Preprints
https://doi.org/10.5194/amt-2017-217
https://doi.org/10.5194/amt-2017-217
18 Jul 2017
 | 18 Jul 2017
Status: this preprint was under review for the journal AMT but the revision was not accepted.

Empirical model of the ionosphere based on COSMIC/FORMOSAT-3 for neutral atmosphere radio occultation processing

Miquel Garcia-Fernandez, Manuel Hernandez-Pajares, Antonio Rius, Riccardo Notarpietro, Axel von Engeln, and Yannick Béniguel

Abstract. The Radio Occultation instrument at the upcoming EUMETSAT Polar System – Second Generation (EPS-SG) mission will be devoted primarily to monitor the neutral atmosphere through this payload, consisting of a GNSS receiver and occultation antennae pointing slightly below the Earth's limb. The resulting data will be processed by EUMETSAT (primarily for L1B data) and by the ROMSAF's Radio Occultation Processing Package (ROPP) software to obtain the vertical profiles of temperature, pressure and other relevant level 2 parameters of the neutral atmosphere. Newer versions of this software might include a feature by which empirical models of the ionosphere (i.e. vertical profiles of electron density) can be included in the processing in order to increase the accuracy of the inverted bending angle profiles. In order to test this new feature, this work includes the efforts that have been made in order to provide an empirical model of the ionosphere purely based on vertical profiles of electron density inverted from data of previous radio occultation (RO) missions (i.e. COSMIC/FORMOSAT-3). The methodology used in this work is based on using the separability hypothesis, to overcome the spherical symmetry assumption of the Abel inversion as well as a new mechanization of the inversion process, based on a joint processing of all the occultation data via a linear mean square filter, rather than adopting the classical peel onion approach. Additionally, with the development of this empirical model, efforts have been made to construct a proxy index for scintillation monitoring based on the inverted profiles (Occultation Scintillation Proxy Index or OSPI), which shows reasonable correlation with the amplitude scintillation index S4.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Miquel Garcia-Fernandez, Manuel Hernandez-Pajares, Antonio Rius, Riccardo Notarpietro, Axel von Engeln, and Yannick Béniguel
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Miquel Garcia-Fernandez, Manuel Hernandez-Pajares, Antonio Rius, Riccardo Notarpietro, Axel von Engeln, and Yannick Béniguel
Miquel Garcia-Fernandez, Manuel Hernandez-Pajares, Antonio Rius, Riccardo Notarpietro, Axel von Engeln, and Yannick Béniguel

Viewed

Total article views: 1,428 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
879 478 71 1,428 77 70
  • HTML: 879
  • PDF: 478
  • XML: 71
  • Total: 1,428
  • BibTeX: 77
  • EndNote: 70
Views and downloads (calculated since 18 Jul 2017)
Cumulative views and downloads (calculated since 18 Jul 2017)

Viewed (geographical distribution)

Total article views: 1,375 (including HTML, PDF, and XML) Thereof 1,369 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 14 Dec 2024
Download
Short summary
This paper presents a data-driven model of the ionospheric electron density that has been developed for the EUMETSAT Polar System - Second Generation mission, with the main goal to improve the inversion of radio occultations for neutral atmospheric sounding. This model has been developed using occultation data from the COSMIC/FORMOSAT-3 satellite, which has been inverted using a LMS-based mechanization of the Abel inversion that implements the separability hypothesis.