an overlying stratocumulus layer. 

To discuss the impact of this limitation, the last paragraph of the article (page 15, line 
2)

Finally, the use of photogrammetry techniques associated with segmentation opens
the way to the characterization of other parameters of interest to the atmospheric
science, such as the width of the cloud base and the vertical extension of the clouds,
as shown by Beekmans et al. 2016. In addition, segmentation makes it possible to
track individual  clouds through successive images and follow the evolution of the
cloud life cycle.

has been modified to:

Finally, the use of photogrammetry techniques associated with segmentation opens
the  way  to  the  characterization  of  other  parameters  of  interest  in  atmospheric
science, such as the width of the cloud base and the vertical extension of the cloud.
The width of cloud base follows its growth and dissipation, and can be well estimated
at  low  zenith  angles.  In  contrast,  extracting  cloud  vertical  dimensions  can  be
achieved at  large zenith  angles as long as the cloud tops are not  hidden in  the
projection (Beekmans et al. 2016). Consequently, segmentation makes it possible to
track individual  clouds through successive images and follow the evolution of the
cloud life cycle by tracking cloud heights and/or cloud base widths.

Reviewer #2: Page 2, line 24, "an" needs to be "a" Table 3, replace “significative” 
with “significant”

→ These corrections have been addressed.

Reviewer #2: Figure 8/9, center/rightmost panel in the bottom row, are the numbers 
missing, what is “//”? 

→ The symbol // was used to show that the ceilometer beam did not hit a cloud at 
zenith. It has been replaced by "// No cloud" for greater clarity.
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Abstract.

In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera

stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry

which is a 3D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases

where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on5

hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and

velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose

simplicity of implementation, auto-calibration, and portability.

Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the

peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3D reconstruction is applied with cameras spaced10

150 m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at

1500 m.agl. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000

m.agl and an altocumulus stratiformis layer with a base height of 2300 m.agl. Velocity fields at cloud base are computed by

tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaïsala

CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically15

quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case,

segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions

of the cloud centers.

1 Introduction

Understanding cloud physical mechanisms is essential for understanding climate and meteorological processes. On climate20

scales, it is recognized that clouds are a major source of incertitude in atmospheric models (IPCC, 2013), whether for the

energy balance or water cycle. Yet, many aspects of cloud’s life cycle are still not understood by the scientific community

(Stevens and Feingold, 2009), hence the need for measurement tools allowing cloud monitoring, particularly in a lagrangian

sense.
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At present, the instruments most frequently used for remote sensing of clouds from the ground are ceilometers, lidars and

cloud radars. Ceilometers and lidars estimate the base height and thickness of several cloud layers. Cloud radars have the same

capacities, but are also able to obtain information on the nature of the condensed elements in the cloud (crystals, droplets),

as well as their vertical velocities. These ground-based remote sensing instruments are generally oriented towards the zenith

and have a narrow field of view. Cloud radars rotate to reconstruct the cloud field; however the minimum period to complete5

360° sweep is a limiting factor for following a cloud field in real time (Borque et al., 2014). Stereophotogrammetry based

on a network of all-sky cameras yields three-dimensional information by matching points across stereo images and using

triangulation. These techniques provide an inexpensive method to study the three-dimensional organization of a cloud field.

The use of all-sky cameras makes it possible to widen the field of view.

Stereophotogrammetry applications for use in meteorology have existed since the beginning of analogue photography10

(Koppe, 1896), (Bradbury and Fujita, 1968), and more recently digital cameras have been used (Allmen and Kegelmeyer,

1997). In the recent years, several technological advances have been made in camera lenses, image resolution, network com-

munications, computational power and cost reduction. Moreover, major computational improvements have been made in com-

puter vision algorithms, especially in multi-vision reconstruction methods (e.g. OpenCV library - Bradski and Kaehler (2008)).

It is now possible to achieve cloud automatic 3D reconstruction by stereophotogrammetry relatively cheaply.15

Recent studies on this topic generally use conventional or wide-angle lenses to calculate macroscopic characteristics of a

cloud field, such as cloud base heights and cloud layer horizontal velocities. Seiz (2003) uses a pair of wide-angle cameras

spaced 800 m apart and pointing to the zenith to calculate the height of the cloud base. The orientation of the cameras is done

using the stars. The errors obtained are about 5% for mid-altitude clouds at 4000 m.asl. Hu et al. (2009) use conventional

cameras spaced 1.5 km apart and oriented to mountains to study the three-dimensional organization of orographic convection.20

The orientation of the cameras is achieved using elements of the landscape. Öktem et al. (2014) are interested in the height

of maritime clouds with cameras spaced about 900 m apart. The cameras are oriented towards the horizon. They obtained an

error in cloud base height of 2% for low-layer clouds and 8% for cirrocumulus by comparison with lidar measurements. They

also calculate an
:
a
:
horizontal velocity field that they compare to the data from a radiosonde. In their case, the orientation of

the cameras is achieved by using the position of the sun and the horizon line. In all these previous publications, triangulation25

is based on the matching of corresponding pixels through the stereo images by manual or automatic methods. In Janeiro et al.

(2014), the cloud ceiling information for VFR (Visual Flight Rules) is calculated by matching zenith centered sub-part of the

initial stereo images. The authors use low-cost consumer cameras that are oriented towards zenith and spaced about 30 m.

The orientation of the cameras is achieved using the stars. For clouds under 1500 m.agl, which are of prime interest for VFR

applications, results at zenith point show good agreement with lidar measurements in single cloud layer situations.30

The first study using all-sky cameras in stereophotogrammetry for meteorological purposes is performed by Allmen and

Kegelmeyer (1997) to calculate the cloud base height, but temporal synchronization constraints did not allow to obtain usable

information. More recently, in order to forecast intra-hour solar irradiance, Nguyen and Kleissl (2014) use their own high

resolution all-sky cameras providing very precise equisolid projection. The cameras are spaced 1230 m apart and the authors

use the position of the solar disk to determine orientation. Clouds are filtered in the images with saturation value and cloud base35
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height is determined by plane-sweeping across the stereo images. The results are compared to ceilometer with 8 hours time

series. Residual mean square deviation of 7% for cloud base height at 5000 m.asl is obtained. Three-dimensional reconstruction

is also performed and height distribution of triangulated pixels is compared to ceilometer time series showing good agreement.

Recently, Beekmans et al. (2016) perform a dense 3D reconstruction from a pair of fisheye lens HD cameras spaced 300 m

apart. The relative orientation of the cameras is estimated using the positions of the stars. This estimation is then refined by an5

algorithm which automatically matches corresponding stereo pixels. The method is validated by comparison with the data of

a ceilometer, a lidar and a cloud radar for a cloud layer of altocumulus stratiformis at about 3000 m. The results show cloud

base height relative errors less than 5%. The method is then applied to enable a 3D reconstruction of a developing cumulus

mediocris.

In this paper, we use all-sky stereophotogrammetry to perform geolocation of individual elements of a cloud field in order10

to follow individual clouds in a Lagrangian way, estimate their morphological characteristics and their evolution in real-time.

Furthermore, this allows to use cloud geolocation for cloud airborne measurements. For example, in the case of instrumented

UAVs, the GPS coordinates of the target cloud may be communicated in real-time to the autopilot. In addition, installation of

a camera network for a measurement campaign poses additional challenges. Indeed, it may be difficult, time-consuming, or

sometimes impossible to use landscape elements, or the position of the stars. Therefore the methodology, developed in section15

2, is based on the principles of simplicity of implementation, auto-calibration, and portability.

Stereophotogrammetry is based on triangulation: knowing the distance between two cameras, their orientation and the angles

of incidence of the optical rays emitted by a physical point, it is possible to find the 3D coordinates of the physical point in

a given frame. Thus, several indispensable steps are needed. The calibration of each camera consists in determining how is

mathematically projected
:::::::::::
encompasses

:
a
::::::::::::
mathematical

:::::::::
description

:::
of

:::
the

:::::::::
projection

::
of

:
an incident optical ray toward

::::
onto20

the image. This step is carried out in a laboratory using a test pattern. In our case, we use a generic method to perform all-

sky camera calibration developed by Scaramuzza et al. (2006). The calibration of the stereo system consists in knowing the

distance between the cameras and the relative orientation of each camera. This step is performed once the cameras are installed

on the experimental field. In our methodology, positioning and orientation are achieved with GPS, leveling instruments and

visual sight, with no obstacles between the two cameras. Precise relative orientation between the cameras is determined by25

matching feature points across the stereo images automatically. This is achieved with the SIFT algorithm (Lowe, 2004). The

3D reconstruction step consists in finding for each pixel of the left stereo image, its correspondent in the right stereo image.

Three-dimensional information is then calculated by triangulation, involving previously calculated camera internal geometry

and orientation. In this work, a dense 3D reconstruction is performed by using a blockmatching method (Szeliski, 2010) on

rectified stereo images (undistortion and misalignement corrections). Additionally, the velocity field is estimated by tracking30

subparts of the initial image through two successive images and combine this information with the cloud height map. In

the case where clouds are sufficiently separated to be considered as identifiable objects, we implement image segmentation

for individual cloud georeferencing. We use a color filter to extract the cloud contours of the image and use a segmentation

algorithm inspired by Suzuki et al. (1985) to identify cloud objects. Most of the methodology relies on algorithms implemented

in open source software libraries: OcamCalib (Scaramuzza et al., 2006) for camera calibration, and OpenCV (Bradski and35
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Kaehler, 2008) for the other steps. The accuracy depends on the quality of the cameras and the algorithms used, as well as

on the distance between the cameras, with the following paradox: the greater the distance between the cameras, the better the

accuracy but the more difficult pixel matching is.

In section 3, we present the results comparing cloud base heights to traditional methods as well as georeferencing individual

cloud elements and calculating the velocity field. The method is applied with cameras spaced 150 m apart, for two validation5

cases. The first validation case is carried out in the context of a moderately convective situation with isolated cumulus clouds

with a cloud base height at 1500 m.agl. The second validation case is carried out in a situation where two cloud layers overlap:

a layer of altocumulus stratiformis with a base height of 2300 m.agl and a layer of cumulus fractus with a base height at 1000

m.agl. The height uncertainty is estimated by comparison with a Vaïsala CL31 ceilometer located on the site. The uncertainty

on the horizontal coordinates is theoretically quantified by using the experimental uncertainties on the height and uncertainties10

on the orientation of the cameras. In the cumulus case, a segmentation of the image as well as an estimation of the horizontal

positions of the cloud centers is carried out. The results are then discussed in section 4.

2 Material and methods

2.1 Material

In this work, we use two VIVOTEK FE8391-V network fisheye cameras designed for outdoor video surveillance applications15

:::
(see

::::::
Figure

::
1). The focal length is 1.5 mm and the field of view is 180°. The digital sensor is a 12-megapixel CMOS, providing

in its full resolution a 2944×2944 px image. The images are transmitted to a computer by a WiFi local network using two

directional antennas TP-Link 2.4GHz 24dBi with several hundred meters of range. Horizontal leveling is achieved by the use

of a bubble level (accuracy ca. 1°). The respective positions of both cameras in the Earth frame are evaluated by using GPS,

and inter camera
::::::::::
inter-camera alignment is achieved with vertical sights on the camera housing.20

2.2 Camera projection model, calibration and image undistortion

In the camera frame, the projection of an optical ray towards a pixel of the image is generally described by a model which

depends on intrinsic camera parameters. The camera optical system approaches more or less precisely different types of projec-

tions among which the most commonly encountered are the stereographic, equidistant, equisolid, and orthographic projections.

In the case of non-scientific cameras, these simple theoretical models are far from sufficient. It is then necessary to use models25

allowing a better description of the projection by taking imperfections into account (e.g. distortions, offset between optical axis

and center of the image, digitization effects). In this article, we use the model proposed by Scaramuzza et al. (2006) to calibrate

the cameras. This model was introduced to generically simulate omnidirectional cameras with the property of the single point

of view (property generally well approached by a fisheye lens). The intrinsic parameters associated with this model are deter-

mined by a calibration step. This calibration is carried out by taking several shots of a flat 2D chessboard pattern. This flexible30

technique inspired by Zhang (2000) is adapted in the toolbox OcamCalib for the Scaramuzza model. One of the advantages
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of this calibration method is its ease of implementation and its accuracy (e.g., Puig et al., 2012, for a comparative benchmark

between several calibration methods for omnidirectional cameras).

Pinhole camera model: The starting point is to consider the simplest camera, that is the pinhole camera. It is a box that

allows the light rays to pass through a small hole pierced on one side. On the opposite side of the hole, the inverted scene is5

projected onto a plate. In order to simplify the way in which this projection is represented, a central symmetry is applied to

have a situation in which the image plane and the scene are of the same side with respect to the optical center (Figure 2). The

rectangular image plane has an orthonormal coordinate system (Ω,U ,V ), where U is the horizontal axis of the image and

V the vertical axis of the image. The origin Ω is located at the upper left corner of the image. The camera reference frame is

defined by the orthonormal frame (O,X,Y ,Z), where Z corresponds to the optical axis directed to the observed scene and10

X and Y correspond to the U and V axes of the image. The point of intersection of the optical axis with the image is called

principal point. It does not necessarily coincide with the center of the image, which is especially the case for non-scientific

cameras. In this configuration, if (u′,v′) denotes the centered coordinates of a pixel with respect to the principal point, the

projection of a physical point M(x,y,z) is given by the following equation:

(u′,v′) = (f tan(φ) x/r, f tan(φ) y/r) , (1)15

where r =
√
x2 + y2 denotes the distance from the physical point to the optical axis and φ= arctan(r/z) denotes the angle

of incidence of the optical ray. The parameter f is the pinhole camera focal length (expressed in pixels in the case of a digital

camera). Thus, if (u,v) denotes the pixel associated with the M(x,y,z) point in the frame of the image, the projection is

defined by:

(u,v,1)T =


1 0 u0

0 1 v0

0 0 1

(u′,v′,1)T (2)20

where (u0,v0) contains the coordinates of the principal point. We denote Gf,u0,v0
perspective the projection function of parameters

{f,u0,v0} which maps a physical point M(x,y,z) to a pixel (u,v). The reciprocal projection is denoted by G−1 f,u0,v0
perspective . It

maps an optical ray {λ(x,y,1), λ ∈ R} to a pixel (u,v).

Omnidirectional Scaramuzza model: Under the axisymmetric assumption, and if r′ denotes the distance between (u,v) and25

the principal point, equation (Eq. 1) can be generalized to:

(u′,v′) = (r′(φ) x/r, r′(φ) y/r) . (3)

The distance r′ in pixels depends on φ and characterizes the radial distortions. These distortions are preponderant in a fisheye

lens. This is the reason why the function r′(φ) is called representation function of the fisheye lens. In the Scaramuzza model,

this function is implicitly defined by the relation tanφ=−r′/p(r′) where p(r′) is a polynomial function p(r′) = a0 + a1r
′+30
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. . .+ anr
′n. The tangential distortions are taken into account linearly by an additional correction step (parameters c, d and e).

Thus, if (u,v) denotes the pixel associated with the (x,y,z) point in the frame of the image, the projection is defined by:

(u,v,1)T = M(u′,v′,1)T =


1 e u0

d c v0

0 0 1

(u′,v′,1)T . (4)

We denote GM,a0,...,an
fisheye the fisheye projection function of intrinsic parameters {M,a0, . . . ,an}.

5

Camera calibration method: The camera calibration determines the camera intrinsic parameters {M, a0, . . . ,an}. To do this,

we use N shots of a chessboard with K1×K2 corners (intersections between black and white tiles - Figure 4). We denote by

Rchessboard a coordinate system such that the origin is located on one of these corners, and that the horizontal axes coincide with

the chessboard lines. For each shot i, and for each chessboard corner (xj ,yj ,0)
T
Rchessboard

, we have the relation:

(uij ,vij)
T =GM,a0,...,an

fisheye

(
Ri (xj ,yj ,0)

T
Rchessboard

+T i

)
i= 1, . . . ,N j = 1, . . . ,K1×K2, (5)10

where (uij ,vij) denotes corners positions on the image, Ri the rotation from the camera frame to Rchessboard and T i the

translation between the optical center of the camera and the origin ofRchessboard. The calibration is based on the following steps

using the toolbox OcamCalib:

1. For each shot i, corners are automatically detected in the image using the intensity gradient specific signal and the pattern

of the board (Figure 4 bottom). This process gives (uij ,vij) values.15

2. In the nonlinear system (Eq. 5), the values of (uij ,vij) and (xj ,yj) are known and the system is overdetermined for

sufficiently large values of N and K1×K2. Parameters {M,a0, . . . ,an,{Ri,T i,∀i= 1...N}} are determined by using

a Marquardt-Levenberg method.

Undistortion: In order to produce undistorted images, the scene is reprojected according to a conventional centered perspective

projection of focal length f . During this reprojection, we move from a circular fisheye image to a square image of size Npx×20

Npx. The intensity of each pixel of the undistorted image is calculated according to the relationship:

RGBundistorted (uundistorted,vundistorted) = RGBfisheye

(
GM,a0,...,an

fisheye ◦G−1 f,Npx/2,Npx/2
perspective (uundistorted,vundistorted)

)
. (6)

In this transformation, the peripheral areas of
:::
are

:::::::
mapped

::::
from

:
a
:::::
given

::::::
region

::
of

:::
the

::::::
fisheye

:::::
image

::::
onto

:
a
:::::
larger

:::::::::
projection

::::
area

::
in

:::
the

:::::::
rectified

::::::
image,

::::::::
producing

:
the image are weakly resolved. These fields are filled by interpolation, hence the blur effect.

Note that the values of f and Npx can be freely chosen. The field of view of undistorted images FOVundistorted = 2arctan
Npx

2f25

will depend on these values. The smaller the value of f , the larger the field of view, but the more interpolated areas occupy an

important part of the image.
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2.3 Orientation, stereo calibration and rectification

At the end of the previous step, we are able to produce two undistorted stereo images. They are square images of the same

size Npx×Npx, for which the center of the image and the principal point coincide, and which would have been taken by two

pinhole cameras with the same focal length f . The next step consists in orienting them with respect to each other as accurately

as possible. To achieve this, Hu et al. (2009) use landscape features and Öktem et al. (2014) use the horizon line. Seiz (2003)5

and Beekmans et al. (2016) use the positions of the stars that allows to determine the orientation of each camera. In addition,

they add an algorithmic correction step based on SIFT stereo pixel matching algorithm (Lowe, 2004). In our work, we develop

a visual orientation method assuming that there is no visual obstacle between the two cameras. Like Beekmans et al. (2016),

this initial orientation is refined by an algorithmic step.

10

Orientation and stereo calibration: The cameras optical axis are oriented towards the zenith. The image planes are at the

same altitude, and the horizontal axes of the undistorted images are aligned. This theoretical orientation of the all-sky stereo

system is called frontally aligned (Figure 5). From the GPS coordinates, the distance b=O1O2 between the cameras and

the angle of deviation from the North β = N̂O1O2 are calculated with Haversine formulas. The
:::::
Initial orientation of the

equipment requires an additional calibration step, which is algorithmic and determines
:::::::
cameras

::
is

:::::::::
previously

::::::::
described

:::
in15

:::::
Figure

::
1

:::
and

:::::
gives

::
an

:::::::::
orientation

::
of

:::
the

:::::::
cameras

:::::
close

::
to

:::
the

::::
ideal

::::::::
frontally

::::::
aligned

::::::::::
orientation.

::::::::
However,

:::
this

:::::::::
procedure

::
is

:::
not

:::::::
sufficient

:::
to

:::::::
perform

::
an

::::::::
accurate

:::
3D

::::::::::::
reconstruction

:::::
which

:::::
needs

::::
row

:::::::::
alignment

::
of

::::::::::::
corresponding

::::::
stereo

:::::
pixels

::
in

:::
the

::::::
stereo

::::::
images

:::
(see

::::::
Figure

:::
5).

::
A

::::::
refining

::::::::::
algorithmic

::::
step

::
to

:::::::
calculate

:
the precise relative orientation of camera frames

::
the

:::::::
cameras

::::
and

:::::::::::
consequently

:::::
rectify

:::
the

:::::
stereo

:::::::
images

:
is
::::
then

::::::::
required. This procedure is usually referred to as stereo calibration and consists

of calculating the components of the relative rotation R and the relative translation T = O1O2 between camera frames such20

as (x,y,z)TR1
= R(x,y,z)TR2

+T .

Stereo calibration is based on the concepts and theorems of epipolar geometry. In particular, in the case of pinhole cameras

with the same focal length f , it exists a constant matrix 3× 3 of rank 2 denoted E and called essential matrix. This matrix only

depends on R and T and verifies the following constraint:

(u′M2 ,v′M2 ,1)T E(u′M1 ,v′M1 ,1)T
:

= 0, (7)25

for all pixels (uM1 ,v
M
1 ) from the left stereo image, and (uM2 ,v

M
2 ) from the right stereo image representing the same physical

point M . We use the following stereo calibration methodology:

1. From the undistorted stereo images, retrieve a set of stereo matching pixels with the SIFT algorithm (Lowe, 2004).

2. Using the pairings of step 1, solve the overdetermined system (7) whose unknowns are the coefficients of the matrix

E. We use a Least Median of Squares (LMEDS) regression, which avoids being affected by outliers. The matrix E is30

determined to within a scalar factor.
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3. Calculate R and T . For this purpose, the following equations are used:

[T×]2 =−EET with [T×] =


0 −Tz Ty

Tz 0 −Tx
−Ty Tx 0

 , (8)

that give two opposite solutions T+ et T− and

R =
1

‖T ‖2
([E2×E3 E3×E1 E1×E2]± [T×]E) , (9)

where Ek denotes the k-th column of the E matrix. The uniqueness of the solution is obtained by requiring the scene to5

be located in front of the cameras as well as the constraint ‖T ‖= b.

4. Corrective rotations R1 and R2 are defined by using R and T such that:

R1 = R−1rect and R2 = R−1rectR. (10)

where Rrect = (e1,e2,e3) is a rotation matrix such as e1 is oriented in the same direction of T , and e2 is orthogonal to

e1 and to the left camera optical axis .10

5. Consistency step:
::::
Initial

::::::
visual

:::::::::
orientation

::
of

:::
the

:::::::
cameras

::
is
::::::::
achieved

::
to

::
be

:::
as

::::
close

:::
as

:::::::
possible

::
to

:::
the

:::::::
frontally

:::::::
aligned

::::::
relative

:::::::::
orientation

::::
(i.e.,

:
R' Id and T ' (b,0,0)T . This validation is necessary because the algorithmis sensitive to the

stereo pixel matching quality and can, in some cases, converge towards an incoherent minimum. In practice, we minimize

‖T − (b,0,0)T ‖2 + ‖R− Id‖2 by varying subsets of matching pixels used in step 2 (E matrixcomputation).
:
;
:::
see

::::::
section

::::
2.3).

::
In

:::
our

:::::::::
algorithm,

::::::
several

::::::::::
estimations

::
of

:::
the

::::::::
essential

::::::
matrix

::
E,

::::
and

:::::::::::
consequently

::
R

:::
and

:
T
:
,
:::
are

::::::::
achieved

::
to

:::::
avoid15

:::::::
incorrect

::::::::
solutions

:::::
which

:::
are

::::
due

::
to

::::::::
erroneous

::
or
:::::::::

imprecise
:::::::
matches

::
in

:::
the

:::::
SIFT

:::::::::
procedure.

:::::
These

::::::::::
estimations

::
of

::
E

:::
are

:::::::
obtained

::
by

:::::
using

::::::
several

::::::
subsets

:::
of

:::
the

:::::::
matching

:::::
pixel

:::
set

::::
given

:::
by

:::
the

::::
SIFT

:::::::::
procedure.

::::::::::
Estimations

::
of

::
E

:::::
matrix,

::::::
which

::
are

::::
not

:::::::
coherent

::::
with

:::
the

::::::
R' Id

::::
and

::::::::::::
T ' (b,0,0)T

:::::::::
hypothesis

:::
are

::::
then

:::::::
rejected.

:::::::
Among

:::
the

::::::::
coherent

::::::::::
estimations,

:::
we

::::::
choose

::
the

::::
one

:::
that

:::::
leads

::
to

:::::::
minimal

:::::::::
corrective

::::::::
rotations.

Rectification: We use R1 and R2 to produce undistorted rectified images; that is, the images that would have been produced by20

perfectly aligned pinhole cameras. These images are produced from all-sky original images by the following transformation:

RGBCAM1,2
rectified (urectified,vrectified) = RGBCAM 1,2

fisheye

(
Gintrinsic params CAM 1,2

fisheye ◦G−1 f,Npx/2,Npx/2
perspective ◦R1,2 (urectified,vrectified,1)

)
. (11)

2.4 Three-dimensional reconstruction

Three-dimensional reconstruction is obtained by triangulation from two pixels (uM1 ,v
M
1 ) and (uM2 ,v

M
2 ) which are known to

represent the same physical point M . Indeed, knowing the projection functions of each camera, their relative orientations, and25

the distance between the cameras, it is possible to estimate the point of intersection of the optical rays in a given reference

frame. Working directly with the rectified images make this calculation easier because we have a simple theoretical standard
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situation: identical pinhole images in a frontally aligned orientation (Figure 5 right). In this case, two matching pixels are

located on the same row in the image matrices (i.e. vM1 = vM2 ). Then, the coordinates (xM ,yM ,hM ) in the rectified frame of

the left camera are given by:

hM =
f b

uM2 −uM1
=
f b

δM
, xM = hM

u′M1
f
, yM = hM

v′M1
f
. (12)

where δM = uM2 −uM1 is called disparity and is linearly related to h through the baseline distance between the cameras b, and5

the focal distance f .

In addition, a dense 3D reconstruction of the observed scene assumes that one is able to generate a dense matching of

corresponding pixels across the stereo images. This is called the dense stereo matching problem. In the case of rectified images,

this problem is greatly simplified by the fact that vM1 = vM2 , and thus, becomes a one-dimensional problem. In this case, a very

common method is the block matching algorithm (Szeliski, 2010), which relies on finding maximum correlations between10

neighborhoods of pixels across the stereo images. This algorithm is implemented in the OpenCV library (Bradski and Kaehler,

2008), and is able to describe finely the variations of altitude. However, it generates noise/speckles in weakly textured image

part which is a disadvantage for the type of objects that we consider (clouds, blue sky background, sun). To avoid this effect,

we use several techniques:

– adjusting algorithm parameters: height detection range can be limited during the pixel matching process by setting15

minimum and maximum bounds for cloud height detection ; window correlation size is adjusted to prevent speckles.

– disparity range is limited during the pixel matching process by setting minimum and maximum bounds for cloud

height detection. Note that disparity bounds are related to height detection bounds with equation (Eq. 12), even if

this relationship becomes less relevant for larger incident angles for which larger horizontal errors occur.

– window correlation size is adjusted to prevent speckles.20

– smoothing the signal by reducing the size of the image while taking advantage of the subpixel resolution of the algorithm.

– using blue sky filtering: we process the altitude map by filtering the blue sky areas. We use image conversion in the HSV

color management system (Hue, Saturation, Value). The hue values ranging from 170° to 280° (from cyan to violet) are

filtered.

2.5 Velocity field25

The estimation of the cloud field horizontal velocity is carried out by using two successive rectified images It1 and It2 coming

from the same camera. Using cross-correlation techniques, the displacement of the cloud field from one image to another is

evaluated in pixel units. This displacement on the image is converted into velocity by using the previously calculated height

map. In practice, the initial image is divided into rectangular blocks It1k1,k2 indexed by the subscripts k1,2 (Figure 6). The

median of heights hk1,k2 is assigned to these blocks based on the cloud height map. The translation in number of pixels of each30

9



block through two successive shots is denoted by ∆k1,k2 . It is related to the block mean horizontal velocity
(
vxk1,k2 ,v

y
k1,k2

)
by:

vxk1,k2 =
hk1,k2
f

∆u
k1,k2

∆t
, vyk1,k2 =

hk1,k2
f

∆v
k1,k2

∆t
, (13)

where ∆t= t1− t2 is the time between two shots. Calculating ∆k1,k2 is to determine the position of a It1k1,k2 template in the

It2 image. This generic computer vision problem is called template matching. A method developed by Lewis (1995) and based5

on the Normal Cross Correlation index allows to perform this search with a low algorithmic cost in simple cases (no rotation,

no scaling). This algorithm is available in the OpenCV library (Bradski and Kaehler, 2008).

Note that the technique used here is similar to that used by Janeiro et al. (2014), which evaluates the displacement of a single

block centered on the principal point through two images. In our case, the approach is multiblock, which generates dispersion

but makes it possible to estimate the velocities of multiple cloud layers.10

2.6 Segmentation and cloud identification

Segmentation techniques are used in computer vision problems to identify objects in an image. In our case, the main interest of

this technique is to identify and georeference individual clouds when the situation allows it
:
.
:::
The

:::::::
method

::::
that

::
we

:::::::
present

::::
here

:
is
::
a
:::::::::::
contour-based

:::::::
method

::::::::
involving

::::
blue

:::
sky

:::::::
filtering

:::::
which

::::::::
supposes

::::
that

:::
the

:::::
clouds

:::
are

::::::::
separated

:
(e.g.

:
, cumulus cloud field)

:::
and

:::
that

::::
they

:::
do

:::
not

:::::::
overlap

::
on

:::
the

::::::
image

:::
due

::
to

:::::::::
projection

::::
(this

:::::
would

:::::
result

:::
in

::::::
merged

::::::::
contours). Segmentation is achieved15

with the following steps:

1. production of a binarized image from blue sky filter (Section 2.4).

2. contour detection and segmentation from binarized the
::::
using

:::
the

:::::::::
binarized image: we use a contour finding algorithm

implemented in OpenCV library and inspired by Suzuki et al. (1985).

3. filtering non-significant/noisy contours: we eliminate contours with a low inside area, and with a low number of inner20

triangulated pixels.

4. filtering sun: we use a threshold on altitude to remove the sun.

Each segmented region contains pixels that have been triangulated in the 3D reconstruction process. This allows to assign

(x,y,z) coordinates for each triangulated pixel. In order to avoid outliers the center of each segmented cloud, and the cloud

base height is estimated with:25

xcenter =
q5(x) + q95(x)

2
, ycenter =

q5(y) + q95(y)

2
, zcloud base = q10(z) (14)

where x, y ,z corresponds to coordinates of all triangulated pixels within the segmented region. The notation qr(x) (resp. y and

z) denotes the rth quantile of x values (resp. y and z) within the segmented region.
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2.7 Uncertainty estimation

Theoretically, in a frontally aligned pinhole stereo system, the uncertainty on height σh can be related to the uncertainties on

the position of corresponding pixels (u1,v), (u2,v), given by the sensitivity equation:

σh = σ|u1−u2|
h2

fb
= σδ

h2

fb
. (15)

where σ|δ| = σ|u1−u2| represents the uncertainty on disparity (Section 2.4). This equation shows that uncertainty decreases5

linearly as the baseline distance b increases, until a distance here
::::
where

:
the quality of the stereo-pixel matching degrades. On

the other hand, σh quadratically increases with increasing heights.

In a practical way, the uncertainty related to the 3D reconstruction of the cloud field in the Earth’s frame has several com-

ponents: camera resolution, intrinsic projection/calibration model, position and orientation of the cameras/stereo calibration,

and pixel matching. We quantify the overall uncertainty on cloud base height experimentally. In this work, we use a Vaïsala10

CL31 ceilometer, collocated with the all-sky stereo system, as the reference instrument. It provides information by measuring

the cloud base height at the zenith, and identifies up to three cloud layers. Several aspects must be identified before comparing

ceilometer and all-sky stereo system results:

1. there is spatial inter-cloud and intra-cloud variability of the cloud base height.

2. all-sky stereo system computes heights coming from the base as well as the sides of the clouds.15

3. ceilometer provides a point value at zenith, while the cameras provide a spatial map of the heights.

4. all-sky stereo system can recover multiple cloud heights only if it can see them.

Several methodologies can be used to compare all-sky spatial data to ceilometer temporal data. A comparison of height

measurements at zenith when the picture is taken allows to estimate uncertainty on height σh, although this method is limited

because it does not represent the uncertainty on the peripheral parts of the image. Another way is to compare the height20

frequency histograms obtained by the all-sky stereo system (heights calculated for a scene) with the distribution of the heights

obtained by the ceilometer (centered time series). The distribution peaks represent the representative height of the cloud base

for a given cloud layer. The thickness associated with these peaks is due to the above-mentioned uncertainties and cloud base

variability. The error is estimated by comparing the peak positions and the standard deviations of the distributions around these

peaks.25

In the Earth frame, the uncertainty on (x,y) position can be deducted from uncertainties on height σh, polar angle σφ,

and azimuthal angle σθ. Indeed, in spherical coordinates we have x= ρcosθ sinφ, y = ρsinθ sinφ, h= ρcosφ. By denoting

r =
√
x2 + y2 = htanφ, the ground projected distance, we obtain x= hcosθ tanφ and y = hsinθ tanφ, such as:

σ2
x = (cosθ tanφ)2σ2

h + (hsinθ tanφ)2σ2
θ + (hcosθ cos−2φ)2σ2

φ, (16)

σ2
y = (sinθ tanφ)2σ2

h + (hcosθ tanφ)2σ2
θ + (hsinθ cos−2φ)2σ2

φ, (17)30

σ2
r = tan2φ σ2

h +h2 cos−4φ σ2
φ. (18)
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The angle uncertainties are mainly related to the orientation of the cameras: initial orientation (GPS position and visual sight-

ing) and algorithmic correction in the rectification process (Section 2.3). In our study, the estimation of σh is calculated

experimentally as mentioned above. The corrective rotations provided by the rectification algorithm in different configurations

allows to estimate σθ and σφ, providing σθ=σφ= 2°.

3 Results5

3.1 Camera calibration

The OcamCalib toolbox allows computing both camera intrinsic parameters following Scaramuzza’s model (Section 2.2). This

calculation is made from multiple images of a chessboard (30 shots in our case). Validation of the calibration is based on

two indicators: the first indicator is the mean re-projection error which is the mean root square of the difference in pixel units

between corner positions as estimated through the calibrated model and those initially detected. The second indicator measures10

the maximum value of this difference. These values (in pixel units) are compared with the size of the images produced by the

cameras: 2944 px× 2944 px. Dispersion can also be quantified by comparing the representation functions determined for both

cameras. The calibration parameters are listed in Table 1. Figure 7 (left panel) shows the r′CAM1(φ) representation function of

camera 1, as calculated by the calibration method. This function, which characterizes the projection, is compared with typical

fisheye parametric models. The difference between the representation functions of the cameras 1 and 2 is shown in Figure 715

(right panel). The calculation of sensitivity dφ/dr′ allows to estimate the uncertainty on the angle of incidence φ. In our case,

this uncertainty varies as a function of φ between 0.06°/px and 0.07°/px. Finally, Figure 8 illustrates the dispersion of the

reprojection errors for each corner and for each shot.

The result of this calibration shows that both all-sky cameras obtain an intermediate projection between the equidistant

and equisolid projections (Figure 7 left), with the difference increasing significantly beyond an incident angle of 50° (10 px20

deviation / angular error of 0.65° ). This shows that the use of a precise calibration model and method is needed if one wishes

to use the peripheral parts of the all-sky image. The difference between the representation functions of the camera 1 and the

camera 2 (Figure 7 right) shows that the fisheye projections are almost identical up to an angle of incidence of 70° (2 px

deviation), which is an indicator of validity of the calibration. This uncertainty increases significantly beyond angles greater

than 80°. The dispersion of the reprojection error is small (Table 1, Figure 8) with an average reprojection error less than 1 px25

(i.e, 0.065°) and 7 px (i.e, 0.5°) maximum deviation .

3.2 Georeferencing results

3.2.1 Validation cases

We apply the methodology described in section 2 for two types of cloud fields. In both cases, measurements are made on the

Météo-France site in Toulouse, France. The baseline distance between the cameras is given by b' 150 m. The first validation30

case is carried out in the context of a weakly convective mid-afternoon situation (July 2016). Clouds are cumulus humilis,
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mediocris and congestus. The cloudiness is around 4 octas. In this case, the cloud base height is around 1500 m.agl, which

implies a ratio h/b' 10. The second validation case occurred around noon, highlighting the detection of multiple cloud layers

(June 2016). The clouds are cumulus fractus with cloud base at 1000 m.agl and altocumulus stratiformis with bases at 2300

m.agl. The cloudiness is about 6 octats. In this case, we have a ratio h/b≤ 15. The context of each test case is summarized in

Table 2.5

3.2.2 Cloud height map

For each validation case, we repeat the same procedure three times at intervals of 15 min.

1. Capture and undistortion of the fisheye images (Section 2.2).

2. Stereo pixel matching and stereo calibration (Section 2.3).

3. Rectification of the undistorted images (Section 2.3).10

4. 3D reconstruction and calculation of the height map (Section 2.4).

5. Comparison with a ± 15 min time series from the ceilometer (Section 2.7).

Note that in operational situations, the stereo calibration (step 2) does not need to be performed before each shot if the

material stays in place. Since we quantify the error associated with the entire methodology, step 2 is re-executed for each

shot. In step 4, smoothing and filtering techniques to avoid speckles in non-textured zones are implemented (Section 2.4). In15

particular, min/max threshold on heights is set to h ∈ [450 m, 4000 m] and a blue-sky filter is implemented. The parameters

for image undistorsion
::::::::::
undistortion, rectification, 3D reconstruction and segmentation are given in Table 3.

We compare the distributions of the heights obtained with the all-sky stereo system to the ceilometer. The results obtained

for the first and second case are presented in Figures 9 and 10, respectively, with images spaced 15 min apart. On those panels,

top row represents the undistorted and rectified images of the left camera at each time interval. The middle row represents20

cloud height maps. The bottom row represents the distributions of the calculated heights (blue histograms) compared with the

ceilometer distributions (red histograms). A comparison of these distributions is summarized in Figure 11. For images where

a cloud intersects the zenith direction, a ponctual comparison between ceilometer and all-sky system heights is given with the

histograms.

The results of the cumulus case show that, for cameras spaced 150 m apart and a cloud base height of about 1500 m.agl, the25

cloud base height distributions obtained with the all-sky stereo system are similar to the ceilometer. The maximum offset on

the distribution peak is about ±150 m, which is σh/h' 10% for a h/b' 10 ratio. Around these peak values, the data show a

standard deviation δh ' 100
::::::::
σh ' 100 m, which is similar to the ceilometer. As expected, instantaneous comparison at zenith

gives better accuracy results with a measurement difference up to 50 m (i.e. σh/h' 3%).

The results of the second validation case (altocumulus/multi-layer) show that all-sky camera network can identify multiple30

cloud layers. In this case, the offset between distribution peaks is 20 m for the lower cumulus fractus cloud layer (h= 1000
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m.agl). For the layer at 2300 m.agl, the offset on the distribution peak varies between 60 m (2nd image) and 350 m (3rd image).

In this case, where h/b= 15, the ratio σh/h' 15%. As previously stated, standard deviations obtained by the cameras and the

ceilometer are similar around the peak values, varying between 100 m and 200 m. For this case, instantaneous comparison at

zenith gives a measurement difference up to 100 m for the 2300 m layer (i.e. σh/h' 5%).

From these experiments, using peak distribution offsets, we note that σh/h' 0.01h/b can be considered as a general rule for5

the height measurement uncertainty when using our methodology. The stereo calibration step is most likely responsible for the

observed shifts. As we have explained in section 2.3, this step is sensitive to the quality of the pixel matching performed by the

SIFT method. This is illustrated by Figure 12 showing variability of the height distribution with different stereo calibrations

in the altocumulus case. According to σh/h relationship, sensitivity on the stereo calibration step increases when ratio h/b

increases. Indeed, in this example, the peak corresponding to the low-layer cumulus fractus clouds (' 1000 m) is barely10

impacted by the stereo calibration step.

3.2.3 Horizontal georeferecing results, velocity map and segmentation

The horizontal georeferencing and velocity results obtained for the cumulus and altocumulus/multi-layer cases are shown in

Figures 13 and 14, respectively. For each figure, we show: the left camera rectified image and its associated velocity map

(top figures), the 3D point cloud projection on the left camera x− y horizontal plane, and uncertainty on position σr (bottom15

figures). This uncertainty is estimated using the equation (18) with σφ = 2°, and σh = 0.01h2/b according to the experimental

results presented in the previous section.

The results show the ability of the all-sky stereo system to retrieve information on cloud field spatial organization. As

expected, position uncertainty increases with altitude and angle of incidence of the cloud. For the cumulus case, this uncertainty

is about 120 m for a cloud located at a ground distance of 1 km, 250 m for a cloud located at 2 km and 450 m for a cloud20

located at 3 km. The estimated velocity is 14 km/h with a mean direction of wind of 255°.

For the multi-layer/altocumulus case, the uncertainty is 180 m for a cloud at 1 km, 330 m for a cloud at 2 km and 500 m

for a cloud at 3 km. The velocity results show that the all-sky stereo system is able to estimate the velocities of different cloud

layers. In this case, the estimated average velocity is 16 km/h for the 1000 m layer and 30 km/h for the 2300 m layer, with

respective mean directions of 205° and 230°.25

We note that the uncertainty on cloud layer velocity is related to h following Eq.13, and is between 10% and 15% in the

cases studied.

In the cumulus mediocris case, as we have separated cumulus clouds on the images, the situation allows to go further and

implement the segmentation algorithm (Section 2.6). Results are shown in Figure 15. We show the cloud height map, as well

as the segmented image with the estimated positions of cloud centers (red dots and cloud identification number). The estimated30

cloud positions are listed in Table 4. The estimated individual cloud base heights are compared with the ± 15 min ceilometer

time series. In our case, we find that the all-sky camera network allows to identify clouds as individual objects. The estimated

cloud base heights agree well with the ceilometer.
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4 Discussion and future work

The results obtained under the configuration described in this study are relevant for macroscopically characterizing a cloud

field up to 2500 m altitude, as well as cloud targeting applications by instrumented UAVs. Yet, for precise measurements:

morphological parameters of a cloud (width, vertical extension and variation over time), precise geolocation (e.g. measurements

near the base, top, or edges of the cloud), the all-sky camera network must be configured to ensure a certain accuracy.5

In addition to optimizing the baseline distance between the cameras, several strategies can be explored to improve the

accuracy of all-sky camera system. A first strategy is to work on the robustness of the orientation step. Relative orientation

accuracy between stereo cameras plays an important role in the image rectification process (Section 2.3). Indeed, relative

orientation has an impact on 3D reconstruction accuracy through pixel matching hit score, and uncertainty on disparity, as

shown with (Eq. 12) and (Eq. 15), and experimentally in Figure 12. Moreover, it is important to ensure that cameras are10

correctly oriented in the Earth’s frame for accurate geolocalization, as shown in (Eq. 18).

In previous studies, the camera orientation is based on identified elements of the landscape, such as stars, trees, buildings

and horizon lines. This consideration of external elements is adapted to the context of a fixed installation of a camera system,

but becomes less suitable in the context of a measurement campaign in which the all-sky camera network must be mobile

and rapidly operational. The technique used here to initially orient the camera network is based on: GPS for positioning in15

the Earth frame, leveling for horizontal adjustment, and vertical sights on the camera housing for inter camera
::::::::::
inter-camera

alignment, which is a priori less accurate than using landmarks or stars to establish the orientation. Improving the initial

orientation accuracy can be accomplished using laser sighting or the use of successive images of a GPS-equipped balloon or

UAV loitering in the field-of-view of the cameras. In addition, the relative orientation between camera-pairs can be refined by

the stereo calibration algorithm using a time series of several pairs of images, instead of an instantaneous snap shot of a single20

pair of images. In addition, improved accuracy can also be achieved by organizing a network of several cameras (Heinrichs

et al., 2007). For example, the arrangement of the cameras on the ground can be used to increase the number of triangulations

of the same object (e.g. square arrangement with four cameras). Inter-camera spacing can also be organized to accommodate

different cloud layers (e.g., closely-spaced cameras for low clouds and farther apart for high altitude clouds).

For dense stereo matching, the block-matching algorithm (Szeliski, 2010) yields correct results even in weakly textured25

areas, provided that smoothing and filtering techniques are implemented (Section 2.4). However, smoothing step impacts

accuracy when reconstructing cloud edges. Block-matching algorithm is a standard method and it would be useful to carry out

a comparative study of the results given by dense matching methods developed recently. This field of research is very active and

there is a dedicated benchmark on-line platform described in Scharstein and Szeliski (2002). One of the objectives of a future

study would be to use this benchmark to identify and implement methods capable of accurately characterizing low-textured30

cloud zones, as well as edges.

In terms of image segmentation (e.g. identification of individual clouds), and geolocation, the methods and results presented

in this article provide an overview of computer vision techniques to estimate individual cloud positions and their characteristics

in a shallow cumulus cloud-field. Segmentation based on contour detection of neighboring pixels makes it possible to isolate

15



individual clouds. The cloud segmentation approach used in this study, works well for distinguishable clouds on the image,

but its performance is less reliable if this is not the case. The cloud segmentation method can be refined by taking into account

the altitude map for more complex cloud fields where different clouds overlap on the image (e.g. multiple cloud layers, higher

cloudiness, or deep convection). We see in Fig. 10 that the reconstruction algorithm determines low cumulus fractus edges

within overlapping higher cloud layer. For a stratiform cloud layer with high cloudiness and less contrast, the segmentation5

approach would be modified to discern macroscopic differences in the cloud structure. Nonetheless, as mentioned in the

previous paragraph, reconstructing accurate edges in situations where low textured objects overlap remains a challenging task

in the computer vision field. The uncertainty with respect to geo-localization of an individual cloud center position is directly

related to uncertainty estimation on height (Section 2.7).

Finally, the use of photogrammetry techniques associated with segmentation opens the way to the characterization of other10

parameters of interest to the
::
in atmospheric science, such as the width of the cloud base and the vertical extension of the clouds,

as shown by Beekmans et al. (2016). In addition,
:::::
cloud.

::::
The

:::::
width

::
of

:::::
cloud

::::
base

::::::
follows

:::
its

::::::
growth

:::
and

::::::::::
dissipation,

:::
and

:::
can

:::
be

:::
well

:::::::::
estimated

::
at

:::
low

:::::
zenith

:::::::
angles.

::
In

:::::::
contrast,

:::::::::
extracting

:::::
cloud

::::::
vertical

::::::::::
dimensions

:::
can

::
be

::::::::
achieved

::
at

::::
large

::::::
zenith

::::::
angles

::
as

::::
long

::
as

:::
the

:::::
cloud

::::
tops

:::
are

:::
not

::::::
hidden

::
in

:::
the

::::::::
projection

::::::::::::::::::::
(Beekmans et al., 2016).

::::::::::::
Consequently,

:
segmentation makes it possible

to track individual clouds through successive images and follow the evolution of the cloud life cycle
::
by

::::::::
tracking

::::
cloud

:::::::
heights15

:::::
and/or

:::::
cloud

::::
base

::::::
widths.
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Figure 1.
:::
Top

:
-
::::::::
VIVOTEK

::::::::
FE8391-V

::::::
fisheye

::::::
camera

:::
and

::::::::
installation

:::::::
structure.

::::::
Bottom

:
-
::::::
Vertical

:::::
sights

::
on

:::
the

:::::
camera

:::::::
housing

::::
allow

:::::
visual

:::::::::
inter-camera

::::::::
alignment

::
in

::
the

::::::::
horizontal

:::::
plane.
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Figure 2. Pinhole projection. Physical point M is projected on (u,v) on the image-plane (Ω,U ,V ). Camera coordinate system is defined

by axis X and Y which are colinear to U and V , and by axis Z which is the optical axis. Principal point (u0,v0) is the projection of the

optical center O on the image. The radial projected distance on the image is denoted r′.

Table 1. OcamCalib calibration results for cameras 1 and 2. Parameters are described in equations (Eq. 3) and (Eq. 4) in section 2.2.

principal point radial distortion parameters

Image size u0 v0 a0 a1 a2 a3 a4

Camera 1 2944× 2944 1467.6 1468.0 −980.6 0 3.9853e-4 −1.0973e-7 1.0861e-10

Camera 2 2944× 2944 1452.5 1452.8 −982.4 0 3.5975e-4 −2.3627e-8 6.2340e-11

affine distortion parameters Re-projection errors

c d e RMS Max

Camera 1 0.9999 3.12e-4 −7.55e-4 0.7 px 5.3 px

Camera 2 0.9999 5.68e-4 −9.44e-4 1.0 px 7.5px
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Figure 3. Radial distorsion
:::::::
distortion modelization in Scaramuzza et al. (2006) for omnidirectional cameras. Incident angle φ and projected

radial distance r′ are related by tanφ= −r′/p(r′). The polynomial function p is represented by the red curve. The case where there is no

distorsion (i.e. pinhole projection r′ = f tanφ) corresponds to a constant polynomial function p= a0 represented by the green line.

Table 2. Validation cases description

Validation case 1 Validation case 2

Place Toulouse - Météo France

Date (UTC) 2016-07-08 13:55 2016-06-16 10:00

Shots 3 shots every 15 minutes

Baseline distance between cameras, b 147 m ± 3 m

Type of clouds cumulus humilis and mediocris cumulus fractus and altocumulus stratifromis

Mean cloudiness 50% (4 octas) 75% (6 octas)

Mean cloud base height 1500 m.agl 1000 m.agl and 2300 m.agl

Ceilometer Frequency : 1 min, Start/End time of temporal serie = ± 15 min before and after camera shot
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Figure 4. Calibration procedure by multiple views of the same chessboard. The procedure is automatized by using an algorithmic corner

detection. The camera projection function is estimated with the OcamCalib toolbox following Scaramuzza et al. (2006) modelization.

Table 3. Algorithm parameters

Undistorsion / rectification algorithms Size of undistorted and rectified images: Npx = 2944

Field of view of undistorted/rectified images 136°

Block matching algorithm parameters size reduction of images : 512× 512, max height = 4000 m, min height = 400 m,

correlation window size = 11 px, subpixel scale : 1/16

Segmentation / Significative contours thresholds inside contour area (px2)
total image area > 1

1000
, Nb of triangulated pixels in contour

Nb of pixel in contour > 75%.
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Figure 5. Ideal camera configuration. Camera coordinate systems are frontally aligned with optical axis z1,2 oriented towards zenith. Optical

centers O1,2 are in the same altitude plane. The baseline distance is denoted b and North bearing of O1O2 axis is denoted β. In this ideal

configuration, assuming that we have identical pinhole centered cameras, corresponding pixels (uM
1 ,v

M
1 ) and (uM

2 ,v
M
2 ) are row aligned on

the imagers (i.e. vM1 = vM2 ).
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Figure 6. Multiblock tracking algorithm for cloud field velocity estimation. For each block Ik1,k2 , velocity vector is computed by using

the displacement vector ∆k1,k2 expressed in pixels and the median altitude hk1,k2 . Displacement vector is computed by using the Lewis

(1995)’s matching template algorithm. Computations are based on two successive rectified images: in our case we use the left rectified image

at times t1 and t2.
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Figure 7. Left figure : radial projected distance r′ as a function of incident angle φ for VIVOTEK camera 1. Function r′(φ) is called

representation function as it characterize the projection. It is compared to the mostly used fisheye parametric representation functions setted

with −a0 value for f . Right figure : difference in pixels between representation functions of camera 1 and camera 2, as a function of incidence

angle φ.

Table 4. Segmentation and geolocalization results.

Cloud Id Estimated cloud base Position (x,y) of cloud centers r σr

height (m.agl) ± 10% in the left rectified coordinate system

3 1440 (-2.69 km, 1.75 km) 3.21 km ± 350 m

5 1670 (2.41 km, 1.55 km) 2.87 km ±290 m

6 1420 (-1.83 km, 1.46 km) 2.34 km ±260 m

7 1450 (-1.80 km, -0.23 km) 1.81 km ±170 m

9 1430 (-0.68 km, -1.00 km) 1.21 km ±120 m

10 1450 (1.35 km, -1.57 km) 2.10 km ±210 m

12 1640 (-0.23 km, -2.89 km) 2.90 km ±290 m

Ceilometer cloud base heights measured during a 30 minutes time series:

1420 - 1450 - 1530 - 1350 - 1560 - 1550 - 1630 - 1620 m.agl
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Figure 8. For each view and each chessboard corner (which represents an amount of 30× 48 points), difference between corner position on

the image, and corner position computed by re-projection, using OcamCalib calibration results.
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Figure 9. Cumulus validation case - Height map and distribution for 3 shots evenly spaced of 15 min. Top row represents the left camera im-

ages. Middle row represents the associated height map computed by the stereovision system. Bottom row represents the frequency histogram

of heights computed by the stereovision system (blue diagram - 100 m bins). This distribution is compared to the ceilometer frequency

histogram (red curve - 100 m bins).
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Figure 10. Altocumulus/multilayer validation case - Height map and distribution for 3 shots evenly spaced of 15 min. Top row represents

the left camera images. Middle row represents the associated height map computed by the stereovision system. Bottom row represents the

frequency histogram of heights computed by the stereovision system (blue diagram - 100 m bins). This distribution is compared to the

ceilometer frequency histogram (red curve - 100 m bins).
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Figure 11. Comparison of mean cloud base height results obtained by the camera stereovision system and mean cloud base height results

obtained by the ceilometer (blue points). The red 1:1 line corresponds to the reference plot. Linear regression for the ceilometer-camera plot

is shown in green dashed line.
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Figure 12. Sensitivity of the stereo calibration step illustrated by the first shot in the altocumulus validation case. For this shot, we represent

the height frequency histogram obtained with : a) no stereo calibration, b) stereo calibration parameters obtained with the first shot pair of

images, c) stereo calibration parameters obtained with the second shot pair of images.
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Figure 13. Cumulus case - Top figures : rectified image (left) with estimated wind speed and direction (right). Bottom figures : triangulated

points projected on x− y left camera plane with altitude colormap (left), and with r-incertitude colormap (right).
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Figure 14. Altocumulus/multilayer case - Top figures : rectified image (left) with estimated wind spped and direction (right). Bottom figures

: triangulated points projected on x− y left camera plane with altitude colormap (left), and with r-incertitude colormap (right).
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Figure 15. Top: Undistorted and rectified left image with associated height map. Bottom/left: Contours produced by blue filtering segmenta-

tion on left rectified image. Bottom/right: Segmented image with cloud identification number and estimated position of center of cloud base

(red dots). Altitude filter: 4000 m.agl
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