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Abstract. The regional uncertainty of XCO2 (column-averaged dry air mole fraction of CO2) retrieved using different 14 

algorithms from the Greenhouse gases Observing SATellite (GOSAT) and its attribution are still not well understood. This 15 

paper investigates the regional performance of XCO2 within a latitude band of 37°N~ 42°N segmented into 8 cells in a grid 16 

of 5° from west to east (80°E ~120°E) in China, where there are typical land surface types and geographic conditions. The 17 

former include the various land covers of desert, grassland and built-up areas mixed with cropland, and the latter include 18 

anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For 19 

these specific cells, we evaluate the regional uncertainty of GOSAT XCO2 retrievals by quantifying and attributing the 20 

consistency of XCO2 retrievals from four algorithms (ACOS, NIES, OCFP, and SRFP) by intercomparison. Particularly, 21 

these retrievals are compared with simulated XCO2 by the high-resolution nested model in East Asia of Goddard Earth 22 

Observing System 3-D chemical transport model (GEOS-Chem). We introduce the anthropogenic CO2 emissions data 23 

generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental 24 

Protection of China to GEOS-Chem simulations of XCO2 over the Chinese mainland. The results indicate that (1) regionally, 25 

the four algorithms demonstrate smaller absolute biases of 0.7-1.1 ppm in eastern cells, which are covered by built-up areas 26 

mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0-1.6 ppm) with a 27 

high-brightness surface from the pairwise comparison results of XCO2 retrievals. The inconsistency of XCO2 from the four 28 

algorithms tends to be high in the Taklimakan Desert in western cells, which is likely induced by high surface albedo in 29 

addition to dust aerosols in this region. (2) Compared with XCO2 simulated by GEOS-Chem (GEOS-XCO2), the XCO2 30 

values of ACOS and SRFP have better agreement with GEOS-XCO2, while OCFP is the least consistent with GEOS-XCO2. 31 

(3) Viewing attributions of XCO2 in the spatio-temporal pattern, ACOS and SRFP demonstrate similar patterns, while OCFP 32 

is largely different from the others. In conclusion, the discrepancy in the four algorithms is the smallest in eastern cells in the 33 

study area, where the megacity of Beijing is located and where there are strong anthropogenic CO2 emissions, which implies 34 
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that XCO2 from satellite observations could be reliably applied in the assessment of atmospheric CO2 enhancements induced 35 

by anthropogenic CO2 emissions. The large inconsistency among the four algorithms presented in western deserts with a 36 

high albedo and dust aerosols, moreover, demonstrates that further improvement is still necessary in such regions, even 37 

though many algorithms have endeavored to minimize the effects of aerosols scattering and surface albedo.   38 

 39 

Key words: GOSAT, XCO2 retrieval algorithms, simulated XCO2 by GEOS-Chem, regional uncertainty, anthropogenic 40 

emissions, and desert  41 

1 Introduction 42 

The column-averaged dry air mole fraction of CO2 (XCO2) derived from satellite observations, such as the SCanning 43 

Imaging Absorption spectroMeter of Atmospheric CHartographY (SCIAMACHY ) (Burrows et al., 1995; Bovensmann et al., 44 

1999) ,  the Greenhouse gases Observing SATellite (GOSAT) (Yokoda et al., 2004), Orbiting Carbon Observatory (OCO-2) 45 

(Crisp et al., 2004), have greatly improved our understanding of the variation in atmospheric CO2 concentration and carbon 46 

sources and sinks at a global and regional scale. There have been several full-physics retrieval algorithms specially 47 

developed for retrieving XCO2 from the GOSAT observed spectrum, mainly including the NASA Atmospheric CO2 48 

Observations from Space (ACOS) (O’Dell et al., 2012), the National Institute for Environmental Studies (NIES) (Yoshida et 49 

al., 2013), the University of Leicester full-physics XCO2 (OCFP) (Cogan et al., 2012) and the RemoTeC XCO2 Full Physics 50 

(SRFP) (Butz et al., 2011).  51 

Retrieval of XCO2 from space is susceptible to the effects of light path changes due to aerosol scattering, uncertainties 52 

in observed spectrum and surface states (O’Dell et al., 2012; Oshchepkov et al., 2013). The bias and performance of XCO2 53 

retrievals from an algorithm could change in different regions with differing land surfaces and anthropogenic emissions. 54 

Spatio-pattern attributions of XCO2 viewed from different algorithms are also different, even in the same region, due to 55 

different physical approaches adopted by the algorithms, assumptions of atmospheric conditions (aerosol, surface pressure, 56 

CO2 profile, etc.), and pre- and post-processing filters. Currently, the validation of XCO2 retrievals from different algorithms 57 

focuses on using ground-based measurements from Total Carbon Column Observing Network (TCCON) sites (Wunch et al., 58 

2011; Yoshida et al., 2013; Hewson, 2016; Buchwitz et al., 2015, Detmers et al., 2015, Oshchepkov et al., 2013) and their 59 

consistency evaluation and cross-comparison both at a global scale and in continental regions (Kulawik et al., 2016; 60 

Lindqvist et al., 2015; Lei et al., 2014).The precision and uncertainty of satellite-retrieved XCO2 outside TCCON stations, 61 

most of which are located remote from regions with abundant biosphere fluxes and human activities, are still not well 62 

evaluated. The sparseness of TCCON stations over the globe, moreover, means a lack of enough ground observations to 63 

validate satellite retrievals. Specifically, there are no good TCCON data available in China, and only a few satellite retrievals 64 

have been validated using ground-based Fourier Transform Spectrometer (FTS) XCO2 measurements in Hefei (Wang et al., 65 

2017). In the analysis and application of XCO2 data from ACOS, NIES, OCFP and SRFP, we found that unreasonably high 66 
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XCO2 was presented in the Taklimakan desert in China (Bie et al., 2016; Liu et al., 2015). For this reason, we extended the 67 

study scope to select a longer study period and to further assess the overall performance of these four algorithms at a 68 

regional scale.  69 

With the advantage of continuity in space and time, atmospheric transport model simulation of CO2 has been widely 70 

used in assessing the performance of satellite-retrieved XCO2 (Cogan et al., 2012; Lindqvist et al., 2015; Kulawik et al., 71 

2016). As anthropogenic emission of CO2 is the major contributor to increases of CO2 in the atmosphere, many studies have 72 

been involved in deriving estimates of anthropogenic CO2 emissions (Oda et al., 2011; Andres et al., 2011). It is known that 73 

there exists high uncertainty in estimates of CO2 emissions from both the burning of fossil fuel and cement production (FF 74 

CO2 emissions) throughout China (Guan et al., 2012; Liu et al., 2015). As noted by Andrews et al. (2012), there exist many 75 

kinds of restrictions (e.g., commercial competitiveness reasons) in obtaining accurate data on sub-national (e.g., large-point-76 

source or provincial) FF CO2 emissions. Furthermore, the assumption of uniform per-capita emissions within a country has 77 

also been shown to be unreliable for large countries with diversified economies and electricity-generation methods (Nassar et 78 

al., 2013). In the previous study of Keppel-Aleks (2013), the simulated Chinese XCO2 data was increased by a national 79 

uniform ratio for the corresponding XCO2 contributed by fossil sources to account for the underestimation in Chinese 80 

emissions, in which way the spatial variability of Chinese FF emissions was not considered sufficient. 81 

In this paper, we focus on a latitude band of 37°N-42°N from 80°E to 120°E in China, where there are various typical 82 

land covers such as desert, including the Taklimakan desert, and grassland and built-up areas mixed with croplands, 83 

including the megacity of Beijing, and there are anthropogenic emissions increasing from west to east. In this band, the 84 

inconsistencies of XCO2 values derived from four algorithms including ACOS V3.5, NIES V02.21, OCFP V6.0 and SRFP 85 

V2.3.7 are compared and evaluated in this paper. A forward model simulation data set from GEOS-Chem, moreover, is also 86 

used for intercomparison. To improve the simulation of CO2 concentration by GEOS-Chem, we introduced a new emission 87 

data set, the Chinese High Resolution Emission Gridded Data (CHRED) which is produced by the Ministry of 88 

Environmental Protection, China (MEP) based on investigations of emitting point sources from approximately 150 million 89 

enterprises throughout the country in 2012 (Wang et al., 2014; Cai et al., 2014). 90 

First, we aim to reveal the regional uncertainty of XCO2 observed by GOSAT for the different land covers and 91 

anthropogenic CO2 emission regions by quantifying the inconsistency of the four retrieval algorithms. Second, we aim to 92 

provide a reasonable and valuable reference for the analysis and application of XCO2 data when using these XCO2 data from 93 

the four algorithms. Sec. 2 in this paper describes the XCO2 retrievals data from four algorithms and the implementation of 94 

XCO2 simulated by GEOS-Chem using CHRED. Inconsistencies of XCO2 datasets among the four algorithms are quantified 95 

and evaluated by (1) pairwise comparisons of XCO2 between algorithms and (2) comparisons with GEOS-Chem simulations 96 

in Sec. 3. The spatio-temporal patterns of XCO2 from each algorithm are investigated using a combination of sine and cosine 97 

trigonometric functions to fit monthly averaged XCO2 from March 2010 to February 2013 in Sec. 4. Furthermore, the most 98 

likely attribution-affecting factors on regional inconsistency, including aerosol and surface albedo, are discussed in Sec. 5. 99 

The latest ACOS V7.3 dataset, moreover, is also used by cross-comparisons with GEOS-Chem and other algorithms 100 
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including ACOS V3.5, NIES V02.21, OCFP V6.0 and SRFP V2.3.7, as shown in subsections of Sec. 5. Finally, the regional 101 

performances of four algorithms and the regional uncertainty of GOSAT XCO2 retrievals from the results described above 102 

are summarized, and conclusions are given in Sec. 6. 103 

2 Study area and data 104 

2.1 Study area 105 

The latitude band of 37°N~42°N from 80°E to 120°E in China is selected as the study area, which is segmented into eight 106 

cells in a grid of 5°x5° units for comparison and evaluation. The study area has two typical surface characteristics as shown 107 

in Fig. 1, supporting our assessment of the performance of XCO2 retrievals from four algorithms: (1) the amounts of 108 

anthropogenic CO2 emissions from west to east significantly varies from small to large as shown in Fig. 1(a). The emission 109 

data are from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC), a global annual fossil fuel CO2 emission 110 

inventory developed by combining a worldwide point-source database and satellite observations of the global nightlight 111 

distribution (Oda et al., 2011). There are almost no anthropogenic CO2 emissions in the western cells ending at 105°E, while 112 

there is high anthropogenic emission located in the cells on the eastern end of the latitude band. (2) There are typical land 113 

covers from west to east, as shown in Fig. 1 (b), mainly composed of desert (desert sand in the two cells from 80°E to 90°E, 114 

Gobi in the two cells from 90°E to 100°E, desert sand in the cell of 100°E-105°E), grassland in the cell of 105°E-110°E, and 115 

cropland and built-up areas in the two cells from 110°E to 120°E. These characteristics are associated with complicated 116 

aerosol compositions and loadings. One of the main reasons for focusing on this latitude band, moreover, is because there are 117 

more high-quality GOSAT scans available in this area compared to other areas in China.   118 
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 119 

 Fig. 1. (a)Location of the study area segmented into cells (deep red cells) in China and annual fossil fuel CO2 emission in 2012  (1 x 120 
1 degree) from ODIAC and  (b) land use mapping  in 2010, where the black dot represents Beijing, the capital of China. 121 

 122 

2.2 GOSAT XCO2 dataset derived from four algorithms 123 

We collected XCO2 data from March 2010 to February 2013 derived from four algorithms: ACOS V3.5 124 

(http://CO2.jpl.nasa.gov), NIES V02.21 (RA version with GU screening scheme) (https://data2.gosat.nies.go.jp ), OCFP 125 

V6.0 (http://www.esa-ghg-cci.org ) and SRFP V2.3.7 (http://www.esa-ghg-cci.org ). AOD and surface albedo in 0.75-um O2 126 

band, which are necessary for our further analysis, are also collected from attached datasets in each algorithms except that 127 

albedo is not available for OCFP.  The major characteristics of the four algorithms and the relevant references are listed in 128 

Table 1. The validation at TCCON sites for all algorithms indicates that the bias is less than 1.2 ppm on average and that the 129 

standard deviation is less than 2.0 ppm. All algorithms take aerosol optical depth (AOD) into consideration in their data 130 

screening scheme but in slightly different ways. The collected XCO2 data from ACOS, OCFP and SRFP are the products 131 

after bias correction. Data observed with high gain and passing the corresponding recommended quality control criteria are 132 

used in ACOS, NIES, OCFP and SRFP.  133 

http://co2.jpl.nasa.gov/
https://data2.gosat.nies.go.jp/
http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/
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 134 

Table 1  Summary of validating results with TCCON, data screening schemes, consideration in scattering and bias corrections for 135 
the four retrieval algorithms.  136 

 ACOS NIES OCFP SRFP 

Validation 

with 

TCCON
*1

 

0.3 ppm 

1.7 ppm 

-1.2 ppm 

2.0 ppm 

0.04 ppm 

1.78 ppm 

0.01 ppm 

1.93 ppm 

Data 

screening 

schemes 

Aerosol_total_aod: 0.015 to 

0.25 

Sounding_altitude:<3000 

0.55<XCO2_uncer<2.0 ppm 

Aod_dust<0.15 

The difference of the 

retrieved and priori surface 

pressure from the A-band 

cloud-screen Δ Ps,cld :      

(-12,4.1) hPa 

Retrieved aerosol 

optical thickness: 

<=0.1 

Difference of 

retrieved and a priori 

surface pressure: 

<=20 hpa 

Blended albedo: <1 

Retrieved type 1 

(small) AOD: 

<=0.3 

Retrieved type 2 

(large) AOD: 

<=0.15 

Retrieved ice type 

AOD: <=0.025 

Error on retrieved 

XCO2 :<=2.15 

Aerosol optical thickness : 

<0.3 

3<aero_size<5 

0<aerosol_filter<300 

Error on retrieved XCO2: 

<1.2 ppm 

standard deviation of surface 

elevation within GOSAT 

ground pixel:  <80 m 

Blended albedo: <0.9 

Consideratio

n in 

scattering 

4 extinction profiles (two 

aerosol types , water 

and  ice cloud) 

logarithms of the 

mass mixing ratios of 

fine-mode aerosols 

and coarse mode 

aerosols with aerosol 

optical properties 

based on 

SPRINTARS V3.84 

Aerosol profile 

scaling of 2 

different aerosol 

types; cloud 

extinction profile 

scaling 

Aerosol particle number 

concentration, aerosol size 

parameter, aerosol height 

Bias 

corrections 

 

 

 

2 2

2

'

,

'

3

0.5

0.155* 2.7

10.6* 0.204

0.0146* 35

12.8* 0.01



  

  

 

  

（ ）

CO CO

s cld

CO

DUST

X X

P

GRAD

AOD

 See details in the product 

user guide. 

- 

Via a regression 

analysis of the 

difference between 

GOSAT and 

TCCON XCO2 land 

observations. See 

details in the 

product user guide 

2 2

' *(1.002837

2.1176 5* )

CO COX X

e 

 


 

 : the aerosol filter 

References 

GES DISC, 2016; O’Dell et 

al., 2012; D.Wunch et al., 

2011. 

NIES (GOSAT 

Project Office),  

2015; Yoshida et al., 

2013; D.Wunch et 

al.,   2011. 

Hew, 2016; GHG-

CCI group at 

University of 

Leicester,  2014. 

Detmers et al., 2015; 

Hasekamp et al., 2015 

*1The first represents mean biases, and the second represents overall standard deviations. 137 

Within the study area, the total numbers of valid GOSAT XCO2 observations are 3345, 3556, 2282 and 3685 for ACOS, 138 

NIES, OCFP and SRFP, respectively. Figure 2 shows the number of available XCO2 retrievals for 4 seasons (spring: MAM; 139 

summer: JJA; autumn: SON; winter: DJF). It can be seen that the number of available XCO2 retrievals is clearly smaller in 140 

spring and summer than that in autumn and winter due to different meteorological conditions and data-screening processes. 141 
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The cloudiness in spring and summer caused by the monsoon climate disturbs satellite observation, while the smaller data 142 

number in the west of 110°E is due to frequent dust storm in the Taklimakan Desert.  143 

 144 

Fig. 2. Number of single scans from the four GOSAT-XCO2 data sets from ACOS, NIES, OCFP and SRFP over each 5x5° cells for 145 
different seasons (Spring: MAM; summer: JJA; autumn: SON; winter: DJF) from March 2010 to February 2013.  146 

2.3 XCO2 simulations from GEOS-Chem  147 

We use GEOS-Chem version 10-01 driven by GEOS-5 and the details of the main input emissions are as follows: 1) Fossil 148 

fuel fluxes are taken from the new emission data set CHRED for the Chinese mainland, we also use ODIAC version 2013 for 149 

comparison with CHRED. 2) The balanced biosphere CO2 uptake and emission fluxes are taken from the Simple Biosphere 150 

Model version 3 (SiB3) [Messerschmidt et al. 2012]. 3) Biomass emissions are taken from Global Fire Emission Database 151 

version 4 (GFEDv4) (Giglio et al., 2013). 4) Ocean fluxes are taken as Takahashi et al. (2009) suggested.  A detailed 152 

description of these input emissions for the GEOS-Chem CO2 simulation is pesented in Nassar et al. (2010), although we 153 

have used some of the most recent updates available in the GEOS-Chem version 10-01 and the Harvard–NASA Emission 154 

Component version 1.0 (HEMCO) module (Keller et al., 2014), a versatile component for emissions in atmospheric models. 155 

Higher model resolution is critical in the calculation of the concentrations of atmospheric gases, especially over land where 156 

topography smoothing (compared to reality) is determined by horizontal resolution (Ciais et al., 2010). Considering this, 157 

GEOS-Chem nested grid model in China at 0.5° (latitude) x 0.666° (longitude) horizontal resolution, is used for the CO2 158 

simulation with boundary conditions provided by the global model at 2° (latitude) x 2.5° (longitude) resolution. We made a 159 

restart file with 386.4 ppm for both the global simulation and the nested simulation on 1 January 2009 based on NOAA 160 

ESRL data. Both the global model and the nested-grid model were run twice, driven by the same CO2 fluxes from January 161 

2009 to February 2013 except that the ODIAC was chosen for the first run and CHRED for the second as the input 162 

fossil-fuel fluxes over the Chinese mainland. Model CO2 profiles (averages for local hours between 12:00 pm and 13:30 pm) 163 

were presented from January 2010 to February 2013, allowing sufficient time for the high-resolution model to adjust to 164 

transients introduced by the initialization of the model on 1 January 2009. The pressure-weighting function described in 165 

Connor (2008) was applied to convert level-based modeling CO2 to XCO2.  166 
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Fig.3 presents the spatial difference of emissions over the Chinese mainland between CHRED and ODIAC at a 167 

horizontal resolution of 1°x1°. The values of emissions from CHRED are mostly larger than those from ODIAC, as shown in 168 

Fig. 3, and this difference tends to be large in the eastern part of our study area. In addition, the difference in their total 169 

emissions, 10.38 Pg CO2  for CHRED versus 9.64 Pg CO2 for ODIAC, is not small. ODIAC is also found to exhibit an 170 

overestimation of emissions in large cities compared to CHRED.  171 

 172 

Fig. 3. Difference of annual total anthropogenic CO2 emissions between CHRED and ODIAC in 2012 in China, where the black 173 
dot represents Beijing, the capital of China. 174 

For each 1°x1° grid, the corresponding annual CO2 emissions in the years from 2009 to 2012 were allocated by the ratio 175 

of emissions in CHRED to that in ODIAC in 2012. We acquired the new input inventory of CO2 emissions, CHRED, by 176 

scaling the obtained yearly emissions with the ratio of monthly emissions to the yearly ones in ODIAC. In this way, we 177 

altered the spatial and temporal distribution, but not at temporal scales finer than monthly. This is expected to be an 178 

improvement upon the current ODIAC emission values.  179 

The annually averaged XCO2 simulations, driven separately by CHRED and ODIAC respectively, are calculated and 180 

shown in Fig. 4. The impact of emission deviations of CHRED from ODIAC is significant, with XCO2 from CHRED larger 181 

by 0.7 ppm on average over China. There are also obvious differences in spatial patterns, especially in Northwest China, 182 

Northeast China, North China and South China. XCO2 simulations from CHRED are larger by more than 0.7 ppm in most 183 

parts east of 100°E with a maximum of 1.4 ppm compared to those from ODIAC. The increase in the annual mean, which 184 

should not be ignored, is approximately 1.0 ppm for east of 110°E in the study latitude band. The CO2 profile dataset from 185 

CHRED are used to compare with satellite-retrieved XCO2 in our following experiments. 186 

  187 
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 188 

Fig. 4. Annual mean of XCO2 simulations driven by CHRED (left) and ODIAC (right) in 2012 in China, where the black dot 189 
represents Beijing, the capital of China. 190 

We compared GEOS-Chem CO2 simulations from the global model driven by CHRED with daily mean TCCON data 191 

from 14 TCCON sites (version GGG2014 data version) (Blumenstock et al., 2014; Deutscher et al., 2014; Griffith et al., 192 

2014a, 2014b; Hase et al., 2014; Kawakami et al., 2014; Kivi et al., 2014; Morino et al., 2014; Sherlock et al., 2014; 193 

Sussmann et al., 2014; Warneke et al., 2014; Wennberg et al., 2014a, 2014b, 2014c). All TCCON measurements between 12 194 

pm and 13:30 pm are used in the comparisons, where GEOS-Chem CO2 profiles are taken according to the location of 195 

TCCON stations (latitude and longitude) as well as the observing date and transformed to XCO2 by convolving with the 196 

individual averaging kernel in each station as Wunch (2010) suggested. The statistics results are shown in Table 2.  197 

Table 2. Statistics of comparison between GEOS-Chem CO2 simulations driven by CHRED and TCCON data from January 2010 198 
to February 2013, which includes biases (Δ), the standard deviations (δ), the correlation coefficients (r) and valid days (days) when 199 
TCCON data are available. Δ, δ and r are calculated using coincident daily mean data averaged between 12:00  pm and 13:30 pm.  200 

ID Station name Latitude Longitude Δ[ppm] δ[ppm] r days 

1 Sodankyla 67.37 26.63 2.03 2.00 0.83 269 

2 Bialystok 53.23 23.02 0.49 1.84 0.87 196 

3 Karlsruhe 49.1 8.44 0.84 1.69 0.84 152 

4 Orleans 47.97 2.11 0.44 1.70 0.85 223 

5 Garmisch 47.48 11.06 0.65 1.64 0.83 293 

6 Park Falls 45.94 -90.27 1.17 2.14 0.75 494 

7 Lamont 36.6 -97.49 -0.04 1.22 0.90 642 

8 Tsukuba 36.05 140.12 1.43 1.66 0.75 217 

9 JPL 34.2 -118.18 -1.30 1.15 0.90 289 

10 Saga 33.24 130.29 -0.39 1.65 0.86 159 

11 Izana 28.3 -16.48 0.85 1.04 0.90 114 

12 Darwin -12.43 130.89 0.65 0.90 0.88 447 

13 Wollongong -34.41 150.88 0.53 0.83 0.94 347 

14 Lauder -45.04 169.68 0.92 0.42 0.97 370 

 Mean   0.59±0.80 1.42±0.50   
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The results of Table 2 show that the bias ranges from -1.30 to 2.03 ppm for all TCCON sites with standard deviations of 201 

the difference varying from 0.42 to 2.14 ppm. The mean standard deviation at the TCCON sites, a measure of the achieved 202 

overall precision,  from using GEOS-Chem simulations driven by CHRED is 1.42±0.50 ppm which is slightly different 203 

from using GEOS-Chem simulations driven by ODIAC (1.41±0.49 ppm). Those validated results with TCCON comparing 204 

GEOS-Chem CO2 simulations driven by CHRED to that by ODIAC indicate that the GEOS-Chem CO2 simulations driven 205 

by CHRED is more likely not to change the global magnitude of CO2 concentration but rather to depict fine spatial 206 

distribution of CO2 concentration in China. 207 

2.4 Aerosol optical depth and surface albedo data 208 

The monthly mean aerosol optical depth (A0D) data were collected from the NASA Earth Observing System’s Multi-angle 209 

Imaging Spectro-radiometer (MISR) Level 3 Component Global Aerosol Product, downloaded from the website 210 

https://eosweb.larc.nasa.gov/project/misr. The released GLASS (Glass Land Surface Satellites) albedo product 211 

GLASS02B06 (http://glcf.umd.edu/data/abd/) is used, which is a gapless, long-term continuous and self-consistent data-set 212 

with accuracy similar to that of the Moderate Resolution Imaging Spectrometer (MODIS) MCD43 product (Liu et al., 2013). 213 

GLASS02B06 is a daily land-surface shortwave (300-3000nm) broadband albedo product in temporal resolution of eight 214 

days.  215 

3 Quantification of agreement of XCO2 retrievals from four algorithms in the footprints  216 

We focus on the difference of each footprint XCO2 retrieval in this section. Comparison of XCO2 from four algorithms with 217 

GEOS-Chem CO2  simulations driven by CHRED, and pairwise comparisons of XCO2 between algorithms were calculated 218 

as a quantified indicator of their differences. 219 

3.1 Comparisons with GEOS-Chem CO2 simulations 220 

We used the nested GEOS-Chem CO2 simulations driven by CHRED as a baseline to quantify the regional consistency of 221 

the four algorithms. The collocated model CO2 profile is averaged over the local hours of 12:00-13:30 pm corresponding to 222 

the local time of overpass and locations (latitude and longitude) of GOSAT. To compare XCO2 retrievals from ACOS, NIES, 223 

OCFP and SRFP, corresponding GEOS-XCO2 data were created by applying averaging kernels from each algorithm to 224 

model CO2 profiles as suggested by Rodgers (2003). Correlation diagrams of XCO2 between GEOS-Chem (X) and GOSAT 225 

(Y) for the four algorithms are shown in Fig. 5. The regression slope (a), the coefficient of determination (R
2
), the correlation 226 

coefficient (r), and biases of GOSAT (Y) from GEOS-Chem(X) are also shown in the inset of each panel.  227 

It can be seen from Fig. 5 that the linear fits and the correlations with GEOS-Chem are better for ACOS and OCFP (R
2
 228 

approximately 0.66) than for either NIES or SRFP (R
2
 approximately 0.59). The regression slope is the closest to unity in the 229 

OCFP panel (0.94) and is lightly less than OCFP in the ACOS panel (0.87), which means the best similarity in variation. The 230 

https://eosweb.larc.nasa.gov/project/misr
http://glcf.umd.edu/data/abd/
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slope is less than 0.8 in the NIES and SRFP panels. The bias of GEOS-Chem vs ACOS and SRFP is less than 0.5 ppm while 231 

it is 2 ppm and 1.2 ppm vs NIES and OCFP, respectively. 232 

 233 

Fig. 5:  Correlation diagrams of GOSAT XCO2 (Y) for the four algorithms vs GEOS-XCO2 (X). Statistics from linear regression fit 234 
are also shown. GEOS-Chem data are selected according to the locations and time of XCO2 retrievals from the four algorithms in 235 
cells. Deep blue solid lines represent 1:1 lines, and the magenta lines demonstrate the best linear regression fit for all samples. 236 
Colored points represent XCO2 for different longitude cells in the study latitude band [37°N, 42°N] shown in Fig.1, where colors 237 
for each cell are indicated in the right legend. 238 

Table 3 shows the biases and number of samples used between each algorithm and GEOS-Chem in each cell. It can be 239 

seen that the biases of ACOS and SRFP vs GEOS-Chem in all cells are below 1 ppm, which implies better consistency with 240 

GEOS-Chem regionally than NIES and OCFP.  NIES presents 1.2-3.1 ppm lower than GEOS-Chem in all cells excluding 241 

the cell of 115°E, which is likely due to no corrections of the existing systematic biases in the NIES data set (Yoshida et al., 242 

2013). The bias of OCFP vs GEOS-Chem is larger than 1.2 ppm toward the west of 110°E, while it is 0.1 ppm toward the 243 

east of 110°E. The standard deviations of all the four algorithms with GEOS-Chem range from 1.4 ppm to 2.5 ppm in all 244 

cells. 245 

Table 3. The biases (ppm) and their standard deviations (ppm) of the four algorithms vs GEOS-Chem in each cell, where the 246 
upper line indicates bias (the corresponding standard deviations in parenthesis) for each algorithm vs GEOS-Chem and the lower 247 
line is the available number of used samples. The biases, larger than 1 ppm, are highlighted in bold and underlined.  248 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 
0.7(1.6) 0.5(1.6) -0.4(1.4) -0.3(1.5) -0.7(1.7) -0.7(1.7) 0.0(2.2) 0.5(2.1) 

478 179 316 303 629 599 515 326 

NIES 
-1.4(1.7) -1.6(1.8) -1.6(1.8) -2.3(2.5) -3.0(1.9) -3.1(2.2) -1.6(2.5) -0.7(2.4) 

487 383 470 281 700 506 428 301 

OCFP 
-1.8(1.4) -1.8(1.5) -2.2(1.4) -1.2(2.0) -2.3(1.6) -1.5(1.6) -0.1(1.9) -0.1(2.1) 

277 172 149 175 339 390 466 314 

SRFP 
0.1(1.9) 0.0(1.8) 0.2(1.7) -0.2(2.0) -1.2(1.9) -0.6(2.7) 0.2(2.4) 0.0(2.4) 

602 387 388 271 571 659 467 340 

3.2 Pairwise comparisons of XCO2 between algorithms 249 

We made comparisons of geometrically and timely matching pairs XCO2 between algorithms in each cell. The pairs of 250 

XCO2 retrievals were matched between two algorithms timely in the same day and geometrically located within ±0.01° in 251 

latitude and longitude. Figure 6 shows pairwise comparisons of XCO2 retrievals between two algorithms that demonstrate 252 
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the regression slope (a), the coefficient of determination (R
2
), the correlation coefficient (r), the number of matching pairs (n) 253 

and the biases between every pair of algorithms.  254 

 255 

 256 

Fig. 6: Algorithm correlation diagrams and statistical characteristics (insets of panels). GOSAT-Y observations were selected over 257 
land within ±0.01° latitude/longitude of each GOSAT-X observation and in the same day. Deep blue solid lines represent 1:1 lines, 258 
and the magenta ones display the best linear regression fit for all observations. Colored points represent XCO2 for different cells: 259 
blue-[80°E, 90°E], green-[90°E, 100°E], yellow-[100°E, 105°E], orange-[105°E, 110°E], and red-[110°E, 120°E] in the study latitude 260 
zone [37°N, 42°N]. 261 

It can be seen from Fig. 6 that ACOS generally demonstrates the best agreement with other algorithms (top panel). 262 

OCFP generally presents biases larger than 1.4 ppm with other algorithms except for 0.1 ppm compared to NIES. It can also 263 

be seen from the colored points in Fig. 6 that matching pairs of XCO2 for OCFP vs ACOS and SRFP mostly concentrated 264 

along the 1:1 line in the eastern cells of 105-120°E (orange and red points) but drifted from the 1:1 line in the western cells 265 

of 80-100°E (blue and green points).  266 
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The differences(biases) of matching pairs (the number ranging from 11 to 945) of XCO2 between two algorithms, 267 

moreover, were calculated for each cell as shown in Table 4, and the totally averaged absolute differences of matching pairs 268 

of XCO2 for an algorithm with the other algorithms were also calculated in each cell as shown in Table 5. 269 

 It can be found from Table 4 that the difference is mostly less than 1 ppm in those eastern cells with a longitude greater 270 

than 105°E, and their consistency can be seen in Fig. 6 (red points between 110-120°E) as well. The differences that are 271 

larger than 2 ppm are located in western cells with longitudes less than 105°E, and these differences are mostly shown in 272 

OCFP vs other algorithms. The total differences shown in Table 5, moreover, indicate that the differences of the four 273 

algorithms tend to be similar to the results of matching pairs of XCO2 (Table 4), and NIES presents the largest difference up 274 

to 1.6 ppm in the western cells of 95°E. 275 

Table 4.  Differences (ppm)  between two algorithms (column algorithm minus row algorithm) and the corresponding standard 276 
deviation (ppm) for each cell, where values in parentheses are the corresponding standard deviations. The differences, larger than 277 
1.5 ppm, are highlighted in bold and underlined. 278 

 * NIES OCFP SRFP * NIES OCFP SRFP 

ACOS 
80 

°E 

-1.4(1.2) -2.6(1.2) -0.5(1.2) 
100 

°E 

-1.6(1.6) -2.0(1.1) -0.2(1.2) 

NIES  -0.9(1.4) 1.1(1.4)  -0.4(1.4) 1.4(1.5) 

OCFP   2.0(1.2)   1.7(1.3) 

ACOS 
85 

°E 

-2.0(1.3) -1.9(1.2) -0.1(1.2) 
105 

°E 

-1.6(1.3) -0.6(1.4) 0.2(1.2) 

NIES  -0.4(1.6) 1.5(1.3)  0.2(1.5) 1.2(1.3) 

OCFP   2.3(1.4)   1.0(1.3) 

ACOS 
90 

°E 

-1.2(1.1) -1.7(1.1) 0.8(1.4) 
110 

°E 

-1.2(1.3) -0.9(1.4) 0.0(1.4) 

NIES  -0.8(1.4) 2.0(1.4)  0.7(1.3) 1.5(1.6) 

OCFP   2.4(1.5)   0.5(1.2) 

ACOS 
95 

°E 

-3.0(1.1) -0.9(1.7) -0.3(1.2) 
115 

°E 

-0.6(1.3) 0.1(1.0) -0.1(1.0) 

NIES  0.5(2.1) 1.3(2.0)  0.8(1.5) 0.9(1.3) 

OCFP   1.8(1.6)   0.2(1.3) 

The columns labeled with * represent the left longitude of cells (°E). 279 

Table 5. The average of the absolute differences (ppm) and standard deviation (ppm) of the target algorithm (in column) matching 280 
all other algorithms for each cell. Values in parentheses are the corresponding standard deviations. The differences, which are 281 
larger than 1.5 ppm, are highlighted in bold and underlined. 282 

Left longitude of cells(°E) 80 85 90 95 100 105 110 115 

ACOS 1.3(1.1) 1.2(1.0) 1.0(0.7) 1.4(1.2) 1.2(0.9) 1.0(0.7) 0.9(0.6) 0.7(0.5) 

NIES 1.1(0.7) 1.3(0.9) 1.2(0.9) 1.6(1.2) 1.1(0.8) 1.1(0.8) 1.1(0.8) 0.9(0.6) 

OCFP 1.5(1.1) 1.4(1.0) 1.4(1.0) 1.3(0.9) 1.2(0.9) 0.9(0.6) 0.8(0.6) 0.8(0.6) 

SRFP 1.1(0.9) 1.2(1.0) 1.4(1.1) 1.2(0.9) 1.1(0.8) 0.9(0.6) 1.0(0.7) 0.8(0.5) 

 283 

To summarize the quantification and analysis in this section, XCO2 retrievals from two algorithms, ACOS and SRFP 284 

are mostly consistent, and the bias of ACOS from GEOS-Chem is the least among the four algorithms. The difference of 285 

XCO2 from cross-comparing four algorithms tends to be less in cells east of 100°E than that in the cells west of 100°E.   286 
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4 Comparison of the spatio-temporal pattern revealed by XCO2 from the four algorithms and simulation 287 

We used a combination of sine and cosine trigonometric functions to statistically fit the seasonal variation of XCO2, which 288 

was originally proposed by Keeling et al. (1976) and has been applied extensively in many studies (Thoning et al. 1989; 289 

Kulawik et al., 2016; Lindqvist et al., 2015; Zeng et al., 2016; He et al., 2017). Better attributions are thus obtained for XCO2 290 

variation in the seasonal cycle and in spatial background patterns by filtering the noise and filling gaps in the original XCO2 291 

data.  292 

      Firstly, the monthly averaged XCO2 was calculated in each cell using XCO2 retrievals; then the fit function (Keeling, 293 

1976), expressed as the following equation [1], was applied to the monthly averaged XCO2 from March, 2010 to February, 294 

2013 for the four algorithms and GEOS-Chem. 295 

  1 2 3 4 5 6X t sin2 cos2 sin4 cos4π       A t A t A t A t A A t                          [1] 296 

where t represents elapsed time in years, A1-A4 are the coefficients determining the seasonal cycle, A5 represents the initial 297 

state of XCO2 with seasonal variation removed, which can be regarded as the corresponding background concentration, and 298 

A6 is the slope of the linear part in the yearly increase ignoring the minor non-linear part. To derive A1-A6 with the above 299 

formula, least squares were applied to fit the input monthly weighted means with the corresponding standard deviations as 300 

measures of errors. The monthly weighted means (e.g., X (t)) and the corresponding standard deviations in each cell were 301 

calculated with the weights inversely proportional to the square of retrieval uncertainty in each observation point.  302 

The accuracy of fitting X(t) depends on the number of gaps in the available XCO2 retrievals in time and in space 303 

resulting from the filtering mechanism for quality controlling. We introduce the Pearson’s correlation, hereafter referred to 304 

as R, between the input and the predicted results from equation [1] and the unit weighted mean square error, hereafter 305 

referred to as σ, in fitting as an uncertainty to judge whether the fitting results are reasonable or not. In addition, we applied 306 

equation [1] to the GEOS-Chem dataset, which has been converted to XCO2 as Connor (2008) suggested. Since atmospheric 307 

transport models do not share the same error sources with satellite retrieval algorithms and produces continuous simulations 308 

without data gaps, GEOS-Chem provides helpful a priori information for reference.  309 

4.1 Seasonal variation of XCO2 retrievals 310 

The time series in each cell are acquired for each algorithm using the above formula [1]. The monthly fitted XCO2 from 311 

March 2010 to February 2013 in each cell for the four algorithms as well as GEOS-Chem is shown in Fig. 7. The seasonal 312 

amplitudes (the difference between seasonal cycle maximums and minimums) and uncertainty of the fitting function as 313 

described by R and σ above are demonstrated in Table 6.   314 
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 315 

Fig. 7: The time series from March 2010 to February 2013 in eight cells from the western cell of (a) to the eastern end cell of (h), 316 
where colored lines represent the fitting seasonal change trend of the four XCO2 datasets from the four algorithms, and the 317 
colored points represent single XCO2 retrievals corresponding to four algorithms according to line color: red is for ACOS, blue for 318 
NIES, magenta for OCFP and cyan for SRFP. The gray line is the fitting seasonal change trend of XCO2 simulated by GEOS-319 
Chem.    320 
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Table 6: Results of fitted seasonal cycle and the corresponding uncertainty of the fitting results for each cell in the study latitude 321 
band for four algorithms and GEOS-Chem, The symbols “–“ means that filtered results are not available due to large uncertainty 322 
judged by R and 𝛔.  R, the correlation coefficient between fitted XCO2 and monthly averaged original XCO2 in each cell, less than 323 
0.80,  and 𝛔 , the unit weighted mean square error in fitting, not less than 3.0, are highlighted in bold and underlined. 324 

Left longitude of cells  (° E) 80 85 90 95 100 105 110 115 

Seasonal cycle amplitude (ppm)  

ACOS 5.1 7.8 3.7 4.0 6.6 5.9 8.0 9.3 

NIES 4.3 6.9 7.8 - 7.1 6.4 9.5 10.7 

OCFP 5.3 3.5 - 3.9 7.7 9.2 8.4 8.6 

SRFP 6.3 6.5 8.9 - 5.9 7.4 10.4 10.7 

GEOS-Chem 6.3 5.9 5.7 5.6 6.5 6.9 7.2 7.9 

  σ(Unit weight mean square error in fitting)(ppm) 

ACOS 1.2 1.6 1.6 0.6 1.1 1.2 0.4 1.0 

NIES 0.7 1.1 1.0 3.0 1.1 1.1 1.5 1.3 

OCFP 0.7 0.9 1.5 1.4 1.9 1.1 0.8 0.9 

SRFP 1.6 0.7 1.3 3.3 0.8 0.8 1.0 1.0 

GEOS-Chem 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

R ( Correlations between fitted XCO2 and monthly averaged original XCO2 in each cell) 

ACOS 0.92 0.92 0.91 0.95 0.91 0.91 0.98 0.94 

NIES 0.89 0.91 0.94 0.68 0.96 0.95 0.89 0.92 

OCFP 0.90 0.84 0.79 0.84 0.93 0.93 0.93 0.96 

SRFP 0.83 0.94 0.92 0.40 0.95 0.94 0.93 0.90 

GEOS-Chem 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 

 
 325 

Viewing the attribution of XCO2 in each cell from Fig. 7 and Table 6, we can find that the seasonal variations from all 326 

XCO2 retrievals generally show similar changing trends, except for one extra seasonal cycle maximum being misidentified in 327 

some cases mainly due to weaker data constraints for fitting. The timely changing patterns (indicated by seasonal cycle 328 

phases) of all algorithms demonstrate better agreement in the eastern four cells from 100°E to 115°E than those in the 329 

western four cells from 80°E to 95°E. The correlation coefficients of fitting XCO2 in Table 6 are also significantly greater in 330 

the eastern four cells than those in the western four cells. As a result, the longitude 100°E tends to be a regional border 331 

presenting better consistency of XCO2 among the four algorithms in its eastern cells than those in its western cells. 332 

Comparing XCO2 from the four algorithms with GEOS-Chem, one specific result is presented in the eastern-most two 333 

cells from 110°E to 120°E, in which the seasonal amplitudes of XCO2 are significantly higher from the four algorithms while 334 

the magnitudes of XCO2 in summer are lower than those from GEOS-Chem as shown in Table 6 and Fig. 7. There is strong 335 
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CO2 absorption from farming activities of wheat and corn in the summer (Lei et al., 2010) and anthropogenic CO2 emission 336 

from extra winter heating in these eastern cells. This result is in agreement with an investigation of results over the whole 337 

Chinese mainland (Lei et al., 2014) and at 120-180°E over the globe (Lindqvist et al., 2015), which is likely due to the 338 

underestimated widespread bio-ecological CO2 uptake changes that occurred over the past 50 years in atmospheric transport 339 

models (Graven et al., 2013). 340 

The XCO2 values from NIES (blue in Fig. 7) are overall lower than those from the other algorithms, which is due to the 341 

uncorrected systematic errors -1.2 ppm (refer to Table 1). The seasonal variations from OCFP (magenta in Fig. 7) are 342 

abnormal compared to the overall seasonal changing trend of XCO2 in cells west of 100°E presented for the other three 343 

algorithms. The seasonal amplitudes of OCFP presented in Table 6, moreover, are abnormally the lowest in a cell (85-90°E) 344 

and the highest in a cell (105-110°E). SRFP and NIES show two abnormal peaks in a cycle of a year in the cell of 95°E, 345 

while some large values of σ and small values of R, shown in bold in Table 6, indicate poor fitting mostly in the same cell 346 

(95-100°E). These results are likely induced by large gaps in the available XCO2 data in time series, which leads to a poor 347 

fitting constraint.  348 

4.2 Spatio-temporal pattern of detrended XCO2  349 

We calculated the seasonal averages of the XCO2 background concentration in each cell after removing the linear yearly 350 

increase using the fitting time series of XCO2 for the four algorithms and GEOS-Chem. The spatio-temporal continuous 351 

pattern of background XCO2 was mapped by Linearly Interpolate Triangulation (Watson et al., 1984) using the seasonal 352 

averages of XCO2 background concentration in each cell for four algorithms and GEOS-Chem, as shown in Fig. 8 (on the 353 

left). The spatio-temporal patterns of the differences of detrended XCO2 to GEOS-Chem simulations for the four algorithms 354 

are mapped respectively and are shown in Fig. 8 (on the right).  355 
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 356 

 357 

Fig. 8: The spatial (in the study latitude band) and temporal (in seasons) changing patterns of detrended XCO2 from ACOS, NIES, 358 

OCFP, SRFP retrievals and GEOS-Chem simulations (left) and the differences of detrended XCO2 to GEOS-Chem for ACOS, 359 

NIES, OCFP and SRFP. 360 

It can be seen from Fig. 8 (on the left) that the spatio-temporal patterns from the three algorithms of ACOS, NIES and 361 

SRFP are generally similar, with an increase spreading outward from the center of each diagram and with the lowest XCO2 362 

located approximately at 95°E-105°E and during the period of summer-autumn; meanwhile, OCFP and GEOS-Chem show a 363 

similar spatio-temporal pattern where the lowest value is not the center. Two common characteristics of XCO2 spatio-364 

temporal changes from the four algorithms and GEOS-Chem can also be found: (1) the seasonal changes of XCO2 are the 365 

same in any of the cells, with lower XCO2 in summer and autumn than that in spring and winter; and (2) spatial changes of 366 

XCO2 generally demonstrate larger XCO2 in the eastern cells than those in the western cells in all seasons. A similarly high 367 

level is captured by ACOS, NIES and SRFP generally in the western deserts with lower CO2 emissions compared to the 368 

eastern cells with abundant emissions. This feature is especially distinct from ACOS while OCFP and GEOS-Chem both 369 

show an increasing trend from west to east in any season. 370 

Comparing the difference to GEOS-Chem (on the right in Fig. 8), the spatio-temporal pattern of ACOS and SRFP 371 

generally demonstrate the smallest values mostly ranging from -1 ppm to 1 ppm. XCO2 values from both NIES and OCFP 372 

are smaller than GEOS-Chem in space and time, while the XCO2 difference is mostly 1-3 ppm for NIES and 2 ppm for 373 

OCFP. Regionally, the differences tend to be larger in the western cells than those in the eastern cells for satellite retrievals, 374 

except for OCFP. 375 

5 Discussion  376 

In this section, an investigation was made into the most likely attribution of regional inconsistency, i.e., aerosols and albedo, 377 

and an additional comparison was made with the latest released ACOS V7.3, the newer version of ACOS data retrieved by 378 
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the OCO-2 algorithm, using GEOS-Chem simulations and retrievals from other algorithms including ACOS V3.5, NIES 379 

V02.21, OCFP V6.0 and SRFP V2.3.7.  380 

5.1 Discussion of albedo and aerosol effects for XCO2 retrieval    381 

The above quantification and analyses indicate that generally good agreements are achieved among the four data sets in the 382 

eastern cells, while three out of four GOSAT-XCO2 data sets present abnormal high concentrations in the western cells. It 383 

has been known that aerosols are the most important factor inducing errors in satellite-retrieved XCO2 (Guerlet et al., 2013; 384 

Oshchepkov et al., 2013; Yoshida et al., 2013; O’Dell et al., 2012), while estimations of Aerosol Optical Depth (AOD) in 385 

GOSAT full physics CO2 retrieval algorithms are greatly affected by high surface albedo because of atmospheric multiple 386 

scattering of light and the optical lengthening effect. For that reason, we investigate the spatial and temporal characteristics 387 

of aerosols and albedo in our study latitude band to probe the reason why high inconsistency of XCO2 retrieval algorithms 388 

appears in western cells rather than in eastern cells with intensive human activities.  389 

The spatial and temporal characteristics of shortwave broadband (300-3000nm) albedo from GLASS albedo products 390 

and AOD at 555 nm from MISR aerosol products with seasons in the study area are revealed as shown in Fig. 9, in which 391 

they are mapped by the same method as Fig. 8. The seasonal mean AOD and albedo were calculated in spring (MAM), 392 

summer (JJA), autumn (SON), and winter (DJF) using the monthly mean AOD and black sky shortwave albedo from 393 

January 2010 to December 2012 for every cell.   394 

 395 

Fig. 9: The temporal and spatial patterns of black sky shortwave broadband (300-3000nm) albedo (left) and AOD at 555 nm 396 
(right). Colors represent albedo (left) and AOD (right). 397 

As shown in Fig. 9, albedo shows small temporal variation with a decreasing trend from west to east. In contrast with 398 

albedo, AOD follows a clear seasonal pattern with a higher level in spring and summer than in autumn and winter. The uplift 399 

of AOD in spring and summer is due to the higher frequency of Asian sand and dust storms for cells west of 105°E. The 400 

main contributors to aerosol loading east of 110°E are emissions from urban fugitive dust/fly ash, dust plumes from deserts 401 

in the western and northern China such as the Taklimakan deserts, industrial activities and residential heating (Zhang et al., 402 
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2012). For this reason the inconsistency of XCO2 from the four algorithms, which tends to be higher in spring and summer 403 

than in autumn and winter in the Taklimakan Deserts in western cells shown in the results above, is likely induced by the 404 

combined effect of high aerosol and high brightness surface (high surface albedo) on retrieval uncertainty.  405 

We discussed the influences of albedo and AOD on XCO2 retrievals from ACOS, NIES, OCFP and SRFP in further. 406 

Fig. 10 plots the scatters of albedo and AOD with the differences between GEOS-XCO2 data (created in section 3.1) to 407 

XCO2 retrievals, hereafter referred to as dmXCO2, for ACOS, NIES, OCFP and SRFP. The albedo data obtained from 408 

GLASS02B06 is used for OCFP as there are no albedo data available from its released data product.  409 

Fig. 10 shows that dmXCO2 of both ACOS and NIES demonstrate a slightly decreasing trend with albedo whereas 410 

slightly increasing trend with AOD. The dmXCO2 of ACOS tend to be larger in 80°E -90°E of deserts with high albedo than 411 

that in other regions. The dmXCO2 of OCFP demonstrate a clear decreasing trend with albedo and AOD comparing to the 412 

other algorithms. The dmXCO2 of SRFP basically does not show a clearly dependence on either albedo or AOD. We further 413 

investigated the standard deviation of dmXCO2 by a variation of the bin-to-bin dmXCO2 with albedo and AOD. dmXCO2 is 414 

averaged by surface albedo within 0.05 albedo bins and AOD within 0.05 AOD bins, respectively. The standard deviation of 415 

the mean dmXCO2 in each 0.05 albedo (AOD) bins, i.e. a measure of the bin-to-bin dmXCO2, is calculated. It is found that 416 

the dmXCO2 for the four algorithms change with both albedo and AOD in bin-to-bin. In the whole study area, the standard 417 

deviation in albedo is the largest for OCFP, up to 0.7 ppm, while that is smaller from ACOS, NIES and SRFP, 0.4 ppm、0.3 418 

ppm and  0.2 ppm, respectively. The standard deviation of dmXCO2 in AOD is larger for SRFP (0.5 ppm) than those for 419 

ACOS (0.2 ppm), NIES (0.3 ppm) and OCFP (0.4 ppm). Viewing to the deserts (80°E -90°E), the standard deviation  in 420 

albedo is the largest from NIES ( 1.5 ppm),  and the smallest from OCFP (0.2 ppm) while they are 1.0 ppm and 0.5 ppm for 421 

ACOS and SRFP, respectively. The standard deviations in AOD, however, are similar (0.2-0.4 ppm) in this area. As a result, 422 

OCFP tend to be more sensitive to albedo and AOD compared to other algorithms. In the deserts, NIES are the most 423 

sensitive XCO2 retrievals to surface albedo and OCFP the least.  424 
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 425 

Fig. 10: Scatter plots of the differences (dmXCO2) between GEOS-XCO2 to ACOS, NIES, OCFP and SRFP respectively, with 426 
respect to albedo (the upper panels) and AOD (the lower panels). Colored points represent the data from different cells: red-[80°E, 427 
105°E], black-[105°E, 120°E] in the study latitude zone [37°N, 42°N]. Albedo and AOD are extracted from data products of the 428 
retrieval algorithms except albedo data in OCFP in which GLASS data are used. 429 

Fig. 11, moreover, demonstrates the influence of albedo and AOD on the standard deviation (STD) of XCO2 from four 430 

algorithms at the same footprints (timely in the same day, geometrically located within ±0.01° in space). Averaged albedo 431 

(the left panels) and AOD (the right panels) of the four algorithms are used whereas the averaged albedo is obtained only 432 

using three attached albedo in the algorithms except OCFP.  433 

The increasing trends of STD with both albedo and AOD can be seen from Fig. 11. The mean STD is 1.3 ppm in the 434 

western cells (80°E -90°E) where albedo is mostly within 0.25-0.35. This STD is lightly larger than that (1.0ppm) in eastern 435 

cells (90°E-120E°) where albedo is comparatively smaller (mostly within 0.15-0.25). It is found from the statistics presented 436 

in Fig. 11 that the correlation coefficients of STD with albedo and that with AOD is almost the same (both are 0.3) for all the 437 

data. Particular influence from albedo in desert over the western cells can be clearly observed. These results indicate that the 438 

inconsistency of XCO2 retrievals from four algorithms tend to be increase with the enlargements of albedo and AOD so as to 439 

imply that uncertainty of satellite-retrieved XCO2 should be mostly alerted with the elevations of albedo and AOD.    440 
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  441 

Fig. 11: Scatter plots of the standard deviation (STD)  of XCO2 from the four algorithms to albedo (the left panel) and AOD (the 442 
right panel).  Colored points represent different cells: red-[80°E, 105°E], black-[105°E, 120°E] in the latitude zone [37°N, 42°N]. 443 
Colored solid lines display the corresponding linear regression trend line for the scatter plots with the regression slope (a) and the 444 
correlation coefficient (r) also presented. n is the number of samples. Albedo is the mean surface albedo in 0.75-um band from the 445 
three algorithms including ACOS, NIES and SRFP. AOD is the mean AOD in 0.75-um band from the four algorithms. 446 

From the above quantification and analysis in previous sections, the pairwise differences between OCFP and other 447 

algorithms are 0.5 ppm higher west of 105°E than east of that, with a difference of 1.2 ppm over the whole study area. The 448 

obvious regional characteristic probably relates to the assumption of a uniform cirrus profile based on latitude in the retrieval 449 

algorithm (GHG-CCI group at University of Leicester, 2014), which is, however, unlikely to be reasonable in our study area. 450 

There exists a large amount of high clouds over the Tibetan Plateau (Chen et al., 2005), which is located south of the study 451 

cells of 80°E to 105°E. The humidity and atmospheric structure are mainly affected by the Tibetan Plateau, and there is a 452 

large difference in the cirrus profile between the western cells and the eastern cells over our study area (Wang et al., 2012), 453 

which indicates that a uniform profile by latitude will inevitably introduce errors.  454 

The regional pairwise difference between NIES and other algorithms is up to 1.6 ppm, which is distinctly high among 455 

all the algorithms. Considering the complicated geographic environment in the study area, this distinct difference is likely 456 

related to the presumptions from NIES algorithm in aerosol profiles and properties adopted from an aerosol transport model 457 

(Table 1), in which cirrus clouds are ignored and little information from observations is used in the retrieving process.  458 

With the satellite-observed spectrum used for simultaneously retrieving water and clouds, ACOS sets the initial aerosol 459 

types and AOD based on a priori information from aerosol reanalysis data. On the other hand, SRFP handles aerosol based 460 

on a comprehensive characterization of aerosol properties, including aerosol number density, size distribution and aerosol 461 

height. Both of the above two mechanisms function well since ACOS and SRFP are generally demonstrated to provide 462 

relatively better performance. 463 

Noticing that all algorithms differ in simulating scattering in the atmosphere, such as in the aerosol models, the 464 

influence of scattering on retrieved XCO2 is too significant to be ignored, as demonstrated from this study. Since satellite 465 

products from different retrieval algorithms in general agree with each other, there is no denying that satellite XCO2 466 

retrievals have the potential to provide more accurate XCO2 data. Optimization in the handling of aerosol scattering will 467 

improve the precision and accuracy of satellite XCO2  retrievals in the future.  468 
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5.2 Additional comparison with the latest released ACOS V7.3  469 

We collected ACOS V7.3 (http://CO2.jpl.nasa.gov ) too, the latest version of the ACOS data (GES DISC, 2017). We add the 470 

cross-comparisons of this version of the data set and other data sets including GEOS-Chem, ACOS V3.5, NIES V02.21, 471 

OCFP V6.0 and SRFP V2.3.7 in this section. ACOS V7.3 was created by applying the XCO2 retrieval algorithms of OCO-2 472 

to GOSAT. Within the algorithm code of ACOS V3.5, the OCO-2 algorithm generating ACOS V7.3 data makes some 473 

changes in parameter settings, such as the surface pressure a priori constraint and cloud ice properties, and it updates the 474 

manners of data processing, for example, the bias corrections and filtering mechanism (GES DISC, 2017).  475 

Compared to the previous version, ACOS V3.5, ACOS V7.3 increases the average by approximately 0.2 ppm. In 476 

comparison with the difference patterns with ACOS V3.5, the averages of the absolute differences between ACOS V7.3 and 477 

the other three algorithms are similar (within 0.1 ppm) and increase by an average of 0.5 ppm (1.8 ppm vs. 1.3 ppm) in cells 478 

east of 110°E and west of 90°E, respectively, while the biases relative to GEOS-Chem decrease approximately 0.3 ppm and 479 

increase approximately 0.9 ppm in cells east and west of 90°E, respectively.  480 

The comparison results further demonstrate inconsistency of XCO2 among different datasets in the desert cells. 481 

6 Conclusion 482 

Although TCCON has been widely accepted as the standard for validation of satellite-based XCO2 data, it is necessary to 483 

better understand the performance of XCO2 in spatial and timely variations at a regional scale and especially for those 484 

regions where ground-based measurements of XCO2 are not available, such as for the TCCON stations in China. We 485 

implement the quantification and assessment of the agreement of multiple algorithms for typical regions with various land 486 

covers and enhancement of anthropogenic CO2 emissions including the megacity of Beijing from 80°E to 120°E in the same 487 

latitude band of 40°N to get better knowledge of the regional uncertainty and performance of GOSAT XCO2 retrievals in 488 

China. Regional performance of XCO2 products from four algorithms (ACOS, NIES, OCFP, SRFP) as well as GEOS-Chem 489 

simulated XCO2 are probed to obtain the regional uncertainty and attributions of GOSAT XCO2 retrievals. In particular, we 490 

apply simulated XCO2 at a high spatial resolution of 0.5° (latitude) x 0.666° (longitude) for a nested grid obtained by GEOS-491 

Chem to assess the regional uncertainty of XCO2 derived from satellite observations in China. In connection with the 492 

inconsistency of algorithms in eight cells, the characteristics of aerosol and albedo are investigated to discuss the further 493 

attribution of regional inconsistency of algorithms.  494 

Summarizing the performance of four algorithms (ACOS, NIES, OCFP and SRFP) in each cell based on the above 495 

quantification and analysis from comparisons with GEOS-Chem, pairwise differences between algorithms and agreement in 496 

time series among algorithms, we can obtain the following results in general: (1)The consistency among algorithms is better 497 

in the east than in the west as the absolute difference from pairwise comparisons presents  0.7-1.1 ppm in eastern cells 498 

covered by grassland, cropland and built-up areas with strong anthropogenic CO2 emission whereas 1.0-1.6 ppm in western 499 

cells covered by desert with a high-brightness surface with less anthropogenic CO2 emission;（2）ACOS and SRFP are 500 

http://co2.jpl.nasa.gov/
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more satisfying in characterizing spatio-temporal patterns than other algorithms. To conclude, Table 7 presents the regional 501 

characteristics and a summary of the results described in above sections. 502 

Table 7.Summaries of our analyses for uncertainty of XCO2 retrievals obtained by GOSAT via inter-comparison of multi-503 
algorithms above, including characteristics of regional emissions, albedo, aerosol optical depth, and summary of differences 504 
between algorithms and bias compared to GEOS-Chem. 505 

Characteristics of regions and summary of 

algorithms 
Cells from 80°E to 115°E within 37°N-42°N 

Characteristics 

of regions 

Regions 

Left longitude  (°E) 
80 85 90 95 100                105 110 115 

CO2 emissions  

(Tg/year)*
1
 

Low emissions 

(1.2-57.1) 

High emissions 

(515.2-821.9) 

Property of aerosol 

(AOD)*
2
 

Dust 

(0.22-0.53) 

Clear 

(0.10-0.28) 

Urban 

(0.10-0.37)) 

Surface types 

(albedo) 

Sand desert with high 

brightness 

(0.20-0.26) 

 Gobi and grassland 

(0.19-0.22) 

Cropland and 

built-up 

(0.14-0.17) 

Summary of 

uncertainty 

Consistency of algorithms  

(pairwise mean absolute 

differences)  

Less Consistency 

( 1.0-1.6 ppm) 

Good consistency 

(0.7-1.1 ppm) 

Bias compared to  

GEOS-Chem 

(bias range) 

Large biases 

(1.2-3.1 ppm) 

lesser biases 

excluding NIES 

(0.0-0.5 ppm)  

General performance of 

algorithms  in spatio-

temporal patterns of XCO2 

compared to GEOS-Chem 

ACOS presents the lowest bias (-0.1±1.9 ppm); 

SRFP is next ( -0.2±2.2 ppm)  

NIES presents the greatest -2.0±2.2 ppm) 

*
1
 represents the total emissions of CO2 from CHRED in each cell in 2012. *

2
 is the range of averaged seasonal aerosol 506 

optical depth over a year.  507 

 508 

The results of our analysis, indicating that the discrepancies among algorithms are the smallest in eastern cells which 509 

are the strongest anthropogenic emitting source regions in China, implies that the uncertainty of XCO2 is likely low in this 510 

area. It will be sufficiently rigorous for supporting us to apply GOSAT XCO2 data in assessment of anthropogenic emissions 511 

via timely changing magnitude of XCO2 in such region. Moreover, it was likely that uncertainty in satellite-retrieved XCO2 512 

is attributed to the combined effects of aerosol and albedo. The large uncertainty of XCO2 must be improved further, even 513 

though many algorithms have endeavored to minimize the effects of aerosol and albedo. With the launch of OCO-2 in 2014 514 

and GOSAT-2 scheduled for 2018, the prospect of a large amount of useful retrieved XCO2 products is promising. Since low 515 

regional XCO2 biases are necessary for accurately estimating regional carbon sources and sinks, regional uncertainty should 516 

be paid more attention in the future. 517 
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 Appendix A 518 

We made cross-comparisons between ACOS V7.3 and other data sets. The available data points of ACOS V7.3 were shown 519 

from March 2010 to February 2013 in Fig.A1. In cells west of 90°E, there are a few data points showing abnormal 520 

concentrations as high as above 400.0 ppm, which is higher than that of data points in the east, where there are strong 521 

anthropogenic CO2 emissions. 522 

The comparison results in the cells are shown in Table A1. No bias was found in ACOS V7.3 from GEOS-Chem with a 523 

standard deviation of 1.6 ppm and R
2
 of 0.77 in the whole study area. Generally, ACOS V7.3 is in good agreement with all 524 

of them, which is reflected by correlation coefficients r that are above 0.85 and greater than others, as shown in Table A1. 525 

The biggest differences up to 3.0 ppm for ACOS V7.3 are found from NIES and OCFP in deserts cells, whereas differences 526 

from SRFP are mostly within 1.0 ppm. This is similar to ACOS V3.5. The pairwise differences from other algorithms (not 527 

including ACOS V3.5) are up to 1.9 ppm in cells west of 90°E, which is distinctly high, whereas within 0.9 ppm in cells east 528 

of 110°E. It can also be found that the bias of ACOS V7.3 relative to GEOS-Chem is within 0.3 ppm but above 1.3 ppm, in 529 

cells east and west of 90°E, respectively.   530 

 531 

 532 

Fig. A1.  The time series of data points from ACOS V7.3 during the period from March 2010 to February 2013. Different symbols 533 
in each panel represent the left longitude of the cell into which a data point falls. 534 

  535 
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 536 

Table A1. Differences between ACOS V7.3 and others (including GEOS-Chem and four other algorithms including ACOS V3.5, 537 
NIES, OCFP and SRFP) in each cell (subtraction from ACOS V7.3). Values in parentheses are the corresponding standard 538 
deviations. 539 

Left longitude of 

cells(°E) 
80 85 90 95 100 105 110 115 r 

GEOS-Chem 
-1.7(1.5) -1.3(1.3) 0.1(1.2) 0.1(1.2) -0.1(1.3) 0.3(1.6) 0(1.7) 0(1.6) 

0.88 
64 85 167 191 294 448 487 244 

ACOS V3.5 
-0.4(0.9) -0.1(1.0) -0.1(1.0) -0.2(1.0) 0.0(1.1) -0.5(1.1) 0.2(1.2) -0.1(1.1) 

0.93 
103 48 133 189 350 391 244 126 

NIES 
-3.2(1.2) -1.9(1.5) -1.6(1.2) -1.2(1.9) -1.9(1.4) -1.8(1.5) -1.2(1.6) -0.7(1.5) 

0.87 
61 100 251 123 541 317 397 277 

OCFP 
-3.1(1.0) -3.4(0.9) -2.2(1.1) -2.5(1.5) -2.1(1.2) -1.5(1.1) -0.5(1.1) -0.1(1.0) 

0.86 
66 41 157 114 297 329 396 202 

SRFP 
-0.8(1.3) -0.7(1.4) 0.3(1.3) -0.6(1.3) -0.4(1.3) -0.5(1.4) 0.3(1.4) 0.1(1.2) 

0.89 
138 145 345 337 466 631 447 247 

Average absolute 

difference
1
 for 

three algorithms 

above 

1.9(1.5) 1.7(1.4) 1.2(1.0) 1.4(1.1) 1.3(1.0) 1.2(0.8) 0.9(0.7) 0.7(0.5) 

 

*1 represents the average of absolute differences of ACOS V7.3 matching other algorithms including NIES, OCFP and SRFP for 540 
each cell. 541 
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