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Abstract.  This study deals with the problem of identifying atmospheric data that are influenced by local emissions

which can results in spikes in time series of greenhouse gases and long-lived tracer measurements . We considered three

spike detection methods known as coefficient of variation (COV), robust extraction of baseline signal (REBS), and

standard deviation of the background (SD), to detect and filter positive spikes in continuous greenhouse gas time series

from four monitoring stations representative of the ICOS (Integrated Carbon Observation System) European Research

Infrastructure network. The results of the different methods are compared to each other and against a manual detection

performed by station managers.  Four  stations were  selected  as  test  cases  to  apply the spike detection methods:  a

continental rural tower of 100 m height in Eastern France (OPE); a high mountain observatory in the south-west of

France (PDM);  a  regional  marine background site  in  Crete  (FKL);  and a  marine  clean-air  background site  in  the

southern hemisphere on Amsterdam island (AMS). This selection allows to address spike detection problems in time

series with different variability. Two years of continuous measurements of CO2, CH4 and CO were analyzed. All the

methods were found to be able to detect short-term spikes (lasting from a few seconds to few minutes) in the time

series. Analysis of the results of each method leads us to exclude the COV method due to the requirement to arbitrarily

specify an a-priori percentage of rejected data in the time series, which may over- or under-estimate the actual number

of spikes. The two other methods freely determine the number of spikes for a given set of parameters, and the values of

these parameters were calibrated to provide a best match with spikes known to reflect local emissions episodes well

documented by the station managers. More than 96% of the spikes manually identified by station managers  were

successfully detected both in the SD and the REBS methods after the best adjustment of parameter values. At PDM,

measurements made by two analyzers located 200 m from each other allow to confirm that the CH4 spikes identified in

one of the time-series but not in the other correspond to a local source from a sewage treatment facility in one of the

observatory buildings.  From this  experiment,  we also found that  the REBS method  underestimates  the number of

positive anomalies in the CH4 data caused by local sewage emissions. As a conclusion, we recommend the use of the
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SD method, which also appears as the easiest one to implement in automatic data processing, used for the operational

filtering of spikes in greenhouses gases time series at global and regional monitoring stations of networks like that of

the ICOS atmosphere network.

1 Introduction

Continuous measurements of long-lived greenhouse gases (GHG) such as Carbon Dioxide (CO2 ) and Methane (CH4 )

at ground based monitoring stations are commonly used in atmospheric inversions for the estimation of surface fluxes.

The  variability  of  GHG  continuous  time  series  reflects  atmospheric  transport  processes  and  surface  fluxes.  One

difficulty to match these measurements with atmospheric transport model simulations is that they exhibit variability at a

wide range of time scales, which is imperfectly captured by transport models due to their limited spatial resolution and

to uncertain surface emission inventories. In particular, local emissions in the vicinity of stations can have a major

influence on concentrations, generating brief but intense positive perturbations, hereafter referred to as “spikes”. Every

measurement  has  a  specific  spatial  representativeness,  and knowledge of this  information allows for  a  much finer

interpretation of the observation. It is desirable, in continuous GHG time series, to separate the data strongly influenced

by local emissions (fluxes within less than few kilometers) and those influenced by regional (few tens of kilometers)

and large scale (hundreds or thousands of kilometers) fluxes and transport. The influence of local fluxes, in particular of

nearby point sources of emissions should be filtered out prior to the use of the time series in inversion models if the

models do not have the ability to represent it. For instance, a road near a station can emit CO2, causing spikes in the

time series, because this road is not accounted for in the emission inventory used in an inversion.

Having empirical information on the representativeness of continuous GHG time series, e.g a logbook available for

each station, allows for more precise interpretation of the atmospheric measurements in terms of the processes involved

in the observed variability. It is interesting for example to assign the contribution of specific sources (e.g. point sources

of fossil CO2 emissions or biomass burning events) within the local vicinity of the station. Several methods have been

proposed to account for local to regional influences in greenhouse gas observations according to other observables, such

as wind speed and direction (Perez et al., 2012), and tracers like Radon-222 or black carbon (Biraud et al., 2002; Fang

et al., 2015;  Williams et al., 2016). Air-mass trajectory information is also frequently used (Ramonet and Monfray,

1996; Ferrarese et al., 2003; Maione et al., 2008; Fleming et al., 2011; Perez et al., 2012; Gerbig et al., 2006). Other

methods based on a statistical  treatment  of  time series  (Giostra et  al.,  2011;  Ruckstuhl et  al.,  2012) are easier  to

generalize because they require no additional  observable.  A commonly used strategy by modelers,  using transport

models of a typical resolution from 10 to 50 km, consists of systematically removing some periods of the day (e.g. night

time for surface stations, or day time for mountain sites) in order to filter the influence of non-resolved mesoscale

circulations, or vertical transport processes poorly represented by models (e.g. sporadic turbulence in stable or neutral

night-time boundary layers).

The development of regional networks for monitoring greenhouse gases (GHG) and related tracer concentrations leads

to an increasing number of continuous measurement stations, especially in continental areas. For example, the European

ICOS research infrastructure is developing a network of tall towers for very precise GHG measurements across the

European continent. It is thus important to characterize the representativeness of each individual measurement, in order

to separate spikes from local emissions that should not be used in studies aiming at constraining regional fluxes. In this

study, our objective is to compare methods that could be used operationally to remove the contaminations from local

sources at continuous measurement stations. Local contamination may be due e.g. to fossil-fuel based power generation

at  the  station  facility,  local  traffic,  etc.  The  short-term  variations  (few  seconds  to  minutes)  of  greenhouse  gases
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associated to  those of  local  sources  have  rarely been  analyzed,  and  they  have  generally  been time averaged with

consecutive data.  Some studies, though, have been focusing on local emissions on the basis of the detection of  short

term “spikes” (Monster et al.,  2015). Here, “local” refers to emissions at less than few kilometers from the station

causing positive short-term spikes of a few seconds to few minutes superimposed on the signal resulting from boundary

layer mixing, synoptic transport and regional fluxes. We compare here spike detection algorithms for local sources in

greenhouse gases (CO2 and CH4) and long lived tracer time series (CO). The algorithms chosen in this study have been

applied to air pollution data (e.g. ultrafine particles, particulate matter, and nitrogen dioxide NO 2) which have shorter

lifetimes than CO2, CH4 and CO (Brantley et al., 2014). In the case of greenhouse gases, spikes can be caused by local

sources but also by the fast transport of remote emissions. Compared to short lifetime species, spikes in GHG are not

always larger than the variability associated with synoptic scales. For CO2, uptake by local vegetation may occasionally

lead to negative spikes, which will not be evaluated in this study (only positive spikes are considered).

The three spike-detection algorithms: coefficient of variation (COV); robust extraction of baseline signal (REBS); and

standard  deviation  of  the  background  (SD)  are  described  in  section  2,  then  applied  to  two  years  of  continuous

measurements  of  CO2,  CH4 and  CO at  four  stations  representative  of  the  European  network  of  GHG monitoring

stations.  The study will focus more on the SD and the REBS method, since they are fully-automatic and they do not

require any a-priori information for the implementation. The results are discussed in section 3. Wherever possible, the

ability of an algorithm to successfully detect and remove the effects of local sources and transport is verified using

independent information about the presence and position of known local emissions.

2 Methodology

We selected four contrasting atmospheric GHG measurement sites operated by LSCE  (Laboratoire des Sciences du

Climat et  de l'Environnement);  a tall-tower station in France, a high-mountain station in France, a regional marine

background site in Crete, and a marine clean-air site in the southern hemisphere, that provided continuous data from

2013 to December of 2015 (Table 1). Continuous measurements used in this study are averages with one-minute time

resolution, and are processed in near real time by the ICOS Atmospheric Thematic Center (Hazan et al., 2016). The four

stations have been used in regional and global atmospheric inversions to estimate GHG surface fluxes at a regional and

global scales (e.g. Bergamaschi et al., 2017, Le Quéré et al., 2007, Saunois et al., 2016).

2.1 Measurement sites and methods

2.1.1 Measurement sites

Amsterdam Island  (AMS,  37°48’S;  77°32’E).  This  marine background station is operated since 1980 to  monitor

trends of trace gases in the southern-hemisphere mid-latitude clean-air atmosphere.  The observatory is located on the

coast of a small island (55 km²) covered by short grasslands, in the middle of the Indian ocean 3000 km southeast of

Madagascar. Measurements are performed at the Pointe Bénédicte site located north of the island, on the edge of a 55-m

cliff  above  sea  level.  The  air  is  sampled  at  the  top  of  a  20m high  tower.  The  station  contributes  to  the  Global

Atmospheric Watch program (WMO/GAW). The data used to feed the WMO/GAW database and estimate the long term

trends are filtered according to local wind measurements to avoid the influence of CO 2 emissions from the island itself

(Ramonet and Monfray, 1996).
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Finokalia (FKL, 35°20’N; 25°40’E). This coastal station is located on the northern coast of Crete, 350 km south of

mainland Greece. The nearest city is Heraklion with a population of about 150,000 inhabitants, 50 km west of the

station. There are no significant anthropogenic emissions within a circle of 15 km around the station (Kouvarakis et al.,

2000). The station is on the top of a 230 m hill above sea level, and the air is sampled at the top of a 15 m mast. The dry

season from April  to  September is  associated  with strong winds from North and  North-west  (Central  Europe and

Balkans), and the wet season from October to March is associated with air masses from North Africa (South and South-

west winds) in addition to the dominant North-westerly winds. The station is operated by the Environmental Chemical

Processes Laboratory (ECPL) at the University of Crete which also collects aerosol and reactive gases (Hildebrandt et

al., 2010; Pikridas et al., 2010; Bossioli et al., 2016; Kopanakis et al., 2016).

Pic du Midi (PDM, 42°56’N; 0°08'E). This high mountain site is located at 2877m a.s.l on the north west side of the

Pyrenees range in southwest France, 150 km east of the Atlantic Ocean and 200 km west of the Mediterranean Sea. Due

to its high elevation, the station often samples tropospheric air from the Atlantic Ocean, but also air masses from

continental Europe during high-pressure conditions over France (north-easterly winds), or from the Iberian Peninsula

under southerly winds. Upslope winds and meso-scale circulations are frequent especially in summer and early autumn,

bringing boundary layer air mostly from southwest France (covered by intensive croplands and forests) (Gheusi et al.

2011; Tsamalis et al. 2014; Fu et al., 2016).

Observatoire Pérenne de l’Environnement (OPE, 48°33’N; 5°30’E). This 120 m tall tower is located in a rural area at

395 m above sea level in the North-East of France (250 km east of Paris). It  is located in a transition zone between

oceanic westerly regimes, and easterly winds advecting air from Eastern Europe. The station continuously measures air

quality and greenhouse gases since September 2011 as part of the European infrastructure ICOS. Every hour, ambient

air is sampled for 20 min alternatively at heights of 10, 50 and 120 m on the tower (Table 1).

2.1.2 Measurement methods

The  gas  analyzers  used  at  the  four  stations  are  Cavity  ring-down spectroscopy instruments  (CRDS)  (Okeefe  and

Deacon, 1988), namely Picarro/G2401 analyzers at FKL, OPE and PDM with CO2, CH4 and CO, and Picarro/G2301 at

AMS with CO2 and CH4 (Table 1). The measurement protocols used at the four stations are similar and based on ICOS

specification (https://www.icos-ri.eu/documents/ATC%20Public). A calibration using four reference gases is performed

every 3 to 4 weeks. Two more reference gases are analyzed regularly for quality control purposes. The raw data (0.2 to

0.5 Hz) are transferred once per day to a central server and near-real time (NRT) datasets are available within 24 hours.

The NRT data processing (Hazan et al., 2016) includes automatic filtering of raw data based on the physical parameters

of the analyzers (e.g., cavity temperature and pressure), and threshold values for rejection of outliers This last filter aims

to reject aberrant values from the near-real time dataset. It may happen that it rejects an extreme but real event, for

instance due to an urban pollution plume. In such cases, the data will be validated afterwards by the station manager.

Indeed, after thisAfter the automatic processing, the station managers are invited to validate or invalidate data manually

using a specific software developed by the ICOS Atmospheric Thematic Center. For each data manually flagged as

invalid,  a  reason  must  be  provided  (e.g.  leakage,  maintenance,  local  traffic).  This  procedure  does  not  ensure  the

systematic rejection of spikes in the data from local / regional processes.

Meteorological  measurements  are  also  performed at  the  four  stations with  barometric  pressure,  temperature,  wind

speed, wind direction and relative humidity. Wind speed and direction are measured using 2D or 3D ultrasonic sensors

installed at the same height of the greenhouse gas measurements. The sensors are adapted to the local weather, for

instance at PDM (2877 m a. s. l) the sensor is heated to avoid icing.
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2.2 Spike detection algorithms

Three algorithms were tested to detect positive short-duration GHG spikes lasting from a few seconds to a few minutes,

using time series of one-minute averaged mole fractions of CO2 (as illustrated in the Supplement, Figure S1), CH4 and

CO. The three methods presented in this section, are commonly based on the calculation of the local standard deviations

of measurements. A spike is detected when the difference between a previously determined background and the current

data value is  above a defined threshold.  We will  present  in  this  section the corresponding threshold for  the three

methods.

CO2, CH4 and CO 1-min data were processed using R version 3.1.3 (R Core Team,2015) together with packages openair

(Carslaw and Ropkins, 2015), IDPmisc (Locher et al., 2012), and ggplot2 (Wickham et al., 2015) using the three spike

detection algorithms.

2.2.1 Coefficient of variation (COV) method

The coefficient of variation (COV) method (Brantley et al., 2014) is a modified version of the method presented by

Hagler  et  al.  (2010).  It  was  developed  to  analyze  data  from  a  mobile  laboratory  measuring  ultrafine  particle

concentrations near a road transect (Brantley et al., 2014) for peak detection of carbon monoxide which was used as an

indicator of the passage of vehicles. In our application we calculate the COV coefficients for CO2, CH4 and CO time

series following two steps. First, the standard deviation of a moving five minute time window (with one window for

each  1-minute  data)  is  calculated  (two minutes  before  and  after  each  1-minute  data  point).  Second,  the  standard

deviation of each time window is divided by the mean value of the complete time series. The 99th percentile of the COV

coefficients is used as a threshold above which a 1-min data is considered to be part of a spike. We also identified as

contaminated data all data recorded 2 minutes before and after each contaminated data. The COV method is sensitive to

the choice of threshold percentile. In the Supplement we illustrate in Figure S2-A an example of spike detection using

the COV method during a CO contamination episode known to be affected by a local fire. One important feature of the

COV algorithm, compared to the other  methods, is  the a-priori  definition of  the percentage of  data to be filtered

(threshold percentile), meaning that the number of spike data is not automatically detected.

2.2.2 Standard deviation of the background (SD)

The SD method (Drewnick et al., 2012) considers that a time series is a combination of a smooth signal superimposed

with a fast variable signal. The variable signal component in our case is related to local emissions causing spikes. To

determine the variability of background concentration levels we calculated the standard deviation (σ) of data falling

between the first and the third quartile of the entire data set. A sensitivity test with various quantile ranges is presented

in section 3.1. We then select  the first available data point, called Cunf (un-flagged data, example in the Supplement

Figure S2-B) assuming that it is not in a spike. The next data point in the time series C i is evaluated with respect to Cunf,

spikes are defined by data values higher than a threshold defined as Cunf plus an additive value: α∗σ+√n∗σ (e.g.

the red data point in  the Supplement Figure S2-B), where α is a parameter to control the selection threshold, and n is

the number of points between Cunf and Ci . The value of α depends on the time-series variability. A sensitivity analysis on

the influence of α is  presented in section 3.1. We set  a  default  value of  α=1 for  CO2 and  CH4,  and α=3 for  CO
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(Drewnick et al., 2012). The lower value for CO2, and CH4 is justified in section 3.1. The integer n contains a temporal

information about the evolution of the time-series. Indeed, while identifying a spike C i, the next data point is evaluated

against Cunf using an increased threshold to take in consideration the variability of the baseline during the spike event.  If

Ci is lower than the threshold from equation (1), it is considered as ‘non-spike’, and becomes the new reference value

Cunf. The following data will then be compared to this updated Cunf.

Ci ≥ Cunf +α∗σ+√n∗σ   (1)

The SD method was applied over one-week time windows, i.e. the standard deviationover σ a week is used for

threshold calculation. Using a longer period (e.g. one year) would give more weight to the seasonal and long-term

variabilities which are not relevant to identify short term spikes using the one-year standard deviation.

2.2.3 Robust extraction of baseline signal (REBS)

The REBS method (Ruckstuhl et al. 2012) is a statistical method based on a local linear regression of the time-series

over a moving time-window (characterized by a duration called the “bandwidth”), to account for the slow variability of

the baseline signal, while outliers lying too far from the modelled baseline are iteratively discarded. The bandwidth h

must be wide enough to allow for a sufficiently low fraction of outliers within h. The REBS code used here is based on

the  rfbaseline application developed in the IDPmisc package (Locher, et al.,  2012) in R software. It  is a modified

version  of  the  robust  baseline  estimation  method  developed  to  delete  baseline  from  chemical  analytical  spectra

(Ruckstuhl et al., 2001). The REBS method was applied at the high-alpine Jungfraujoch site (Switzerland, 3580 m a.s.l.)

and has been proven robust to estimate the background measurements of greenhouse gases (Ruckstuhl et al. 2012). The

REBS  method  considers  that  greenhouse  gas  time-series  are  composed  of  a  background  signal,  plus  a  regional

contribution which may also include local effects (spikes) and measurement errors. The main difficulty is to correctly

define the baseline signal  of the measured time-series.  To achieve this goal,  the choice of the bandwidth value is

important.  In  the  Jungfraujoch  study,  the  baseline  signal  was  defined  as  the  smooth  curve  retrieved  from REBS

technique (Ruckstuhl et al. 2012) using a bandwidth of 90 days, in order to distinguish the contribution of regional

emissions that add to the slow seasonal variability. Since, in our study, the targeted spikes last few seconds to few

minutes, we chose to calculate the baseline using a bandwidth of 60 min to detect spikes of a few minutes (maximum 5

minutes).  The threshold for  spike  detection  in  REBS is  based  on  the  calculation  of  a  scale  parameter β which

represents the standard deviation of data below the baseline curve, called ĝ(t i) . All measurements Y (t i) that

satisfy Y (t i)> ĝ(t i)+ β∗γ are  classified  as  locally  contaminated  (illustration  in  the  Supplement  Figure  S2-C).

β is a parameter to adjust the filtering strength. Ruckstuhl et al. (2012) set β =3 for the detection of polluted data.

For our purpose, a sensitivity test with different values of β is carried out in section 3.1.
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3 Results

3.1 Optimization of the SD and REBS methods

3.1.1 Sensitivity to the parameters of the SD method

We conducted sensitivity tests in order to evaluate the influence of the two parameters α and σ used in the SD method.

For α we tested values ranging from 1 to 3. Here, we present only the results for α=1 and α=3. For σ we compared the

results calculated with σ based on 50% of one-week data, data between the first and third quartile (scenario σ b), and for

all the data of the week (scenario σt). We studied four configurations (two values of α with σb or σt) on one-minute data

every week at the four stations. Figure 1 shows an example of spikes detected by SD at FKL on December 16, 2014,

corresponding to a known waste-burning episode reported by the station manager. The station logbook mentions waste

burning occurring nearby the station between 6:30 am and 8:30 am, shown by a purple bar in Figure 1. The blue area in

Figure 1 shows the CO data between first and third quartile leading to a σb = 3.6 nmol.mol-1. Considering all the data,

we obtain a three time higher standard deviation: σt = 12.5 nmol.mol-1. The SD method with α=3 and σb=3.6 nmol.mol-1

selects two 1-min data points as spike as illustrated by the orange dots falling within the observed fire episode in Figure

1. With α=3 and σt=12.5 nmol.mol-1, the method fails to detect any spike, indicating that the threshold value was too

high.  With α=1 and σb the SD method selects  44 additional  1-min spikes  compared  to  α=3 (data not  reported as

contaminated  by  the  station  manager).  In  both  cases  (α=1  or  α=3)  and  σ t lead  to  a  very  high  threshold,  and  an

underestimation of the number of spikes detected, since σt includes the spike variabilities. Based on this sensitivity test

against a known local emission episode, we definitively rejected the use of σt  scenario.

Table 2 represents the percentage of contaminated data detected over one year at  the four sites,  in the four tested

configurations. As can be seen, using all 1-min data to calculate σ t lead to a higher threshold and consequently to less

data detected as contaminated. On average over the four stations and the three species, switching from σb to σt decreases

the percentage of spikes by a factor 15 ±16 (Table 2). Setting α=3 increases the threshold and also decreases the number

of spikes by on average a factor of 5 ±7 (Table 2). The parameter α is related to the variability of the time-series. Since

our  study aims to  provide recommendations for  automatic data  processing  of  a  monitoring network like ICOS in

Europe, we want to keepideally the same set of parameters can be kept for all the stations of the network for each

species. However, all the tests conducted in the present study have shown that it was not optimal to use the same

parameter for the CO,  time series compared to CO2 and CH4 time seriesones. Setting a lower α for CO lead to the over-

estimation of the number of spikes in the time series. This must results from the different variabilities of those trace

gases. For instance, the ratio between hourly and minute scale variabilities (characterized by standard deviations) for the

sites used in this study, is on average two times smaller for CO compared to CO2 and CH4. As recommended in Brantley

et al. (2014) and Drewnick et al. (2012), we decided to keep α = 3 for CO, and set α = 1 for CH4 and CO2 because of

their lower variability.

3.1.2 Sensitivity to the parameters of the REBS method

In order to evaluate the sensitivity of spikes to the parameter, β  we tested values of β ranging from 1 to 10. In

this sutdy, we present the REBS method using the default value β =3 as  proposed by (Ruckstuhl et al., 2012) in

Junfraujoch, compared with the optimal value for our purpose β =8. The resulting spike selection at FKL (during a

local fire episode) is shown in Figure 2. By setting β =3, the REBS method detects the spike during the episode but
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it also finds other events which do not appear to be associated with evident contaminations (Figure 2). With β =8,

the REBS correctly detects spikes during the fire episode (orange points in Figure 2). We further compared these two

values of β at the four stations every week for the year 2015 (from January to Decembre), and report spike detection

statistics in Table 3. About 10 times more spikes for CO, and 5 to 7 times more for CH 4 and CO2 were detected by the

REBS method with β =3 compared to β =8. Using β =3, we detected more than 2% of spikes for all species

and up to 7% for CO2 at AMS. Using β =8 these percentages are reduced to 0.2% and 1.5%, respectively (Table 3).

Indeed, β = 8 provides results in better agreement with spikes manually reported by site managers. Spike detection

statistics for β ranging between 1 and 10 are presented in table S1, and additional illustrations for β =1, 4, 8, and

10 are in figure S3.

Based on these sensitivity tests for the SD and REBS parameters, and the a prior estimation of the percentages of spikes

manually detected by site managers, we apply the SD method with σb and α=3 for CO, and with σb and α=1 for CO2 and

CH4. For the REBS method we use β =8.

3.2 Statistics of the three spike detection methods

The statistics for local spike detection with the three methods are given in Table 4. Due to the lack of completeness of

the reports by the staff about potential local contaminations, we cannot compare those average statistics to the manual

spike detection. With COV we detect an average of about 2% of spikes with the 99 th percentile threshold for all stations

and species (section 2.2). With the methods SD and REBS more variable percentages of spikes are found depending on

the trace gas variabilities at each station. The percentages of contaminated data range from 0.1% for CO 2 at AMS, to 7%

for CH4 at PDM. The value of 7% detected for CH4 at PDM is higher than at all other sites / species, and reveals the

influence of a source of methane on site (see below and next paragraph). For OPE, we found a significant percentage of

spikes (between 1 and 2%) for all species, which may be explained by the higher number of local emission sources

compared to other stations located in more pristine environments. At FKL and AMS we obtain different percentages of

spikes between SD and REBS for CO2. In fact, we assume that this difference can be related to the sea land circulation,

when winds turn, leading to a fast change in atmospheric concentrations. For FKL, AMS, and PDM, the percentage of

spikes found with the SD and REBS methods vary by around 1% with the exception of CH4 at PDM where both SD and

REBS detect high percentages of spikes (7% for SD method and 2.3% for REBS method). This is not expected for a

high mountain station. The results of a field campaign organized at PDM in 2015 (section 3.3) revealed the influence of

a local water treatment facility at the station, producing CH4 (see section 3.3).

Generally,  the  methods  SD  and  REBS  automatically  detect  spikes.  However,  the  COV method  requires  a  prior

knowledge of data sets and the approximate number of data to be filtered. Because of this limitation for automatic spike

detection we have discarded the COV method from further tests for the selection of the most reliable method for spike

detection.

3.3 Comparison of SD and REBS methods to detect CH4 spikes at the PDM clean-air mountain station

In this section we use field campaign data involving two instruments at PDM to study the efficiency of the SD and

REBS methods. As noted above, the PDM CH4 record shows many spikes (duration of a few minutes) superimposed on

low frequency variations in the background signal (time scales from hours to days). Such spikes were not observed in
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the CO2 monitoring with the same analyzer. The SD method detects 20 times more spikes for CH4 than for CO2 at PDM

ICOS site (Table 5). Looking for all possible local methane emissions at the site, we identified a small sewage treatment

facility  located  about  20  m  below  the  air  intake  of  the  analyzer  (called  AN-1)  to  be  responsible  for  local  CH4

production. A test campaign was then organized between July and August 2015 with a second analyzer (called AN-2)

installed in another building at the opposite side of the station platform, 200 m away from the location of AN-1 (a

picture of the location of the two buildings is presented in the Supplement Figure S4) . The two analyzers were installed

to measure simultaneously CH4 and CO2 molar fractions from first of July to 31 th of August. The CH4 and CO2 time

series from analyzers AN-1 and AN-2 running in parallel are presented in Figures 3 and 4.

We applied the SD and REBS methods to the CH4 and CO2 time-series from both analyzers. For CH4, analyzer AN-2

located away from the sewage facility shows much fewer spikes than AN-1. For instance, between early July and late

August 2015, there is more than 12% of contaminated data with the SD method, and 3% with the REBS method in the

AN-1 record, compared to only 0.8% with SD and 0.7% with REBS for the AN-2 instrument (table 5). Considering that

the two analyzers are measuring ambient air sampled 200 m apart, this large difference is clearly due to the local

emission from the sewage facility. Interestingly, for CO2 we detect more spikes in AN-2 than in AN-1 (Figure 4). More

than 1% of CO2 spikes were found in the AN-2 record compared to 0.5% for AN-1 (Table 5, Figure 4). This is explained

by the proximity of a diesel generator to AN-2, although this generator is used only a few hours every month (in

particular during electrical storms). Both SD and REBS detect the same CO2 spikes in both AN-1 and AN-2 time-series

(Figure 4).

Running two analyzers in parallel allowed us to understand the unexpected high percentage of CH4 spikes in the time-

series at Pic Du Midi. Both SD and REBS confirm the frequent contamination of the CH 4 time series of AN-1 since

2014, and show a good ability to detect the spikes, yet with significant differences regarding the percentage of data

detected as contaminated. Considering that the AN-2 analyzer provides a less contaminated CH4 time series, we have

used this experiment to compare between the two methods and select which one performs better for CH4 spikes at PDM.

Figure 5 and 6 represent the CH4 and CO2 measurements of AN-1 and AN-2. Black data points are the sampled data

while the green ones are the filtered data using the SD (A) and REBS (A') methods. For AN-2, CH 4 concentrations

(black data point in Figure 5) rarely exceed 1950 nmol.mol-1, whereas for AN-1, it exceeds 2000 nmol.mol-1 (black data

point), and occasionally reached almost 2200 nmol.mol-1 (unexpectedly high value for a clean-air mountain station). SD

and REBS methods both detect all contaminated data that range between 1980 and 2200 nmol.mol -1  for AN-1. The

differences  between  the  two  automatic  methods  are  more  important  for  data  that  are  below  1980  nmol.mol-1.

Furthermore, the filtered data (green data point) using the SD method better fits the 1:1 correlation line with the less

contaminated analyzer than the REBS method (Figure 5). The REBS method underestimates the lower part (foot) of the

spikes (contaminated data that range between 1900 and 1980 nmol.mol-1, Figure 3-A' AN-1). On the other hand, for CO2

the two methods detect nearly the same spikes, as shown in Figure 4, and provide a similar filtered time series (green

data point in Figure 6). How can we explain the insufficient performance of the REBS method to detect the lower part

of  the  CH4 spikes?  This  method  defines  spikes  using  the  estimated  baseline  (Ruckstuhl  et  al.  2012).  When  the

population  of  contaminated  data  is  high,  the  baseline  is  flawed  due  to  the  influence  of  spikes,  and  the  baseline

determination  will  be  overestimated.  In  Figure  5,  we  can  clearly  notice  the  missed  detection  of  a  number  of

contaminated data when using the REBS method, due to the high values of the baseline. The SD method, despite its

simplicity  thus  appears  to  correctly  detect  most  of  the  local  spikes  at  PDM,  even  if  a  slight  underestimation  of

contaminated CH4 data remains even after data filtering (deviation from the 1:1 line). This underestimation is related to

the spikes residues (spikes foot that persist after filtering).
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3.4 Comparison between automatic and manual spike detection

In this section we analyze how SD and REBS methods detect spikes of CO 2, CH4 and CO, that were independently

identified by the station staff and related to a known local source of contamination at FKL and PDM.

At FKL the contamination events reported by the site manager are associated with local fires nearby the station. The

technical staff recorded dates of burning (plant residues from nearby grazing land) which could lead to significant

emissions of trace gases, especially CO and CO2. It should be noted, however, that this information is not exhaustive in

a sense that the person in charge does not necessarily have information on all burning events. We have matched the

trace gas time series with the logbook information showing 17 days with local burning events between 2014 and 2015.

We applied the SD and the REBS methods over one-week time windows containing each burning event. First, we run

the algorithms separately on the three species (CH4, CO2, and CO). Then, if the algorithm detects a spike in at least one

species, we consider as spikes data for all other species as well. In the case of spike detection related to waste burning

events we can use the CO measurements as a reference. Several studies demonstrate that fires plumes lead to strong

enhancements of CO concentrations in the atmosphere (Forster et al., 2001). As an example, the CO spikes during local

fire episodes can exceed 100 nmol.mol-1 in less than one minute at  FKL. In the Supplement,  Figure S5 shows an

example of the SD method applied on a fire episode between 03:00 pm and 04:00 on November 6 th, 2014. The spike

occurred simultaneously for the three species CO, CO2 and CH4, with a similar pattern. The same spike was identified

by the station manager, demonstrating the ability of an automatic method to detect a real local contamination event.

The SD method and REBS method were able to detect the 17 events associated with local fires. Figure 7-A represents

the number of contaminated data (minute averages) detected by the automatic methods (SD and REBS) and manual

flagging by the station staff. The numbers of selected data are split into three concentration ranges. The two automatic

methods  and  the  manual  flagging  detect  the  same number  of  contaminated  data  for  CO classes  higher  than  400

nmol.mol-1. We have an excellent agreement for the spikes with the highest concentrations. For the low concentration

spikes (< 400 nmol.mol-1), the automatic methods are less selective than the manual flagging. In Figure 8 we show

another example of contaminated data detected by manual flagging at FKL, compared to spikes retrieved by the SD and

REBS methods. When the difference between uncontaminated (identified as reference) and spike data is not significant

compared to a certain standard deviation threshold, the methods that may thus fail. The data highlighted by the blue

circle  in  Figure  8  gives  an  example  of  when  spikes  identified  by  automatic  methods  diverge  from  the  manual

identification. Such data is either close to the baseline REBS selection (Figure 8 C), or close to the C unf value for the SD

method (Figure 8 B). Those are the cases where the automatic methods may underestimate the contaminated data,

especially spike foot. At this point it is important to note that the person in charge of data flagging selects spikes using a

known period (from a starting to an ending time).

A second comparison study between automatic methods and manual detection has been performed at PDM using the

CO time series from December to February 2014. During winter, the station experienced several snowfall episodes and

snow was removed with a diesel powered snow blower. This operation influenced the GHG concentrations and leads to

sharp spikes easily observed in the CO time series (Supplement Figure S6). The site managers manually eliminated all

such data. For comparison, (as illustrated in the Supplement Figure S6) we display the spikes detected from December

to February 2014 by the SD and the REBS methods.  Most of the spikes are successfully detected by the SD and the

REBS methods. Figure 7-B represents the number of contaminated data detected by SD in red and REBS in green, and

manually flagged in blue. Similar to the FKL local fires, the SD and the REBS methods detected the same number of

spikes as the manual selection for high concentrations. 857 contaminated data are detected by the SD method (same as

the PI) for concentrations higher than 400 nmol.mol-1, and 828 data are detected by the REBS method. The main

difference between the automatic and the manual flagging methods are related to the lower part of the spikes. For 2861
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data (CO < 400 nmol.mol-1) flagged manually by the PI station, the SD method detects 2270 data points whereas the

REBS method detects only 1799 data points. In fact, for moderate spikes the SD method selects 70% of contaminated

data according to the PI whereas the REBS method retrieves only 60%. We have also calculated the number of events

not considered by the manual flagging and considered by the automatic methods. For a total of 3402 data detected by

the SD method, only 211 data were not considered by the PI, which represents 0.25% on the whole period. For the

REBS method, 133 data out of 2981 were not detected by the PI (nearly 0.15%). However, these statements should be

used with caution since the manual spike detection information is not exhaustive, and the person in charge does not

necessarily have information on all contaminated events.

3.5 Influence of the spike detection on hourly averages:

In  this  section we estimate the  impact  of  the  spike detection on data used  for  atmospheric inversions,  which  are

typically  hourly  or  half-hourly  averages.  For  this  purpose  we have  calculated  the  differences  between the  hourly

averages of the filtered and non-filtered time-series. In table 6, we present the number of hours in which at least one-

minute data for each species was filtered. We classified the results into three intervals.  For CO2, the first  interval

represents the values lower than 0.5 µmol.mol-1, the second interval is for differences between 0.5 and 1 µmol.mol -1,

and the third stands for the higher differences (values more than 1 µmol.mol -1). For CH4 and CO we set the first interval

for values lower than 5 nmol.mol-1, the second interval represents the data between 5 and 10 nmol.mol -1, and the third

for differences higher than 10 nmol.mol-1. Most of the differences between filtered and non-filtered hourly data vary

between 0 and 0.5 µmol.mol-1 for CO2, and between 0 and 5 nmol.mol-1 for CH4 and CO. For CO2 at the AMS station,

the SD method detects 1454 one minute data points (table 4), which occur in 104 hours during the three years of

measurements. 62% of those hours are characterized by a difference up to 0.5 µmol.mol -1, and 18% show more than 1

µmol.mol-1 of difference. For CH4 measurements  in AMS, the 8801 contaminated data points detected by the SD

method (table 4) occur during only 21 hours, this modifies the hourly averages by 5 nmol.mol -1 as a maximum. For four

sites, we notice similar effect on the hourly averages. Most of the impacted hours are characterized by a difference

within the first interval (0.5 µmol.mol-1 for CO2; 5 nmol.mol-1 for CH4 and CO). However, for  OPE we observe higher

differences with 53%, 36% and 47% of the impacted hours in the highest interval respectively for CO2, CH4 and CO.

This feature is probably related to the higher number of the nearby local emission sources nearby OPE site compared to

the other  stations which are located in more pristine environments.  Figure S7 shows a decrease of the number of

impacted hours for higher intervals (the same pattern as the three other stations). Overall, the aggregation of filtered

measurements at the hourly time scale showed a relatively weak impact of the filtered data for background sites, but

more significant effect for stations located closer to local sources.
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4. Conclusion

The recent increase in the number of studies that have been applied to study the spatial representativeness of GHG ob -

servations demonstrate the need to define efficient and reliable methods for the identification spikes related to local con-

tamination sources. Three methods based on the standard deviation calculation were compared in order to provide an

objective algorithm for the GHG data spike detection.

We addressed the problem of identifying concentration spikes of a few minutes duration in GHG continuous time-se -

ries, by applying automatic detection methods (COV, SD and REBS) previously used for atmospheric pollution but not

systematically for GHG time series. Stations with different regimes of variability where local emission sources are iden-

tified without ambiguity (engines / waste near the station buildings, or fires nearby) are chosen to evaluate the perfor-

mance of the automatic methods against spikes manually identified by station managers. The COV algorithm can be

considered as a semi-automatic method since it requires an a-priori choice of a percentage of data rejected as spikes. We

tested the COV method with a percentage of 1% of spike data for all species and for all stations. This limitation made

the COV method less flexible and informative for universal automatic spike detection across different sites. For the two

fully-automatic methods (SD and REBS) we performed several sensitivity tests in order to recommend the best set of

parameters for our 4 chosen stations which are considered to be representative of most ICOS stations (disregarding

those located in sub-urban environments).

The application of the automatic methods on contaminated time-series at the Pic Du Midi observatory showed the abil -

ity of SD and REBS to detect real spikes on the CH4 time series caused by the sewage treatment facility of the observa-

tory. Nevertheless, significant differences regarding the rejection percentage were noticed between the methods. Both

methods have a tendency to unduly keep a certain fraction of the spike base (lowest concentrations in spikes). REBS is

worse than SD in this respect. In the REBS method, when the percentage of spikes is high, the baseline determination is

biased toward high concentrations, leading to underestimate spike anomalies above this baseline.  However, the SD

method correctly detects most of the contaminated data. The comparison between SD, REBS and the manual flagging

methods showed good agreement with an overall percentage of 70% of successful spike data detection for SD, and 60%

for REBS, at two stations (FKL and PDM) where local contaminations are well identified by the local staff. These two

automatic algorithms detect short-term spikes, allowing for a more consistent and automatic filtering of the time series

even if they identify less contaminated data than by manually flagging. The estimation of the impact of the spike detec -

tion on data used for atmospheric inversions showed a relatively weak impact of the filtered data for background sites,

and a more significant effect for stations located closer to local sources. However, even if the implementation of an au -

tomatic algorithm can successfully identify short term spikes due to local contaminations, it is important to note that the

priority in the selection of a background site should be to avoid as much as possible the occurrence of such spikes. In

the case where the spikes can not be totally avoided, it is then important to try to understand their cause, and look for

poissble actions to minimize them. The modification of the air inlet at the Pic du Midi, described in this study, is a very

good example of what can be done once the origin of spikes is understood.

The SD method is found to be efficient and reliable for the purpose of spike detection. It has been proposed for opera -

tional implementation in the ICOS Atmospheric Thematic Center Quality Control (ATC-QC) software to perform daily

spike detection of the near-real time dataset of continuous ICOS stations. The first step will be to run the SD method in

a test mode over all ICOS stations and compare with manual detection when available, in order to set optimal values of

parameters. This analysis can be complemented with wind speed and direction data in order to possibly attribute spikes

to fixed local sources.
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Site Measured
spices

Instrument Longitude Latitude Ground
level

(m asl)

Sampling
hight

(m agl)

Starting
date

End
date

Pic du Midi (PDM) CO, CO2,
and CH4

Picarro /
G2401

0°08'E 42°56’N 2877 10 2014-05-
07

2015-
12-31

Observatoire
Pérenne de

l’Environnement
(OPE)

CO, CO2,
and CH4

5°5'E 48°55’N 395 10, 50 and
120

2013-03-
07

Finokalia (FKL) CO, CO2,
and CH4

35°20’ E 25°40’ N 230 15 2014-06-
05

Amsterdam (AMS) CO2, and
CH4

Picarro /
G2301

37°48’ E 77°32’ S 55 20 2013-01-
01

Table 1: Measurement sites characteristics
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Site Spices
Contaminated data percentages (%)

σb scenario σt scenario

α =1 α =3 α =1 α =3

AMS CH4 0.03 0.01 0.006 0.003

CO2 0.07 0.03 0.01 0.006

FKL
CH4 0.2 0.02 0.02 0.002

CO2 0.1 0.04 0.01 0.002

CO 3 0.4 0.3 0.07

OPE
CH4 0.7 0.3 0.06 0.01

CO2 0.8 0.04 0.02 0.01

CO 0.9 0.4 0.1 0.02

PDM
CH4 6 2 1 0.1

CO2 0.2 0.05 0.02 0.005

CO 3 0.1 0.04 0.004

Table 2: Sensitivity of SD method spike detection for two sets of α (α=1 and α=3), and for two range of background data 

interval (σb and σt scenario) for the four stations and all species.
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Sites Species
Contaminated data percentages (%)

β =3 β =8

AMS CH4 2.3 0.2

CO2 6.9 1.5

FKL CH4 4.8 0.8

CO2 4.2 0.6

CO 1.2 0.1

OPE CH4 1.8 0.5

CO2 1.6 0.5

CO 1 0.3

PDM CH4 7.8 2.2

CO2 5.2 0.8

CO 1.5 0.2

Table 3: Sensitivity of REBS spike detection method for two sets of β ( β =3 and β =8) for the four stations and all 

species for the year 2015.
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Sites species

SD REBS COV

Percentage

(%)

Number of

detected

data

Percentage

(%)

Number of

detected

data

Percentage

(%)

Number of

detected

data

AMS CH4 0.6 8801 0.2 3318 2.1 29315

CO2 0.1 1454 1.7 24210 1.8 24672

FKL CH4 0.3 2096 1 7680 2 14657

CO2 0.1 1052 0.6 4831 1.9 14295

CO 0.2 1618 0.1 1002 2.1 15617

OPE CH4 1.8 5473 1 2987 1.3 3864

CO2 1.1 3296 1 2749 1.5 4186

CO 1.3 3777 1.1 3120 1.4 4118

PDM CH4 7 56548 2.3 19056 1.8 14243

CO2 0.3 2567 1 8757 1.9 15618

CO 0.2 1970 0.2 1348 2 16603

Table 4: percentage (rounded to one decimal) and number of contaminated data detected by SD, REBS, and COV method 

overall stations (AMS, FKL, OPE and PDM) and for the three species CO, CO2 and CH4.
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ICOS site TDF site

SD REBS SD REBS

CH4 Percentage (%) 13 3 0.8 0.7

Number of

contaminated data

10244 2396 684 602

CO2 Percentage (%) 0.2 0.5 1.1 1.4

Number of

contaminated data

158 390 849 1050

Table 5: percentages and number of contaminated data detected by SD, REBS methods for CO2 and CH4 at PDM.
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CO2 (µmol.mol-1) CH4 (nmol.mol-1) CO (nmol.mol-1)

]0-0.5[ [0.5-1[ >=1 ]0-5[ [5-10[ >=10 ]0-5[ [5-10[ >=10

AMS 64 (0.3%) 21 (0.1%) 19 (0.1%) 21 (0.1%) 0 0

FKL 133 (1%) 12 (0.1%) 5 (0.04%) 134 (1%) 11 (0.1%) 7 (0.05%) 218 (1.7%) 8 (0.06%) 8 (0.06%)

PDM 522
(3.7%)

30 (0.2%) 16 (0.1%) 4696
(34%)

741
(5.3%)

623
(4.4%)

518 (3.7%) 4 (0.03%) 1 (0.01%)

OPE 36 (0.3%) 24 (0.2%) 69 (0.5%) 53 (0.5%) 10
(0.08%)

36 (0.3%) 107 (0.9%) 20 (0.2%) 111
(0.9%)

Table 6: Classification of the number of hours in which the SD method filtered at least one-minute data point for CO, CO2,
and CH4 at the four sites. The intervals represent the differences between filtered and the non-filtered time-series averaged at
a hourly scale in (µmol.mol-1) for CO2 and (nmol.mol-1) for CO, and CH4. The values in brackets represent the percentages of

the impacted hours on the whole time-series.
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Figure 1: comparison between two sets of α parameter for SD method. Red color represents detected spikes for α=1, orange 
data are the detected spikes for α=3. The blue area shows the data between the first and the third quartile (q1=0.25, and 
q2=0.75).
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Figure 2: comparison between two sets of ß parameter for REBS method. Red represents detected data for β =3, orange 

are the detected data for β =8, applied on FKL measurement 6th of November 2014.
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Figure 3: AN-1 CH4 measurement at T55 building for A and A’, and AN-2 TDF building for B and B’. Black data points are 
the retained measurements, red points represent the flagged using SD method for A and B, and REBS method for A’ and B’
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Figure 4: AN-1 CO2 measurement at T55 building for A and A’, and AN-2 TDF building for B and B’. Black data points are 
the retained measurements, red points represent the flagged using SD method for A and B, and REBS method for A’ and B’
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Figure 5: plots of CH4 measurements of AN-1 against AN-2. All data are in black, and the green points represent the retained

data using SD method for A and REBS method for A’

Figure 6: plots of CO2 measurements of AN-1 against AN-2. All data are in black, and the green points represent the retained 

data using SD method for A and REBS method for A’
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Figure 7: Number of flagged CO measurements using manual method (blue), SD method (red), and REBS method (green) for

Finokalia (A) and Pic Du Midi (B) .
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Figure 8: Example of a spike detection using manual (A), SD (B), and REBS (C) methods during a known biomass burning 

event at Finokalia.
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