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A list of all relevant changes 1 

 2 

Dear editor: 3 

Thanks for your work and the referees’ contributions to the improvement of our paper. We are very 4 

grateful for that. I write to give you a general picture of the major revisions we have made as the 5 

referees suggested. 6 

(1) We added a quantitative analysis of the effect of aerosols and albedo on differences between 7 

retrieved and models XCO2 as well as differences in retrieved XCO2 between different algorithms as 8 

the two referees suggested. 9 

(2) We removed EMMA, one of the algorithms, from the analysis in this paper as the two referees 10 

suggested. And we also revised the related analysis results. 11 

(3) We shortened the part about ACOS V7.3 and move part of it to the appendix.    12 

(4) According to the referees’ suggestions, we revised our conclusion and analysis results in Table 7 13 

so as to be more concise and conclusive.  14 

(5) We corrected improper English in the paper.   15 

 16 

Best regards, 17 

Nian18 
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Responses to referee #1 19 

Responses to Anonymous Referee #1 on the manuscript of “Regional uncertainty of GOSAT XCO2 retrievals in China: 20 

Quantification and attribution” 21 

 22 

Thank you for your suggestions and valuable comments very much. We have fully considered all your comments, and 23 

carried out our revision and improved our manuscript accordingly. The item-by-item response to the specific comments is as 24 

follows (referee’s comments in red and our response in black).  25 

 26 

Referee #1: general:  27 

-The paper is interesting to the CO2 remote sensing community although in the end it stays rather inconclusive. The 28 

reason is that there is no absolute reference for the true XCO2 in this study. The conclusions that are being drawn 29 

are based on (in-) consistency between different retrieval algorithms and comparison to the GEOS-CHEM model and 30 

are hence to large extend speculative. 31 

   For inconclusive problem as you point out, we revised our analysis results concluded in Table 7.  In this study, we aim 32 

to reveal regional uncertainty of GOSAT XCO2 retrievals via comparison and evaluation of consistence of multi-algorithms 33 

for GOSAT observations, and probe the reason why performances of XCO2 from multi- algorithms are different in same 34 

regions. Our results are expected to give a reliable and valuable reference for application of XCO2 data in detection of 35 

carbon source and sink at a regional scale, e.g. the result gotten by our analysis, the better consistence of XCO2 from four 36 

algorithms (ACOS, NIES, OCFP, SRFP) in Eastern China with large anthropogenic CO2 emissions, can promote us to 37 

detect the anthropogenic enhancement of CO2 concentrations using these XCO2 data with confidence,  and the result, the 38 

existing problems in deserts likely influenced by albedo and AOD, is expected to get attentions and improvement.  39 

 40 

Table 1.Summaries of our analyses for uncertainty of XCO2 retrievals obtained by GOSAT via inter-comparison of multi-41 

algorithms above, including characteristics of regional emissions, albedo, aerosol optical depth, and summary of differences 42 

between algorithms and bias compared to GEOS-Chem. 43 

Characteristics of regions and summary of 

algorithms 
Cells from 80°E to 115°E within 37°N-42°N 

Characteristics 

of regions 

Regions 

Left longitude  (°E) 
80 85 90 95 100                105 110 115 

CO2 emissions  

(Tg/year)*
1
 

Low emissions 

(1.2-57.1) 

High emissions 

(515.2-821.9) 

Property of aerosol 

(AOD)*
2
 

Dust 

(0.22-0.53) 

Clear 

(0.10-0.28) 

Urban 

(0.10-0.37)) 

Surface types 

(albedo) 

Sand desert with high 

brightness 

(0.20-0.26) 

 Gobi and grassland 

(0.19-0.22) 

Cropland and 

built-up 

(0.14-0.17) 
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Summary of 

uncertainty 

Consistency of algorithms  

(pairwise mean absolute 

differences)  

Less Consistency 

( 1.0-1.6 ppm) 

Good consistency 

(0.7-1.1 ppm) 

Bias compared to  

GEOS-Chem 

(bias range) 

Large biases 

(1.2-3.1 ppm) 

lesser biases 

excluding NIES 

(0.0-0.5 ppm)  

General performance of 

algorithms  in spatio-

temporal patterns of XCO2 

compared to GEOS-Chem 

ACOS presents the lowest bias (-0.1±1.9 ppm); 

SRFP is next ( -0.2±2.2 ppm)  

NIES presents the greatest -2.0±2.2 ppm) 

*
1
 represents the total emissions of CO2 from CHRED in each cell in 2012. *

2
 is the range of averaged seasonal aerosol 44 

optical depth over a year.  45 

 46 

 47 

 48 

-The discussion on the aerosol and albedo effect stays qualitative while a more quantitative analysis would be of 49 

interest here. I suggest to revise the paper to include a more quantitative analysis of the effect of aerosols and albedo 50 

on differences in retrieved XCO2 between different algorithms. This analysis should show to what extend the 51 

differences between algorithms, and between retrieved and models XCO2, are correlated with AOD and surface 52 

albedo. When such an analysis is included I recommend publication of the manuscript in AMT. 53 

 54 

According to your suggestion, we added a quantitative analysis about the effect of aerosols and albedo in the discussion 55 

section from in the revised manuscript.  It is also shown as follows: 56 

We discussed the influences of albedo and AOD on XCO2 retrievals from ACOS, NIES, OCFP and SRFP in further. 57 

Fig. 14 plots the scatters of albedo and AOD with the differences between GEOS-XCO2 data (created in section 3.1) to 58 

XCO2 retrievals, hereafter referred to as dmXCO2, for ACOS, NIES, OCFP and SRFP. The albedo data obtained from 59 

GLASS02B06 is used for OCFP as there are no albedo data available from its released data product.  60 

Fig. 14 shows that dmXCO2 of both ACOS and NIES demonstrate a slightly decreasing trend with albedo whereas 61 

slightly increasing trend with AOD. The dmXCO2 of ACOS tend to be larger in 80°E -90°E of deserts with high albedo than 62 

that in other regions. The dmXCO2 of OCFP demonstrate a clear decreasing trend with albedo and AOD comparing to the 63 

other algorithms. The dmXCO2 of SRFP basically does not show a clearly dependence on either albedo or AOD. We further 64 

investigated the standard deviation of dmXCO2 by a variation of the bin-to-bin dmXCO2 with albedo and AOD. dmXCO2 is 65 

averaged by surface albedo within 0.05 albedo bins and AOD within 0.05 AOD bins, respectively. The standard deviation of 66 

the mean dmXCO2 in each 0.05 albedo (AOD) bins, i.e. a measure of the bin-to-bin dmXCO2, is calculated. It is found that 67 

the dmXCO2 for the four algorithms change with both albedo and AOD in bin-to-bin. In the whole study area, the standard 68 

deviation in albedo is the largest for OCFP, up to 0.7 ppm, while that is smaller from ACOS, NIES and SRFP, 0.4 ppm、0.3 69 
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ppm and  0.2 ppm, respectively. The standard deviation of dmXCO2 in AOD is larger for SRFP (0.5 ppm) than those for 70 

ACOS (0.2 ppm), NIES (0.3 ppm) and OCFP (0.4 ppm). Viewing to the deserts (80°E -90°E), the standard deviation  in 71 

albedo is the largest from NIES ( 1.5 ppm),  and the smallest from OCFP (0.2 ppm) while they are 1.0 ppm and 0.5 ppm for 72 

ACOS and SRFP, respectively. The standard deviations in AOD, however, are similar (0.2-0.4 ppm) in this area. As a result, 73 

OCFP tend to be more sensitive to albedo and AOD compared to other algorithms. In the deserts, NIES are the most 74 

sensitive XCO2 retrievals to surface albedo and OCFP the least.  75 

 76 

Fig. 1: Scatter plots of the differences (dmXCO2) between GEOS-XCO2 to ACOS, NIES, OCFP and SRFP respectively, with 77 

respect to albedo (the upper panels) and AOD (the lower panels). Colored points represent the data from different cells: red-[80°E, 78 

105°E], black-[105°E, 120°E] in the study latitude zone [37°N, 42°N]. Colored solid lines display the corresponding linear 79 

regression trend line for the total points. Albedo and AOD are extracted from data products of the retrieval algorithms except 80 

albedo data in OCFP in which GLASS data are used. 81 

Figure Fig. 15, moreover, demonstrates the influence of albedo and AOD on the standard deviation (STD) of XCO2 82 

from four algorithms at the same footprints (timely in the same day, geometrically located within ±0.01° in space). 83 

Averaged albedo (the left panels) and AOD (the right panels) of the four algorithms are used whereas the averaged albedo is 84 

obtained only using three attached albedo in the algorithms except OCFP.  85 

The increasing trends of STD with both albedo and AOD can be seen from Fig. 15. The mean STD is 1.3 ppm in the 86 

western cells (80°E -90°E) where albedo is mostly within 0.25-0.35. This STD is lightly larger than that (1.0ppm) in eastern 87 

cells (90°E-120E°) where albedo is comparatively smaller (mostly within 0.15-0.25). It is found from the statistics presented 88 

in Fig. 15 that the correlation coefficients of STD with albedo and that with AOD is almost the same (both are 0.3) for all the 89 

data. Particular influence from albedo in desert over the western cells can be clearly observed. These results indicate that the 90 
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inconsistency of XCO2 retrievals from four algorithms tend to be increase with the enlargements of albedo and AOD so as to 91 

imply that uncertainty of satellite-retrieved XCO2 should be mostly alerted with the elevations of albedo and AOD.    92 

  93 

Fig. 2: Scatter plots of the standard deviation (STD)  of XCO2 from the four algorithms to albedo (the left panel) and AOD (the 94 

right panel).  Colored points represent different cells: red-[80°E, 105°E], black-[105°E, 120°E] in the latitude zone [37°N, 42°N]. 95 

Colored solid lines display the corresponding linear regression trend line for the scatter plots with the regression slope (a) and the 96 

correlation coefficient (r) also presented. n is the number of samples. Albedo is the mean surface albedo in 0.75-um band from the 97 

three algorithms including ACOS, NIES and SRFP. AOD is the mean AOD in 0.75-um band from the four algorithms. 98 

 99 

 100 

 101 

-Other points:  102 

--How accurate are the XCO2 values modeled by GEOS-CHEM? The paper would benefit from a demonstration of 103 

the capability of GEOS-CHEM, for example from comparions with TCCON (albeit outside the study region).  104 

We added comparisons of GEOS-Chem with 14 TCCON sites. The added descriptions and validation results are shown 105 

in the revised manuscript and as follows: 106 

We compared GEOS-Chem CO2 simulations from the global model driven by CHRED with daily mean TCCON data 107 

from 14 TCCON sites (version GGG2014 data version) (Blumenstock et al., 2014; Deutscher et al., 2014; Griffith et al., 108 

2014a, 2014b; Hase et al., 2014; Kawakami et al., 2014; Kivi et al., 2014; Morino et al., 2014; Sherlock et al., 2014; 109 

Sussmann et al., 2014; Warneke et al., 2014; Wennberg et al., 2014a, 2014b, 2014c). All TCCON measurements between 12 110 

pm and 13:30 pm are used in the comparisons, where GEOS-Chem CO2 profiles are taken according to the location of 111 

TCCON stations (latitude and longitude) as well as the observing date and transformed to XCO2 by convolved with the 112 

individual averaging kernel in each station as Wunch (2010) suggested. The statistics results are shown in Table 5.  113 

Table 2. Statistics of comparison between GEOS-Chem CO2 simulations driven by CHRED and TCCON data from January 2010 114 

to February 2013, which includes biases (Δ), the standard deviations (δ), the correlation coefficients (r) and valid days (days) when 115 

TCCON data are available. Δ, δ and r are calculated using coincident daily mean data averaged between 12:00  pm and 13:30 pm.  116 

ID Station name Latitude Longitude Δ[ppm] δ[ppm] r days 
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1 Sodankyla 67.37 26.63 2.03 2.00 0.83 269 

2 Bialystok 53.23 23.02 0.49 1.84 0.87 196 

3 Karlsruhe 49.1 8.44 0.84 1.69 0.84 152 

4 Orleans 47.97 2.11 0.44 1.70 0.85 223 

5 Garmisch 47.48 11.06 0.65 1.64 0.83 293 

6 Park Falls 45.94 -90.27 1.17 2.14 0.75 494 

7 Lamont 36.6 -97.49 -0.04 1.22 0.90 642 

8 Tsukuba 36.05 140.12 1.43 1.66 0.75 217 

9 JPL 34.2 -118.18 -1.30 1.15 0.90 289 

10 Saga 33.24 130.29 -0.39 1.65 0.86 159 

11 Izana 28.3 -16.48 0.85 1.04 0.90 114 

12 Darwin -12.43 130.89 0.65 0.90 0.88 447 

13 Wollongong -34.41 150.88 0.53 0.83 0.94 347 

14 Lauder -45.04 169.68 0.92 0.42 0.97 370 

 Mean   0.59±0.80 1.42±0.50   

The results of Table 5 show that the bias ranges from -1.30 to 2.03 ppm for all TCCON sites with standard deviations of 117 

the difference varying from 0.42 to 2.14 ppm. The mean standard deviation at the TCCON sites, a measure of the achieved 118 

overall precision,  from using GEOS-Chem simulations driven by CHRED is 1.42±0.50 ppm which is slightly different 119 

from using GEOS-Chem simulations driven by ODIAC (1.41±0.49 ppm). Those validated results with TCCON comparing 120 

GEOS-Chem CO2 simulations driven by CHRED to that by ODIAC indicate that the GEOS-Chem CO2 simulations driven 121 

by CHRED is more likely not to change the global magnitude of CO2 concentration but rather to depict fine spatial 122 

distribution of CO2 concentration in China. 123 

 124 

 125 

 126 

-- EMMA should be excluded from the analysis in this paper as it is not a retrieval algorithm itself but is composed 127 

from the different algorithms that are also analyzed in the present study. In fact, each EMMA value is the XCO2 128 

retrieved by one of the algorithms that is closest to the median value for a given grid box. By including it in this study 129 

it correlates algorithm to itself.  130 

We removed EMMA from the analysis according to you suggestion and the related analysis were updated in the revised 131 

manuscript. Please refer the details to the manuscript. Please refer the details to the revised manuscript because of difficulty 132 

in presenting it here since the changes were made across several sections. 133 
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The new analysis results for four algorithms (ACOS, NIES, OCFP, SRFP) have not changes only Table 5 (new and old 134 

shown as below) have slight changes as EMMA is the median value among multiple algorithms including our discussing 135 

four algorithms.  136 

New Table 5  137 

The average of the absolute differences (ppm) and standard deviation (ppm) of the target algorithm (in column) 138 

matching all other algorithms for each cell. Values in parentheses are the corresponding standard deviations. The 139 

differences, which are larger than 1.5 ppm, are highlighted in bold and underlined. 140 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.3(1.1) 1.2(1.0) 1.0(0.7) 1.4(1.2) 1.2(0.9) 1.0(0.7) 0.9(0.6) 0.7(0.5) 

NIES 1.1(0.7) 1.3(0.9) 1.2(0.9) 1.6(1.2) 1.1(0.8) 1.1(0.8) 1.1(0.8) 0.9(0.6) 

OCFP 1.5(1.1) 1.4(1.0) 1.4(1.0) 1.3(0.9) 1.2(0.9) 0.9(0.6) 0.8(0.6) 0.8(0.6) 

SRFP 1.1(0.9) 1.2(1.0) 1.4(1.1) 1.2(0.9) 1.1(0.8) 0.9(0.6) 1.0(0.7) 0.8(0.5) 

Old Table 5 141 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.5(0.8) 1.4(0.7) 1.2(0.4) 1.6(1.0) 1.4(0.6) 1.1(0.4) 1.1(0.2) 0.9(0.2) 

NIES 1.6(0.2) 1.8(0.4) 1.6(0.4) 2.2(0.6) 1.6(0.3) 1.5(0.3) 1.5(0.3) 1.3(0.2) 

OCFP 2.2(0.6) 2.1(0.6) 1.9(0.5) 1.7(0.2) 1.7(0.4) 1.2(0.1) 1.1(0.1) 1.0(0.2) 

SRFP 1.3(0.5) 1.4(0.7) 1.6(0.8) 1.4(0.6) 1.3(0.5) 1.1(0.3) 1.2(0.4) 1.0(0.2) 

EMMA 1.6(0.9) 1.6(1.0) 1.3(0.6) 1.3(0.6) 1.3(0.6) 1.1(0.5) 1.1(0.4) 1.0(0.4) 

 142 

-- A proper reference should be made to EMMA as a tool to study consistency between different algorithms, like is 143 

being done in the present study. 144 

Thanks for this suggestion. We will study the consistency of algorithms for EMMA in further when a proper reference 145 

is available.  146 

 147 

 --Line 132 states: " The recommended bias corrections are applied to the collected XCO2 data from ACOS, OCFP 148 

and SRFP". What is meant here? The files for both products already contain bias corrected products. Have these 149 

been used?  150 

This is our incorrect expression. Modified to: “The collected XCO2 data from ACOS, OCFP and SRFP are products 151 

after bias correction.” . 152 

 153 

-- Line 364 stated:" while Aerosol Optical Depth (AOD) is greatly affected by high surface albedo because of the 154 

optical lengthening effect.". What is meant here? AOD is not affected by surface albedo.  155 

It is our incorrect expression. Modified to: “while  estimations of Aerosol Optical Depth (AOD) in GOSAT full physics 156 

CO2 retrieval algorithms are greatly affected by high surface albedo because of atmospheric multiple scattering of light and 157 

the optical lengthening effect” . 158 

 159 

-- The additional analysis of the new ACOS V7.3 product is confusing. It should either be used in the full analysis or 160 

the discussion should be shortened by only stating to what extend the conclusions would be different if the ACOS 161 

V7.3 product would have been used. The more detailed analysis could be moved to an appendix. 162 
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We shortened the part on the new version of ACOS, and moved part of it to an appendix according to your suggestion. 163 

Please refer the details to the revised manuscript. We use ACOS V3.5 instead of ACOS V7.3, the more recently released 164 

products, in the analysis because we considered that (1) ACOS V3.5 have been being currently used in our studying group; 165 

(2) as described in reference[GES DISC, 2017], which says, The retrieval algorithm used to create the Build 7 ACOS data 166 

product is consistent with that used to create the OCO-2 v7.3 data product. This will allow comparison of the ACOS and 167 

OCO-2 data without having to consider algorithm differences, ACOS V7.3 are not exactly the newer version of ACOS 168 

products.  169 

 170 
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 171 

Responses to referee #2 172 

Responses to Anonymous Referee #2 on the manuscript of “Regional uncertainty of GOSAT XCO2 retrievals in China: 173 

Quantification and attribution” 174 

 175 

Thank you for your suggestions and valuable comments very much. We have fully considered all your comments, and 176 

carried out our revision and improved our manuscript accordingly. The item-by-item response to the specific comments is as 177 

follows (referee’s comments in red and our response in black).  178 

 179 

Referee #2: 180 

 Major points : See the comments from the other reviewer :  181 

- EMMA should be left out as it is the combined product of all other retrieval products shown  182 

We removed EMMA from the analysis according to you suggestion and the related analysis were updated in the revised 183 

manuscript. Please refer the details to the revised manuscript because of difficulty in presenting it here since the changes 184 

were made across several sections. 185 

The new analysis results for four algorithms (ACOS, NIES, OCFP, SRFP) have not changes only Table 5 (new and old 186 

shown as below) have slight changes as EMMA is the median value among multiple algorithms including our discussing 187 

four algorithms.  188 

New Table 5  189 

The average of the absolute differences (ppm) and standard deviation (ppm) of the target algorithm (in column) 190 

matching all other algorithms for each cell. Values in parentheses are the corresponding standard deviations. The 191 

differences, which are larger than 1.5 ppm, are highlighted in bold and underlined. 192 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.3(1.1) 1.2(1.0) 1.0(0.7) 1.4(1.2) 1.2(0.9) 1.0(0.7) 0.9(0.6) 0.7(0.5) 

NIES 1.1(0.7) 1.3(0.9) 1.2(0.9) 1.6(1.2) 1.1(0.8) 1.1(0.8) 1.1(0.8) 0.9(0.6) 

OCFP 1.5(1.1) 1.4(1.0) 1.4(1.0) 1.3(0.9) 1.2(0.9) 0.9(0.6) 0.8(0.6) 0.8(0.6) 

SRFP 1.1(0.9) 1.2(1.0) 1.4(1.1) 1.2(0.9) 1.1(0.8) 0.9(0.6) 1.0(0.7) 0.8(0.5) 

Old Table 5 193 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.5(0.8) 1.4(0.7) 1.2(0.4) 1.6(1.0) 1.4(0.6) 1.1(0.4) 1.1(0.2) 0.9(0.2) 

NIES 1.6(0.2) 1.8(0.4) 1.6(0.4) 2.2(0.6) 1.6(0.3) 1.5(0.3) 1.5(0.3) 1.3(0.2) 

OCFP 2.2(0.6) 2.1(0.6) 1.9(0.5) 1.7(0.2) 1.7(0.4) 1.2(0.1) 1.1(0.1) 1.0(0.2) 

SRFP 1.3(0.5) 1.4(0.7) 1.6(0.8) 1.4(0.6) 1.3(0.5) 1.1(0.3) 1.2(0.4) 1.0(0.2) 

EMMA 1.6(0.9) 1.6(1.0) 1.3(0.6) 1.3(0.6) 1.3(0.6) 1.1(0.5) 1.1(0.4) 1.0(0.4) 

 194 

- Shorten the part on the new version of ACOS, or use only the new version data  195 

We shortened the part on the new version of ACOS, and moved part of it to the appendix according to your suggestion. 196 

Please refer the details to the revised manuscript. We use ACOS V3.5 instead of ACOS V7.3, the more recently released 197 

products, in the analysis because we considered that (1) ACOS V3.5 have been being currently used in our studying group; 198 

(2) as described in reference[GES DISC, 2017], which says, The retrieval algorithm used to create the Build 7 ACOS data 199 

product is consistent with that used to create the OCO-2 v7.3 data product. This will allow comparison of the ACOS and 200 
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OCO-2 data without having to consider algorithm differences, ACOS V7.3 is not exactly the newer version of ACOS 201 

products.  202 

 203 

- Provide a more quantitative analysis of the effect of aerosols and albedo on the observed differences between 204 

different algorithms  205 

According to your suggestion, we added a quantitative analysis about the effect of aerosols and albedo in the discussion 206 

section in the revised manuscript and presented it here: 207 

We discussed the influences of albedo and AOD on XCO2 retrievals from ACOS, NIES, OCFP and SRFP in further. 208 

Fig. 14 plots the scatters of albedo and AOD with the differences between GEOS-XCO2 data (created in section 3.1) to 209 

XCO2 retrievals, hereafter referred to as dmXCO2, for ACOS, NIES, OCFP and SRFP. The albedo data obtained from 210 

GLASS02B06 is used for OCFP as there are no albedo data available from its released data product.  211 

Fig. 14 shows that dmXCO2 of both ACOS and NIES demonstrate a slightly decreasing trend with albedo whereas 212 

slightly increasing trend with AOD. The dmXCO2 of ACOS tend to be larger in 80°E -90°E of deserts with high albedo than 213 

that in other regions. The dmXCO2 of OCFP demonstrate a clear decreasing trend with albedo and AOD comparing to the 214 

other algorithms. The dmXCO2 of SRFP basically does not show a clearly dependence on either albedo or AOD. We further 215 

investigated the standard deviation of dmXCO2 by a variation of the bin-to-bin dmXCO2 with albedo and AOD. dmXCO2 is 216 

averaged by surface albedo within 0.05 albedo bins and AOD within 0.05 AOD bins, respectively. The standard deviation of 217 

the mean dmXCO2 in each 0.05 albedo (AOD) bins, i.e. a measure of the bin-to-bin dmXCO2, is calculated. It is found that 218 

the dmXCO2 for the four algorithms change with both albedo and AOD in bin-to-bin. In the whole study area, the standard 219 

deviation in albedo is the largest for OCFP, up to 0.7 ppm, while that is smaller from ACOS, NIES and SRFP, 0.4 ppm、0.3 220 

ppm and  0.2 ppm, respectively. The standard deviation of dmXCO2 in AOD is larger for SRFP (0.5 ppm) than those for 221 

ACOS (0.2 ppm), NIES (0.3 ppm) and OCFP (0.4 ppm). Viewing to the deserts (80°E -90°E), the standard deviation  in 222 

albedo is the largest from NIES ( 1.5 ppm),  and the smallest from OCFP (0.2 ppm) while they are 1.0 ppm and 0.5 ppm for 223 

ACOS and SRFP, respectively. The standard deviations in AOD, however, are similar (0.2-0.4 ppm) in this area. As a result, 224 

OCFP tend to be more sensitive to albedo and AOD compared to other algorithms. In the deserts, NIES are the most 225 

sensitive XCO2 retrievals to surface albedo and OCFP the least.  226 
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 227 

Fig. 3: Scatter plots of the differences (dmXCO2) between GEOS-XCO2 to ACOS, NIES, OCFP and SRFP respectively, with 228 
respect to albedo (the upper panels) and AOD (the lower panels). Colored points represent the data from different cells: red-[80°E, 229 
105°E], black-[105°E, 120°E] in the study latitude zone [37°N, 42°N]. Colored solid lines display the corresponding linear 230 
regression trend line for the total points. Albedo and AOD are extracted from data products of the retrieval algorithms except 231 
albedo data in OCFP in which GLASS data are used. 232 

Figure Fig. 15, moreover, demonstrates the influence of albedo and AOD on the standard deviation (STD) of XCO2 233 

from four algorithms at the same footprints (timely in the same day, geometrically located within ±0.01° in space). 234 

Averaged albedo (the left panels) and AOD (the right panels) of the four algorithms are used whereas the averaged albedo is 235 

obtained only using three attached albedo in the algorithms except OCFP.  236 

The increasing trends of STD with both albedo and AOD can be seen from Fig. 15. The mean STD is 1.3 ppm in the 237 

western cells (80°E -90°E) where albedo is mostly within 0.25-0.35. This STD is lightly larger than that (1.0ppm) in eastern 238 

cells (90°E-120E°) where albedo is comparatively smaller (mostly within 0.15-0.25). It is found from the statistics presented 239 

in Fig. 15 that the correlation coefficients of STD with albedo and that with AOD is almost the same (both are 0.3) for all the 240 

data. Particular influence from albedo in desert over the western cells can be clearly observed. These results indicate that the 241 

inconsistency of XCO2 retrievals from four algorithms tend to be increase with the enlargements of albedo and AOD so as to 242 

imply that uncertainty of satellite-retrieved XCO2 should be mostly alerted with the elevations of albedo and AOD.    243 
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  244 

Fig. 4: Scatter plots of the standard deviation (STD)  of XCO2 from the four algorithms to albedo (the left panel) and AOD (the 245 
right panel).  Colored points represent different cells: red-[80°E, 105°E], black-[105°E, 120°E] in the latitude zone [37°N, 42°N]. 246 
Colored solid lines display the corresponding linear regression trend line for the scatter plots with the regression slope (a) and the 247 
correlation coefficient (r) also presented. n is the number of samples. Albedo is the mean surface albedo in 0.75-um band from the 248 
three algorithms including ACOS, NIES and SRFP. AOD is the mean AOD in 0.75-um band from the four algorithms. 249 

 250 

 251 

 252 

- Provide some clear evidence of performance of GEOS-Chem wrt total column XCO2 253 

We added comparisons of GEOS-Chem with 14 TCCON sites. The added descriptions and validation results are shown 254 

in the revised manuscript and as follows: 255 

We compared GEOS-Chem CO2 simulations from the global model driven by CHRED with daily mean TCCON data 256 

from 14 TCCON sites (version GGG2014 data version) (Blumenstock et al., 2014; Deutscher et al., 2014; Griffith et al., 257 

2014a, 2014b; Hase et al., 2014; Kawakami et al., 2014; Kivi et al., 2014; Morino et al., 2014; Sherlock et al., 2014; 258 

Sussmann et al., 2014; Warneke et al., 2014; Wennberg et al., 2014a, 2014b, 2014c). All TCCON measurements between 12 259 

pm and 13:30 pm are used in the comparisons, where GEOS-Chem CO2 profiles are taken according to the location of 260 

TCCON stations (latitude and longitude) as well as the observing date and transformed to XCO2 by convolved with the 261 

individual averaging kernel in each station as Wunch (2010) suggested. The statistics results are shown in Table 5.  262 

Table 3. Statistics of comparison between GEOS-Chem CO2 simulations driven by CHRED and TCCON data from January 2010 263 
to February 2013, which includes biases (Δ), the standard deviations (δ), the correlation coefficients (r) and valid days (days) when 264 
TCCON data are available. Δ, δ and r are calculated using coincident daily mean data averaged between 12:00  pm and 13:30 pm.  265 

ID Station name Latitude Longitude Δ[ppm] δ[ppm] r days 

1 Sodankyla 67.37 26.63 2.03 2.00 0.83 269 

2 Bialystok 53.23 23.02 0.49 1.84 0.87 196 

3 Karlsruhe 49.1 8.44 0.84 1.69 0.84 152 

4 Orleans 47.97 2.11 0.44 1.70 0.85 223 

5 Garmisch 47.48 11.06 0.65 1.64 0.83 293 

6 Park Falls 45.94 -90.27 1.17 2.14 0.75 494 

7 Lamont 36.6 -97.49 -0.04 1.22 0.90 642 

8 Tsukuba 36.05 140.12 1.43 1.66 0.75 217 
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9 JPL 34.2 -118.18 -1.30 1.15 0.90 289 

10 Saga 33.24 130.29 -0.39 1.65 0.86 159 

11 Izana 28.3 -16.48 0.85 1.04 0.90 114 

12 Darwin -12.43 130.89 0.65 0.90 0.88 447 

13 Wollongong -34.41 150.88 0.53 0.83 0.94 347 

14 Lauder -45.04 169.68 0.92 0.42 0.97 370 

 Mean   0.59±0.80 1.42±0.50   

The results of Table 5 show that the bias ranges from -1.30 to 2.03 ppm for all TCCON sites with standard deviations of 266 

the difference varying from 0.42 to 2.14 ppm. The mean standard deviation at the TCCON sites, a measure of the achieved 267 

overall precision,  from using GEOS-Chem simulations driven by CHRED is 1.42±0.50 ppm which is slightly different 268 

from using GEOS-Chem simulations driven by ODIAC (1.41±0.49 ppm). Those validated results with TCCON comparing 269 

GEOS-Chem CO2 simulations driven by CHRED to that by ODIAC indicate that the GEOS-Chem CO2 simulations driven 270 

by CHRED is more likely not to change the global magnitude of CO2 concentration but rather to depict fine spatial 271 

distribution of CO2 concentration in China. 272 

 273 

 274 

 275 

Minor : Textual suggestions : 276 

 277 

-p.2 line 46 : I think you should leave out TanSat in that particular sentence as that instrument has not yet 278 

contributed to a better understanding of…as far as I know. 279 

Yes, TanSat have not produces XCO2 data available as to its some problems as you know. We removed the description 280 

of TanSat in the revised manuscript.   281 

 282 

-p.3 line 85-86 : rephrase ’that trend …to east’ because unclear what is meant 283 

Modified to: ” there are anthropogenic emissions increasing from west to east.” in line 83. 284 

 285 

-p.9 GLASS albedo is used. For which wavelength is this albedo? 286 

It is broadband albedo product rather than albedo in narrow bands. The following was added: ” GLASS02B06 is a daily 287 

land-surface shortwave (300-3000nm) broadband albedo product in temporal resolution of eight days.”. 288 

 289 

-table 2. Add to the table caption : All biases > 1 ppm are underlined.  290 

We added it in the caption of table 3, which is the previous table 2. The caption is modified to: “The biases (ppm) and 291 

their standard deviations (ppm) of the four algorithms vs GEOS-Chem in each cell, where the upper line indicates bias (the 292 

corresponding standard deviations in parenthesis) for each algorithm vs GEOS-Chem and the lower line is the available 293 

number of used samples. The biases, larger than 1 ppm, are highlighted in bold and underlined.” in the revised manuscript. 294 

 295 

-Change ’the values in parentheses are the biases and their …”  ”the values are the biases and –in parentheses- 296 

their…’ 297 

     We revised this incorrect description, which also refers to the caption of table 3, in the revised manuscript.  If you have 298 

read the last item, the following five lines can be skipped. 299 
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The caption is modified to:“The biases (ppm) and standard deviation (ppm) of the four algorithms vs GEOS-Chem in 300 

each cell, where the upper line indicates bias(the standard deviations) for each algorithm vs GEOS-Chem and the lower line 301 

is the number of used samples. The biases, larger than 1 ppm, are highlighted in bold and underlined.” in the revised 302 

manuscript. 303 

 304 

-Table 3 table caption. What are the underlined values ? 305 

They are differences (ppm) larger than 1.5 ppm between two algorithms (column algorithm minus row algorithm) for 306 

each cell.  307 

The caption of Table 4, which is the previous table 3, was modified to: “Differences (ppm) between two algorithms 308 

(column algorithm minus row algorithm) and the standard deviation (ppm) for each cell, where values in parentheses are the 309 

corresponding standard deviations. The differences, larger than 1.5 ppm, are highlighted in bold and underlined.”   in the 310 

revised manuscript. 311 

  312 

p.18 line 350 (’To summarize the quantification…SRFP’) : I do not understand this sentence given the data. 313 

Thank you for pointing it out. This sentence has been deleted in the revised manuscript because we are also aware that 314 

this sentence makes the results confusing.  315 

 316 

-Fig. 8 Figure caption ’and the differences of detrended…. and GEOS-Chem’ should that be ’… with GOES-Chem’ ? 317 

Corrected. Modified to :” The spatial (in the study latitude band) and temporal (in seasons) changing patterns of 318 

detrended XCO2 from ACOS, NIES, OCFP, SRFP retrievals and GEOS-Chem simulations (left) and the differences of 319 

detrended XCO2 to GEOS-Chem for ACOS, NIES, OCFP and SRFP.” 320 

 321 

-p.21 line 423/424 I do not understand the sentence ’No bias was found …R2=0.77’ based on what I see in Table 6. 322 

Also it is not consistent with what is written in line429/430. 323 

It is our incorrect expression. The results that no bias was found in ACOS V7.3 from GEOS-Chem with a standard 324 

deviation of 1.6 ppm and R2=0.77, is for the whole study area. The original Line 429/430 which states, “It can also be found 325 

from Table 6 that the bias of ACOS V7.3 relative to GEOS-Chem is within 0.3 ppm but above 1.3 ppm, in cells east and west 326 

of 90°E, respectively.”, is focused on the regional performance.  327 

The sentence has been modified to:” No bias was found in ACOS V7.3 from GEOS-Chem with a standard deviation of 328 

1.6 ppm and R2 of 0.77 in the whole study area.” in the appendix. 329 

 330 

-p. 23, line 462 results above  results described above 331 

Corrected. 332 
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Abstract. The regional uncertainty of XCO2 (column-averaged dry air mole fraction of CO2) retrieved using different 349 

algorithms from the Greenhouse gases Observing SATellite (GOSAT) and its attribution are still not well understood. This 350 

paper investigates the regional performance of XCO2 within a latitude band of 37°N~ 42°N segmented into 8 cells in a grid 351 

of 5° from west to east (80°E ~120°E) in China, where there are typical land surface types and geographic conditions. The 352 

former include the various land covers of desert, grassland and built-up areas mixed with cropland, and the latter include 353 

anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For 354 

these specific cells, we evaluate the regional uncertainty of GOSAT XCO2 retrievals by quantifying and attributing the 355 

consistency of XCO2 retrievals from four algorithms (ACOS, NIES, OCFP, and SRFP) by intercomparison. Particularly, 356 

these retrievals are compared with simulated XCO2 by the high-resolution nested model in East Asia of Goddard Earth 357 

Observing System 3-D chemical transport model (GEOS-Chem). We introduce the anthropogenic CO2 emissions data 358 

generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental 359 

Protection of China to GEOS-Chem simulations of XCO2 over the Chinese mainland. The results indicate that (1) regionally, 360 

the four algorithms demonstrate smaller absolute biases of 0.7-1.1 ppm in eastern cells, which are covered by built-up areas 361 

mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0-1.6 ppm) with a 362 

high-brightness surface from the pairwise comparison results of XCO2 retrievals. The inconsistency of XCO2 from the four 363 

algorithms tends to be high in the Taklimakan Desert in western cells, which is likely induced by high surface albedo in 364 

addition to dust aerosols in this region. (2) Compared with XCO2 simulated by GEOS-Chem (GEOS-XCO2), the XCO2 365 

values of ACOS and SRFP have better agreement with GEOS-XCO2, while OCFP is the least consistent with GEOS-XCO2. 366 

mailto:leilp@radi.ac.cn
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(3) Viewing attributions of XCO2 in the spatio-temporal pattern, ACOS and SRFP demonstrate similar patterns, while OCFP 367 

is largely different from the others. In conclusion, the discrepancy in the four algorithms is the smallest in eastern cells in the 368 

study area, where the megacity of Beijing is located and where there are strong anthropogenic CO2 emissions, which implies 369 

that XCO2 from satellite observations could be reliably applied in the assessment of atmospheric CO2 enhancements induced 370 

by anthropogenic CO2 emissions. The large inconsistency among the four algorithms presented in western deserts with a 371 

high albedo and dust aerosols, moreover, demonstrates that further improvement is still necessary in such regions, even 372 

though many algorithms have endeavored to minimize the effects of aerosols scattering and surface albedo.   373 

 374 

Key words: GOSAT, XCO2 retrieval algorithms, simulated XCO2 by GEOS-Chem, regional uncertainty, anthropogenic 375 

emissions, and desert  376 

1 Introduction 377 

The column-averaged dry air mole fraction of CO2 (XCO2) derived from satellite observations, such as the SCanning 378 

Imaging Absorption spectroMeter of Atmospheric CHartographY (SCIAMACHY ) (Burrows et al., 1995; Bovensmann et al., 379 

1999) ,  the Greenhouse gases Observing SATellite (GOSAT) (Yokoda et al., 2004), Orbiting Carbon Observatory (OCO-2) 380 

(Crisp et al., 2004), and Chinese Carbon Satellite (TanSat) (Liu et al., 2013), have greatly improved our understanding of the 381 

variation in atmospheric CO2 concentration and carbon sources and sinks at a global and regional scale. There have been 382 

several full-physics retrieval algorithms specially developed for retrieving XCO2 from the GOSAT observed spectrum, 383 

mainly including the NASA Atmospheric CO2 Observations from Space (ACOS) (O’Dell et al., 2012), the National Institute 384 

for Environmental Studies (NIES) (Yoshida et al., 2013), the University of Leicester full-physics XCO2 (OCFP) (Cogan et 385 

al., 2012) and the RemoTeC XCO2 Full Physics (SRFP) (Butz et al., 2011).  386 

Retrieval of XCO2 from space is susceptible to the effects of light path changes due to aerosol scattering, uncertainties 387 

in observed spectrum and surface states (O’Dell et al., 2012; Oshchepkov et al., 2013). The bias and performance of XCO2 388 

retrievals from an algorithm could change in different regions with differing land surfaces and anthropogenic emissions. 389 

Spatio-pattern attributions of XCO2 viewed from different algorithms are also different, even in the same region, due to 390 

different physical approaches adopted by the algorithms, assumptions of atmospheric conditions (aerosol, surface pressure, 391 

CO2 profile, etc.), and pre- and post-processing filters. Currently, the validation of XCO2 retrievals from different algorithms 392 

focuses on using ground-based measurements from Total Carbon Column Observing Network (TCCON) sites (Wunch et al., 393 

2011; Yoshida et al., 2013; Hewson, 2016; Buchwitz et al., 2015, Detmers et al., 2015, Oshchepkov et al., 2013) and their 394 

consistency evaluation and cross-comparison both at a global scale and in continental regions (Kulawik et al., 2016; 395 

Lindqvist et al., 2015; Lei et al., 2014).The precision and uncertainty of satellite-retrieved XCO2 outside TCCON stations, 396 

most of which are located remote from regions with abundant biosphere fluxes and human activities, are still not well 397 

evaluated. The sparseness of TCCON stations over the globe, moreover, means a lack of enough ground observations to 398 
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validate satellite retrievals. Specifically, there are no good TCCON data available in China, and only a few satellite retrievals 399 

have been validated using ground-based Fourier Transform Spectrometer (FTS) XCO2 measurements in Hefei (Wang et al., 400 

2017). In the analysis and application of XCO2 data from ACOS, NIES, OCFP and SRFP, we found that unreasonably high 401 

XCO2 was presented in the Taklimakan desert in China (Bie et al., 2016; Liu et al., 2015). For this reason, we extended the 402 

study scope to select a longer study period and to further assess the overall performance of these four algorithms at a 403 

regional scale.  404 

With the advantage of continuity in space and time, atmospheric transport model simulation of CO2 has been widely 405 

used in assessing the performance of satellite-retrieved XCO2 (Cogan et al., 2012; Lindqvist et al., 2015; Kulawik et al., 406 

2016). As anthropogenic emission of CO2 is the major contributor to increases of CO2 in the atmosphere, many studies have 407 

been involved in deriving estimates of anthropogenic CO2 emissions (Oda et al., 2011; Andres et al., 2011). It is known that 408 

there exists high uncertainty in estimates of CO2 emissions from both the burning of fossil fuel and cement production (FF 409 

CO2 emissions) throughout China (Guan et al., 2012; Liu et al., 2015). As noted by Andrews et al. (2012), there exist many 410 

kinds of restrictions (e.g., commercial competitiveness reasons) in obtaining accurate data on sub-national (e.g., large-point-411 

source or provincial) FF CO2 emissions. Furthermore, the assumption of uniform per-capita emissions within a country has 412 

also been shown to be unreliable for large countries with diversified economies and electricity-generation methods (Nassar et 413 

al., 2013). In the previous study of Keppel-Aleks (2013), the simulated Chinese XCO2 data was increased by a national 414 

uniform ratio for the corresponding XCO2 contributed by fossil sources to account for the underestimation in Chinese 415 

emissions, in which way the spatial variability of Chinese FF emissions was not considered sufficient. 416 

In this paper, we focus on a latitude band of 37°N-42°N from 80°E to 120°E in China, where there are various typical 417 

land covers such as desert, including the Taklimakan desert, and grassland and built-up areas mixed with croplands, 418 

including the megacity of Beijing, and there are anthropogenic emissions increasing that trend from small amounts to large 419 

amounts from west to east. In this band, the inconsistencies of XCO2 values derived from four algorithms including ACOS 420 

V3.5, NIES V02.21, OCFP V6.0 and SRFP V2.3.7 are compared and evaluated in this paper. A forward model simulation 421 

data set from GEOS-Chem, moreover, is also used for intercomparison. To improve the simulation of CO2 concentration by 422 

GEOS-Chem, we introduced a new emission data set, the Chinese High Resolution Emission Gridded Data (CHRED) which 423 

is produced by the Ministry of Environmental Protection, China (MEP) based on investigations of emitting point sources 424 

from approximately 150 million enterprises throughout the country in 2012 (Wang et al., 2014; Cai et al., 2014). 425 

First, we aim to reveal the regional uncertainty of XCO2 observed by GOSAT for the different land covers and 426 

anthropogenic CO2 emission regions by quantifying the inconsistency of the four retrieval algorithms. Second, we aim to 427 

provide a reasonable and valuable reference for the analysis and application of XCO2 data when using these XCO2 data from 428 

the four algorithms. Sec. 2 in this paper describes the XCO2 retrievals data from four algorithms and the implementation of 429 

XCO2 simulated by GEOS-Chem using CHRED. Inconsistencies of XCO2 datasets among the four algorithms are quantified 430 

and evaluated by (1) pairwise comparisons of XCO2 between algorithms and (2) comparisons with GEOS-Chem simulations 431 

in Sec. 3. The spatio-temporal patterns of XCO2 from each algorithm are investigated using a combination of sine and cosine 432 
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trigonometric functions to fit monthly averaged XCO2 from March 2010 to February 2013 in Sec. 4. Furthermore, the most 433 

likely attribution-affecting factors on regional inconsistency, including aerosol and surface albedo, are discussed in Sec. 5. 434 

The latest ACOS V7.3 dataset, moreover, is also evaluated used by cross-comparisons with GEOS-Chem and other 435 

algorithms including ACOS V3.5, NIESV02.21, OCFP V6.0 and SRFP V2.3.7, as shown in subsections of Sec. 5. Finally, 436 

the regional performances of four algorithms and the regional uncertainty of GOSAT XCO2 retrievals from the results 437 

described above are summarized, and conclusions are given in Sec. 6. 438 

2 Study area and data 439 

2.1 Study area 440 

The latitude band of 37°N~42°N from 80°E to 120°E in China is selected as the study area, which is segmented into eight 441 

cells in a grid of 5°x5° units for comparison and evaluation. The study area has two typical surface characteristics as shown 442 

in Fig. 1, supporting our assessment of the performance of XCO2 retrievals from four algorithms: (1) the amounts of 443 

anthropogenic CO2 emissions from west to east significantly varies from small to large as shown in Fig. 5(a). The emission 444 

data are from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC), a global annual fossil fuel CO2 emission 445 

inventory developed by combining a worldwide point-source database and satellite observations of the global nightlight 446 

distribution (Oda et al., 2011). There are almost no anthropogenic CO2 emissions in the western cells ending at 105°E, while 447 

there is high anthropogenic emission located in the cells on the eastern end of the latitude band. (2) There are typical land 448 

covers from west to east, as shown in Fig. 5 (b), mainly composed of desert (desert sand in the two cells from 80°E to 90°E, 449 

Gobi in the two cells from 90°E to 100°E, desert sand in the cell of 100°E-105°E), grassland in the cell of 105°E-110°E, and 450 

cropland and built-up areas in the two cells from 110°E to 120°E. These characteristics are associated with complicated 451 

aerosol compositions and loadings. One of the main reasons for focusing on this latitude band, moreover, is because there are 452 

more high-quality GOSAT scans available in this area compared to other areas in China.   453 
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 454 

 Fig. 5. (a)Location of the study area segmented into cells (deep red cells) in China and annual fossil fuel CO2 emission in 2012  (1 x 455 
1 degree) from ODIAC and  (b) land use mapping  in 2010, where the black dot represents Beijing, the capital of China. 456 

 457 

2.2 GOSAT XCO2 dataset derived from four algorithms 458 

We collected XCO2 data from March 2010 to February 2013 derived from four algorithms: ACOS V3.5 459 

(http://CO2.jpl.nasa.gov), NIES V02.21 (RA version with GU screening scheme) (https://data2.gosat.nies.go.jp ), OCFP 460 

V6.0 (http://www.esa-ghg-cci.org ) and SRFP V2.3.7 (http://www.esa-ghg-cci.org ). AOD and surface albedo in 0.75-um O2 461 

band, which are necessary for our further analysis, are also collected from attached datasets in each algorithms except that 462 

albedo is not available for OCFP.  The major characteristics of the four algorithms and the relevant references are listed in 463 

Table 4. The validation at TCCON sites for all algorithms indicates that the bias is less than 1.2 ppm on average and that the 464 

standard deviation is less than 2.0 ppm. All algorithms take aerosol optical depth (AOD) into consideration in their data 465 

screening scheme but in slightly different ways. The recommended bias corrections are applied to the collected XCO2 data 466 

from ACOS, OCFP and SRFP. The collected XCO2 data from ACOS, OCFP and SRFP are the products after bias 467 

correction.Data observed with high gain and passing the corresponding recommended quality control criteria are used in 468 

ACOS, NIES, OCFP and SRFP.  469 

http://co2.jpl.nasa.gov/
https://data2.gosat.nies.go.jp/
http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/
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 470 

Table 4  Summary of validating results with TCCON, data screening schemes, consideration in scattering and bias corrections for 471 
the four retrieval algorithms.  472 

 ACOS NIES OCFP SRFP 

Validation 

with 

TCCON
*1

 

0.3 ppm 

1.7 ppm 

-1.2 ppm 

2.0 ppm 

0.04 ppm 

1.78 ppm 

0.01 ppm 

1.93 ppm 

Data 

screening 

schemes 

Aerosol_total_aod: 0.015 to 

0.25 

Sounding_altitude:<3000 

0.55<XCO2_uncer<2.0 ppm 

Aod_dust<0.15 

The difference of the 

retrieved and priori surface 

pressure from the A-band 

cloud-screen Δ Ps,cld :      

(-12,4.1) hPa 

Retrieved aerosol 

optical thickness: 

<=0.1 

Difference of 

retrieved and a priori 

surface pressure: 

<=20 hpa 

Blended albedo: <1 

Retrieved type 1 

(small) AOD: 

<=0.3 

Retrieved type 2 

(large) AOD: 

<=0.15 

Retrieved ice type 

AOD: <=0.025 

Error on retrieved 

XCO2 :<=2.15 

Aerosol optical thickness : 

<0.3 

3<aero_size<5 

0<aerosol_filter<300 

Error on retrieved XCO2: 

<1.2 ppm 

standard deviation of surface 

elevation within GOSAT 

ground pixel:  <80 m 

Blended albedo: <0.9 

Consideratio

n in 

scattering 

4 extinction profiles (two 

aerosol types , water 

and  ice cloud) 

logarithms of the 

mass mixing ratios of 

fine-mode aerosols 

and coarse mode 

aerosols with aerosol 

optical properties 

based on 

SPRINTARS V3.84 

Aerosol profile 

scaling of 2 

different aerosol 

types; cloud 

extinction profile 

scaling 

Aerosol particle number 

concentration, aerosol size 

parameter, aerosol height 

Bias 

corrections 
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*1The first represents mean biases, and the second represents overall standard deviations. 473 

Within the study area, the total numbers of valid GOSAT XCO2 observations are 3345, 3556, 2282 and 3685 for ACOS, 474 

NIES, OCFP and SRFP, respectively. Figure 2 shows the number of available XCO2 retrievals for 4 seasons (spring: MAM; 475 

summer: JJA; autumn: SON; winter: DJF). It can be seen that the number of available XCO2 retrievals is clearly smaller in 476 

spring and summer than that in autumn and winter due to different meteorological conditions and data-screening processes. 477 
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The cloudiness in spring and summer caused by the monsoon climate disturbs satellite observation, while the smaller data 478 

number in the west of 110°E is due to frequent dust storm in the Taklimakan Desert.  479 

 480 

Fig. 6. Number of single scans from the four GOSAT-XCO2 data sets from ACOS, NIES, OCFP and SRFP over each 5x5° cells for 481 
different seasons (Spring: MAM; summer: JJA; autumn: SON; winter: DJF) from March 2010 to February 2013.  482 

2.3 XCO2 simulations from GEOS-Chem  483 

We use GEOS-Chem version 10-01 driven by GEOS-5 and the details of the main input emissions are as follows: 1) Fossil 484 

fuel fluxes are taken from the new emission data set CHRED for the Chinese mainland, we also use ODIAC version 2013 for 485 

comparison with CHRED. 2) The balanced biosphere CO2 uptake and emission fluxes are taken from the Simple Biosphere 486 

Model version 3 (SiB3) [Messerschmidt et al. 2012]. 3) Biomass emissions are taken from Global Fire Emission Database 487 

version 4 (GFEDv4) (Giglio et al., 2013). 4) Ocean fluxes are taken as Takahashi et al. (2009) suggested.  A detailed 488 

description of these input emissions for the GEOS-Chem CO2 simulation is pesented in Nassar et al. (2010), although we 489 

have used some of the most recent updates available in the GEOS-Chem version 10-01 and the Harvard–NASA Emission 490 

Component version 1.0 (HEMCO) module (Keller et al., 2014), a versatile component for emissions in atmospheric models. 491 

Higher model resolution is critical in the calculation of the concentrations of atmospheric gases, especially over land where 492 

topography smoothing (compared to reality) is determined by horizontal resolution (Ciais et al., 2010). Considering this, 493 

GEOS-Chem nested grid model in China at 0.5° (latitude) x 0.666° (longitude) horizontal resolution, is used for the CO2 494 

simulation with boundary conditions provided by the global model at 2° (latitude) x 2.5° (longitude) resolution. We made a 495 

restart file with 386.4 ppm for both the global simulation and the nested simulation on 1 January 2009 based on NOAA 496 

ESRL data. Both the global model and the nested-grid model were run twice, driven by the same CO2 fluxes from January 497 

2009 to February 2013 except that the ODIAC was chosen for the first run and CHRED for the second as the input 498 

fossil-fuel fluxes over the Chinese mainland. Model CO2 profiles (averages for local hours between 12:00 pm and 13:30 pm) 499 

were presented from January 2010 to February 2013, allowing sufficient time for the high-resolution model to adjust to 500 

transients introduced by the initialization of the model on 1 January 2009. The pressure-weighting function described in 501 

Connor (2008) was applied to convert level-based modeling CO2 to XCO2.  502 
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Fig.3 presents the spatial difference of emissions over the Chinese mainland between CHRED and ODIAC at a 503 

horizontal resolution of 1°x1°. The values of emissions from CHRED are mostly larger than those from ODIAC, as shown in 504 

Fig. 7, and this difference tends to be large in the eastern part of our study area. In addition, the difference in their total 505 

emissions, 10.38 Pg CO2  for CHRED versus 9.64 Pg CO2 for ODIAC, is not small. ODIAC is also found to exhibit an 506 

overestimation of emissions in large cities compared to CHRED.  507 

 508 

Fig. 7. Difference of annual total anthropogenic CO2 emissions between CHRED and ODIAC in 2012 in China, where the black 509 
dot represents Beijing, the capital of China. 510 

For each 1°x1° grid, the corresponding annual CO2 emissions in the years from 2009 to 2012 were allocated by the ratio 511 

of emissions in CHRED to that in ODIAC in 2012. We acquired the new input inventory of CO2 emissions, CHRED, by 512 

scaling the obtained yearly emissions with the ratio of monthly emissions to the yearly ones in ODIAC. In this way, we 513 

altered the spatial and temporal distribution, but not at temporal scales finer than monthly. This is expected to be an 514 

improvement upon the current ODIAC emission values.  515 

The annually averaged XCO2 simulations, driven separately by CHRED and ODIAC respectively, are calculated and 516 

shown in Fig. 8. The impact of emission deviations of CHRED from ODIAC is significant, with XCO2 from CHRED larger 517 

by 0.7 ppm on average over China. There are also obvious differences in spatial patterns, especially in Northwest China, 518 

Northeast China, North China and South China. XCO2 simulations from CHRED are larger by more than 0.7 ppm in most 519 

parts east of 100°E with a maximum of 1.4 ppm compared to those from ODIAC. The increase in the annual mean, which 520 

should not be ignored, is approximately 1.0 ppm for east of 110°E in the study latitude band. The CO2 profile dataset from 521 

CHRED are used to compare with satellite-retrieved XCO2 in our following experiments. 522 

  523 
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 524 

Fig. 8. Annual mean of XCO2 simulations driven by CHRED (left) and ODIAC (right) in 2012 in China, where the black dot 525 
represents Beijing, the capital of China. 526 

We compared GEOS-Chem CO2 simulations from the global model driven by CHRED with daily mean TCCON data 527 

from 14 TCCON sites (version GGG2014 data version) (Blumenstock et al., 2014; Deutscher et al., 2014; Griffith et al., 528 

2014a, 2014b; Hase et al., 2014; Kawakami et al., 2014; Kivi et al., 2014; Morino et al., 2014; Sherlock et al., 2014; 529 

Sussmann et al., 2014; Warneke et al., 2014; Wennberg et al., 2014a, 2014b, 2014c). All TCCON measurements between 12 530 

pm and 13:30 pm are used in the comparisons, where GEOS-Chem CO2 profiles are taken according to the location of 531 

TCCON stations (latitude and longitude) as well as the observing date and transformed to XCO2 by convolved with the 532 

individual averaging kernel in each station as Wunch (2010) suggested. The statistics results are shown in Table 5.  533 

Table 5. Statistics of comparison between GEOS-Chem CO2 simulations driven by CHRED and TCCON data from January 2010 534 
to February 2013, which includes biases (Δ), the standard deviations (δ), the correlation coefficients (r) and valid days (days) when 535 
TCCON data are available. Δ, δ and r are calculated using coincident daily mean data averaged between 12:00  pm and 13:30 pm.  536 

ID Station name Latitude Longitude Δ[ppm] δ[ppm] r days 

1 Sodankyla 67.37 26.63 2.03 2.00 0.83 269 

2 Bialystok 53.23 23.02 0.49 1.84 0.87 196 

3 Karlsruhe 49.1 8.44 0.84 1.69 0.84 152 

4 Orleans 47.97 2.11 0.44 1.70 0.85 223 

5 Garmisch 47.48 11.06 0.65 1.64 0.83 293 

6 Park Falls 45.94 -90.27 1.17 2.14 0.75 494 

7 Lamont 36.6 -97.49 -0.04 1.22 0.90 642 

8 Tsukuba 36.05 140.12 1.43 1.66 0.75 217 

9 JPL 34.2 -118.18 -1.30 1.15 0.90 289 

10 Saga 33.24 130.29 -0.39 1.65 0.86 159 

11 Izana 28.3 -16.48 0.85 1.04 0.90 114 

12 Darwin -12.43 130.89 0.65 0.90 0.88 447 

13 Wollongong -34.41 150.88 0.53 0.83 0.94 347 

14 Lauder -45.04 169.68 0.92 0.42 0.97 370 

 Mean   0.59±0.80 1.42±0.50   
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The results of Table 5 show that the bias ranges from -1.30 to 2.03 ppm for all TCCON sites with standard deviations of 537 

the difference varying from 0.42 to 2.14 ppm. The mean standard deviation at the TCCON sites, a measure of the achieved 538 

overall precision,  from using GEOS-Chem simulations driven by CHRED is 1.42±0.50 ppm which is slightly different 539 

from using GEOS-Chem simulations driven by ODIAC (1.41±0.49 ppm). Those validated results with TCCON comparing 540 

GEOS-Chem CO2 simulations driven by CHRED to that by ODIAC indicate that the GEOS-Chem CO2 simulations driven 541 

by CHRED is more likely not to change the global magnitude of CO2 concentration but rather to depict fine spatial 542 

distribution of CO2 concentration in China. 543 

 544 

2.4 Aerosol optical depth and surface albedo data 545 

The monthly mean aerosol optical depth (A0D) data were collected from the NASA Earth Observing System’s Multi-angle 546 

Imaging Spectro-radiometer (MISR) Level 3 Component Global Aerosol Product, downloaded from the website 547 

https://eosweb.larc.nasa.gov/project/misr. The released GLASS (Glass Land Surface Satellites) albedo product 548 

GLASS02B06 (http://glcf.umd.edu/data/abd/) is used, which is a gapless, long-term continuous and self-consistent data-set 549 

with accuracy similar to that of the Moderate Resolution Imaging Spectrometer (MODIS) MCD43 product (Liu et al., 2013). 550 

GLASS02B06 is a daily land-surface shortwave (300-3000nm) broadband albedo product in temporal resolution of eight 551 

days.  552 

3 Quantification of agreement of XCO2 retrievals from four algorithms in the footprints  553 

We focus on the difference of each footprint XCO2 retrieval in this section. Comparison of XCO2 from four algorithms with 554 

GEOS-Chem CO2  simulations driven by CHRED, and pairwise comparisons of XCO2 between algorithms were calculated 555 

as a quantified indicator of their differences. 556 

3.1 Comparisons with GEOS-Chem CO2 simulations 557 

We used the nested GEOS-Chem CO2 simulations driven by CHRED as a baseline to quantify the regional consistency of 558 

the four algorithms. The collocated model CO2 profile is averaged over the local hours of 12:00-13:30 pm corresponding to 559 

the local time of overpass and locations (latitude and longitude) of GOSAT. To compare XCO2 retrievals from ACOS, NIES, 560 

OCFP and SRFP, corresponding GEOS-XCO2 data were created by applying averaging kernels from each algorithm to 561 

model CO2 profiles as suggested by Rodgers (2003). Correlation diagrams of XCO2 between GEOS-Chem (X) and GOSAT 562 

(Y) for the four algorithms are shown in Fig. 9. The regression slope (a), the coefficient of determination (R
2
), the correlation 563 

coefficient (r), and biases of GOSAT (Y) from GEOS-Chem(X) are also shown in the inset of each panel.  564 

It can be seen from Fig. 9 that the linear fits and the correlations with GEOS-Chem are better for ACOS and OCFP (R
2
 565 

approximately 0.66) than for either NIES or SRFP (R
2
 approximately 0.59). The regression slope is the closest to unity in the 566 

https://eosweb.larc.nasa.gov/project/misr
http://glcf.umd.edu/data/abd/
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OCFP panel (0.94) and is lightly less than OCFP in the ACOS panel (0.87), which means the best similarity in variation. The 567 

slope is less than 0.8 in the NIES and SRFP panels. The bias of GEOS-Chem vs ACOS and SRFP is less than 0.5 ppm while 568 

it is 2 ppm and 1.2 ppm vs NIES and OCFP, respectively. 569 

 570 

Fig. 9:  Correlation diagrams of GOSAT XCO2 (Y) for the four algorithms vs GEOS-XCO2 (X). Statistics from linear regression fit 571 
are also shown. GEOS-Chem data are selected according to the locations and time of XCO2 retrievals from the four algorithms in 572 
cells. Deep blue solid lines represent 1:1 lines, and the magenta lines demonstrate the best linear regression fit for all samples. 573 
Colored points represent XCO2 for different longitude cells in the study latitude band [37°N, 42°N] shown in Fig.1, where colors 574 
for each cell are indicated in the right legend. 575 

Table 6 shows the biases and number of samples used between each algorithm and GEOS-Chem in each cell. It can be 576 

seen that the biases of ACOS and SRFP vs GEOS-Chem in all cells are below 1 ppm, which implies better consistency with 577 

GEOS-Chem regionally than NIES and OCFP.  NIES presents 1.2-3.1 ppm lower than GEOS-Chem in all cells excluding 578 

the cell of 115°E, which is likely due to no corrections of the existing systematic biases in the NIES data set (Yoshida et al., 579 

2013). The bias of OCFP vs GEOS-Chem is larger than 1.2 ppm toward the west of 110°E, while it is 0.1 ppm toward the 580 

east of 110°E. The standard deviations of all the four algorithms with GEOS-Chem range from 1.4 ppm to 2.5 ppm in all 581 

cells. 582 

Table 6. The biases (ppm) and their standard deviations (ppm) of the four algorithms vs GEOS-Chem in each cell, where the 583 
upper line indicates bias (the corresponding standard deviations in parenthesis) for each algorithm vs GEOS-Chem and the lower 584 
line is the available number of used samples. The biases, larger than 1 ppm, are highlighted in bold and underlined. 585 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 
0.7(1.6) 0.5(1.6) -0.4(1.4) -0.3(1.5) -0.7(1.7) -0.7(1.7) 0.0(2.2) 0.5(2.1) 

478 179 316 303 629 599 515 326 

NIES 
-1.4(1.7) -1.6(1.8) -1.6(1.8) -2.3(2.5) -3.0(1.9) -3.1(2.2) -1.6(2.5) -0.7(2.4) 

487 383 470 281 700 506 428 301 

OCFP 
-1.8(1.4) -1.8(1.5) -2.2(1.4) -1.2(2.0) -2.3(1.6) -1.5(1.6) -0.1(1.9) -0.1(2.1) 

277 172 149 175 339 390 466 314 

SRFP 
0.1(1.9) 0.0(1.8) 0.2(1.7) -0.2(2.0) -1.2(1.9) -0.6(2.7) 0.2(2.4) 0.0(2.4) 

602 387 388 271 571 659 467 340 

EMMA 
0.6(1.8) 0.2(2.0) -0.4(1.4) -0.2(1.7) -0.8(1.8) -1.0(2.0) -0.1(2.1) -0.1(2.1) 

400 229 211 222 484 460 453 337 

 586 
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3.2 Pairwise comparisons of XCO2 between algorithms 587 

We made comparisons of geometrically and timely matching pairs XCO2 between algorithms in each cell. The pairs of 588 

XCO2 retrievals were matched between two algorithms timely in the same day and geometrically located within ±0.01° in 589 

latitude and longitude. Figure 6 shows pairwise comparisons of XCO2 retrievals between two algorithms that demonstrate 590 

the regression slope (a), the coefficient of determination (R
2
), the correlation coefficient (r), the number of matching pairs (n) 591 

and the biases between every pair of algorithms.  592 

 593 

 594 

Fig. 10: Algorithm correlation diagrams and statistical characteristics (insets of panels). GOSAT-Y observations were selected 595 
over land within ±0.01° latitude/longitude of each GOSAT-X observation and in the same day. Deep blue solid lines represent 1:1 596 
lines, and the magenta ones display the best linear regression fit for all observations. Colored points represent XCO2 for different 597 
cells: blue-[80°E, 90°E], green-[90°E, 100°E], yellow-[100°E, 105°E], orange-[105°E, 110°E], and red-[110°E, 120°E] in the study 598 
latitude zone [37°N, 42°N]. 599 

It can be seen from Fig. 10 that ACOS generally demonstrates the best agreement with other algorithms (top panel). 600 

OCFP generally presents biases larger than 1.4 ppm with other algorithms except for 0.1 ppm compared to NIES. It can also 601 



27 

 

be seen from the colored points in Fig. 10 that matching pairs of XCO2 for OCFP vs ACOS and SRFP mostly concentrated 602 

along the 1:1 line in the eastern cells of 105-120°E (orange and red points) but drifted from the 1:1 line in the western cells 603 

of 80-100°E (blue and green points).  604 

The differences(biases) of matching pairs (the number ranging from 11 to 945) of XCO2 between two algorithms, 605 

moreover, were calculated for each cell as shown in Table 7, and the totally averaged absolute differences of matching pairs 606 

of XCO2 for an algorithm with the other algorithms were also calculated in each cell as shown in Table 8. 607 

 It can be found from Table 7 that the difference is mostly less than 1 ppm in those eastern cells with a longitude greater 608 

than 105°E, and their consistency can be seen in Fig. 10 (red points between 110-120°E) as well. The differences that are 609 

larger than 2 ppm are located in western cells with longitudes less than 105°E, and these differences are mostly shown in 610 

OCFP vs other algorithms. The total differences shown in Table 8, moreover, indicate that the differences of the four 611 

algorithms tend to be similar to the results of matching pairs of XCO2 (Table 7), and NIES presents the largest difference up 612 

to 1.6 ppm in the western cells of 95°E. 613 

Table 7.  Differences (ppm)  between two algorithms (column algorithm minus row algorithm) and the corresponding standard 614 
deviation (ppm) for each cell, where values in parentheses are the corresponding standard deviations. The differences, larger than 615 
1.5 ppm, are highlighted in bold and underlined. 616 

 * NIES OCFP SRFP EMMA * NIES OCFP SRFP EMMA 

ACOS 

80 

°E 

-1.4(1.2) -2.6(1.2) -0.5(1.2) 0.2(1.0) 

100 

°E 

-1.6(1.6) -2.0(1.1) -0.2(1.2) 0.2(1.1) 

NIES  -0.9(1.4) 1.1(1.4) 1.7(1.5)  -0.4(1.4) 1.4(1.5) 1.6(1.4) 

OCFP   2.0(1.2) 2.6(1.5)   1.7(1.3) 1.9(1.4) 

SRFP    0.4(1.1)    0.3(1.1) 

ACOS 

85 

°E 

-2.0(1.3) -1.9(1.2) -0.1(1.2) 0.5(0.9) 

105 

°E 

-1.6(1.3) -0.6(1.4) 0.2(1.2) 0.2(0.9) 

NIES  -0.4(1.6) 1.5(1.3) 2.0(1.5)  0.2(1.5) 1.2(1.3) 1.5(1.3) 

OCFP   2.3(1.4) 2.7(1.5)   1.0(1.3) 1.0(1.0) 

SRFP    0.2(1.2)    0.2(0.9) 

ACOS 

90 

°E 

-1.2(1.1) -1.7(1.1) 0.8(1.4) 0.5(0.8) 

110 

°E 

-1.2(1.3) -0.9(1.4) 0.0(1.4) 0.4(1.1) 

NIES  -0.8(1.4) 2.0(1.4) 1.5(1.2)  0.7(1.3) 1.5(1.6) 1.5(1.3) 

OCFP   2.4(1.5) 2.0(1.3)   0.5(1.2) 0.7(1.0) 

SRFP    -0.1(1.1)    0.0(1.3) 

ACOS 

95 

°E 

-3.0(1.1) -0.9(1.7) -0.3(1.2) 0.0(1.1) 

115 

°E 

-0.6(1.3) 0.1(1.0) -0.1(1.0) 0.5(1.0) 

NIES  0.5(2.1) 1.3(2.0) 1.7(1.9)  0.8(1.5) 0.9(1.3) 1.3(1.5) 

OCFP   1.8(1.6) 1.4(1.1)   0.2(1.3) 0.5(1.0) 

SRFP    0.2(1.3)    0.6(0.9) 

The columns labeled with * represent the left longitude of cells (°E). 617 

Table 8. The average of the absolute differences (ppm) and standard deviation (ppm) of the target algorithm (in column) matching 618 
all other algorithms for each cell. Values in parentheses are the corresponding standard deviations. The differences, which are 619 
larger than 1.5 ppm, are highlighted in bold and underlined. 620 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.5(0.8) 1.4(0.7) 1.2(0.4) 1.6(1.0) 1.4(0.6) 1.1(0.4) 1.1(0.2) 0.9(0.2) 
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NIES 1.6(0.2) 1.8(0.4) 1.6(0.4) 2.2(0.6) 1.6(0.3) 1.5(0.3) 1.5(0.3) 1.3(0.2) 

OCFP 2.2(0.6) 2.1(0.6) 1.9(0.5) 1.7(0.2) 1.7(0.4) 1.2(0.1) 1.1(0.1) 1.0(0.2) 

SRFP 1.3(0.5) 1.4(0.7) 1.6(0.8) 1.4(0.6) 1.3(0.5) 1.1(0.3) 1.2(0.4) 1.0(0.2) 

EMMA 1.6(0.9) 1.6(1.0) 1.3(0.6) 1.3(0.6) 1.3(0.6) 1.1(0.5) 1.1(0.4) 1.0(0.4) 

 621 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.3(1.1) 1.2(1.0) 1.0(0.7) 1.4(1.2) 1.2(0.9) 1.0(0.7) 0.9(0.6) 0.7(0.5) 

NIES 1.1(0.7) 1.3(0.9) 1.2(0.9) 1.6(1.2) 1.1(0.8) 1.1(0.8) 1.1(0.8) 0.9(0.6) 

OCFP 1.5(1.1) 1.4(1.0) 1.4(1.0) 1.3(0.9) 1.2(0.9) 0.9(0.6) 0.8(0.6) 0.8(0.6) 

SRFP 1.1(0.9) 1.2(1.0) 1.4(1.1) 1.2(0.9) 1.1(0.8) 0.9(0.6) 1.0(0.7) 0.8(0.5) 

 622 

To summarize the quantification and analysis in this section, XCO2 retrievals from two algorithms, ACOS and SRFP 623 

are mostly consistent, and the bias of ACOS from GEOS-Chem is the least among the four algorithms. The difference of 624 

XCO2 from cross-comparing four algorithms tends to be less in cells east of 100°E than that in the cells west of 100°E.   625 

4 Comparison of the spatio-temporal pattern revealed by XCO2 from the four algorithms and simulation 626 

We used a combination of sine and cosine trigonometric functions to statistically fit the seasonal variation of XCO2, which 627 

was originally proposed by Keeling et al. (1976) and has been applied extensively in many studies (Thoning et al. 1989; 628 

Kulawik et al., 2016; Lindqvist et al., 2015; Zeng et al., 2016; He et al., 2017). Better attributions are thus obtained for XCO2 629 

variation in the seasonal cycle and in spatial background patterns by filtering the noise and filling gaps in the original XCO2 630 

data.  631 

      Firstly, the monthly averaged XCO2 was calculated in each cell using XCO2 retrievals; then the fit function (Keeling, 632 

1976), expressed as the following equation [1], was applied to the monthly averaged XCO2 from March, 2010 to February, 633 

2013 for the four algorithms and GEOS-Chem. 634 

  1 2 3 4 5 6X t sin2 cos2 sin4 cos4π       A t A t A t A t A A t                          [1] 635 

where t represents elapsed time in years, A1-A4 are the coefficients determining the seasonal cycle, A5 represents the initial 636 

state of XCO2 with seasonal variation removed, which can be regarded as the corresponding background concentration, and 637 

A6 is the slope of the linear part in the yearly increase ignoring the minor non-linear part. To derive A1-A6 with the above 638 

formula, least squares were applied to fit the input monthly weighted means with the corresponding standard deviations as 639 

measures of errors. The monthly weighted means (e.g., X (t)) and the corresponding standard deviations in each cell were 640 

calculated with the weights inversely proportional to the square of retrieval uncertainty in each observation point.  641 

The accuracy of fitting X(t) depends on the number of gaps in the available XCO2 retrievals in time and in space 642 

resulting from the filtering mechanism for quality controlling. We introduce the Pearson’s correlation, hereafter referred to 643 

as R, between the input and the predicted results from equation [1] and the unit weighted mean square error, hereafter 644 
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referred to as σ, in fitting as an uncertainty to judge whether the fitting results are reasonable or not. In addition, we applied 645 

equation [1] to the GEOS-Chem dataset , which has been converted to XCO2 as Connor (2008) suggested. Since atmospheric 646 

transport models do not share the same error sources with satellite retrieval algorithms and produces continuous simulations 647 

without data gaps, GEOS-Chem provides helpful a priori information for reference.  648 

4.1 Seasonal variation of XCO2 retrievals 649 

The time series in each cell are acquired for each algorithm using the above formula [1]. The monthly fitted XCO2 from 650 

March 2010 to February 2013 in each cell for the four algorithms as well as GEOS-Chem is shown in Fig. 11. The seasonal 651 

amplitudes (the difference between seasonal cycle maximums and minimums) and uncertainty of the fitting function as 652 

described by R and σ above are demonstrated in Table 9.   653 

 654 

Fig. 11: The time series from March 2010 to February 2013 in eight cells from the western cell of (a) to the eastern end cell of (h), 655 
where colored lines represent the fitting seasonal change trend of the four XCO2 datasets from the four algorithms, and the 656 
colored points represent single XCO2 retrievals corresponding to four algorithms according to line color: red is for ACOS, blue for 657 
NIES, magenta for OCFP and cyan for SRFP. The gray line is the fitting seasonal change trend of XCO2 simulated by GEOS-658 
Chem.    659 
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Table 9: Results of fitted seasonal cycle and the corresponding uncertainty of the fitting results for each cell in the study latitude 660 
band for four algorithms and GEOS-Chem, The symbols “–“ means that filtered results are not available due to large uncertainty 661 
judged by R and σ. R, the correlation coefficient between fitted XCO2 and monthly averaged original XCO2 in each cell, less than 662 
0.80,  and σ , the unit weighted mean square error in fitting, not less than 3.0, are highlighted in bold and underlined.  663 

Left longitude of cells  (°E) 80 85 90 95 100 105 110 115 

Seasonal cycle amplitude (ppm)  

ACOS 5.1 7.8 3.7 4.0 6.6 5.9 8.0 9.3 

NIES 4.3 6.9 7.8 - 7.1 6.4 9.5 10.7 

OCFP 5.3 3.5 - 3.9 7.7 9.2 8.4 8.6 

SRFP 6.3 6.5 8.9 - 5.9 7.4 10.4 10.7 

GEOS-Chem 6.3 5.9 5.7 5.6 6.5 6.9 7.2 7.9 

  σ(Unit weight mean square error in fitting)(ppm) 

ACOS 1.2 1.6 1.6 0.6 1.1 1.2 0.4 1.0 

NIES 0.7 1.1 1.0 3.0 1.1 1.1 1.5 1.3 

OCFP 0.7 0.9 1.5 1.4 1.9 1.1 0.8 0.9 

SRFP 1.6 0.7 1.3 3.3 0.8 0.8 1.0 1.0 

GEOS-Chem 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

R ( Correlations between fitted XCO2 and monthly averaged original XCO2 in each cell) 

ACOS 0.92 0.92 0.91 0.95 0.91 0.91 0.98 0.94 

NIES 0.89 0.91 0.94 0.68 0.96 0.95 0.89 0.92 

OCFP 0.90 0.84 0.79 0.84 0.93 0.93 0.93 0.96 

SRFP 0.83 0.94 0.92 0.40 0.95 0.94 0.93 0.90 

GEOS-Chem 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 

 
 664 

Viewing the attribution of XCO2 in each cell from Fig. 11 and Table 9, we can find that the seasonal variations from all 665 

XCO2 retrievals generally show similar changing trends, except for one extra seasonal cycle maximum being misidentified in 666 

some cases mainly due to weaker data constraints for fitting. The timely changing patterns (indicated by seasonal cycle 667 

phases) of all algorithms demonstrate better agreement in the eastern four cells from 100°E to 115°E than those in the 668 

western four cells from 80°E to 95°E. The correlation coefficients of fitting XCO2 in Table 9 are also significantly greater in 669 

the eastern four cells than those in the western four cells. As a result, the longitude 100°E tends to be a regional border 670 

presenting better consistency of XCO2 among the four algorithms in its eastern cells than those in its western cells. 671 

Comparing XCO2 from the four algorithms with GEOS-Chem, one specific result is presented in the eastern-most two 672 

cells from 110°E to 120°E, in which the seasonal amplitudes of XCO2 are significantly higher from the four algorithms while 673 

the magnitudes of XCO2 in summer are lower than those from GEOS-Chem as shown in Table 9 and Fig. 11. There is strong 674 
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CO2 absorption from farming activities of wheat and corn in the summer (Lei et al., 2010) and anthropogenic CO2 emission 675 

from extra winter heating in these eastern cells. This result is in agreement with an investigation of results over the whole 676 

Chinese mainland (Lei et al., 2014) and at 120-180°E over the globe (Lindqvist et al., 2015), which is likely due to the 677 

underestimated widespread bio-ecological CO2 uptake changes that occurred over the past 50 years in atmospheric transport 678 

models (Graven et al., 2013). 679 

The XCO2 values from NIES (blue in Fig. 11) are overall lower than those from the other algorithms, which is due to 680 

the uncorrected systematic errors -1.2 ppm (refer to Table 4). The seasonal variations from OCFP (magenta in Fig. 11) are 681 

abnormal compared to the overall seasonal changing trend of XCO2 in cells west of 100°E presented for the other three 682 

algorithms. The seasonal amplitudes of OCFP presented in Table 9, moreover, are abnormally the lowest in a cell (85-90°E) 683 

and the highest in a cell (105-110°E). SRFP and NIES show two abnormal peaks in a cycle of a year in the cell of 95°E, 684 

while some large values of σ and small values of R, shown in bold in Table 9, indicate poor fitting mostly in the same cell 685 

(95-100°E). These results are likely induced by large gaps in the available XCO2 data in time series, which leads to a poor 686 

fitting constraint.  687 

4.2 Spatio-temporal pattern of detrended XCO2  688 

We calculated the seasonal averages of the XCO2 background concentration in each cell after removing the linear yearly 689 

increase using the fitting time series of XCO2 for the four algorithms and GEOS-Chem. The spatio-temporal continuous 690 

pattern of background XCO2 was mapped by Linearly Interpolate Triangulation (Watson et al., 1984) using the seasonal 691 

averages of XCO2 background concentration in each cell for four algorithms and GEOS-Chem, as shown in Fig. 12 (on the 692 

left). The spatio-temporal patterns of the differences of detrended XCO2 to GEOS-Chem simulations for the four algorithms 693 

are mapped respectively and are shown in Fig. 12 (on the right).  694 
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 695 

 696 

Fig. 12: The spatial (in the study latitude band) and temporal (in seasons) changing patterns of detrended XCO2 from ACOS, 697 

NIES, OCFP, SRFP retrievals and GEOS-Chem simulations (left) and the differences of detrended XCO2 to GEOS-Chem for 698 

between ACOS, EMMA, NIES, OCFP and SRFP and GEOS-Chem. 699 

It can be seen from Fig. 12 (on the left) that the spatio-temporal patterns from the three algorithms of ACOS, NIES and 700 

SRFP are generally similar, with an increase spreading outward from the center of each diagram and with the lowest XCO2 701 

located approximately at 95°E-105°E and during the period of summer-autumn; meanwhile, OCFP and GEOS-Chem show a 702 

similar spatio-temporal pattern where the lowest value is not the center. Two common characteristics of XCO2 spatio-703 

temporal changes from the four algorithms and GEOS-Chem can also be found: (1) the seasonal changes of XCO2 are the 704 

same in any of the cells, with lower XCO2 in summer and autumn than that in spring and winter; and (2) spatial changes of 705 

XCO2 generally demonstrate larger XCO2 in the eastern cells than those in the western cells in all seasons. A similarly high 706 

level is captured by ACOS, NIES and SRFP generally in the western deserts with lower CO2 emissions compared to the 707 

eastern cells with abundant emissions. This feature is especially distinct from ACOS while OCFP and GEOS-Chem both 708 

show an increasing trend from west to east in any season. 709 

Comparing the difference to GEOS-Chem (on the right in Fig. 12), the spatio-temporal pattern of ACOS and SRFP 710 

generally demonstrate the smallest values mostly ranging from -1 ppm to 1 ppm. XCO2 values from both NIES and OCFP 711 

are smaller than GEOS-Chem in space and time, while the XCO2 difference is mostly 1-3 ppm for NIES and 2 ppm for 712 

OCFP. Regionally, the differences tend to be larger in the western cells than those in the eastern cells for satellite retrievals, 713 

except for OCFP. 714 

To summarize the quantification and analysis in this section, the spatio-temporal pattern of ACOS tends to be 715 

inconsistent with SRFP. Figure 8 shows two common characteristics among ACOS, NIES, SRFP and EMMA: (1) XCO2 is 716 

lower in summer and autumn but higher in spring and winter. (2) XCO2 is higher west of 90°E and east of 110°E, while it is 717 

lower in cells 90°E-110°E. In addition, XCO2 values from NIES and OCFP are lower than those from other algorithms, 718 

especially in summer and autumn. A similarly high level is captured by ACOS, EMMA, NIES and SRFP generally in the 719 
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western deserts with lower CO2 emissions compared to the east, which has abundant emissions. This is distinct from ACOS 720 

and EMMA, while OCFP and GEOS-Chem both show an increasing trend from west to east in any season. 721 

5 Discussion  722 

In this section, an investigation was made into the most likely attribution of regional inconsistency, i.e., aerosols and albedo, 723 

and an additional evaluation comparison was made of with the latest released ACOS V7.3, the newer version of ACOS data 724 

retrieved by the OCO-2 algorithm, using GEOS-Chem simulations and retrievals from other algorithms including ACOS 725 

V3.5, NIESV02.21, OCFP V6.0 and SRFP V2.3.7. 726 

5.1 Discussion of albedo and aerosol effects for XCO2 retrieval    727 

The above quantification and analyses indicate that generally good agreements are achieved among the four data sets in the 728 

eastern cells, while three out of four GOSAT-XCO2 data sets present abnormal high concentrations in the western cells. It 729 

has been known that aerosols are the most important factor inducing errors in satellite-retrieved XCO2 (Guerlet et al., 2013; 730 

Oshchepkov et al., 2013; Yoshida et al., 2013; O’Dell et al., 2012), while estimations of Aerosol Optical Depth (AOD)AOD 731 

in GOSAT full physics CO2 retrieval algorithms are is greatly affected by high surface albedo because of atmospheric 732 

multiple scattering of light and the optical lengthening effectthe optical lengthening effect. For that reason, we investigate 733 

the spatial and temporal characteristics of aerosols and albedo in our study latitude band to probe the reason why high 734 

inconsistency of XCO2 retrieval algorithms appears in western cells rather than in eastern cells with intensive human 735 

activities.  736 

The spatial and temporal characteristics of shortwave broadband (300-3000nm) albedo from GLASS albedo products 737 

and AOD at 555 nm from MISR aerosol products with seasons in the study area are revealed as shown in Fig. 13, in which 738 

they are mapped by the same method as Fig. 12. The seasonal mean AOD and albedo were calculated in spring (MAM), 739 

summer (JJA), autumn (SON), and winter (DJF) using the monthly mean AOD and black sky shortwave albedo from 740 

January 2010 to December 2012 for every cell.   741 
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 742 

Fig. 13: The temporal and spatial patterns of black sky shortwave broadband (300-3000nm) albedo (left) and AOD at 555 nm 743 
(right). Colors represent albedo (left) and AOD (right). 744 

As shown in Fig. 13, albedo shows small temporal variation with a decreasing trend from west to east. In contrast with 745 

albedo, AOD follows a clear seasonal pattern with a higher level in spring and summer than in autumn and winter. The uplift 746 

of AOD in spring and summer is due to the higher frequency of Asian sand and dust storms for cells west of 105°E. The 747 

main contributors to aerosol loading east of 110°E are emissions from urban fugitive dust/fly ash, dust plumes from deserts 748 

in the western and northern China such as the Taklimakan deserts, industrial activities and residential heating (Zhang et al., 749 

2012). For this reason the inconsistency of XCO2 from the four algorithms, which tends to be higher in spring and summer 750 

than in autumn and winter in the Taklimakan Deserts in western cells shown in the results above, is likely induced by the 751 

combined effect of high aerosol and high brightness surface (high surface albedo) on retrieval uncertainty.  752 

We discussed the influences of albedo and AOD on XCO2 retrievals from ACOS, NIES, OCFP and SRFP in further. 753 

Fig. 14 plots the scatters of albedo and AOD with the differences between GEOS-XCO2 data (created in section 3.1) to 754 

XCO2 retrievals, hereafter referred to as dmXCO2, for ACOS, NIES, OCFP and SRFP. The albedo data obtained from 755 

GLASS02B06 is used for OCFP as there are no albedo data available from its released data product.  756 

Fig. 14 shows that dmXCO2 of both ACOS and NIES demonstrate a slightly decreasing trend with albedo whereas 757 

slightly increasing trend with AOD. The dmXCO2 of ACOS tend to be larger in 80°E -90°E of deserts with high albedo than 758 

that in other regions. The dmXCO2 of OCFP demonstrate a clear decreasing trend with albedo and AOD comparing to the 759 

other algorithms. The dmXCO2 of SRFP basically does not show a clearly dependence on either albedo or AOD. We further 760 

investigated the standard deviation of dmXCO2 by a variation of the bin-to-bin dmXCO2 with albedo and AOD. dmXCO2 is 761 

averaged by surface albedo within 0.05 albedo bins and AOD within 0.05 AOD bins, respectively. The standard deviation of 762 

the mean dmXCO2 in each 0.05 albedo (AOD) bins, i.e. a measure of the bin-to-bin dmXCO2, is calculated. It is found that 763 

the dmXCO2 for the four algorithms change with both albedo and AOD in bin-to-bin. In the whole study area, the standard 764 

deviation in albedo is the largest for OCFP, up to 0.7 ppm, while that is smaller from ACOS, NIES and SRFP, 0.4 ppm、0.3 765 

ppm and  0.2 ppm, respectively. The standard deviation of dmXCO2 in AOD is larger for SRFP (0.5 ppm) than those for 766 
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ACOS (0.2 ppm), NIES (0.3 ppm) and OCFP (0.4 ppm). Viewing to the deserts (80°E -90°E), the standard deviation  in 767 

albedo is the largest from NIES ( 1.5 ppm),  and the smallest from OCFP (0.2 ppm) while they are 1.0 ppm and 0.5 ppm for 768 

ACOS and SRFP, respectively. The standard deviations in AOD, however, are similar (0.2-0.4 ppm) in this area. As a result, 769 

OCFP tend to be more sensitive to albedo and AOD compared to other algorithms. In the deserts, NIES are the most 770 

sensitive XCO2 retrievals to surface albedo and OCFP the least.  771 

 772 

Fig. 14: Scatter plots of the differences (dmXCO2) between GEOS-XCO2 to ACOS, NIES, OCFP and SRFP respectively, with 773 
respect to albedo (the upper panels) and AOD (the lower panels). Colored points represent the data from different cells: red-[80°E, 774 
105°E], black-[105°E, 120°E] in the study latitude zone [37°N, 42°N]. Colored solid lines display the corresponding linear 775 
regression trend line for the total points. Albedo and AOD are extracted from data products of the retrieval algorithms except 776 
albedo data in OCFP in which GLASS data are used. 777 

Fig. 15, moreover, demonstrates the influence of albedo and AOD on the standard deviation (STD) of XCO2 from four 778 

algorithms at the same footprints (timely in the same day, geometrically located within ±0.01° in space). Averaged albedo 779 

(the left panels) and AOD (the right panels) of the four algorithms are used whereas the averaged albedo is obtained only 780 

using three attached albedo in the algorithms except OCFP.  781 

The increasing trends of STD with both albedo and AOD can be seen from Fig. 15. The mean STD is 1.3 ppm in the 782 

western cells (80°E -90°E) where albedo is mostly within 0.25-0.35. This STD is lightly larger than that (1.0ppm) in eastern 783 

cells (90°E-120E°) where albedo is comparatively smaller (mostly within 0.15-0.25). It is found from the statistics presented 784 

in Fig. 15 that the correlation coefficients of STD with albedo and that with AOD is almost the same (both are 0.3) for all the 785 

data. Particular influence from albedo in desert over the western cells can be clearly observed. These results indicate that the 786 

inconsistency of XCO2 retrievals from four algorithms tend to be increase with the enlargements of albedo and AOD so as to 787 

imply that uncertainty of satellite-retrieved XCO2 should be mostly alerted with the elevations of albedo and AOD.    788 
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  789 

Fig. 15: Scatter plots of the standard deviation (STD)  of XCO2 from the four algorithms to albedo (the left panel) and AOD (the 790 
right panel).  Colored points represent different cells: red-[80°E, 105°E], black-[105°E, 120°E] in the latitude zone [37°N, 42°N]. 791 
Colored solid lines display the corresponding linear regression trend line for the scatter plots with the regression slope (a) and the 792 
correlation coefficient (r) also presented. n is the number of samples. Albedo is the mean surface albedo in 0.75-um band from the 793 
three algorithms including ACOS, NIES and SRFP. AOD is the mean AOD in 0.75-um band from the four algorithms. 794 

 795 

From the above quantification and analysis in previous sections, the pairwise differences between OCFP and other 796 

algorithms are 0.51 ppm higher west of 105°E than east of that, with a difference of 1.21.6 ppm over the whole study area. 797 

The obvious regional characteristic probably relates to the assumption of a uniform cirrus profile based on latitude in the 798 

retrieval algorithm (GHG-CCI group at University of Leicester, 2014), which is, however, unlikely to be reasonable in our 799 

study area. There exists a large amount of high clouds over the Tibetan Plateau (Chen et al., 2005), which is located south of 800 

the study cells of 80°E to 105°E. The humidity and atmospheric structure are mainly affected by the Tibetan Plateau, and 801 

there is a large difference in the cirrus profile between the western cells and the eastern cells over our study area (Wang et al., 802 

2012), which indicates that a uniform profile by latitude will inevitably introduce errors.  803 

The regional pairwise difference between NIES and other algorithms is 1.6 ppm on average, is up to 1.6 ppm, which is 804 

distinctly high among all the algorithms. Considering the complicated geographic environment in the study area, this distinct 805 

difference is likely related to the presumptions from NIES algorithm in aerosol profiles and properties adopted from an 806 

aerosol transport model (Table 4), in which cirrus clouds are ignored and little information from observations is used in the 807 

retrieving process.  808 

With the satellite-observed spectrum used for simultaneously retrieving water and clouds, ACOS sets the initial aerosol 809 

types and AOD based on a priori information from aerosol reanalysis data. On the other hand, SRFP handles aerosol based 810 

on a comprehensive characterization of aerosol properties, including aerosol number density, size distribution and aerosol 811 

height. Both of the above two mechanisms function well since ACOS and SRFP are generally demonstrated to provide 812 

relatively better performance. 813 

Noticing that all algorithms differ in simulating scattering in the atmosphere, such as in the aerosol models, the 814 

influence of scattering on retrieved XCO2 is too significant to be ignored, as demonstrated from this study. Since satellite 815 

products from different retrieval algorithms in general agree with each other, there is no denying that satellite XCO2 816 
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retrievals have the potential to provide more accurate XCO2 data. Optimization in the handling of aerosol scattering will 817 

improve the precision and accuracy of satellite XCO2  retrievals in the future.  818 

5.2 Additional comparison withevaluation of the latest released ACOS V7.3  819 

We collected ACOS V7.3 (http://CO2.jpl.nasa.gov ) too, the latest version of the ACOS data (GES DISC, 2017). We add the 820 

cross-comparisons of this version of the data set and other data sets including GEOS-Chem, ACOS V3.5, NIES V02.21, 821 

OCFP V6.0 and SRFP V2.3.7 in this section. ACOS V7.3 was created by applying the XCO2 retrieval algorithms of OCO-2 822 

to GOSAT. Within the algorithm code of ACOS V3.5, the OCO-2 algorithm generating ACOS V7.3 data makes some 823 

changes in parameter settings, such as the surface pressure a priori constraint and cloud ice properties, and it updates the 824 

manners of data processing, for example, the bias corrections and filtering mechanism (GES DISC, 2017).  825 

 The available data points, a total of 1980, were shown from March 2010 to February 2013 in Fig. 10, where different colors 826 

and symbols in each panel represent the left longitude of cells into which retrievals fall. In cells west of 90°E, there are a few 827 

data points showing abnormal concentrations as high as above 400.0 ppm, which is higher than that of data points in the east, 828 

where there are strong anthropogenic CO2 emissions. 829 

 830 

Fig. 10.  The time series of data points from ACOS V7.3 during the period from March 2010 to February 2013. Different symbols 831 

in each panel represent the left longitude of the cell into which a data point falls. 832 

We made cross-comparisons between ACOS V7.3 and other data sets. No bias was found in ACOS V7.3 from GEOS-Chem 833 

with a standard deviation of 1.6 ppm and R
2
=0.77. The comparison results in the cells are shown in Table 6 Generally, 834 

ACOS V7.3 is in good agreement with all of them, which is reflected by correlation coefficients r that are above 0.85 and 835 

greater than others, as shown in Table 6. The biggest differences up to 3.0 ppm for ACOS V7.3 are found from NIES and 836 

OCFP in deserts cells, whereas differences from SRFP and EMMA are mostly within 1.0 ppm. This is similar to ACOS V3.5. 837 

The total absolute difference from other algorithms (not including ACOS V3.5) is within 1.0 ppm in cells east of 110°E but 838 

above 2.0 ppm in cells west of 90°E. It can also be found from Table 6 that the bias of ACOS V7.3 relative to GEOS-Chem 839 

is within 0.3 ppm but above 1.3 ppm, in cells east and west of 90°E, respectively.  840 

http://co2.jpl.nasa.gov/
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Compared to the previous version, ACOS V3.5, ACOS V7.3 increases the average by approximately 0.2 ppm. In 841 

comparison with the difference patterns with ACOS V3.5, the averages of the absolute differences between ACOS V7.3 and 842 

the other four algorithms are similar (<0.1 ppm) and increase by an average of 0.6 ppm (2.1 ppm vs. 1.5 ppm) in cells east of 843 

110°E and west of 90°E, respectively, while the biases relative to GEOS-Chem decrease approximately 0.3 ppm and increase 844 

approximately 0.9 ppm in cells east and west of 90°E, respectivley. 845 

The comparison results further demonstrate inconsistency of XCO2 among different datasets in the desert cells. 846 

Table 6. Differences between ACOS V7.3 and others (including GEOS-Chem and five other algorithms including ACOS V3.5, 847 
NIES, OCFP, SRFP and EMMA) in each cell (subtraction from ACOS V7.3). Values in parentheses are the corresponding 848 
standard deviations. 849 

Left longitude of 

cells(°E) 
80 85 90 95 100 105 110 115 r 

GEOS-Chem 
-1.7(1.5) -1.3(1.3) 0.1(1.2) 0.1(1.2) -0.1(1.3) 0.3(1.6) 0(1.7) 0(1.6) 

0.88 
64 85 167 191 294 448 487 244 

ACOS V3.5 
-0.4(0.9) -0.1(1.0) -0.1(1.0) -0.2(1.0) 0.0(1.1) -0.5(1.1) 0.2(1.2) -0.1(1.1) 

0.93 
103 48 133 189 350 391 244 126 

NIES 
-3.2(1.2) -1.9(1.5) -1.6(1.2) -1.2(1.9) -1.9(1.4) -1.8(1.5) -1.2(1.6) -0.7(1.5) 

0.87 
61 100 251 123 541 317 397 277 

OCFP 
-3.1(1.0) -3.4(0.9) -2.2(1.1) -2.5(1.5) -2.1(1.2) -1.5(1.1) -0.5(1.1) -0.1(1.0) 

0.86 
66 41 157 114 297 329 396 202 

SRFP 
-0.8(1.3) -0.7(1.4) 0.3(1.3) -0.6(1.3) -0.4(1.3) -0.5(1.4) 0.3(1.4) 0.1(1.2) 

0.89 
138 145 345 337 466 631 447 247 

EMMA 
-0.3(1.3) -0.5(1.4) 0.0(1.0) -0.4(1.4) -0.2(1.3) -0.3(1.2) 0.3(1.1) 0.5(1.1) 

0.91 
113 90 190 241 405 383 390 233 

Average absolute 

difference
1
 for 

four algorithms 

above 

2.2(1.1) 2.0(1.0) 1.4(0.7) 1.7(0.7) 1.6(0.6) 1.4(0.4) 1.1(0.3) 1.0(0.2) 

 

*1 represents the average of absolute differences of ACOS V7.3 matching other algorithms including NIES, OCFP, SRFP and 850 
EMMA for each cell. 851 

6 Conclusion 852 

Although TCCON has been widely accepted as the standard for validation of satellite-based XCO2 data, it is necessary to 853 

better understand the performance of XCO2 in spatial and timely variations at a regional scale and especially for those 854 

regions where ground-based measurements of XCO2 are not available, such as for the TCCON stations in China. We 855 

implement the quantification and assessment of the agreement of multiple algorithms for typical regions with various land 856 

covers and enhancement of anthropogenic CO2 emissions including the megacity of Beijing from 80°E to 120°E in the same 857 

latitude band of 40°N to get better knowledge of the regional uncertainty and performance of GOSAT XCO2 retrievals in 858 

China. Regional performance of XCO2 products from four algorithms (ACOS, NIES, OCFP, SRFP) as well as GEOS-Chem 859 
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simulated XCO2 are probed to obtain the regional uncertainty and attributions of GOSAT XCO2 retrievals. In particular, we 860 

apply simulated XCO2 at a high spatial resolution of 0.5° (latitude) x 0.666° (longitude) for a nested grid obtained by GEOS-861 

Chem to assess the regional uncertainty of XCO2 derived from satellite observations in China. In connection with the 862 

inconsistency of algorithms in eight cells, the characteristics of aerosol and albedo are investigated to discuss the further 863 

attribution of regional inconsistency of algorithms.  864 

Summarizing the performance of four algorithms (ACOS, NIES, OCFP and SRFP) in each cell based on the above 865 

quantification and analysis from comparisons with GEOS-Chem, pairwise differences between algorithms and agreement in 866 

time series among algorithms, we can obtain the following results in general: (1)The consistency among algorithms is better 867 

in the east than in the west as the absolute difference from pairwise comparisons presents  0.9-1.50.7-1.1 ppm in eastern cells 868 

covered by grassland, cropland and built-up areas with strong anthropogenic CO2 emission whereas 1.2-2.21.0-1.6 ppm in 869 

western cells covered by desert with a high-brightness surface with less anthropogenic CO2 emission;（2）ACOS and SRFP 870 

are more satisfying in characterizing spatio-temporal patterns than other algorithms. To conclude, Table 10 presents the 871 

regional characteristics and a summary of the results described in above sections. 872 

Table 10.Summaries of our analyses for uncertainty of XCO2 retrievals obtained by GOSAT via inter-comparison of multi-873 
algorithms above, including characteristics of regional emissions, albedo, aerosol optical depth, and summary of differences 874 
between algorithms and bias compared to GEOS-Chem. 875 

Characteristics of regions and summary of 

algorithms 
Cells from 80°E to 115°E within 37°N-42°N 

Characteristics 

of regions 

Regions 

Left longitude  (°E) 
80 85 90 95 100                105 110 115 

CO2 emissions  

(Tg/year)*
1
 

Low emissions 

(1.2-57.1) 

High emissions 

(515.2-821.9) 

Property of aerosol 

(AOD)*
2
 

Dust 

(0.22-0.53) 

Clear 

(0.10-0.28) 

Urban 

(0.10-0.37)) 

Surface types 

(albedo) 

Sand desert with high 

brightness 

(0.20-0.26) 

 Gobi and grassland 

(0.19-0.22) 

Cropland and 

built-up 

(0.14-0.17) 

Summary of 

uncertainty 

Consistency of algorithms  

(pairwise mean absolute 

differences)  

Less Consistency 

( 1.0-1.6 ppm) 

Good consistency 

(0.7-1.1 ppm) 

Bias compared to  

GEOS-Chem 

(bias range) 

Large biases 

(1.2-3.1 ppm) 

lesser biases 

excluding NIES 

(0.0-0.5 ppm)  

General performance of 

algorithms  in spatio-

temporal patterns of XCO2 

compared to GEOS-Chem 

ACOS presents the lowest bias (-0.1±1.9 ppm); 

SRFP is next ( -0.2±2.2 ppm)  

NIES presents the greatest -2.0±2.2 ppm) 

 876 

Left longitude of 

cells (°E) 
80 85 90 95 100 105 110 115 



40 

 

CO2 emissions 

(Tg/year)*
1
 

20.1 

(24.1) 

11.2 

(7.8) 

1.2 

(2.7) 

35.8 

(20.7) 

57.1 

(15.6) 

515.2 

(199.0) 

801.3 

(600.3) 

821.9 

(893.3) 

Surface type 

Albedo 

High brightness desert  

0.24-0.26   0.23-0.26  0.22-0.24 

Gobi desert  

0.19-0.21 0.21-0.22 

Grassland 

0.20-0.21 

Cropland and built-up  

0.15-0.17 0.14-0.16 

AOD*
2
 0.22-0.53 0.16-0.42 0.12-0.32 0.10-0.29 0.12-0.28 0.12-0.28 0.10-0.32 0.10-0.37 

Regional  

Summary in  

pairwise 

differences 

between algorithms 

Less Consistency (mean absolute differences 1.2-2.2 ppm) 

The difference of OCFP is the greatest with most of the other 

algorithms (1.7-2.2 ppm); next is NIES (1.6-2.2 ppm).  

 

Good consistency (mean absolute 

differences 0.9-1.5 ppm) 

ACOS is relatively the least (0.9-1.1 

ppm) 

Regional  

Summary 

compared to 

GEOS-Chem 

Large biases, of which NIES is the greatest (1.4-3.1 ppm) and next is OCFP 

(1.2-2.2 ppm)   

lesser biases (0.0-0.5 

ppm) excluding NIES 

Similar in seasonal amplitude;  

 

Seasonal amplitude 

from GEOS-Chem is 

lower than all of 

satellite retrieval 

algorithms. 

Regional pairwise 

comparisons of 

ACOS V7.3 

Greater biases are presented with OCFP (1.5-3.4 ppm) and NIES (1.2-3.2 

ppm) 

Lesser biases (0.0-0.5 

ppm) excluding NIES 

General differences 

compared to 

GEOS-Chem 

ACOS presents lowest values (bias -0.1 ppm Std
*3

 1.9 ppm), next is SRFP (bias -0.2 ppm Std 2.2 

ppm)  

NIES presents the greatest (bias -2.0 ppm, Std 2.2 ppm). 

Spatio-temporal 

patterns of XCO2 

compared to 

GEOS-Chem 

ACOS and SRFP are similar to GEOS-Chem.  

OCFP is in better agreement with GEOS-Chem but the bias is larger. 

*
1
 represents the total emissions of CO2 from CHRED in each cell in 2012. *

2
 is the range of averaged seasonal aerosol 877 

optical depth over a year.  878 

 879 

The results of our analysis, indicating that the discrepancies among algorithms are the smallest in eastern cells which 880 

are the strongest anthropogenic emitting source regions in China, implies that the uncertainty of XCO2 is likely low in this 881 

area. It will be sufficiently rigorous for supporting us to apply GOSAT XCO2 data in assessment of anthropogenic emissions 882 

via timely changing magnitude of XCO2 in such region. Moreover, it was likely that uncertainty in satellite-retrieved XCO2 883 

is attributed to the combined effects of aerosol and albedo. The large uncertainty of XCO2 must be improved further, even 884 

though many algorithms have endeavored to minimize the effects of aerosol and albedo. With the launch of OCO-2 in 2014 885 

and GOSAT-2 scheduled for 2018, the prospect of a large amount of useful retrieved XCO2 products is promising. Since low 886 

regional XCO2 biases are necessary for accurately estimating regional carbon sources and sinks, regional uncertainty should 887 

be paid more attention in the future. 888 
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Appendix A 889 

We made cross-comparisons between ACOS V7.3 and other data sets. The available data points of ACOS V7.3 were shown 890 

from March 2010 to February 2013 in Fig.S1. In cells west of 90°E, there are a few data points showing abnormal 891 

concentrations as high as above 400.0 ppm, which is higher than that of data points in the east, where there are strong 892 

anthropogenic CO2 emissions. 893 

The comparison results in the cells are shown in Table S1. No bias was found in ACOS V7.3 from GEOS-Chem with a 894 

standard deviation of 1.6 ppm and R
2
 of 0.77 in the whole study area. Generally, ACOS V7.3 is in good agreement with all 895 

of them, which is reflected by correlation coefficients r that are above 0.85 and greater than others, as shown in Table S1. 896 

The biggest differences up to 3.0 ppm for ACOS V7.3 are found from NIES and OCFP in deserts cells, whereas differences 897 

from SRFP are mostly within 1.0 ppm. This is similar to ACOS V3.5. The pairwise differences from other algorithms (not 898 

including ACOS V3.5) are up to 1.9 ppm in cells west of 90°E, which is distinctly high, whereas within 0.9 ppm in cells east 899 

of 110°E. It can also be found that the bias of ACOS V7.3 relative to GEOS-Chem is within 0.3 ppm but above 1.3 ppm, in 900 

cells east and west of 90°E, respectively.   901 

 902 

Fig. S1.  The time series of data points from ACOS V7.3 during the period from March 2010 to February 2013. Different symbols 903 
in each panel represent the left longitude of the cell into which a data point falls. 904 

Table S1. Differences between ACOS V7.3 and others (including GEOS-Chem and four other algorithms including ACOS V3.5, 905 
NIES, OCFP and SRFP) in each cell (subtraction from ACOS V7.3). Values in parentheses are the corresponding standard 906 
deviations. 907 

Left longitude of 

cells(°E) 
80 85 90 95 100 105 110 115 r 

GEOS-Chem 
-1.7(1.5) -1.3(1.3) 0.1(1.2) 0.1(1.2) -0.1(1.3) 0.3(1.6) 0(1.7) 0(1.6) 

0.88 
64 85 167 191 294 448 487 244 

ACOS V3.5 
-0.4(0.9) -0.1(1.0) -0.1(1.0) -0.2(1.0) 0.0(1.1) -0.5(1.1) 0.2(1.2) -0.1(1.1) 

0.93 
103 48 133 189 350 391 244 126 

NIES 
-3.2(1.2) -1.9(1.5) -1.6(1.2) -1.2(1.9) -1.9(1.4) -1.8(1.5) -1.2(1.6) -0.7(1.5) 

0.87 
61 100 251 123 541 317 397 277 

OCFP -3.1(1.0) -3.4(0.9) -2.2(1.1) -2.5(1.5) -2.1(1.2) -1.5(1.1) -0.5(1.1) -0.1(1.0) 0.86 
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66 41 157 114 297 329 396 202 

SRFP 
-0.8(1.3) -0.7(1.4) 0.3(1.3) -0.6(1.3) -0.4(1.3) -0.5(1.4) 0.3(1.4) 0.1(1.2) 

0.89 
138 145 345 337 466 631 447 247 

Average absolute 

difference
1
 for 

three algorithms 

above 

1.9(1.5) 1.7(1.4) 1.2(1.0) 1.4(1.1) 1.3(1.0) 1.2(0.8) 0.9(0.7) 0.7(0.5) 

 

*1 represents the average of absolute differences of ACOS V7.3 matching other algorithms including NIES, OCFP and SRFP for 908 
each cell. 909 

 910 
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