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Abstract. We construct a 9–year data record (2007-2015) of the tropospheric specific humidity 21 

using Global Positioning System radio occultation (GPS RO) observations from the 22 

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. 23 

This record covers the ±40o latitude belt and includes estimates of the zonally averaged monthly 24 

mean specific humidity from 700 hPa up to 400 hPa. It includes three major climate zones: a) the 25 

deep tropics (±15o), b) the trade winds belts (±15–30o), and c) the subtropics (±30–40o). We find 26 

that the RO observations agree very well with the European Center for Medium-range Weather 27 

Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective analysis for 28 

Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by 29 

capturing similar magnitudes and patterns of variability in the monthly zonal mean specific 30 

humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR 31 

specific humidity climatologies differ by less than 15% (depending on location and pressure 32 

level), primarily due to differences in the retrieved refractivity. In the middle-to-upper 33 

troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data 34 

sets, and UCAR, ERA-Interim, and MERRA are in very good agreement lying in between the 35 

JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior 36 

of discrepancies, and we speculate that this might be due convection and entrainment. 37 

Conclusively, the RO observations could potentially be used as a climate variable, but more 38 

thorough analysis is required to assess the structural uncertainty between centers and its origin. 39 

 40 

 41 

 42 

 43 
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1 Introduction 44 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 45 

[Flato et al., 2013] reported that identifying the vertical structure of humidity is subject to great 46 

uncertainty, because dynamical processes that cannot be captured by one sensor alone drive 47 

water vapor. Hence, we ought to quantify and understand the degree of agreement of the water 48 

vapor concentration throughout the vertical extent of in the troposphere among different sensors, 49 

in order to improve the representation of the Earth’s atmospheric humidity content that is key to 50 

predicting future climate [Hegerl et al., 2015]. 51 

To-date, ground- and space-based platforms, reanalyses, and model simulations do not 52 

provide precise knowledge of the water vapor’s concentration, or its trends over time, in multiple 53 

regions of the Earth’s atmosphere [Sherwood et al., 2010]. This is because of a combination of 54 

different reasons that include: (a) sampling bias due to cloudiness, deep convection, or surface 55 

emissivity variations; (b) biases due to limited local time coverage, or random observations 56 

versus volume-filling scans; (c) coarse spatial resolution, and (d) misrepresentation of the 57 

planetary boundary layer’s (PBL) moisture content [Hannay et al., 2009] that induces errors in 58 

the lower-to-middle troposphere moist convection. 59 

In particular, infrared (IR) space-based platforms have a relatively coarse vertical 60 

resolution (e.g., 2.0–3.0 km), are prone to cloud contamination [Fetzer et al., 2006], and tend to 61 

be biased low over wet and dry humidity extremes [Fetzer et al., 2008; Chou et al., 2009]. The 62 

use of IR observations in the lower troposphere still remains a challenge, due to the decreasing 63 

information content and the difficulty of detecting low-cloud contamination [Schreier et al., 64 

2014]. Space-based microwave (MW) limb sounders, despite having low sensitivity to 65 

precipitation and clouds, have a coarse vertical resolution (e.g., 3.0 km in case of the Microwave 66 
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Limb Sounder (MLS) [Waters et al., 2006]) and are sensitive to the a–priori solution that could 67 

cause unsuccessful limb-viewing radiance retrievals (e.g., of up to 30% in the case of MLS 68 

[Read et al., 2007]) under clear sky but moist conditions. Heavy cloudiness, especially in the 69 

middle-to-upper troposphere can also introduce biases in the upwelling MW radiation from water 70 

vapor due to the presence of ice particles that can contaminate the MW retrievals [Fetzer et al., 71 

2008]. Global Circulation Models (GCMs) do not properly represent the middle troposphere 72 

moist convection [Sherwood et al., 2004; Holloway and Neelin, 2009; Frenkel et al., 2012], and 73 

large discrepancies in the tropospheric humidity among different reanalyses [Chen et al., 2008] 74 

and among reanalyses, models, and satellite observations [Chuang et al., 2010; Jiang et al., 75 

2012; Tian et al., 2013; Wang and Su, 2013] still persist. 76 

The path towards constraining the models, reanalyses, and satellite water vapor 77 

observational uncertainties is to compare them against data sets that are as independent from 78 

their a-priori information as possible. Here, we use the multi-year observational record from 79 

Global Positioning System Radio Occultation (GPS RO) observations as such a data set, offering 80 

all–weather sensing, high vertical resolution (100–200 m; Kursinski et al. [2000]; Schmidt et al. 81 

2005]), high specific humidity accuracy (< 1.0 g/Kg), and full diurnal cycle sampling (depending 82 

on the orbit and number of the RO spacecrafts). 83 

Our primary objective is to create a short-term specific humidity data record (9 years) 84 

based on RO observations and compare it against NASA’s Modern Era Retrospective Analysis 85 

for Research and Applications (MERRA), the European Center for Medium-range Weather 86 

Forecasts Reanalysis Interim (ERA–Interim), and Atmospheric Infrared Sounder (AIRS) data 87 

sets. Our goal is to evaluate the consistency of the RO specific humidity retrievals with respect to 88 

state-of-the-art reanalyses and satellite observations by quantifying the RO differences with the 89 

Comment [3]:  
 
Reviewer #2. Minor Comment #3. 
 
Addressed and completed. 



 5 

rest of the data sets over the tropics and subtropics. We anticipate gaining new insights about the 90 

specific humidity distribution over different convective regions, which could provide guidelines 91 

for future model improvements. The uniqueness of this investigation is that this is the first study 92 

to compare nearly a decade long data record of RO specific humidity information and their 93 

interannual variability against MERRA, ERA–Interim, and AIRS. The description of the 94 

humidity retrieval process from RO observations is discussed in detail in Kursinski et al. [1997], 95 

Kursinski and Hajj [2001], and Collard and Healey [2003]. Of importance is the fact that we use 96 

MERRA, instead of MERRA-2, because MERRA does not assimilate ROs (unlike ERA–97 

Interim), providing an independent data set when comparing the RO specific humidity 98 

observations. 99 

Section 2 presents the data sets we use in this analysis together with their retrieval 100 

characteristics. In Section 3, we present and discuss the RO specific humidity climatologies with 101 

respect to the rest of the data sets and Section 4 summarizes our current research. 102 

 103 

2 Methodology 104 

 We create time series of tropospheric specific humidity climatologies using the COSMIC 105 

observations (both the UCAR and the JPL retrievals), the MERRA and ERA-Interim data sets, 106 

and the Atmospheric Infrared Sounder (AIRS) observations. These climatologies contain a 9-107 

year measurement record from January 2007 until December 2015 and represent monthly zonal 108 

mean averages. We study the geographic region between ±40o latitude, which we divide into 109 

three distinct dynamical regions: a) the deep tropics (±15o), b) the middle tropics (±15o–30o), and 110 

c) the subtropics (±30o–40o). In each region, we study the annual and interannual variability and 111 

trend of the specific humidity from all data sets, and then we quantify the mean differences and 112 
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standard deviations of all climatologies with respect to the JPL climatology (that we use as a 113 

reference). The time series represent monthly zonal averages of the specific humidity at 114 

individual pressure levels from the lower to the middle troposphere: 700 hPa, 600 hPa, 500 hPa, 115 

and 400 hPa.  116 

 We are particularly interested in investigating the performance of the RO specific 117 

humidity climatologies with respect to other databases within ±40o latitude, as it is a key region 118 

for climate research [IPCC, 2007], and because models and observations exhibit large 119 

differences in the middle and upper troposphere in this band [e.g., Jiang et al., 2012; Tian et al., 120 

2013; Wang and Su, 2013]. We focus between 700 hPa and 400 hPa, because although tracking 121 

of the GPS signals in the lower troposphere (e.g., below 700 hPa) has been greatly improved 122 

with the use of open loop tracking techniques [Sokolovskiy et al., 2006], the presence of the 123 

water vapor and small signal-to-noise ratio could still cause loss of lock for lower altitudes. 124 

Additionally, atmospheric ducting at and below the planetary boundary layer could also lead to 125 

negative refractivity biases [Ao et al., 2003; Xie et al., 2010]. Above 400 hPa, the signature of 126 

water vapor on the atmospheric refractivity is small, leading to larger retrieval errors.   127 

 128 

2.1 Constellation Observing System for Meteorology, Ionosphere and Climate 129 

The COSMIC constellation of six microsatellites were launched in April 2006 orbiting 130 

the Earth at an altitude of ~800 km in near-circular Low Earth Orbit (LEO) [Anthes et al., 2008]. 131 

They measure the phase and amplitude of the transmitted dual frequency L-band GPS signals 132 

(f1=1.57542 GHz; f2=1.22760 GHz) as a function of time. The relative motion of the COSMIC 133 

satellites with respect to the GPS satellites and the presence of the atmosphere cause a Doppler 134 

frequency shift on the transmitted GPS signals received by the COSMIC satellites. The 135 
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magnitude of the Doppler frequency shift is estimated as the time derivative of the recorded GPS 136 

signal phases, which together with precise knowledge of the position and velocity information of 137 

both the COSMIC and the GPS satellites allows for estimation of the amount of bending of the 138 

transmitted GPS signals due to the presence of the atmosphere, from which one can infer the air 139 

refractive index [Kursinski et al., 1997].  In the lower troposphere, the bending angle is retrieved 140 

using radioholographic methods (such as canonical transform or full spectrum inversion) that 141 

eliminate errors due to atmospheric multipath [e.g., Ao et al., 2003]. The relative motion of the 142 

COSMIC and GPS satellite pair allows for the vertical scanning of the atmosphere providing 143 

vertical profiles of atmospheric refractivity, which contain temperature and humidity 144 

information. 145 

We use RO-derived specific humidity products from both the UCAR and the JPL 146 

processing centers, which follow different processing techniques. Although this study does not 147 

focus on these differences, we note that UCAR adopts a variational assimilation method, which 148 

requires a-priori estimates of the atmospheric water vapor content (provided by ERA-Interim), 149 

implying that the derived specific humidity products may be subject to the error characteristics of 150 

the humidity initialization. On the other hand, JPL uses the refractivity equation (along with the 151 

hydrostatic equation and equation of state) to estimate the water vapor pressure given a-priori 152 

knowledge of air temperature [Hajj et al., 2002]: 153 

 154 

𝑁 = 77.6
𝑃
𝑇 + 3.73 ∙ 10

! 𝑒
𝑇!  ⟺ 𝑒 =  

1
3.73 ∙ 10! 𝑁𝑇! − 77.6𝑃𝑇                                                   1  

 155 

Where N (unitless) is the refractivity, P (mbar) is the pressure, T (K) is the temperature, and e 156 

(mbar) is the RO-derived water vapor pressure. The equation we use to convert the water vapor 157 
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pressure into specific humidity is given by: 158 

 159 

𝑞 = 621.9907 ∙
𝑒

𝑃 − 𝑒                                                                                                                               [2] 

 160 

Where q (g kg-1) is the specific humidity, P (mbar) is the pressure, and e (mbar) is the RO- 161 

derived water vapor pressure. The retrieval errors of the JPL SH products do not contain a-priori 162 

humidity information, but are subject to errors in the a-priori temperature information, which is 163 

provided by the ECMWF Tropical Ocean and Global Atmosphere (TOGA) database. Because 164 

Eq. (1) requires that both the RO and the ECMWF TOGA data sets be reported at the same 165 

pressure levels, we interpolate the temperature profiles into the vertical grid of the RO profiles 166 

using linear interpolation in the log pressure domain. Currently, the JPL-retrieved COSMIC air 167 

refractivity profiles are provided at 200 m vertical resolution in the lower to middle troposphere. 168 

 169 

2.2 Modern-Era Retrospective Analysis for Research and Application 170 

We use the MERRA (v5.2.0) analysis that employs a 3-D variational assimilation 171 

technique based on the Gridpoint Statistical Interpolation (GIS) scheme with a 6-hour update 172 

cycle [e.g., Wu et al., 2002]. It did not yet assimilate RO observations, and therefore, it is an 173 

independent dataset from COSMIC. Besides MERRA-2 assimilating GPS RO bending angle 174 

observations, it also includes significant changes with respect to MERRA in regards to moisture 175 

analysis that have a direct affect on the water cycle [Gelaro et al., 2016; Takacs et al., 2016; 176 

Bosilovich et al., 2017]. Although GPS RO comparisons with MERRA-2 could provide valuable 177 

statistics, they would not represent a clear picture of the effect of assimilating GPS RO 178 

observations, unless the impact of all other improvements on the humidity climatology is first 179 
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determined. We analyze the monthly gridded specific humidity products given in a 1/2-degree x 180 

2/3-degree latitude–longitude grid and 42 vertical pressure levels. In the troposphere, the vertical 181 

pressure resolution from the surface up to 700 hPa is 25 hPa, whereas from 700 hPa until 300 182 

hPa the vertical resolution is 50 hPa. MERRA is a NASA analysis that assimilates satellite 183 

observations using Goddard’s Earth Observing System (GOES) version 5.2.0 Data Assimilation 184 

System (DAS) [Rienecker et al., 2008]. Primarily, it assimilates radiances from AIRS, the 185 

Advanced Television and Infrared Observatory Spacecraft Operational Vertical Sounder 186 

(ATOVS), and the Special Sensor Microwave Imager (SSM/I), and figure 4 in Rienecker et al. 187 

[2011] provides a detailed list of the rest of the data sets that are assimilated. 188 

 189 

2.3. European Center for Medium-Range Weather Forecasts Re-Analysis Interim 190 

 We use the ERA-Interim [Dee et al., 2011], which uses a 4-D variational assimilation 191 

technique [Simmons et al., 2005] to analyze a variety of observational data sets to predict the 192 

state of the atmosphere with accuracy similar to what is theoretically possible based on the error 193 

characteristics of the assimilated data [Simmons and Hollingsworth, 2002]. We analyze the 194 

monthly gridded SH products given in a 0.75 degree x 0.75 degree latitude-longitude grid and 20 195 

pressure levels from 1000 hPa up to 300 hPa. The vertical resolution from the surface up to 750 196 

hPa is 25 hPa, but the vertical resolution decreases to 50 hPa between 750 hPa and 300 hPa. The 197 

primary data sets assimilated in ERA-Interim are radiosonde humidity observations, AIRS and 198 

microwave radiances, and as of November 2006, the GPS RO bending angle profiles. 199 

 200 

2.4. Atmospheric Infrared Sounder 201 

We use the AIRS/AMSU v6 Level-3 data [Tian et al., 2013a] and analyze the monthly 202 
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gridded SH product given in a 1-degree x 1-degree latitude-longitude grid, which extend from 203 

the surface up to 100 hPa in 12 vertical pressure levels (~ 2.0 km vertical resolution). The latest 204 

AIRS v6 SH products are now available at standard pressure levels. The vertical resolution 205 

between the surface up to 850 hPa is 75 hPa; between 700 hPa and 300 hPa the vertical 206 

resolution decreases to 100 hPa, and above the 300 hPa pressure level up to 100 hPa the vertical 207 

resolution is 50 hPa. The AIRS physical retrievals use an IR–microwave neural net solution 208 

[Blackwell et al., 2008] as the first guess for temperature and water vapor profiles based on 209 

MIT’s stochastic cloud-clearing and neural network solution described in Khan et al. [2014]. 210 

 211 

2.5. Establishing Data Set Accuracy 212 

Kursinski et al. [1995] estimated that occultation water vapor pressure profiles at the 213 

tropics have a precision between 10 and 20% below 7.0 km altitude assuming temperature errors 214 

of 1.5 K, surface pressure errors of 3 mbar, and refractivity errors of < 0.2%, which translate to a 215 

specific humidity precision of < 0.25 g kg-1 at 700 hPa and < 0.03 g kg-1 at 400 hPa, given a 216 

mean specific humidity of 4.0 g kg-1 at 700 hPa and 1.0 g kg-1 at 400 hPa between 01/2007 and 217 

21/2015. Kursinski and Hajj [2001] determined that the precision of individual occultation 218 

specific humidity profiles is ~0.20–0.50 g kg-1 in the middle-to-lower troposphere. Ho et al. 219 

[2007] combined AIRS and RO data retrieving specific humidity profiles in the lower 220 

troposphere with root-mean-square-error (RMSE) between 0.40 g kg-1 (at 700 hPa) and 0.05 g 221 

kg-1 (at 400 hPa). Ho et al., [2010] collocated RO and ECMWF profiles near radiosonde 222 

locations and estimated that the standard deviation of the differences between the two data sets is 223 

< 0.50 g kg-1 above 3.0 km altitude. Kishore et al., [2011] estimated that the differences between 224 

the ERA-Interim and COSMIC are -0.15±0.22 g kg-1 at 3.0 km and -0.07±0.06 g kg-1 at 7.0 km, 225 
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in the deep tropics (±20o). They also estimated that the differences between the Japanese Re-226 

Analysis 25-year (JRA-25) and COSMIC are about -0.10±0.23 g kg-1 at 3.0 km and -0.20±0.06 g 227 

kg-1 at 7.0 km. Ao et al. [2012] estimated that the specific humidity precision is ~0.15 g kg-1 per 228 

degree kelvin error in temperature. Vergados et al. [2014] reported that RO specific humidity is 229 

retrieved within ~0.20–0.40 g kg-1 accuracy at the tropics, provided the RO refractivity accuracy 230 

is ~1.0% at an altitude of 2.0 km decreasing to ~0.2% at an altitude of 8.0 km [Kuo et al., 2005] 231 

and a temperature error of ±1.0 K. Recently, Kursinski and Gebhardt [2014] proposed a novel 232 

approach to further improve the retrieved humidity accuracy and precision from RO observations 233 

in the middle troposphere. 234 

Conclusively, the specific humidity accuracy and precision from RO observations 235 

depends on altitude and we determine it to be ~10–20%. MERRA assimilates various 236 

observational data sets and the SH accuracy is a function of the accuracy of the assimilated 237 

products. In general, the MERRA specific humidity retrievals are accurate to ~20% [Rienecker et 238 

al., 2011]. AIRS estimated specific humidity product accuracies are typically ~25% at p > 200 239 

hPa [Fetzer et al., 2008], and ERA-Interim specific humidity products have an estimated 240 

accuracy of ~7–20% in the tropical lower-to-middle troposphere [Dee et al., 2011]. The RO 241 

retrievals seem to have better accuracy than the AIRS retrievals, which could be attributed to the 242 

fact that the RO observations are based on precise time measurements and have very low 243 

sensitivity to clouds (unlike the IR observations). In general, the RO observations seem to have 244 

similar accuracy and precision with both the MERRA and ERA-Interim reanalyses.   245 

 246 

3. Results and Discussion 247 

3.1. Analysis of the specific humidity in the deep tropics 248 
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 The latitude belt within ±15o encompasses the ascending branch of the Hadley cell 264 

circulation. Near to the surface, moist air masses from both hemispheres converge within this 265 

narrow equatorial region, collide, and lead to heavy precipitation. The amount of the latent heat 266 

released during rainfall warms the air driving strong rising motions, deep convection, and high 267 

cloud formation. 268 

 269 

       270 

Figure 1. Times series of the monthly zonal averages of the specific humidity from January 1, 271 

2007 until December 31, 2015 from JPL (green), UCAR (red), ERA–Interim (orange), MERRA 272 

(blue) and AIRS (cyan) at (a) 500 hPa, (b) 400 hPa, (c) 700 hPa, and (d) 600 hPa pressure levels.  273 
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 Figure 1 shows the monthly zonal mean specific humidity as a function of time from 274 

January 2007 until December 2015 from 700 hPa up to 400 hPa. Qualitatively, all data sets 275 

capture the same variability pattern, exhibiting clear signatures of an annual and interannual 276 

cycle at all pressure levels. Quantitatively, the magnitude of the specific humidity varies among 277 

data sets having a minimum value of 5.0 g kg-1 (summer and winter) and a maximum value of 278 

6.5 g kg-1 (spring and autumn) at 700 hPa. Its value decreases with altitude and at 400 hPa 279 

fluctuates between 0.7 g kg-1 (during summer and winter) and 1.0 g kg-1 (during spring and 280 

autumn). Table 1 shows that the 9-year mean differences among all climatologies are < 20%, 281 

falling within the level of retrieval uncertainty of individual RO specific humidity profiles. 282 

 283 

Table 1. Mean climatology, deviation of the mean climatology from JPL, and linear regression 284 
fits of the specific humidity time series from JPL, UCAR, ERA–Interim, MERRA, and AIRS 285 
over the ±15o climate region. The 2-sigma uncertainties are estimated for each statistical metric, 286 
and their statistical significance is evaluated at p < 0.05 confidence level. Boxes filled with red 287 
are statistically insignificant. 288 
PART I:   9–year long mean of specific humidity climatology with 2-sigma uncertainty, g kg-1 

 

Data 
Records JPL UCAR ERA–Interim MERRA AIRS 

400 hPa 0.99 ± 0.12 0.92 ± 0.10 0.94 ± 0.12 0.91 ± 0.10 0.81 ± 0.08 
500 hPa 2.18 ± 0.26 2.01 ± 0.22 2.04 ± 0.22 2.08 ± 0.26 1.88 ± 0.20 
600 hPa 3.88 ± 0.44 3.51 ± 0.30 3.62 ± 0.30 4.03 ± 0.44 3.55 ± 0.32 
700 hPa 5.95 ± 0.60 5.64 ± 0.52 5.74 ± 0.46 5.99 ± 0.46 5.64 ± 0.44 

 

PART II:   9–year long mean of specific humidity deviations from JPL–RO, g kg-1 

 
400 hPa n/a - 0.08 - 0.06 - 0.08 - 0.19 
500 hPa n/a - 0.17 - 0.14 - 0.10 - 0.31 
600 hPa n/a - 0.37 - 0.27 + 0.15 - 0.33 
700 hPa n/a - 0.31  - 0.22 + 0.04 - 0.32 

 

PART III:   Linear regression of specific humidity anomalies with 2-sigma uncertainty, g kg-1 month-1 

 
400 hPa (1.0±3.0)x10-4 (3.7±2.2)x10-4 (2.4±2.2)x10-4 (0.1±2.1)x10-4 (0.3±2.0)x10-4 
500 hPa (2.3±6.0)x10-4 (9.6±4.4)x10-4 (6.2±4.6)x10-4 (3.3±5.4)x10-4 (2.1±4.2)x10-4 
600 hPa (-1.8±10)x10-4 (15.1±6.6)x10-4 (6.3±6.8)x10-4 (8.4±8.0)x10-4 (6.3±5.4)x10-4 
700 hPa (6.1±12)x10-4 (17.2±9.0)x10-4 (14.1±8.8)x10-4 (1.3±7.2)x10-4 (12.9±7.2)x10-4 
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 Due to averaging over 9 years, random and systematic errors in the time series are 289 

significantly reduced, representing the degree of disagreement among climatologies. Despite 290 

these differences, figure 2 shows that all interannual anomaly climatologies not only capture the 291 

same variability patterns but they also have almost similar magnitudes. Their amplitude 292 

fluctuates around ± 0.4 g kg-1 at 700 hPa and decreases with altitude to ± 0.1 g kg-1 at 400 hPa. 293 

         294 

Figure 2. This is the same as figure 1, but for the specific humidity interannual anomalies. 295 
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 During the strong La Niña event in 2010–2011 all interannual anomaly climatologies 296 

captured an enhancement in specific humidity with respect to the background, which is more 297 

pronounced at 500 hPa and 400 hPa marking the highest values in the time series. An even 298 

stronger El Niño event occurred in 2015–2016 and the interannual anomalies in all climatologies 299 

also started showing a pronounced increase in specific humidity. Interestingly, during the strong 300 

La Niña event in 2007–2008, only the JPL climatology displayed increased specific humidity 301 

values compared to the rest of the rest climatologies. The interannual anomaly variations for all 302 

data sets in the middle troposphere correlate strongly (> 0.8) with those in the lower troposphere, 303 

but have smaller amplitude. 304 

 A linear regression fit and a Student t-test on the specific humidity interannual anomalies 305 

shows that the JPL and MERRA series do not suggest an increase in specific humidity with time 306 

between 700 hPa and 400 hPa (cf., Table 1). However, the UCAR and ERA–Interim data sets 307 

show an increase of the tropospheric specific humidity, with slower increase rate with increasing 308 

altitude. The difference between the two data sets is that UCAR-RO suggests faster moistening 309 

of the troposphere than ERA–Interim. The AIRS data sets also show an increase of the specific 310 

humidity at 700 hPa and 600 hPa at a rate similar to that of ERA–Interim, but no SH increase at 311 

500 hPa and above. 312 

 We statistically analyze the 9-year time series of the absolute specific humidity (cf., 313 

figure 1) and interannual anomaly climatologies (cf., figure 2) by estimating their respective 314 

interquartile ranges as shown in figures 3 and 4. In these box plots, the solid black line inside the 315 

boxes represents the median value of the 9-year climatologies. The length of the box represents 316 

the value range within which we find 50% of the values around the median. The top and bottom 317 

whiskers define the largest and the lowest monthly zonal mean values of the time series. 318 
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 332 

Figure 3. Boxplots of the monthly zonal mean specific humidity throughout the 2007–2015 time 333 

period for the 700 hPa, 600 hPa, 500 hPa, and 400 hPa over the ascending branch of Hadley cell 334 

(±15o) (top row), the trade winds belt (±15–30oNS) (middle), and the descending branch of 335 

Hadley cell at the subtropics (±30–40o) from JPL (green), UCAR (red), MERRA (blue), ERA–336 

Interim (orange), and AIRS (cyan). 337 
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 338 

Figure 4. This is the same as figure 3, but for the specific humidity interannual anomalies. 339 

  340 

The top row in figure 1 presents statistical information about the median, the interquartile range 341 

(IQR), and the minimum and maximum values of the specific humidity time series over the 342 

entire observational record for all data sets throughout the vertical extent of the troposphere. 343 

Figure 2 shows details about the variability of the monthly zonal mean SH and Table 1 344 

summarizes the results of figure 2. 345 

 Figure 3 shows that in the lower troposphere, above the planetary boundary layer, the JPL 346 

and MERRA products show almost the same median value of ~6.0 g kg-1 (at 700 hPa) and ~4.0 g 347 
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kg-1 (at 600 hPa). Their difference is < 1.0% and < 4.0% at 700 hPa and 600 hPa, respectively 348 

(cf., Table 1) marking their excellent agreement. The UCAR, AIRS, and ERA–Interim data sets 349 

are in a very good agreement with one another differing by < 3.0%, and they are drier than the 350 

JPL and MERRA products by ~7.0–10%. This dryness is more pronounced at 600 hPa. In the 351 

middle troposphere, at 500 hPa and 400 hPa, the MERRA, ERA–Interim, and UCAR 352 

climatologies start agreeing very well with each other capturing 2.0 g kg-1 at 500 hPa and 0.9 g 353 

kg-1 at 400 hPa. JPL appears to be the moistest of all data sets by < 10%, whereas AIRS is the 354 

driest of all data sets by ~15–25% and its dryness is more apparent at 400 hPa. 355 

 Figure 4 summarizes the statistics of all specific humidity interannual anomaly 356 

climatologies. Despite the differences in the absolute values, the interannual anomalies: a) have 357 

almost the same median value, b) have similar IQRs, and c) exhibit similar scattering around the 358 

median with almost the same maximum and minimum values. This behavior is seen at 700 hPa 359 

up to 400 hPa, with the scattering around the median to be more consistent among the 360 

climatologies at higher altitudes. We should point out that the pronounced AIRS dry bias over 361 

the deep tropics ITCZ [Hearty et al. 2014], due to sampling limitations over cloud-covered 362 

regions, can explain the observed systematic lower specific humidity values with respect to all 363 

data sets from 700 hPa up to 400 hPa. This suggests that IR observations over deep convective 364 

environments do not properly capture the amount of water vapor in the atmosphere.  365 

 ERA–Interim underestimates the total cloud fraction over the ±15o region compared to 366 

MERRA [Dolinar et al., 2016; figure 1] and is also colder than MERRA by ~1.0 K in the 2006–367 

2011 time period at the tropics at 700 hPa [Simmons et al., 2014; figure 18]. Given the definition 368 

of specific humidity (as the product between the relative humidity and the saturation vapor 369 

pressure), it is evident why MERRA shows a wetter air than ERA–Interim in the lower 370 
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troposphere. However, the cold bias in the ERA–Interim becomes small with altitude and 371 

reduces to almost zero at 500 hPa, and ERA–Interim starts showing a warm bias with respect to 372 

MERRA at 300 hPa by ~ 0.1–0.3 K [Simmons et al., 2014]. This temperature bias between the 373 

two reanalyses could possibly explain why the two reanalyses begin to estimate similar SH 374 

values at 500 hPa and 400 hPa. 375 

  376 

3.2. Analysis of the specific humidity at the trade winds zones 377 

 The ±15-30o latitudinal belt, in both hemispheres, defines the trade winds zones, where 378 

dry air masses descending from the Hadley cell at the subtropics travel towards the equator. 379 

These regions exhibit shallower convection compared to the deep tropics, as clouds forming in 380 

these regions are typically cumulus and do not extend above 4.0 km. 381 

 Figures S1 and S2 (cf., supplementary material) show that the specific humidity 382 

climatology and the respective interannual anomaly for all data sets capture distinct annual and 383 

interannual variability patterns at all pressure levels. The specific humidity is lower in the trade 384 

winds zone than in the deep tropics ranging from 2.5–4.5 g kg-1 at 700 hPa to 0.45–0.75 g kg-1 at 385 

400 hPa and the amplitude of the interannual anomalies is ~50% smaller in the 700–400 hPa 386 

pressure range. The interannual anomalies are also correlated between 700 hPa and 400 hPa (> 387 

0.6), but their degree of correlation is weaker than that over the deep tropics, and we do not 388 

observe enhanced values during the strong La Niña and El Niño events as we observe over the 389 

deep tropics. We suggest that this may be due to weaker convection over the trade winds zone 390 

compared to the deep tropics; thus, establishing a weaker vertical connection. In the trade winds 391 

zone, all data sets do not suggest a statistically significant increase in specific humidity (cf., 392 

Table S1), but we ought to point out that the linear regression fit slopes are negative. 393 
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 Table S1 shows that the mean differences of the specific humidity over the 9-year period, 394 

between JPL and the rest of the data sets, is smaller at 700 hPa, 600 hPa, and 500 hPa than the 395 

differences in the deep tropics, except at 400 hPa where it remains almost the same. These 396 

differences are smaller than 20% and fall within the retrieval uncertainty of the data sets. It 397 

appears that over less convective regions the climatologies agree better with one another 398 

suggesting that convection could may be a limiting factor in properly sensing the amount of 399 

water vapor in the atmosphere. 400 

 Figure 3 (middle row) and figure S1 show that the specific humidity climatologies in the 401 

trade winds zone have similar characteristics with the deep tropics at 500 hPa and 400 hPa. The 402 

JPL data set appears to be again the wettest and the AIRS the driest compared to all 403 

climatologies, whereas UCAR, ERA-Interim, and MERRA show a very good agreement in 404 

between. The reason JPL appears to be the wettest at 500 hPa is because the summer season in 405 

all years is wetter by ~4.0% than the rest of the data sets, but this difference is within the 406 

systematic uncertainty of the retrievals. However, at 700 hPa and 600 hPa, we notice a different 407 

behavior in terms of the data sets’ agreement compared to our analysis in the deep tropics. 408 

Specifically, the JPL, ERA-Interim, and AIRS data sets agree very well with one another having 409 

differences of ~ 1.0% (at 700 hPa) and ~ 2.0–3.0% (at 600 hPa); but, these differences are 410 

statistically insignificant. UCAR is the driest of all data sets by ~15% (with respect to MERRA) 411 

and ~ 5.0–10% (with respect to JPL), and MERRA seems to overestimate the specific humidity 412 

particularly at 700 hPa. 413 

 Figure 4 (middle row) and figure S2 show that the specific humidity interannual 414 

anomalies are in excellent agreement with one another having almost the same median value, 415 

similar IQR, and exhibit similar scattering around the median. The exception is the JPL 416 
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climatology, which shows larger scattering towards negative anomaly values. This could be due 417 

to outliers in the data, which push down the lowest negative value. This behavior is seen at 700 418 

hPa up to 400 hPa and unlike the deep tropics, we do not observe enhanced specific humidity 419 

anomaly values in the climatologies during the strong La Niña and El Niño events (Figure S2).  420 

 421 

3.3. Analysis of the specific humidity at the subtropics 422 

 The ±30-40o latitude belt, in both hemispheres, defines the subtropics where dry air 423 

descends from the Hadley cell. These moderate-to-strong subsidence regions exhibit low cloud 424 

formation (especially during the summer months), while favoring formation of low-altitude 425 

marine boundary layer (MBL) clouds. 426 

 Figures S3 and S4 (cf., supplementary material) show that the specific humidity 427 

climatology shows a distinct annual cycle signature at all pressure levels, with lower values 428 

~2.0–3.5 g kg-1 at 700 hPa to 0.3–0.6 g kg-1 at 400 hPa (except for the JPL climatology that 429 

appears wet biased) than the trade winds zones and the deep tropics. The amplitudes of the 430 

specific humidity interannual anomalies are also smaller by ~50% (cf., figure S8) than those 431 

estimated over the trade winds zone and the deep tropics. The specific humidity interannual 432 

anomalies show the same degree of correlation (~0.65) with altitude as the one estimated in the 433 

trade winds zones, suggesting again that the strength of the convection defines the correlation 434 

strength of the specific humidity anomalies throughout the vertical extent of the troposphere.  435 

Table S2 shows that ERA–Interim and UCAR (at all pressure levels) as well as AIRS (at 500 436 

hPa and 400 hPa) capture a moistening of the subtropics, except from the AIRS at 700 hPa and 437 

600 hPa pressure levels where the data set indicates a decrease in the SH over time. JPL does not 438 

show a decrease/increase of specific humidity with time, and MERRA shows moistening of the 439 
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middle troposphere. Compared to the deep tropics and the trade winds zones, Table S2 shows 440 

that the mean differences of the specific humidity values between JPL and the rest of the data 441 

sets are smaller than in the deep tropics and similar to the trade winds zone, except at the 400 442 

hPa where it remains almost the same. Again, this hints towards the notion that different data sets 443 

agree better with one another over regions characterized by less convection.  444 

 Figure 3 (bottom row) and figure S3 show that the specific humidity climatologies in the 445 

subtropics in the middle troposphere show the exact same behavior as in the deep tropics and the 446 

trade winds zone at all pressure levels. Specifically, JPL captures moister air than all other data 447 

sets and this wetness is more pronounced at 400 hPa. The AIRS is systematically the driest 448 

among all climatologies, and MERRA, ERA-Interim, and UCAR show an excellent agreement 449 

being in between the JPL and the AIRS data sets. At 700 hPa, MERRA and UCAR are the 450 

wettest and driest climatologies respectively, with JPL, ERA-Interim, and AIRS having a very 451 

good agreement lying in between. At 600 hPa, JPL agrees very well with both reanalyses 452 

differing by < 2.0%, and UCAR agrees very well with AIRS being drier than by ~7.0%. All 453 

these differences are smaller than each data set’s retrieval uncertainty, except that of JPL at 400 454 

hPa which is > 30%. Similar to the deep tropics and the trade winds zone, the specific humidity 455 

interannual anomalies in the subtropics exhibit the same behaviors being in excellent agreement 456 

with one another having almost the same median value, similar IQR, and similar scattering 457 

around the median (cf., figure 4 – bottom row and figure S8).  458 

  459 

3.4. Differences between JPL and UCAR specific humidity retrievals 460 

 To begin establishing the RO-derived specific humidity as a climate product, we must 461 

investigate the origin of the observed differences between the JPL and UCAR specific humidity 462 
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statistics. One of the possible reasons for the observed discrepancies in figure 1 could be the 463 

difference in the refractivity products generated by each center. Here, we investigate this 464 

possibility by analyzing the JPL and UCAR refractivity climatologies in the deep tropics. 465 

 466 

         467 

Figure 5. Times series of the monthly zonal averages of the refractivity from January 1, 2007 468 

until December 31, 2015 in the deep tropics (±15o) from JPL (black) and UCAR (red) at (a) 700 469 

hPa, (b) 600 hPa, (c) 500 hPa, and (d) 400 hPa pressure levels. The time series of the refractivity 470 

differences between JPL minus UCAR are shown at (e) 700 hPa, (f) 600 hPa, (g) 500 hPa, and 471 

(h) 400 hPa. 472 
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 Figure 5 shows that the monthly zonal averages of the JPL-derived refractivity are 473 

systematically larger than those estimated by UCAR and this is noticeable at all pressure levels. 474 

The JPL and UCAR climatologies are in excellent agreement, which becomes better with 475 

increasing altitude. Interestingly, we notice a sharp dip in the JPL refractivity in figure 5 during 476 

the summer of 2011 at 700 hPa and 600 hPa, which explains the JPL specific humidity 477 

interannual anomaly dip during the same period at 700 hPa and 600 hPa in figure 2. 478 

Quantitatively, the 9-year mean differences are 1.365±0.590 N-units (or 0.6% with respect to 479 

UCAR) at 700 hPa, 0.924±0.469 N-units (or 0.5% with respect to UCAR) at 600 hPa, 480 

0.678±0.217 N-units (or 0.4% with respect to UCAR) at 500 hPa, and 0.222±0.09 N-units (or 481 

0.2% with respect to UCAR) at 400 hPa. From equation (1), we can derive an expression that 482 

relates refractivity changes into water vapor pressure changes, assuming a constant temperature: 483 

 484 

𝛿𝑁 ≡ 𝑁! − 𝑁  =  𝑎 ∙
𝑃
𝑇 + 𝑏 ∙

𝑒 + 𝛿𝑒
𝑇! − 𝑎 ∙

𝑃
𝑇 − 𝑏 ∙

𝑒
𝑇!  =  

𝑏
𝑇! ∙ 𝛿𝑒 ⟺  

𝛿𝑁
𝛿𝑒 =

𝑏
𝑇!                   [3] 

 485 

Where δN and δe represent the refractivity and water vapor pressure changes. We convert these 486 

water vapor changes into specific humidity changes using equation (2). The mean refractivity 487 

differences from figure 5 correspond to specific humidity differences of the order of: a) 488 

0.26±0.11 g kg-1 at 700 hPa, b) 0.19±0.10 g kg-1 at 600 hPa, c) 0.16±0.05 g kg-1 at 500 hPa, and 489 

d) 0.06±0.02 g kg-1 at 400 hPa. Comparing these values with the mean differences in Table 1, we 490 

argue that the majority of the specific humidity differences between JPL and UCAR at all 491 

pressure levels results from the refractivity differences between the two centers. 492 

 Another factor that could cause the JPL and UCAR specific humidity climatologies to 493 

deviate is the different retrieval approaches adopted by JPL and UCAR. JPL uses equation (1) to 494 
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solve for the water vapor pressure by assuming a background temperature from the ECMWF 495 

TOGA operational analysis. Comparisons of ECMWF operational products with rawinsondes 496 

over the Pacific and Indian oceans reveal a systematic warm bias in the operational analysis of 497 

the order of 0.5 K with an RMSE of 1.0 K [Nuret and Chong, 1996; Nagarajan and Aiyyer, 498 

2004]. This bias leaks through the JPL retrievals, causing JPL to overestimate the specific 499 

humidity (e.g., by ~0.10 g kg-1 at 500 hPa and 400 hPa). UCAR uses a variational assimilation 500 

approach that takes ERA–Interim temperature and humidity information as a-priori. This could 501 

explain why UCAR climatologies appear to be consistent with ERA–Interim at all altitudes in 502 

the deep tropics and in the middle troposphere at the trade winds zone and the subtropics. 503 

Additionally, the different quality control used by the two centers leads to a different number of 504 

available occultations, which could also introduce a small bias in the specific humidity 505 

comparisons. However, this effect would be small as we analyze monthly zonal averages. 506 

 507 

4. Conclusions 508 

 Based on statistical tests using a 2-sigma uncertainty and 95% confidence level criteria 509 

the RO observations agree very well with the MERRA, ERA-Interim, and AIRS climatologies 510 

by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific 511 

humidity and interannual anomaly over annual and interannual timescales. The specific humidity 512 

differences between RO and all other climatologies fall within the expected specific humidity 513 

retrieval uncertainty. The JPL and UCAR specific humidity climatologies differ by less than 514 

15% in the median (depending on location and pressure level) and these differences are primarily 515 

due to the differences in the retrieved refractivity. Although we could explain these differences, 516 

we cannot speculate which center is closer to the truth, we demonstrate that both JPL and UCAR 517 
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essentially provide similar specific humidity climatologies within the retrieval uncertainty. At 518 

500 hPa and 400 hPa, in all climate zones, JPL appears to be the wettest of all data sets; AIRS is 519 

the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement 520 

lying in between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we 521 

present a complex behavior of discrepancies, as we speculate that this might be because the 700 522 

hPa and 600 hPa pressure levels are closest to the planetary boundary layer that interfaces with 523 

the free troposphere via convection and entrainment. This implies that the specific humidity 524 

measured by each data set could be susceptible to the degree which each data set represents this 525 

vertical coupling. Weather models are known to be less accurate over convective regions, and 526 

recent studies indicate that RO observations could be positively biased by only 2% over cloudy 527 

regions [Yang and Zou, 2017]. 528 

 Given the above, the RO observations could augment the reanalyses and satellite 529 

observations by providing an independent additional complementary data set to study short-term 530 

SH variations, which are critical to the study of water vapor trends, and climate sensitivity, 531 

variability, and change. More detailed statistical analysis is required between the SH products 532 

between different RO processing centers to define its structural uncertainty. The reduced daily 533 

sampling of the COSMIC mission may be also a limiting factor in properly establishing 534 

differences between the RO and other platforms. We expect that the increased sampling rate of 535 

the COSMIC-2 follow-on mission will provide a much better picture of the tropical and 536 

subtropical climatology, which will help us extend the current short-term RO record. 537 

 538 

 539 

 540 
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