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Abstract. Recently, Whitburn et al. (2016) presented a neural network-based algorithm for retrieving atmospheric ammonia

(NH3) columns from IASI satellite observations. In the past year, several improvements have been introduced and the resulting

new baseline version, ANNI-NH3-v2, is documented here. One of the main changes to the algorithm is that separate neural

networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and

transforming the input parameter space, performance is now also better for observations associated with favourable sounding5

conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over sea and the

treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the

data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2R-I) which

relies on ERA-Interim ECMWF meteorological input data, along with built-in surface temperature, rather than the operationally

provided Eumetsat IASI L2 data used for the standard near-real time version. The need for such a dataset emerged after a series10

of sharp discontinuities were identified in the NH3 timeseries, which could be traced back to incremental changes in the IASI

L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends.

Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2

version 6 became operational (30 September 2014).

1 Introduction15

Ammonia measurements from space have come a long way since the first observations were reported (Beer et al., 2008; Coheur

et al., 2009). It is now globally, and routinely measured with the main hyperspectral infrared sounders in orbit: TES, IASI, AIRS

and CrIS (Shephard et al., 2011; Whitburn et al., 2016; Warner et al., 2016; Shephard and Cady-Pereira, 2015). For the retrieval

of column abundances, two main approaches are followed. Iterative retrievals are based on fitting a calculated spectrum onto

the observed spectrum. These can include the use of a priori information and typically provide a comprehensive uncertainty20

budget characterisation. They have the disadvantage of being computationally demanding as for a single retrieval a forward

model has to be run several times.
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The atmospheric spectroscopy group at ULB has developed several retrieval approaches based on the conversion of spectral

NH3 indices. These are indices that quantify the magnitude of the NH3 absorption/emission lines in the spectrum. First Bright-

ness Temperature Differences (BTDs) were used (Clarisse et al., 2009), later Hyperspectral Range Indices (HRIs) (Van Damme

et al., 2014a). These type of methods rely on the fact that the indices can be converted to a column by taking into account the

spectral sensitivity to the NH3 abundance in the observed scene. For low to moderately high columns, both BTDs and HRIs5

are correlated linearly to column abundances, with the conversion factor depending on the thermal contrast (Van Damme et al.,

2014a) and a host of other parameters. HRIs are derived from linear retrievals using a constant gain matrix which includes a

generalised error covariance matrix. Background and full discussion of this index can be found in the following papers: Walker

et al. (2011, 2012); Clarisse et al. (2013); Van Damme et al. (2014a); Whitburn et al. (2016). Van Damme et al. (2014a) used 2D

look-up tables to convert HRIs to columns, while Whitburn et al. (2016) used a neural network (NN) to perform the conversion.10

The advantage of the latter is that it allows a much larger number of input parameters to be taken into account. It has a number

of significant other advantages, which are outlined in the original paper.

In the first part of the present paper we report and detail several improvements that have been introduced to the original

neural network based retrieval, here referred to as ‘Artificial Neural Network for IASI’-NH3-v1 (ANNI-NH3-v1). In addition,

we formulate a new set of recommendations on how to post-process, treat and interpret the data. In the final part we introduce a15

new dataset ANNI-NH3-v2R-I, which differs from the baseline dataset ANNI-NH3-v2 in that it uses different input data. While

our baseline version uses operationally provided meteorological level 2 (L2) data, this reanalysed dataset relies on input data

from the ERA-Interim ECMWF reanalysis (Dee et al., 2011) and a secondary neural network for surface temperature retrieval.

The need for such a dataset arose after discontinuities were found in the analysis of timeseries which could be traced back to

version changes in the IASI L2 processing chain for temperature and clouds. This new self-consistent dataset is detailed and20

introduced in Section 3.

2 The baseline version (ANNI-NH3-v2)

2.1 Neural network setup and training

Thermal Contrast (TC) is a key quantity for infrared remote sounding of the lower troposphere (Clarisse et al., 2010; Bauduin

et al., 2017). It is defined as the temperature difference between the surface and the air at a given altitude. Here we calculate25

the TC with respect to the 500 m air temperature (note that in Whitburn et al. (2016) it was defined with respect to the 1.5 km

air temperature). The ANNI-NH3-v1 has a rather poor performance for observations with a thermal contrast larger than 10 K,

both above land and sea (see Figure 1). This is somewhat surprising as exactly the opposite would be expected. A first reason

for this behaviour is that such high TC are under-represented in the v1 training dataset. To remedy this, a large amount of

simulations were added to the training set, in such a way that a uniform distribution in terms of TC was achieved. Because30

TC varies much more over land than over sea, it was decided to make a separate training set (and neural network) for land

and sea scenes. Additionally, it was observed that lower latitudes were under-represented in the sea training set due to the way

the atmospheres were selected (from random IASI observations, for which the higher latitudes are overrepresented due to the
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Figure 1. Neural network training performance in terms of mean error (left, %) and bias (right, %), for land (first two rows) and sea (bottom

two rows) and for ANNI-NH3-v1 (first and third row) vs ANNI-NH3-v2 (second and fourth row).
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Metop polar orbit). And so, over 36000 simulations were added for the lower latitudes. All in all, the complete training dataset

is now almost double compared to the previous set, with around 450000 simulations (273000 over land and 172500 over sea).

Another reason for the relatively poor performance of the higher TC observations in ANNI-NH3-v1 is associated with the

way the neural network was setup. As explained in Whitburn et al. (2016) the output variable of the neural network is not the

total column of NH3, but rather the ratio of the column, [NH3]v1 to the HRI. The retrieved column is thus the (observation5

dependent) ratio multiplied by the HRIs. Thus we have

outputv1 = fv1(inputv1) =
[NH3]v1

HRIv1
→ [NH3]v1 = HRIv1× fv1 (1)

The main rationale of using a ratio is that the neural network can be trained on noise free data and that the instrumental noise

is propagated to the column in a transparent (linear) way. There is one catch though: for scenes with almost no sensitivity to

NH3 (therefore HRI ≈ 0 ), the ratio can assume very large values, which can be problematic for properly training the network.10

In order to analyse this, first note that as the ratio is large and the sensitivity poor, the absolute error of the output will tend to

infinity. The total cost function, defined as the mean squared error of the training dataset will therefore be dominated by these.

The end result is that the part of the training set corresponding to HRIs very close to zero leads to non-convergent training

or a badly performing network. In Whitburn et al. (2016), this situation was remedied by excluding those observations of the

training set with a ratio larger than 7 ·1016 molec.cm−2. However, the fact that observations with a poor sensitivity (lower HRI15

for a constant NH3 column) have a higher weight in the training cost function than those with a high sensitivity still makes the

training focus on that part of the training set with the lowest sensitivity. This would not be a problem if one can train the neural

network perfectly for the complete input space, but this is clearly not the case. In the new version we have reversed the ratio on

which the training is performed:

outputv2 = fv2(inputv2) =
HRIv2

[NH3]v2
→ [NH3]v2 =

HRIv2

fv2
(2)20

Therefore, with this change, observations with an associated good sensitivity to NH3 should be trained much better than

before. The performance might get worse for the ones associated with a poor sensitivity, but these observations already have

large uncertainties. Figure 1 shows the actual neural network training performance of both ANNI-NH3-v1 and ANNI-NH3-v2.

In this figure, note that land and sea cases have been separated for v1, even though a single neural network was used to retrieve

NH3. As in Whitburn et al. (2016), these plots are representative for real observations since they include the most important25

observational error (the uncertainty on the HRI). The theoretically expected performance improvements outside the blind spot

region of TC≈ 0 are evident. In the v1, the average training error started from 15 % ; while in the v2, this drops to around 5

%. Also, the biases mostly disappear: v1 was biased both inside and outside the blind spot. Note finally that these plots also

demonstrate the much larger range of TCs covered by the v2.

The overall training of the v2 network is largely improved thanks to this simple change of output variable outlined above;30

however other changes also played a role in improving the performance on the training dataset. The main one is the addition

of the HRI as an input parameter. While the ratio f is independent of the column in the linear regime, linearity is only valid for

low to medium columns. The departure from linearity can actually be observed as gradients in the v1 bias plots of Figure 1.
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Figure 2. Example retrievals of the NH3 column (molec.cm−2) on 17 June 2015 for ANNI-NH3-v1 (first and third column) and ANNI-

NH3-v2 (second and fourth column), morning (AM, left two columns) and evening overpass (PM, right two columns), over South Asia (top

row), North America (middle row) and the western part of North and Central Africa (bottom row).

Adding the HRI as an input parameter allows the NN to correct for this. A number of input parameters have also been removed

in v2, to keep the network as simple as possible and to avoid over-fitting. In particular, the input vertical profiles of H2O and

the pressure have been replaced respectively by a single H2O total column and the surface pressure. With these changes the

total number of input parameters is now reduced from 35 in v1 to 20 in v2.

Another change introduced in v2, which also contributes to making the NN simpler, is the way the viewing angle of the5

satellite is taken into account. In v1, angle dependent error covariance matrices (and therefore HRIs) were used following

Bauduin et al. (2016). The reason for this was that earlier experience had shown that a straightforward angle correction on the

airmass can result in biases on the final column (Van Damme et al., 2014a). In v2 the angle problem has been re-evaluated after

it emerged that the columns in v1 still showed an angle dependence, especially noticeable for the larger angles. This could for

instance be seen by looking at the correlation between angle and total column over a small area over one season. The reason10

for this is unclear, and having effectively many different HRIs to train makes it difficult to trace the problem.

For ANNI-NH3-v2 we therefore decided to adopt again the approach introduced in Van Damme et al. (2014a) of simply

correcting the HRI by the cosine of the viewing angle. An HRI consists of two components, the NH3 signal component and

a noise component. Clearly, the cosine correction only makes sense on the signal component, but applying the correction on
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the entire HRI value should in principle not cause any biases, apart from a compression of the instrumental noise for large

angle observations. The reason why this approach caused the introduction of biases in Van Damme et al. (2014a) lies in the

fact that in that retrieval only positive values were retrieved. Especially for retrievals dominated by noise, applying a cosine

factor will lead on average to lower values for larger angles. The neural network retrieval scheme maps the instrumental noise,

which is on average one HRI unit, symmetrically around 0 to the NH3 column space; so that no such bias effect is expected.5

We now therefore decided to correct the HRI value with a cosine factor, prior to feeding it to the network. This HRI is the

same as introduced in Van Damme et al. (2014a), for which the error covariance matrix was build using observations with all

possible viewing angles. Note that viewing angle is still kept as a parameter in the neural network, to allow the neural network

to perform second order corrections. The v2 angle correction was deemed satisfactory after analysis over different land and sea

regions, at different times of the year.10

A final change introduced in v2 is a HRI bias correction over the seas, where the HRI was found to be slightly negative

overall, and decreasing with increasing H2O total column amount. To achieve this, the median over sea was calculated for 30

days in 2015 over bins of 0.1 · 1023 molec.cm−2 of H2O total column. These median values are used to correct the HRI value

over sea before using them as an input in the neural network.

2.2 Performance on real data and recommendation for use15

In Whitburn et al. (2016), a post-filter was applied to the retrieved data to remove the unphysical measurements (e.g. large

negative columns associated with a large positive HRI). For ANNI-NH3-v2, we have extended this post-filtering process to

remove more of the blatantly erroneous retrievals. The current filtering procedure removes the observations for which:

1. The cloud coverage exceeds 25 %

2. The column is negative and HRI is larger than 1.5 in absolute value20

3. [NH3]
HRI is larger than 1.75 · 1016 molec.cm−2 in absolute value

The first two criteria were already present in this form in v1, but the third criteria was weaker.

Example NH3 total column retrievals are shown in Figure 2 for IASI morning and evening overpasses on 17 June 2015 over

South Asia, North America and the western part of North and Central Africa for both v1 and v2 datasets. Overall it can be

observed that both retrievals highly correlate, in particular, that the elevated and background columns occur in the same places.25

One noticeable difference is the effect of the extended post-filter in v2, which removes more of the larger negative columns

over sea and over land on the evening overpass. Looking at the evening overpass over India it could be argued that the filtering

is too aggressive. However, the observations that were removed there, are associated with extremely large uncertainties due to

an almost zero sensitivity (TC very close to zero). So for these observations that were removed, all that one can realistically say

is that the NH3 columns are enhanced. The observations over Africa on the other hand suggest that the post filtering procedure30

is still not strict enough. The current post-filtering flags were set by looking at a lot of different scenes from different parts of

the year, and we consider them to be reasonable. The second important difference is that v2 columns are larger than v1 over

the source regions (on average about 20 % for TCs above 10 K and columns higher than 1 · 1016 molec.cm−2).
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Measurements of NH3 from space have a very large variability in their associated uncertainty, due to the variable sensitivity

of the infrared outgoing radiation to the lower troposphere, as determined primarily by the TC (Clarisse et al., 2010; Bauduin

et al., 2017). Summer-daytime is typically the best time to measure ammonia, while nighttime and/or winter are the worst, but

the sensitivity can vary greatly even from one day to the next. Uncertainty estimates on the column range from 5 % to over 1000

%. Averaging such heterogeneous data is in general problematic, as the average can very easily be dominated by the data with5

the largest uncertainty, rendering the ‘average measurement’ meaningless. Van Damme et al. (2014b, 2015); Whitburn et al.

(2015) therefore employed weighted averages, where the measurements with lowest uncertainty have the most weight in the

average. Still, there are many approaches to weighting, and there is no uniquely best way of doing it. For a given TC, a larger

column will always have a smaller relative error than a smaller column, so that weighting measurement with the relative error

will always bias the result high (similarly, weighting with the absolute error tends to bias the result low). We refer to Whitburn10

et al. (2016) for examples and a discussion on the pros and cons of weighting measurements. With the extended post-filtering

introduced in v2, we no longer recommend using weighted averages. Instead, if averages have to be performed we would now

suggest to use unweighted averages. However, it is always better wherever possible to use the individual measurements with

their associated uncertainty, and avoid averaging.

3 An ERA-Interim reanalysis (ANNI-NH3-v2R-I)15

Up to now, for all our retrieval algorithm, we have only relied on IASI L2 meteorological data (August et al., 2012) to be used

as input data (see e.g. Clarisse et al. (2012); Hurtmans et al. (2012); Van Damme et al. (2014a)). The relevant L2 data consists

of the surface temperature, surface pressure, temperature and water vapour vertical profiles and cloud coverage fractions. Since

the first L2 meteorological data was operationally disseminated in 2007, a series of updates have been released, of which the

most relevant are summarised in Table 1. Some of the updates led to changes in L2 data availability. For instance, before 320

March 2010, L2 data was only provided for one in two pixels. Also, between January 2009 and up until October 2010, surface

temperature was only provided for observations with a 0 % cloud coverage. Other changes directly improved the quality of the

L2. The NOAA PROducts Validation System (NPROVS, www.star.nesdis.noaa.gov/smcd/opdb/nprovs/NPROVS_trends.php)

demonstrates convincingly that the agreement of L2 temperature profiles with radiosonde data improves markedly over time,

both in the standard deviation and in the bias. The largest jump in improvement came after the introduction of IASI L2 v6 on25

30 September 2014, but also with v6.2 on 4 May 2016.

The analysis of ANNI-NH3-v2 timeseries revealed several rather sharp discontinuities which seemed to coincide with IASI

L2 version changes. In particular, a noticeable overall increase in the NH3 columns was found to correspond with the v5

to v6 change, and a smaller decrease was observed with the introduction of v6.2. As we will show below these are a direct

consequence of algorithmic changes to the retrieved temperature of the surface and lower troposphere. Following these findings,30

the need arose for a self-consistent IASI NH3 dataset, which uses stable and uniform input data. The ECMWF ERA-Interim

reanalysis (Dee et al., 2011) is very suitable for this purpose, as it provides all the necessary meteorological parameters and
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Table 1. Updates to Eumetsat’s operationally distributed IASI L2 temperature and cloud products.

Release date Version Comment

27 Nov 2007 4.0 Initial release of IASI/Metop-A L2, provided for even pixels only.

29 Apr 2008 4.2 Major changes in cloud coverage, surface temperature and temperature profiles.

12 Aug 2008 4.3

21 Jan 2009 4.3.2 Surface temperature only provided for the cloud free observations.

3 Mar 2010 L2 provided for both even and odd IASI pixels.

29 Mar 2010 4.3.3

14 Sep 2010 5.0.6 Improved T profiles, but available for fewer observations. From this version onwards, tempera-

ture profiles and surface temperatures are provided for the same observations. Increased number

of cloud free observations.

2 Dec 2010 5.1 Temperature information is now also provided for cloudy pixels (more than half of the IASI

observations now have this info).

20 Oct 2011 5.2.1 Improved cloud screening for T retrievals.

28 Feb 2012 5.3 Major change in the cloud detection algorithm resulting in a decrease of the number of cloud

free observations. Temperature information is now provided for observations with a cloud cov-

erage below 25 %.

16 July 2012 5.3.1

8 Mar 2013 Initial release of IASI/Metop-B L2.

30 Sep 2014 6.0.5 Major update in the processing algorithm with the arrival of a new IASI L2 processor. IASI

meteorological L2 data is now provided for nearly all IASI observations.

24 Sep 2015 6.1 Updates to the surface temperature algorithm.

4 May 2016 6.2 Important improvements to the temperature retrieval algorithms.

covers the whole IASI time period. We now detail how the ERA data is prepared for the neural network, and some of the

assumptions that are made.

Two separate datasets are used: the first set consists of 0.25◦× 0.25◦ grids at a 3-hour temporal resolution and includes the

following parameters: total water vapour column, surface pressure, temperature at 2 m and dew point temperature at 2 meter.

The dew point temperature is used to calculate the specific humidity at the surface (Bolton, 1980). Temperature and specific5

humidity profiles are obtained at 37 pressure levels, on 0.25◦× 0.25◦ grids and at a 6-hour temporal resolution. For each IASI

observation the closest grid cell is found, and for each parameter its value was linearly interpolated to the IASI overpass time.

These parameters are then converted and/or interpolated to the required input format of the neural network.

Two parameters, namely cloud coverage and surface temperature, were judged to be too variable in space and time to rely

on gridded data. With respect to cloud coverage, we decided to continue to use the cloud information provided in the IASI L210

Eumetsat data, but instead of the standard 25 % threshold value, we now filter out all observations with a cloud coverage above

8

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-239
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



Figure 3. Example retrievals of the NH3 column (molec.cm−2) over South Asia for the reanalysed retrieval (ANNI-NH3-v2R-I, bottom)

versus the standard near-real time retrieval (ANNI-NH3-v2, top) on 29 September 2014 (input data from Eumetsat L2 v5.3.1), 1 October

2014 (L2 v6.0) and 1 October 2016 (L2 v6.2).

10 % (this leaves about 30 % of all observations for the latest version of IASI L2). Fortunately, except between 14 Sep 2010 and

28 Feb 2012 where a lot more observations were flagged as clear (see Table 1), the IASI L2 algorithm seems to be consistent

enough for this approach to make sense. This choice also only affects data filtering, and not the retrieval itself. For the surface

temperature, this is not the case, and so the decision was made to setup a secondary neural network, dedicated to the retrieval

of the surface temperature. The inputs of this neural network consist of 105 IASI channels and the satellite zenith angle. For5

the training and validation dataset, 37 days of the latest IASI L2 version (v6.2) ranging from June 2016 and June 2017 were

used. Overall, the performance of this secondary NN yielded a standard deviation of 1.3 K and a mean surface temperature

difference of -0.02 K (considering observations between−60◦ and 60◦ of latitude). This in-house retrieved surface temperature

was therefore considered good enough to be used as a retrieval parameter in the neural network.

Figure 3 illustrates the reanalysed retrieval (ANNI-NH3-v2R-I), and the near-real time retrieval (ANNI-NH3-v2) over South10

Asia for 3 days corresponding to v5.3.1, v6.0.5 and v6.2 of the IASI Eumetsat L2 (see Table 1). Taking the ANNI-NH3-v2R-I

as reference, it can be seen that prior to v6, retrieved columns are much lower. With v6.0.5, the retrieved columns are very

similar in magnitude. Finally, with v6.2 the retrieved columns are again a bit lower than the reanalysis, but still higher than with
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Figure 4. Standard deviations (top, K) and mean differences (bottom, K) of air and surface temperatures between IASI L2 v5.3.1 (29

September 2014), v6.0.5 (1 October 2014) and v6.2 (1 October 2016) and the reanalysis for the morning overpass over land (left), the

evening overpass over land (middle) and the morning and evening overpasses over sea (right).

v5.3.1. From this it can be deduced that the use of v6.0.5 resulted in a rather large increase of the NH3 columns, while v6.2

resulted in a slight drop of the columns. Several different regions were studied, and these statements appear equally applicable

elsewhere.

The observed biases can be attributed to changes in the IASI L2 retrieved temperature profile and surface temperatures,

as we will now demonstrate. Figure 4 shows standard deviations and mean temperature differences between IASI L2 v5.3.1,5

v6.0.5 and v6.2 and the reanalysis over land and sea (IASI observations between -60◦ and 60◦ of latitude on 29 September

2014, 1 October 2014 and 1 October 2016 respectively). These figures show both the temperature profile difference (coloured

lines with respect to the ERA reanalysis) and the surface temperature difference (coloured crosses with respect to the NN

10
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retrieved surface temperature). From the standard deviation plots, it can be seen that the agreement of the L2 products with the

reanalysis improves with each version, except for the surface temperature of v6.0.5, which seemed to regress after v5.3.1 over

land. Discontinuities and offset in the NH3 product cannot be explained by changes in standard deviation, we therefore focus

our attention to the mean difference.

We first discuss the observations over land. For the morning overpass of v5.3.1 we see a large negative offset of the air5

temperature in the lower troposphere (-5 K at the surface) and a much smaller negative offset in the surface temperature (-0.7

K). Overall, this implies that the IASI L2 v5.3.1 had an average high bias in the thermal contrast compared to the reanalysis,

and therefore a low bias in retrieved NH3 columns as was illustrated before with Figure 3. The air temperature offsets are

highly reduced in v6.0.5 to about -2 K while the surface temperature offset regresses slightly to about the same -2 K value. The

net result is that the thermal contrast decreases, and as consequence that an increase on average of the retrieved NH3 columns10

is obtained. The fact that the offsets in the air and surface temperatures are almost identical, explains why the retrieved NH3

columns of v2 with L2 v6.0.5 and the reanalysis are so similar. The main change in v6.2 was the improved surface temperature

retrieval, which resolved the regression introduced in v6.0.5. However the overall increase in surface temperature causes the

thermal contrast to increase, leading to lower retrieved NH3 columns on average. The remaining offset in the surface air

temperature (-1.7 K) implies that the ANNI-NH3-v2 with the latest version of the L2 presents a low biased with respect to15

the reanalysis for morning observations over land. For the evening overpass, the air temperature of the IASI L2 v5.3.1 is

characterised by a negative offset at the surface of -2.6 K, which combined with the negative mean difference of the surface

temperature of -1.1 K results in a moderate high bias of the TC (1.5 K). In contrast, the air temperature offset becomes positive

with v6 (and below 2 K) while the bias in surface temperature is close to 0, resulting therefore in a moderate low bias in TC.

This implies, for land evening observations using L2 v5.3.1, a low bias of the v2 columns compared to the reanalysis; after20

version 6 of the L2, we find a high bias. Over sea, differences between the L2 datasets are smaller, both with respect to the

surface temperatures and air temperature profiles, leading to smaller differences between the different products.

4 Concluding remarks

This paper presents the ANNI-NH3-v2 retrieval, an improved version from the v1 detailed in Whitburn et al. (2016). The main

changes are (1) a simplification of the input parameters and (2) the development of separate neural networks for land and sea25

observations, resulting in a better retrieval performance. As discontinuities are observed in the near-real time processing, a

reanalysis of this version 2 was also introduced, namely the ANNI-NH3-v2R-I which uses input generated from the ECMWF

ERA-Interim dataset and a surface temperature retrieved by a secondary neural network. While further enhancements to the

ANNI-NH3 product are foreseen in the future (e.g., improved NH3 columns could be achieved by using a distinct HRI for land

and sea scene as input parameter), the neural network design described here is not expected to undergo major changes.30

The presented analysis illustrates well the large impact that the (meteorological) input data can have on the retrieved NH3

column. In particular, small absolute errors in the TC can lead to very large inaccuracies on the retrieved columns, especially

when the TC itself is small. Incremental improvements in IASI L2 temperature and cloud algorithms and/or ECMWF ERA-
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Interim data are therefore expected to have a positive impact on the quality of the NH3 datasets. While certain biases might still

be present, the ANNI-NH3-v2R-I is self-consistent in time, and after the full IASI dataset has been processed, it is expected to

be highly suitable to study long-term trends.

Data availability. The ANNI-NH3-v1 data used in this work are freely available for all users through the AERIS database http://iasi.

aeris-data.fr/NH3/. The ANNI-NH3-v2 will replace this dataset in the near future and processed in near-real time. When ANNI-NH3-v2R-I5

processing is completed, this dataset will also be made available at the same place.

Competing interests. No competing interests are present.

Acknowledgements. IASI has been developed and built under the responsibility of the Centre National d’Études spatiales (CNES, France).

It is flown on board the Metop satellites as part of the EUMETSAT Polar System. The IASI L1c data are received through the EUMETCast

near real-time data distribution service. The research was funded by the F.R.S.-FNRS and the Belgian State Federal Office for Scientific,10

Technical and Cultural Affairs (Prodex arrangement IASI.FLOW) and EUMETSAT/AC-SAF project. S. Whitburn is grateful for his Ph.D.

grant (Boursier FRIA) to the "Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture" of Belgium. L. Clarisse is

Research Associate (Chercheur Qualifié) with the Belgian F.R.S.-FNRS. C. Clerbaux is grateful to CNES for scientific collaboration and

financial support.

12

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-239
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



References

August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O’Carroll, A., Coppens, D., Munro, R., and Calbet, X.:

IASI on Metop-A: Operational Level 2 retrievals after five years in orbit, J. Quant. Spectrosc. Radiat. Transfer, 113, 1340–1371,

doi:10.1016/j.jqsrt.2012.02.028, 2012.

Bauduin, S., Clarisse, L., Hadji-Lazaro, J., Theys, N., Clerbaux, C., and Coheur, P.-F.: Retrieval of near-surface sulfur dioxide (SO2) con-5

centrations at a global scale using IASI satellite observations, Atmos. Meas. Tech., 9, 721–740, doi:10.5194/amt-9-721-2016, 2016.

Bauduin, S., Clarisse, L., Theunissen, M., George, M., Hurtmans, D., Clerbaux, C., and Coheur, P.-F.: IASI's sensitivity to near-

surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases, J. Quant. Spectrosc. Radiat. Transfer, 189, 428–440,

doi:10.1016/j.jqsrt.2016.12.022, 2017.

Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, K. W., Sander, S. P., Fisher, B. M., Payne, V. H., Luo, M.,10

Osterman, G. B., and Worden, J. R.: First satellite observations of lower tropospheric ammonia and methanol, Geophys. Res. Lett., 35,

L09801, doi:10.1029/2008GL033642, 2008.

Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053, doi:10.1175/1520-

0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980.

Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.-F.: Global ammonia distribution derived from infrared satellite obser-15

vations, Nature Geosci., 2, 479–483, doi:10.1038/ngeo551, 2009.

Clarisse, L., Shephard, M., Dentener, F., Hurtmans, D., Cady-Pereira, K., Karagulian, F., Van Damme, M., Clerbaux, C., and Coheur, P.-F.:

Satellite monitoring of ammonia: A case study of the San Joaquin Valley, J. Geophys. Res. - Atm., 115, 2010.

Clarisse, L., Hurtmans, D., Clerbaux, C., Hadji-Lazaro, J., Ngadi, Y., and Coheur, P.-F.: Retrieval of sulphur dioxide from the infrared

atmospheric sounding interferometer (IASI), Atmos. Meas. Tech., 5, 581–594, doi:10.5194/amt-5-581-2012, 2012.20

Clarisse, L., Coheur, P.-F., Prata, F., Hadji-Lazaro, J., Hurtmans, D., and Clerbaux, C.: A unified approach to infrared aerosol remote sensing

and type specification, Atmos. Chem. Phys., 13, 2195–2221, doi:10.5194/acp-13-2195-2013, 2013.

Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI measurements of reactive trace species in biomass burning

plumes, Atmos. Chem. Phys., 9, 5655–5667, doi:10.5194/acp-9-5655-2009, 2009.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,25

Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,

Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Mor-

crette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration

and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828, 2011.

Hurtmans, D., Coheur, P.-F., Wespes, C., Clarisse, L., Scharf, O., Clerbaux, C., Hadji-Lazaro, J., George, M., and Turquety, S.: FORLI30

radiative transfer and retrieval code for IASI, J. Quant. Spectrosc. Radiat. Transfer, 113, 1391–1408, doi:10.1016/j.jqsrt.2012.02.036,

2012.

Shephard, M. W. and Cady-Pereira, K. E.: Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia, Atmos. Meas.

Tech., 8, 1323–1336, doi:10.5194/amt-8-1323-2015, 2015.

Shephard, M. W., Cady-Pereira, K. E., Luo, M., Henze, D. K., Pinder, R. W., Walker, J. T., Rinsland, C. P., Bash, J. O., Zhu, L., Payne,35

V. H., and Clarisse, L.: TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia, Atmos.

Chem. Phys., 11, 10 743–10 763, doi:10.5194/acp-11-10743-2011, 2011.

13

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-239
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



Van Damme, M., Clarisse, L., Heald, C., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A., Erisman, J., and Coheur, P.: Global distributions,

time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905–

2922, doi:10.5194/acp-14-2905-2014, 2014a.

Van Damme, M., Wichink Kruit, R., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P.-F., Dammers, E., Dolman, A., and Erisman, J.:

Evaluating 4 years of atmospheric ammonia (NH3) over Europe using IASI satellite observations and LOTOS-EUROS model results, J.5

Geophys. Res. - Atm., 119, 9549–9566, 2014b.

Van Damme, M., Erisman, J., Clarisse, L., Dammers, E., Whitburn, S., Clerbaux, C., Dolman, A., and Coheur, P.-F.: Worldwide spatiotem-

poral atmospheric ammonia (NH3) columns variability revealed by satellite, Geophys. Res. Lett., 42, 8660–8668, 2015.

Walker, J. C., Dudhia, A., and Carboni, E.: An effective method for the detection of trace species demonstrated using the MetOp Infrared

Atmospheric Sounding Interferometer, Atmos. Meas. Tech., 4, 1567–1580, doi:10.5194/amt-4-1567-2011, 2011.10

Walker, J. C., Carboni, E., Dudhia, A., and Grainger, R. G.: Improved detection of sulphur dioxide in volcanic plumes using satellite-

based hyperspectral infrared measurements: Application to the Eyjafjallajökull 2010 eruption, J. Geophys. Res., 117, D00U16,

doi:10.1029/2011JD016810, 2012.

Warner, J. X., Wei, Z., Strow, L. L., Dickerson, R. R., and Nowak, J. B.: The global tropospheric ammonia distribution as seen in the 13-year

AIRS measurement record, Atmos. Chem. Phys., 16, 5467–5479, doi:10.5194/acp-16-5467-2016, 2016.15

Whitburn, S., Van Damme, M., Kaiser, J., van der Werf, G., Turquety, S., Hurtmans, D., Clarisse, L., Clerbaux, C., and Coheur, P.-F.:

Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories,

Atmos. Environ., 121, 42–54, doi:10.1016/j.atmosenv.2015.03.015, http://dx.doi.org/10.1016/j.atmosenv.2015.03.015, 2015.

Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. A., Clerbaux, C.,

and Coheur, P.-F.: A flexible and robust neural network IASI-NH3 retrieval algorithm, J. Geophys. Res. - Atm., 121, 6581–6599,20

doi:10.1002/2016jd024828, 2016.

14

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-239
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.


