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Abstract. The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was 

developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over 20 

East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based 

observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not 

capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of 

retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the 

version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance 25 

determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface 

conditions. Therefore, the improved GOCI AOD ( τ" ) is similar with those of Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER 

algorithm. The τ" shows reduced median bias and increased ratio within 0.15τ' + 0.05 range (i.e. absolute expected error 

range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD (τ') 30 

from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows 

similar results. The bias of error (τ" − τ') is within −0.1 and 0.1 range as a function of AERONET AOD and AE, scattering 

angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and 

prognostic expected error (DEE and PEE, respectively) of τ" are estimated. The estimated multiple PEE of GOCI V2 AOD 
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is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE 

compared to over China and Japan.  

1 Introduction 

Aerosols are one of the most important components in the atmosphere with respect to climate change and air pollution. In 

respect to climate change, aerosols influence climate directly by scattering and absorbing solar radiance (aerosol-radiation 5 

interaction) and indirectly by altering cloud properties (aerosol-cloud interaction) (IPCC, 2013). In terms of aerosol optical 

properties (AOPs), the aerosol optical depth, single scattering albedo, and surface albedo determine the sign and magnitude 

of shortwave aerosol radiative forcing of atmosphere (Takemura et al., 2002), thus accurate AOPs retrieval is important to 

quantify a role of aerosols on climate change. In respect to air pollution, aerosol is a major environment-related threat to 

human health particularly for the elderly and the young. It affects the both the respiratory and pulmonary systems, resulting 10 

in increased incidence of heart disease, stroke, and lung cancer (Lim et al., 2012). The PM consists mainly of a complex 

mixture components of sulfates, nitrates, ammonia, sodium chloride, black carbon, mineral dust and water (WHO, 2016), 

and its health impact differs per chemical composition (e.g. Harrison and Yin (2000)). Despite the fact that accurate 

information of PM is often obtained from the ground-based in-situ measurements, the coverage of ground-based 

measurements is limited to local scales and the observation network may be sparse, especially in developing countries. On 15 

the other hand, the satellite-based remote sensing can provide aerosol information over a much broader area. Although 

chemical transports models (CTMs) require many assumptions to predict PM concentrations, the accuracy in modeling can 

be improved significantly through data assimilation with satellite-retrieved AOD products (van Donkelaar et al., 2010). 

East Asia is the one of regions where the aerosol concentration is highest in the world and aerosol type is also complicated 

by components such as desert dust, anthropogenic carbonaceous aerosols, and sea salt (Kim et al., 2007; Yoon et al., 2014). 20 

Its trend doesn’t show significant decrease as in Europe or North America (Hsu et al., 2012; Zhang and Reid, 2010), and our 

understanding for aerosol trend is still insufficient (IPCC, 2013). 

The Geostationary Ocean Color Imager (GOCI), launched in 2010 as the first ocean color imager in geostationary orbit 

(GEO), observes East Asia eight times per day from 00:30 to 07:30 Coordinated Universal Time (UTC) (i.e. 09:30 to 16:30 

Korea Standard Time (KST)) (Choi et al., 2012). Using the radiance measurements in eight spectral channels (412, 443, 490, 25 

555, 660, 680, 745, and 865 nm) in high spatial resolution of 500 m × 500 m, the GOCI Yonsei aerosol retrieval (YAER) 

version 1 (V1) algorithm was developed for retrieving hourly aerosol optical properties such as aerosol optical depth (AOD), 

fine-mode fraction, Ångström exponent and single-scattering albedo (Choi et al., 2016). Because it has more channels with 

higher spatial resolution in visible and near infrared (NIR) compared to recent and planned advanced meteorological sensors 

in GEO such as Advanced Himawari Imager (AHI), Advanced Baseline Imager (ABI) and Advanced Meteorological Imager 30 

(AMI), these accurate retrievals of AOPs from GOCI provide significant information. Hourly AOD from the GOCI YAER 

algorithm shows high accuracy with Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared 
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Imaging Radiometer Suite (VIIRS) over East Asia (Xiao et al., 2016). The application of GOCI retrievals thus results in the 

improved performance of several air quality forecasting models to predict AOD and PM concentrations through data 

assimilation (Jeon et al., 2016; Lee et al., 2017; Lee et al., 2016; Park et al., 2014; Saide et al., 2014). For that reason, the 

request for GOCI aerosol retrievals with near-real-time (NRT) processing continues for implementing operational air quality 

forecasting systems with data assimilation.  5 

Lack of shortwave infrared (SWIR) channels in GOCI such as 1.6 or 2.1 µm of MODIS does not allow for the application of 

method to obtain surface reflectance in visible from the TOA reflectance of SWIR channels (Kaufman et al., 1997). Instead, 

the minimum reflectivity technique using the composite method (Herman and Celarier, 1997; Hsu et al., 2004; Koelemeijer 

et al., 2003) was applied in the GOCI YAER V1 algorithm. However due to this methodology, the GOCI YAER V1 

algorithm was not capable of near-real-time (NRT) processing because it required a monthly database for each year 10 

encompassing the day of retrieval for the determination of surface reflectance. Also, the resulting retrievals showed slightly 

negative bias over land and positive bias over ocean due to surface reflectance errors, as compared to AERONET data during 

the Distributed Regional Aerosol Gridded Observation Networks - North East Asia 2012 campaign (DRAGON-NE Asia 

2012 campaign) (Choi et al., 2016). 

In this study, therefore, the algorithm is improved to “version 2” (V2) not only for NRT processing but also for better 15 

accuracy. Monthly and hourly surface reflectance and wind speed determination are modified utilizing a climatological 

database from the multi-year GOCI dataset and reanalysis wind speed data, respectively. Especially, the surface reflectance 

database obtained from multi-year Rayleigh corrected reflectance (RCR) samples enables more accurate surface reflectance 

retrieval by increasing the possibility to select less aerosol and cloud contaminated cases compared to one year samples of 

the V1 algorithm. The cloud masking and inversion spectral channels for aerosol retrievals were also modified for better 20 

accuracy. Furthermore, retrieved GOCI YAER V2 AOD is evaluated using ground-based observation data, along with the 

comparisons to both the V1 and MODIS retrievals from March 2011 to February 2016, which is longer period evaluation 

interval compared to previous studies. Also, the bias of the GOCI YAER V2 AOD is analyzed and uncertainty is estimated 

for better application of GOCI AOD in data assimilation. 

In section 2, the improvements of the GOCI YAER V2 algorithm are summarized and quantitative comparison with other 25 

satellite AODs are presented. In Section 3, the GOCI YAER V2 AOD is validated using ground-based sunphotometer 

observations and also with other satellite AODs. In Section 4, the error of GOCI YAER V2 AOD is analyzed according to 

various parameters and expected error is estimated. Section 5 provides a summary and conclusions. 

2 GOCI Yonsei aerosol retrieval version 2 algorithm 

2.1 Brief description of GOCI YAER version 1 and V2 algorithm framework 30 

A prototype of the GOCI Yonsei aerosol retrieval (YAER) over ocean (Lee et al., 2010) was developed using MODIS Level 

1B (L1B) Top-of-Atmosphere (TOA) reflected radiance data, and improved by using non-spherical aerosol optical properties 
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(Lee et al., 2012). Furthermore, using real GOCI L1B TOA radiance data, the GOCI YAER V1 algorithm over land and 

ocean was developed (Choi et al., 2016). The algorithm is applied to cloud-free and snow/ice-free pixels, so 12 × 12 L1B 

pixels are aggregated to 6 × 6 km2 spatial resolution average after cloud/snow/ice masking and suitable pixel selection. 

Unified aerosol models over land and ocean consist of multi-dimensional categories of aerosol optical properties which are 

aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA) derived from the global Aerosol 5 

Robotic Network (AERONET) Inversion database (Dubovik and King, 2000; Holben et al., 1998). The non-spherical 

properties are considered using the phase function derived from the AERONET data (https://aeronet.gsfc.nasa.gov/). Dark 

ocean surface reflectance is calculated using the Cox-Munk model (Cox and Munk, 1954) considering Fresnel reflectance 

with a bidirectional reflectance distribution function according to geometry and wind speed in a pre-calculated Look-up table 

(LUT) with temporal interpolation of ECMWF wind speed data at 10 m above sea level over dark ocean pixels. Land surface 10 

reflectance is obtained by using the minimum reflectivity technique for each month, channel, and hour, and temporal 

interpolation is carried out over land, turbid ocean, and heavy aerosol pixels in the inversion step. In the algorithm, turbid 

water pixel detection is implemented using a difference of 660 nm TOA reflectance between directly-observed and 

interpolated from 412 and 865 nm (hereafter, Δ𝜌--.) (Choi et al., 2016; Li et al., 2003). All eight channels are used over 

ocean, and different channels according to surface condition are used over land. The algorithm determines AOD at 550 nm 15 

with aerosol models that have the least difference between pre-calculated and observed TOA reflectance in the selected 

channels. From the selected models, Ångström exponent between 440 and 870 nm (AE), FMF at 550 nm, and SSA at 440 

nm are determined together with AOD at 550 nm. Note that a discrete ordinate radiative transfer (DISORT) code of the 

“libRadtran” software package is used to calculate TOA reflectances for LUT construction based on scalar calculation (i.e. 

intensity only) and plane-parallel atmosphere approximation (Mayer and Kylling, 2005). 20 

For the better accuracy of aerosol optical properties of GOCI, especially in AOD, the new V2 algorithm is refined piecemeal 

while retaining the main V1 algorithm concepts. A flowchart of the GOCI YAER V2 algorithm is described in Figure 1. The 

improved parts of the V2 algorithm compared to V1 are the pixel masking and aggregation procedure, implementation of 

climatological surface reflectance and wind speed from a 5-year climatological database for NRT capability, turbid water 

detection, and inversion condition according to land, turbid water, and dark ocean pixels, respectively. The aerosol model 25 

construction and inversion method of converting TOA reflectance to aerosol products are identical with those of V1. 

Therefore, details of refined parts of the algorithm are introduced hereafter. 

2.2 Pixel masking and aggregation procedure 

The GOCI YAER algorithm is targeted to cloud-free and snow-free pixels over land and cloud-free, ice-free, and high 

turbidity water free pixels over ocean, therefore several masking steps are required. The previous V1 algorithm contains 30 

simple cloud masking techniques, which are a spatial variability test using the standard deviation of 3 × 3 pixels and a high 

TOA reflectance test using a threshold. As a result, most of cloud pixels are removed well, but there are still some remaining 

thin homogeneous cloud pixels such as cirrus cloud due to the absence of ice crystal sensitive 1.38 µm or other infra-red 
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channels in GOCI. This could lead to misidentification of remaining cloud contamination as high AOD, and result in the 

requirement of additional filtering for successful data assimilation between models and GOCI AOD (Xu et al., 2015). It 

could also lead to inappropriate determination of some low AOD pixels as cloud in regions where there is highly 

inhomogeneous surface reflectance. In this study, therefore, refined cloud masking techniques are applied and summarized 

with references in Table 1. Most of these masking techniques were adopted from the MODIS and VIIRS aerosol retrieval 5 

and cloud masking algorithms. The masking procedures consist of three stages: masking in 0.5 × 0.5 km2 original L1B pixel 

resolution level, aggregation from 0.5 × 0.5 km2 to 6 × 6 km2 resolution, and additional masking in 6 × 6 km2 resolution 

level. 

In the level of 0.5 × 0.5 km2 resolution, the cloud masking over ocean is not changed, but land cloud masking steps are 

refined. The previous standard deviation (hereafter, “Stddev”) test of the 3 × 3 pixels over land for classifying cloud and 10 

aerosol (Step 3 in Table 1 except for a threshold of 0.0025) works well in moderate and high AOD cases, but it showed 

excessive masking over heterogeneous surface reflectance pixels in low AOD condition. Thus, the threshold is relaxed to 

0.015, and mean-weighted Stddev test (Step 4 in Table 1) and a ratio of maximum and minimum TOA reflectance at 412 nm 

within 3 × 3 pixels are adopted (Step 2 in Table 1) as an alternative. To distinguish aerosol and cloud using a different 

reflectance ratio between 865 and 660 nm, a pseudo Global Environment Monitoring Index (pseudo GEMI), defined in Pinty 15 

and Verstraete (1992) and Kopp et al. (2014), is adopted (Step 6 in Table 1). Also, inland water pixels are filtered out using a 

normalized difference vegetation index (NDVI) calculated using TOA reflectance at 660 and 865 nm (Step 7 in Table 1). A 

dust call-back test used in ocean pixels is expanded to the ocean and land pixels together with the constraint of spatial 

homogeneity test (Step 8 in Table 1). 

After the masking in the 0.5 × 0.5 km2 resolution level, the remaining pixels are aggregated to Level 2 product resolution of 20 

6 × 6 km2. Spectral TOA reflectance of remaining pixels is averaged if the number of remaining pixels is greater than 72 

(Step 9 in Table 1). In this step, the discarding of the darkest 20% and brightest 40% of pixels for cloud shadow, remaining 

cloud, or surface contamination is implemented according to Choi et al. (2016). The quality assurance value of V1 algorithm 

was determined per the remaining number of pixels among 12 × 12 pixels after all masking procedures and also the range of 

retrieved AOD. The QA of 0, 1, 2, or 3 of the V1 AOD was determined according to the number of remaining pixels greater 25 

than or equal to 6, 15, 22, or 36, respectively. Also, the retrieved AOD value within the prescribed range of −0.05 and 3.6 

were allocated as the QA of 1, 2, or 3, and the retrieved AOD values between −0.1 and −0.05 or between 3.6 and 5.0 were 

allocated as QA flag of 0. In the V2 algorithm, however, the retrieval is implemented if the number of remaining pixels is 

greater than 28 and the QA separation is eliminated. Also, only pixels of retrieved AOD within −0.05 and 3.6 are available 

and others are not retained. 30 

After the pixel aggregation procedure, merged TOA reflectance as 6 × 6 km2 resolutions are filtered out again. Bright and 

inhomogeneous pixels within 12 × 12 pixels are filtered out using the mean and Stddev at 412 nm (Step 10 in Table 1), and 

bright pixels at 412 and 660 nm together are also filtered out (Step 11 in Table 1). Furthermore, pixels of low atmospheric 
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signal (dark at 412 nm) but high surface signal (bright at 660 nm) such as arid area are also masked out to avoid 

misidentification of the bright surface signal as aerosol (Step 12 in Table 1). 

2.3 Climatological land surface reflectance database from multi-year samples 

Surface reflectances over land and ocean are handled differently in the GOCI YAER algorithm. A minimum reflectance 

technique to specify the surface reflectance from the composited Rayleigh corrected reflectance (RCR) in each month and 5 

hour is applied over all land and turbid water pixels in the V1 algorithm. The GOCI YAER V1 algorithm was not capable of 

NRT processing because it required a monthly database encompassing the day of retrieval for the determination of surface 

reflectance. 

For the NRT retrieval in the V2 algorithm, climatological land surface reflectances at each channel, hour, and month are 

calculated using a 5-year interval, which ranges from March 2011 to February 2016. The V1 surface reflectance database 10 

pixel size was 6 × 6 km2 resolution aggregated of 12 × 12 pixels to extend the number of RCR samples. An assumption of 

the V1 surface reflectance was that surface reflectance within 6 × 6 km2 is homogeneous. The V1 surface reflectance causes 

slightly negative AOD bias at low AOD range over Korea and Japan during 2012 spring, which means surface reflectance 

was overestimated (Choi et al., 2016). In the V2 algorithm, temporal RCR samples are expanded from one year to 5-year 

intervals, thus a possibility to find atmospheric low aerosol conditions could increase and result in darker surface reflectance 15 

compared to that of the V1 algorithm. Also, spatial resolution of climatological land surface reflectance in the V2 algorithm 

is 0.5 × 0.5 km2 as original L1B TOA reflectance resolution compared to 6 × 6 km2 resolution of the V1 algorithm. This 

reflects the complexity of highly spatially variable surface reflectance and allow for selection of identical pixels of TOA and 

surface reflectance of 0.5 × 0.5 km2 resolution in the pixel aggregation procedure. For the determination of one pixel’s 

surface reflectance, the maximum number of composited 5-year RCR samples is 155 (31 days × 5 years). Darkest samples 20 

(0-1% lowest in the aggregate) are assumed as cloud shadow and brighter samples (3-100%) are assumed to be affected by 

aerosol and/or cloud. Thus, darker 1-3% of the RCR samples are averaged and determined as surface reflectance, which are 

identical criteria with the V1 algorithm. The composite procedure is implemented for each month, hour, and channel samples. 

Each month surface reflectance climatological data represents a middle of each month (day 15) and is linearly-interpolated to 

retrieval date. 25 

 

2.4 Climatological ocean surface wind speed database from multi-year samples 

To calculate dark ocean surface reflectance, the GOCI YAER V1 algorithm uses the ECMWF wind speed at 10 m above sea 

level reanalysis data, which has 6-hour temporal resolution and 0.25° × 0.25° spatial resolution. The temporal ECMWF data 

are interpolated to those at hourly observation time. In the V2 algorithm, the wind speed reanalysis data are also replaced 30 

with climatological data from averaging 5-year data. The wind speed of 5 years at each month, hour and 0.25° × 0.25° area is 

averaged, which reflects seasonality such as higher in winter and lower in summer, and spatial distribution such as higher in 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-251
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



7 
 

open sea and lower in coast. Similarly as for the temporal interpolation of land surface reflectance, each month wind speed 

climatological data also represents a middle of each month (day 15) and is linearly-interpolated to retrieval date. 

 

2.5 Refined pixel allocation for the land, turbid water, and dark ocean algorithms and inversion conditions 

The GOCI YAER V1 land algorithm is applied not only over land pixels but also over highly turbid or high AOD ocean 5 

pixels, and ocean algorithm is applied only over dark ocean surface pixels. A pixel with ∆𝜌--. below −0.05 is assumed as 

dark ocean and are processed through the dark ocean algorithm. Pixels with ∆𝜌--. within −0.05 and −0.01 are classified as 

turbid water, thus go through the land algorithm. And, pixels with ∆𝜌--. above −0.01 are regarded assumed as highly turbid 

water and masked out (Step 13 in Table 1). In addition, ∆𝜌--. sometimes show above −0.05 for ocean pixels with extremely 

low TOA reflectance which could come from very few aerosols coupled with dark ocean surface reflectance. This 10 

misidentification results in negative AOD over the dark ocean. Therefore, the threshold test to separate extremely dark ocean 

pixels using TOA reflectance at 660 nm of 0.07 is added in the V2 algorithm. If a pixel show ∆𝜌--. within −0.05 and −0.01 

but TOA reflectance at 660 nm below 0.07, then dark ocean algorithm is applied. 

The channels selected for the inversion from measured reflectance to aerosol optical properties are different for land, turbid 

water, and dark ocean pixels, respectively. In the V1 algorithm, the land and turbid water pixels use channels in which 15 

surface reflectance is less than 0.15, and the dark ocean pixels use all eight channels. In the V2 algorithm, channels used for 

land pixels are not changed, but the channel selection for turbid water and dark ocean pixel is different. In the atmospheric 

correction for the ocean color retrieval, the main assumption is that water-leaving radiance is close to zero in near-IR, thus 

near-IR bands are used for estimating aerosol in the atmosphere. The aerosol signal in visible is estimated from the near-IR 

measurements and relationship of aerosol signal between visible and near-IR according to aerosol type. Ocean color in 20 

visible is then subsequently retrieved after atmospheric correction. When aerosol optical properties are the main retrieval 

target, meanwhile, water-leaving radiance is handled roughly as a climatological value or neglected. Both approaches have 

limitations because the accurate separation of ocean color and aerosol is difficult. Because the water-leaving radiance is not 

considered in the current ocean surface reflectance of the GOCI YAER algorithm, channels of high water-leaving radiance 

are excluded in the V2 algorithm to minimize their effect (Ahn et al., 2012). Thus, only two channels of 412 and 865 nm are 25 

used over turbid water pixels with the climatological surface reflectance database, and four channels of 412, 443, 745, and 

865 nm are used over dark ocean pixels with the climatological surface wind speed database. 

 

2.5 Qualitative comparison of GOCI YAER V2 AOD with other data 

For qualitative verification of whether introduced masking techniques and climatological data utilized are reasonable, a 30 

retrieved scene of GOCI YAER V2 AOD of 5 May 2015 is compared with that of V1 with all quality assured (All QA) 

pixels and also only for the highest quality assured (QA of 3) pixels, and additionally to that of MODIS/Aqua DT and DB, 
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and VIIRS EDR products (Figure 2). Overpass times of MODIS and VIIRS are generally near 04 UTC over Korea peninsula, 

thus GOCI 04:30 UTC results are selected for comparison. 

Most land pixels of Korean peninsula and Japan are not masked out and retrieved as low AOD in DT, DB, and EDR. The 

DB algorithm retrieves high AOD over the bright surface of Manchuria located in about 44°N and 126°E, but the DT and 

EDR don’t retrieve AOD of those pixels because the algorithms are optimized for the dark surface reflectance. The DT, DB 5 

and EDR AOD are about 0.7-1.2 over the land pixels of Hebei in China located in about 38°N and 117°E. Meanwhile, 

masked pixels due to the bright sun glint ocean pixels are located in the Yellow Sea and East Sea for MODIS and VIIRS, 

respectively. Thus, The EDR algorithm captures an aerosol plume of AOD about 0.8 over the Northern Yellow Sea and the 

DT algorithm captures an aerosol plume of AOD about 0.6 over the East Sea close to Hokkaido of Japan, but not vice versa. 

The GOCI V1 with all QA also shows low AOD at that area, but remaining cloud contamination results in high and 10 

inhomogeneous AOD, especially at the edge of cloud. For GOCI, sun-glint masked ocean pixels are located in lower latitude 

than MODIS and VIIRS, thus both of these aerosol plumes detected in MODIS and VIIRS respectively are detected. 

Although the GOCI YAER algorithm targets the dark land surface reflectance pixels such as MODIS DT and VIIRS EDR, 

aerosol plume over bright land surface in Manchuria captured in DB is also detected. But it is hard to determine whether 

these pixels are from cloud contamination or bright land surface reflectance, or actual real high AOD. 15 

When additional filtering as QA of 3 is applied in the V1 algorithm, most of high and inhomogeneous AOD pixels typically 

caused by remnant cloud contamination are removed well, but low AOD pixels over land in Korea and Japan are also 

removed. There are two possible reasons for extensive masking of V1 with QA of 3 for low AOD case over land. The V1 

algorithm’s spatial inhomogeneity test is a simple Stddev of 3 × 3 pixels TOA reflectance with one tight threshold regardless 

of TOA reflectance. It works successfully in high AOD cases, but does not work well in low AOD cases because 20 

inhomogeneous surface reflectance signals show high Stddev and therefore results in excessive masking. The other reason 

could be that those pixels are retrieved as negative AOD below −0.05 due to overestimation of surface reflectance.  

Compared to the V1, the spatial variability tests of V2 cloud masking algorithm consist of the same simple Stddev test except 

for a relaxed threshold, and the additional mean-weighted Stddev test and the ratio test of brightest and darkest pixels, which 

are relative to TOA reflectance. Also, darker land surface reflectance is obtained from the climatological data and this results 25 

in increased AOD pixels compared to large negative AOD in V1. Thus, the pixels of GOCI V2 are not masked out and are 

retrieved well as positive low AOD, and show less inhomogeneous features at the cloud edge similar with MODIS and 

VIIRS AOD. 

3 Long-term validation of GOCI YAER V2 AOD and AE 

3.1 Ground-based measurement and ancillary satellite data 30 

Two ground-based observation network (AERONET and SONET) data are used for quantifying the accuracy of GOCI 

YAER V2 AOD (τ"012) from March 2011 to February 2016. The Aerosol Robotic Network (AERONET) of CIMEL sun-
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sky radiometer photometer is a ground-based aerosol remote sensing network maintained by the Goddard Space Flight 

Center, National Aeronautics and Space Administration (Holben et al., 1998). Spectral AOD and AE are retrieved from the 

direct solar irradiance measurement, and other optical/microphysical properties such as volume size distribution and 

refractive indices are retrieved from inversion of spectral AOD plus diffuse sky radiance measurements. Uncertainties of 

AERONET AOD (τ') in the visible and NIR were reported as ±0.01 (Eck et al., 1999) which is much higher accuracy than 5 

satellite-retrieved AOD because of essentially no influence from surface reflectance and in the direct solar irradiance 

measurement, plus highly accurate calibration. Thus, AERONET AOD is used as the reference dataset for satellite AOD 

validation. The fully calibrated and cloud screened AERONET Version 2 Level 2.0 AOD at 550 nm are used in this study 

(Smirnov et al., 2000). A total of 27 AERONET sites within GOCI observation domain, excluding specific short-period 

campaign sites, are selected for this analysis. The Sun-Sky Radiometer Observation Network (SONET) of CIMEL sun-sky 10 

radiometers is also a ground-based aerosol remote sensing network maintained by the Institute of Remote Sensing and 

Digital Earth, Chinese Academy of Sciences (Li et al., 2015). The SONET also provides spectral AOD (τ34567) from direct 

sun measurements and AE. A total of 6 SONET sites in China are selected for the validation of AOD at 550 nm 

(http://www.sonet.ac.cn). 

Also, the GOCI V1 AODs with all QA (τ"0189::;') and only QA of 3 (τ"018;'<) are compared to V2 to quantify the 15 

improvement from the V1 to the V2 algorithm. The MODIS DT AOD (τ=>7) and DB AODs (τ=>?) of the best quality (QA 

of 3) are also compared over the same site and during the same period to verify the GOCI AOD accuracy relative to them. 

Note that the VIIRS EDR AOD is used in qualitative comparison in the previous section, but not included in the validation 

because the VIIRS data are only available starting from January 2013. 

3.2 Collocation criteria between ground- / satellite-based measurements 20 

The comparison between satellite and ground-based data is implemented with spatial and temporal collocation criteria. 

Hourly GOCI AOD pixels which are located within 25 km radius circle centered at the ground site are averaged and ground-

based observation data within 30 minutes centered at every GOCI observation time are averaged. The averages of both 

datasets respectively are done if at least one datum of each measurement is available. The collocation criteria of MODIS data 

are also the same as GOCI. After the collocation, 27 AERONET sites and 6 SONET sites are matched with GOCI land AOD 25 

and 17 AERONET sites are matched with GOCI ocean AOD. Note that the 27 AERONET sites matched with GOCI land 

AOD includes all of the 17 coastal AERONET sites matched with GOCI ocean AOD. 

3.3 Statistical evaluation metrics 

Based on Sayer et al. (2014), the statistical metrics for the evaluation contain the number of collocation data (N); the 

Pearson’s linear correlation coefficient (R); the median bias (MB); the root mean square error (RMSE); and f, the fraction 30 

within the expected error range of the MODIS DT AOD (Collection 5), EE=>7 = 	
  ±	
  (0.05	
   + 	
  0.15	
  ×	
  τ')	
  , referred in Levy 
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et al. (2007). Each AOD product has respective expected error range which can be changed depending on algorithm 

performance. Thus, EEMDT is applied to whole algorithms to compare accuracies. Note that the expected error range of GOCI 

YAER V2 AOD (EE"_12) will be estimated independently in the next section. 

3.4 Validation of GOCI YAER V2 land AOD and comparison with other data 

The comparison results of between AERONET/SONET AOD and GOCI retrieved AOD over land and ocean are presented 5 

in Figure 3, and statistics are summarized in Table 2. As shown in the qualitative comparison results (in Figure 2), τ"_189::;' 

shows many overestimated points compared to τ' due to remaining cloud contamination. About 20 % of pixels are filtered 

out with QA of 3 criteria (τ"_18;'<), and it results in the reduction of the number of overestimated points, decreased RMSE 

from 0.24 to 0.18, and increased R from 0.86 to 0.92. However, underestimated points due to the overestimation of surface 

reflectance remain which results in an increase negative median bias from −0.01509 to −0.06581. The comparison results of 10 

τ"_12 with τ' shows less overestimated points compared to those of τ"_189::;' due to the improved pixel masking procedure. 

It results in increased the number of collocated points, f within EE=>7  and decreased MB and RMSE compared to the 

counterpart of τ"_18;'<. The increased number of N comes from the low AOD points that are filtered out in τG_V1QA3. The 

number of underestimated points in the low AOD range decreased due to the decreased surface reflectance using 5-year 

samples. It results in less bias (MB of 0.01947), decreased RMSE (0.16) and increased f within EE=>7 (0.60). The R of 0.91 15 

is similar with the counterpart of τ"_18;'< (0.92). The N between τ' and τ"_12 is about 14 times greater than the τ=>7 and 

τ=>? counterpart, mostly due to hourly data from GOCI versus twice only daily overpasses from MODIS. The comparison 

points of MODIS and AERONET are less spread from the one-to-one line, and it results in higher f within EE=>7 (0.62 in 

τ=>7 and 0.73 in τ=>?). The R and RMSE of τ=>7 and τ=>? are similar with the τ"_12. The MB of τ=>? is closest to zero 

(0.007057), and τ=>7 shows positive MB of 0.042744. The overestimation of τ=>7 is reported as due to the urbanization 20 

effect of biased reflectance estimation (Munchak et al., 2013) and corrected in the MODIS DT research algorithm (not 

shown here) through the modified urban surface reflectance algorithm (Gupta et al., 2016). 

In the comparison between SONET AOD and satellite retrieved AOD over land, the τ"_12  shows better accuracy than 

τ"_18;'< except for the R. The reason of decreased R of τ"_12 could be the utilization of an identical climatology surface 

reflectance for each year although in reality surface reflectance changes annually. The τ=>? shows least MB, RMSE, and 25 

highest f within EE=>7. The τ=>7 shows positive MB of 0.104176.  

In conclusion, most statistical parameters show that land τ"_12 accuracy is better than τ"_18;'< and comparable with τ=>7 

and τ=>?. 

3.5 Validation of GOCI YAER V2 ocean AOD and comparison with other data 

The changes of GOCI YAER algorithm over ocean from the V1 to V2 are the cloud masking techniques, the utilization of 30 

climatological wind speed data instead of an immediate dataset of each date, the alteration of pixel classification thresholds, 
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the criteria between turbid water and dark ocean algorithm selection, and the selected spectral channels applied. The 

validation results of τ"_18;'< compared to τ"_189::;' shows decreased N and RMSE, MB closer to zero, and increased R and f 

within EE=>7, which is similar to the results over land sites except for MB. The refinement of the ocean algorithm from the 

V1 to V2 results in all improved statistics, which are increased R from 0.88 to 0.89, decreased MB from 0.042779 to 

0.008028, increased f within EE=>7 from 0.62 to 0.71, and decreased RMSE from 0.13 to 0.11. The MB closer to zero means 5 

that the changed selection of channels in turbid water and dark ocean algorithms to avoid the effect of water-leaving radiance 

variation works effectively. The N between τ' and τ"_12 over ocean is about 27 times greater than the τ=>7 counterpart, 

which is greater than that of land comparison despite of the same difference in observation frequency. The reason is that 

most turbid water pixels near coast are filtered out in the MODIS DT algorithm while those are retrieved in the GOCI YAER 

algorithm. Compared to the ocean τ=>7, the ocean τ"_12 shows slightly higher RMSE, MB closer to zero, slightly higher 10 

correlation coefficient, and slightly lower f within EE=>7. In conclusion, most statistical parameters show that ocean τ"_12 

accuracy is also better than τ"_18;'< and comparable with τ=>7. 

3.6 Comparison of AOD histogram distribution 

In Figure 4, a mean of relative frequency histograms of land τ', collocated with GOCI and MODIS land AODs, shows a 

mode near 0.11 (0.10-0.12), which is the value that appears most frequent in the histogram and right-skewed distribution, 15 

and it is similar to the global τ=>7, and τ=>? mode of 0.1 in Sayer et al. (2013). The mode of land τ"_18;'< is about 0.03 

(0.02-0.04) and those of τ"_12, τ=>7, and τ=>? are all 0.13 (0.12-0.14) similar to that of τ'. Improvement of the land surface 

reflectance in V2 resulted in reduced mode difference between AERONET and GOCI. The histogram shape of τ=>? is better 

matched with that of τ'  in the AOD range between 0.05 and 0.3 compared to the τ=>7  and τ"_12 . The land-targeted 

histograms of τ=>7 and τ"_12 show similar shape each other. The two histograms show lower frequency at the mode and 20 

higher frequency than that of τ' where AOD is between 0.3 and 0.7. These results are coincident with higher positive MB of 

τ"_12 and τ=>7 compared to τ=>?. The τ"_12 shows smoother shape due to larger number of coincident data points. 

The mean of relative frequency histograms of τ', collocated with GOCI and MODIS ocean AODs, shows a mode near 0.11 

(0.10-0.12), and those of ocean τ"_18;'< and τ=>7 show a mode near 0.15 (0.14-0.16). However, the ocean τ"_12 shows a 

mode near 0.09 (0.08-0.10), which is closer than that of τ"_18;'< and τ=>7. Although the mode of ocean τ=>7 is higher than 25 

that of τ' , the magnitude of the peak is similar. The histogram distributions of ocean τ"_18;'<  and τ"_12  show lower 

magnitude of peak and more gradual decreases as AOD increases compared to the τ' counterpart. 

3.7 Fitting residuals change in inversion procedure 

The fitting residuals (FR) of retrieved AOD is defined as the standard deviation of 550 nm AODs retrieved independently 

from different measured satellite spectral channels.  The FR is sensitive to retrieved AOD because the standard deviation can 30 

be higher for higher AOD. Thus, the normalized FR is more suitable for comparison between V1 and V2 performance. The 
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FR can be calculated per each successfully retrieved pixels and the AOD accuracy could be better as the normalized fitting 

residuals are smaller. Thus, the histogram of normalized FR over land and ocean are analyzed using the data from 1 March 

2012 to 28 February 2013 (1 year), 02-04 UTC (Figure 5).  

First the ocean AOD shows decreased normalized FR in V2 (mean of 0.057) compared to V1 (mean of 0.065). The surface 

reflectance assumption of V1 and V2 ocean algorithms is identical and only the selected channels for AOD inversion is 5 

different. Compared to the whole eight channels utilization in V1 ocean algorithm, only four channels (412, 443, 745, and 

865 nm) are used in V2 ocean algorithm to reduce the effect of ocean bio-optical variability. Because the assumption of 

surface reflectance is not changed, it is verified that the change of channels results in reduced FR here and the reduced mean 

bias. The normalized FR of land AOD also decreased from V1 (0.056) to V2 (0.052), but the difference is not big as ocean. 

Compared to the change of channels in ocean with identical surface reflectance assumption in ocean, the main difference 10 

over land is the change of surface reflectance. Also, the improvement of cloud masking in V2 could result in reduced 

normalized FR in both the ocean and land AOD. 

3.8 Validation of GOCI YAER V2 AE over ocean and land 

The AE inter-comparisons between AERONET and GOCI YAER V2 over ocean and land are presented in Figure 6. It is 

only for AERONET AOD > 0.3 because AE has large error due to the surface reflectance error when AOD is low. Note that 15 

GOCI AE is derived from the combination of selected aerosol model’s pre-defined values, not from the retrieved spectral 

AODs. Compared to the AE of V1 products accuracy during the DRAGON-NE Asia 2012 campaign described in Choi et al. 

(2016) (R = 0.678 over land and ocean together), the land and ocean AE of V2 products shows lower linear correlation with 

AERONET (R = 0.505 and 0.459, respectively) from the 5-year validation. The DRAGON-NE Asia 2012 campaign was in 

spring (March-April-May) when long-range transport of Yellow Dust from the Gobi and Taklamakan Desert of the continent 20 

of Asia, which has low AE with high AOD, are more frequent. The aerosol plumes with low AE and high AOD can be 

retrieved with higher accuracy compared to the general low AOD cases in other seasons. Thus, AE could show higher linear 

correlation in spring (R of 0.63 over land and 0.57 over ocean), but lower for other seasons results (R of 0.24 over land and 

0.22 over ocean). The highest frequency of points is close to the one-to-one line, but there is significant discrepancy where 

AERONET AE is about 1.3 but GOCI AE is about 0.6, especially over land. It could be from the different surface 25 

reflectance errors for each channel or perhaps due to a local minimum problem induced from the LUT approach for inverse 

modeling.  

4 Error analysis of GOCI YAER V2 AOD 

The retrieved AOD likely have both a bias and random error according to various factors such as sun-earth-satellite 

geometry, cloud contamination, surface type, assumed aerosol model, and etc. Thus, an error analysis of satellite AOD can 30 

help to understand characteristics of these products. In this section, coincident GOCI and AERONET AOD are analyzed to 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-251
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



13 
 

quantify bias and random error. The bias analysis is implemented for the four GOCI products, which are V1 land AOD with 

QA of 3, V2 land AOD, V1 ocean AOD with QA of 3, and V2 ocean AOD. Also, the pixel-level uncertainty of the GOCI 

version 2 land and ocean AODs are estimated. 

4.1 Bias analysis 

4.1.1 Bias as a function of AERONET AOD 5 

In Figure 7a, the V1 land AOD has negative bias in the low AOD range due to the overestimation of surface reflectance. 

After implementing the climatological surface reflectance over land, the V2 land AOD shows less bias compared to the that 

of V1 and are distributed near 0 in the whole AOD range. This results from the increased probability of finding observation 

days with less aerosol loading when using a 5-year data interval. The V2 ocean AOD shows a positive bias about 0.05-0.1 

and high positive bias of 0.1 near to the AERONET AOD of 0.3. The reason for the positive bias of ocean AOD could be an 10 

insufficient assumption of ocean surface reflectance considering only climatological averaged wind speed and geometry in 

spite of changeable surface properties including bio-optical properties. Details of improvements to the ocean AOD are 

described later. The range of 16th - 84th percentiles of both of land and ocean AOD become wider as AERONET AOD 

increases, plus the shapes of ranges are not symmetric. 

4.1.2 Bias as a function of AERONET AE 15 

The V2 ocean and land AOD biases are higher at the lowest AE of 0.3 corresponding to large size particles such as dust 

(Figure 7b). Random errors of both land and ocean AOD increase at low AE. This could be due to the assumed aerosol 

optical properties of large particles although non-spherical properties are already considered in the algorithm. The multi-

angle measurements such as Polarization and Directionality of the Earth’s Reflectances (POLDER), MISR, Airborne Multi-

angle Spectro Polarimetric Imager (AirMSPI) or the planned Multi-Angle Imager for Aerosols (MAIA) can observe one 20 

target pixel with several angles so that it has the strength of determining non-spherical properties of dust particles with a 

more accurate phase function characterization (Diner et al., 1998; Diner et al., 2013). 

4.1.3 Bias as a function of scattering angle 

In Figure 7c, the bias of ocean AOD changes from −0.05 to 0.1 as scattering angle increases from 110° to 175°. That of land 

AOD also shows similar tendency, but the range of variance is from −0.05 to 0.05. As the scattering angle increases up to 25 

180°, the atmospheric contribution becomes lower than that from the surface in the total TOA reflectance due to the shorter 

light path length, which increases AOD retrieval error (Sayer et al., 2013). This larger error at higher scattering angle is more 

distinct in the ocean AOD than the land AOD due to the difference in the surface reflectance between them. The land 

algorithm employs characterization of each hour of surface reflectance with the composite method to reflect the BRDF effect, 

and the ocean algorithm also considers the BRDF with geometry and wind speed. However, ocean bio-optical properties 30 
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such as chlorophyll (Chl) or color dissolved organic matter (CDOM) are not considered in the current ocean surface 

reflectance so this may be the reason that the error is relatively larger in the ocean AOD versus land AOD. 

4.1.4 Bias as a function of NDVI 

The bias analysis of land and ocean AOD according to NDVI is presented in Figure 7d. The V2 land AOD shows bias close 

to zero in the range of NDVI greater than 0.4 corresponding to high vegetated region, but shows positive bias up to 0.05 in 5 

the 0.1-0.4 NDVI range corresponding to less vegetated areas such as semiarid and urban regions. The method of surface 

reflectance determination from multi-year samples in the V2 algorithm is applied to all pixels identically regardless of 

surface type, which can result in different bias features according to NDVI. The positive bias over urban areas is similar to 

that of MODIS Collection 6 DT AOD (Munchak et al., 2013; Gupta et al., 2016). The positive bias of V1 ocean AOD is 

reduced in the V2 counterpart generally because the 500-600 nm channels that are highly affected by ocean bio-optical 10 

properties variance are not used in the V2 ocean algorithm. However, other selected channels can still be affected slightly, 

thus there remains positive bias feature in the range of smaller negative NDVI corresponding to less turbid ocean pixels 

where ocean surface models considering wind speed are utilized.  

4.1.5 Bias as a function of cloud contamination 

Despite applying several cloud masking techniques, remaining cloud contaminated pixels could still result in high positive 15 

biases in AOD. In the aggregation step of collecting 12 × 12 pixels, from 500 m pixels to 6 × 6 km2, the maximum number 

of used pixels is 58 among 144 pixels by discarding the darkest 20% and brightest 40% of pixels. The minimum number of 

pixels required to retrieve aerosol products is set as 29, which corresponds to 50% of available number of pixels after the 

discarding (58). Thus, the cloud fraction (CF) within one aerosol product pixel could have the range from 0 to 0.5 according 

to the finally remaining number of pixels from 58 to 29. Note that the brighter pixels due to surface reflectance, not cloud, 20 

could be counted as high CF, but it is hard to distinguish them perfectly in the 500 m spatial resolution. In Figure 8a, the bias 

of ocean AOD is close to zero at CF of 0.0, and positively increases up to 0.1 as CF increases up to 0.5. The bias of land 

AOD is about 0.05 at the CF close zero, decreases close to zero in the CF range about 0.05-0.25, and increases up to 0.05 in 

the CF up to 0.4. The positive bias of land AOD at CF of 0 could be the influence of surface reflectance overestimation. 

The bias due to the cloud contamination could be also analyzed according to the number of spatially collocated GOCI AOD 25 

pixels (NC) with each AERONET site location (Figure 8b). Because the GOCI AODs within 25 km radius centered on the 

site are averaged if only one pixel is available at least, NC can be regarded as related with CF, indirectly. Note that the 

maximum NC of ocean AOD pixels of 40 is less than that of land (56) because ocean AOD is generally collocated with the 

AERONET site located on the coast. The bias of V2 land AOD is 0.1 if NC is only one, and it decreases close to zero as NC 

becomes higher. The V1 land AOD had negative bias primarily due to the surface reflectance, thus the bias is not changed 30 

according to NC. The ocean AOD bias is 0.05 at NC of 1, and decreases for higher NC up to 30. But, it shows high positive 

bias for NC greater than 30, which could be due to problems in characterizing ocean surface reflectance. In addition, the 
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parameter Stddev of the spatially collocated AODs indicates how spatially smooth the retrieved AOD are. In the GOCI 

algorithm, aerosol optical properties of each pixel are retrieved independently regardless of surrounding pixels, which is 

similar to the concept of the MODIS DT and DB algorithms (Levy et al., 2013; Hsu et al., 2013). The Stddev could increase 

if cloud contaminated pixels are retrieved as high AOD in spite of relative low AOD of surrounding pixels, thus it also may 

indicate cloud contamination indirectly in this each-pixel-retrieval concept. In Figure 8c, the bias increases positively up to 5 

about 0.13 for ocean AOD and about 0.08 for land AOD as the Stddev increases, and the range of 16th - 84th percentiles also 

becomes wider. The V1 land AOD had a negative bias of -0.1 for low Stddev and it was about −0.05 in the high Stddev range, 

which was persistently affected by the surface reflectance issues and/or cloud contamination. Note that some recent aerosol 

retrieval algorithms adopt the concept of statistically spatial smoothness constraint of aerosol optical properties in the 

inversion procedure for better accuracy (Dubovik et al., 2011; Shi et al., 2016; Xu et al., 2016). 10 

4.1.6 Bias as a function of hour, month, and year 

The GOCI AOD consists of eight, hourly observations per day from 09:30 to 16:30 KST (centered time of each 

measurement), and the solar zenith and azimuth angle varies over a much wider range than that from LEO satellites. It 

requires more sophisticated assumptions such as surface reflectance, aerosol phase function, or calculation of Rayleigh 

scattering, which may result in different accuracies according to measurement time. In Figure 9a, the bias of land AOD 15 

decreases from about −0.1 of V1 to almost zero of V2, and its hourly dependence of V2 is indistinct. In contrast, the ocean 

AOD shows a distinct diurnal shape of bias, which is close to zero at the 09:30, 15:30, and 16:30 KST and about 0.1 at 12:30 

KST. This coincides with the results of bias analysis according to the scattering angle.  

The bias of land AOD as a function of month is not changed and kept as almost zero (Figure 9b). In contrast, that of ocean 

AOD increases up to 0.1 in the spring of April-May and about 0.05 in the late fall and early winter of November and 20 

December, which is likely relevant to the monthly Chl concentration variation over East Asia. The climatological Chl 

concentration reported by Yamada et al. (2004) shows highest as about 1.2-2.7 µg/l in spring and about and 0.8-1.2 µg/l in 

late fall compared to the 0.2-0.4 µg/l in other seasons. Thus, the monthly bias change of ocean AOD probably is affected by 

the Chl concentration in the current GOCI ocean AOD algorithm. The positive biases of the V1 ocean AOD in spring and 

late fall became small in the V2 ocean AOD after changing channels utilization.  25 

The V1 land AOD retrieved using each month of each year surface reflectance show constant negative bias about −0.05 from 

2011 to 2015 (Figure 9c). In contrast, the V2 land AOD retrieved using monthly climatological surface reflectance data from 

the 5-year interval samples shows that biases are smaller than those of V1 but with increased variation compared to those of 

V1. The increased variance for V2 could be a limitation of the climatological data application which cannot reflect year-to-

year changes of surface reflectance. The ocean AOD shows less variation of biases compared to the V2 land AOD, but not as 30 

constant as the V1 land AOD. This could possibly be attributed to inter-annually variable ocean surface reflectance 

according to ocean bio-optical properties. 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-251
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



16 
 

4.2 Uncertainty estimation of GOCI YAER V2 AOD 

The “uncertainty” (or “expected error”) of retrieved AOD is defined as the one-standard-deviation confidence interval 

corresponding to 68th percentile, and is estimated from the long-term evaluation of retrieved satellite AOD using ground-

based AERONET measurement. Each satellite-retrieved AOD has own uncertainty according to the algorithm characteristics 

such as surface reflectance estimation, assumed aerosol models, etc. The expected error (EE) of retrieved AOD can be 5 

estimated as a function of AERONET AOD and retrieved satellite AOD itself, respectively. A “diagnostic” expected error 

(DEE) is based on AERONET AOD, relatively more accurate than satellite AOD, so that it is useful to evaluate the 

algorithm quantitatively itself, but it is restricted only for AERONET pixels. Instead, the “prognostic” expected error (PEE), 

a function of retrieved satellite AOD, can be calculated over all retrieved pixels so that it is more appropriate for the 

application such as data assimilation with air quality forecasting models (Sayer et al., 2013; Shi et al., 2013). The common 10 

characteristic of EE is that EE increases linearly as AOD increases. Thus, a linear regression equation between 68th 

percentile of absolute error and reference AOD (AERONET or satellite AOD) are determined as EE. The 68th, 38th, and 95th 

percentile points should be corresponding to one, half, and two standard-deviation intervals, respectively, assuming the error 

has Gaussian distribution and no bias. Then, half and double of the linear least square regression equation of 68th percentile 

should follow the 38th and 95th percentile points. The EE of MODIS, VIIRS, and GOCI AOD based on this approach are 15 

summarized in Table 3. Note that additional consideration in EE is applied to each algorithm differently, such as bias 

information in MODIS DT over ocean and VIIRS EDR or geometrical air mass factor in MODIS DB (Huang et al., 2016; 

Sayer et al., 2013; Levy et al., 2013). 

To estimate DEE and PEE of GOCI YAER V2 AOD using a linear least square regression equation, the absolute AOD 

difference between GOCI and AERONET is analyzed according to AERONET and GOCI AOD respectively in Figure 10. 20 

The linear DEE (0.183τ' + 0.037) and PEE (0.206τ" + 0.030) of ocean AOD follow the 68th percentile points well (R = 

0.969 and 0.964, respectively). The double of DEE and PEE of ocean AOD are well-matched with the 95th percentile points. 

Although the linear DEE (0.135τ' + 0.075) and PEE (0.192τ" + 0.060) of land AOD are well-matched with the 68th 

percentile points (R = 0.969 and 0.930, respectively), the PEE of land AOD shows different discrepancies according to AOD 

range. The discrepancy is significant between 95th percentile points and double of PEE of land AOD. Due to the existence of 25 

more complex error sources, the EE of land AOD cannot be accurately characterized as a linear relation with AOD (Hyer et 

al., 2011). The estimated linear DEE and PEE of land AOD shows similar or lower slope but higher offset compared to the 

MODIS and VIIRS which is presumed due to higher surface reflectance bias in GOCI. 

Instead, the PEE constructed differently according to specific AOD ranges (“multiple PEE”) are applied as in Figure 11 and 

summarized in Table 4. The “noise floor”, defined in Hyer et al. (2011), is the minimum absolute error so that PEE should be 30 

greater than that value. The fifth-order polynomial regression fitting is applied when GOCI AOD is less than 0.5 to reflect 

the curved pattern, and linear fitting is applied when GOCI AOD is greater than 0.7. The higher value between these two 

relations computed values are applied when GOCI AOD is between 0.5 to 0.7. Both multiple PEEs show higher EE values 
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about GOCI AOD of 0.1 (over ocean and land) and 0.6 (over land) compared to the linear PEEs, thus they show better 

matching of observed features with the 68th percentile points. 

Further, the ratio of actual error to linear and multiple PEE follows the theoretical Gaussian distribution with mean of zero 

and variance of one (𝒩(0,1)) as shown in Figure 12, which is similar to the results obtained from MODIS DB AOD (Sayer 

et al., 2013). Because the PEE of ocean AOD has strong linear relation with GOCI AOD, there are less differences between 5 

linear and multiple PEE. However, the PEE of land AOD has significantly different relationships per AOD range so that the 

distributions of linear and multiple PEE are also different. Although the ratio between −1 and +1 of the 𝒩 0,1  (0.683) is 

closer with that of linear PEE of land AOD (0.680) than the counterpart of multiple PEE (0.666), the peak of the 𝒩 0,1  is 

closer with that of multiple PEE than linear PEE. Also, all linear and multiple PEEs of ocean and land AOD have slight 

positive bias compared to the 𝒩 0,1 . It means that obtained PEEs are imperfect due to the remaining bias characteristics 10 

analyzed in the previous section. Notwithstanding, the obtained PEEs of GOCI YAER V2 AOD, especially multiple PEE for 

land AOD, generally represent actual errors well. 

4.3 Regional performance 

The obtained GOCI DEE and (multiple) PEE can be used for AOD validation over each site along with other statistical 

evaluation metrics presented earlier. The validation results for all sites have been analyzed individually to show the results of 15 

each site, including the fraction within DEE and (multiple) PEE. Spatial distributions of statistical evaluation metrics are 

presented in Figure 13 and Figure 14 for land and ocean AOD, respectively. 

The average of collocated AERONET AOD is highest in China including Beijing (0.69 and 0.48 with GOCI V1 and V2, 

respectively) and Taihu (0.70) sites. The Korean sites show higher annual average AERONET AOD (0.33-0.50) than Japan 

sites (0.17-0.30). For land AOD among 27 land AERONET sites, 21 sites show improvement in V2 by the statistical 20 

evaluation metrics and 6 sites show worse accuracy in V2 than V1. And, the GOCI V2 land AOD shows less biased and 

higher fraction within DEE and PEE over the Korean peninsula as compared to the China and Japan sites. The sites 

presenting the worst accuracy in V2 land AOD show positively increased median bias. The probable reason for worse 

accuracy of some sites in V2 compared to V1 is likely the way the surface reflectance database is constructed. The surface 

reflectances of the lower accuracy sites in V2 such as Chiba_University, Kobe, Xinglong, and Osaka are bright (urban 25 

surfaces) compared to other sites, and the current identification threshold of the darkest 1-3% of observations without 

considering surface type results in climatologically derived values that are too dark surface for reflectances at bright 

(urbanized) surface sites. Tilstra et al. (2017) suggests that selecting the mode of the RCR histogram is better for 

characterizing the surface reflectance of bright surfaces than selecting the minimum values of the RCR. Different thresholds 

according to surface type may improve the accuracy of retrievals over sites that have bright surface reflectance. 30 

For the ocean AOD, 14 sites show improvement in V2 and 3 sites show worse accuracy in V2 than V1 among 17 coastal 

AERONET sites. Compared to increased median bias in land AOD, ocean AOD shows decreased median bias from V1 to 

V2. The lower accuracy sites don’t have significant difference between V1 and V2 compared to land AOD. The fractions 
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within DEE and PEE of V1 ocean AOD of the Japan sites are higher than the Korea sites, but it becomes similar in V2. The 

obtained DEE of V2 ocean AOD (94%) is too high than theoretical 1-sigma fraction (68%). However, the PEE of V2 ocean 

AOD is 66% as similar with theoretical value. Thus, the obtained PEE can represent error of GOCI AOD better than DEE. 

5 Summary and outlook 

Objective of this study is the improvement of the GOCI YAER algorithm in V2 for NRT processing with better accuracy. 5 

Overall cloud masking procedures were revised to prevent false masking of low AOD over bright surfaces as cloud in the 

previous version by adopting recent MODIS and VIIRS cloud masking methodology and improving existing V1 

methodologies. To reduce the remaining cloud or aerosol contamination in the surface reflectance database, the period of 

RCR samples is expanded from each year to a 5-year interval to increase the probability of finding cloudless low AOD cases 

so that the climatological surface reflectance database is more accurately constructed. Also, the surface wind speed data are 10 

constructed as a climatological database for the NRT retrieval without importing numerical weather forecast products. The 

GOCI spectral channel selection is revised according to specific surface conditions: dark ocean, turbid water, and land 

surface. Especially, the channels from 500 nm to 700 nm are largely affected by ocean bio-optical variation thus excluded 

from ocean AOD retrieval. As a result, the area of successful AOD retrieval and masking-out in the GOCI YAER V2 

algorithm and its retrieved AOD values became closer to the results of MODIS and VIIRS AOD qualitatively, compared to 15 

that of GOCI YAER V1. 

To confirm improvements of GOCI AOD accuracy in V2, the retrieved GOCI AOD and MODIS AOD are compared with 

ground-based East Asia AERONET and China SONET measurements of AOD for 5 years from 1 March 2011 to 29 

February 2016. The GOCI YAER land AOD compared to AERONET AOD showed significant improvement from V1 to V2 

with reduced bias from about −0.07 to 0.02 and increased f within EE=>7 from 49% to 60%. The comparison with SONET 20 

AOD also shows consistent results with reduced bias from about −0.10 to −0.01 and increased f within EE=>7 from 42% to 

52%. The GOCI YAER ocean AOD also shows reduced bias from about 0.04 to 0.01 and increased f within EE=>7 from 62% 

to 73%. As a result, the quality of both GOCI YAER V2 ocean and land AOD are more comparable with that of MODIS DT 

and DB AOD products over East Asia. 

Although retrieved GOCI YAER V2 AOD shows some bias features with respect to AERONET AOD and AE, scattering 25 

angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year, it never exceeds 

absolute ~0.1 for most variables. With the characteristics that error increases as AOD increases, the intrinsic expected error 

of GOCI YAER V2 AOD was estimated using AERONET data. The linear DEE and PEE (0.183τ' + 0.037 and 0.206τ" +

0.030, respectively) for ocean AOD represent actual error well over the entire AOD range. The linear DEE of land AOD 

(0.135τ' + 0.075) also represents actual error well. However, actual error doesn’t increase linearly per GOCI land AOD, 30 

thus the linear PEE of land AOD (0.192τ" + 0.060) shows some differences for specific AOD ranges. Instead, multiple 

PEE which consists of different relationships according to specific GOCI AOD ranges represents the actual error better. 
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Despite the algorithm improvements shown in this study, there is still potential for future improvement. The current version 

of the LUT was calculated by using a scalar radiative transfer calculation which is less accurate for calculating Rayleigh 

scattering for the short visible wavelengths (~400 nm) and by using a plane-parallel atmosphere approximation which is less 

accurate in high solar/sensor zenith angle. A vector RTM calculation (i.e. consideration of polarization) and spherical-shell 

atmosphere approximation can calculate Rayleigh scattering in high accuracy which can improve the accuracy of the GOCI 5 

YAER algorithm. Also, recent statistically optimized aerosol retrieval algorithms utilizing characteristics of spatial and 

temporal smoothness constraints for aerosol show higher accuracy by increasing aerosol signal (Dubovik et al., 2011; Xu et 

al., 2016). They also enable of simultaneous retrieval of multi geophysical variables such as aerosol and surface reflectance 

over land and aerosol and chlorophyll concentration over ocean, which can reduce the remaining error due to the pre-defined 

surface reflectance over ocean and land in the GOCI YAER algorithm. 10 

Hourly AOD products based on the improved GOCI YAER AOD could contribute to better understandings of aerosols in 

terms of long-term climate changes and short-term air quality monitoring and forecasting perspectives over East Asia, 

especially rapid diurnal variation and transboundary transport. Also, the second generation of GOCI to be launched in 2019, 

which has higher spatial resolution (~250 m), more channels including 380 nm, and full-disk coverage per day can improve 

the accuracy of AOPs retrieval. Furthermore, GOCI-II will observe East Asia simultaneously with the Geostationary 15 

Environmental Monitoring Spectrometer (GEMS) for trace gases (i.e. ozone, nitrogen dioxide, formaldehyde, and sulfur 

dioxide) and AMI for meteorological parameters (i.e. cloud properties). Therefore, multi-sensor synergies for comprehensive 

understandings of aerosols with trace gases, cloud, and ocean colors together are expected. 
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Tables 

Table 1 Cloud and other pixel masking steps of the GOCI YAER V2 algorithm. 

Sequence of 
steps 

Conditions Classifications References 

Masking in 0.5 × 0.5 km2 resolution 

1 Stddev of TOA reflectance at 555 nm in 3 × 3 
pixels > 0.0025 

Cloud over ocean (whole 9 pixels) Remer et al. (2005) 
Choi et al. (2016) 

2 A ratio of maximum and minimum TOA 
reflectance at 412 nm in 3 × 3 pixels > 1.1 

Cloud over land (whole 9 pixels) Hsu et al. (2013) 

3 Stddev of TOA reflectance at 490 nm in 3 × 3 
pixels > 0.015 

Cloud over land (whole 9 pixels) Wang et al. (2016) 

4 Mean-weighted Stddev of TOA reflectance at 
490 nm in 3 × 3 pixels > 0.0025 

Cloud over land (whole 9 pixels) Wang et al. (2016) 

5 TOA reflectance at 490 nm > 0.4 Cloud over ocean and land Remer et al. (2005) 
Choi et al. (2016) 

6 Pseudo GEMI index < 1.87 Cloud over land Pinty and 
Verstraete (1992) 
Kopp et al. (2014) 

7 NDVI using TOA reflectance at 660 and 865 
nm < −0.01 

Inland water over land Hsu et al. (2013) 

8 Ratio of TOA reflectance at 490 to 660 nm < 
0.75,  
and Stddev of TOA reflectance at 490 nm < 
0.015 (or mean-weighted Stddev of TOA 
reflectance at 490 nm < 0.0025) 

Homogenous dust call-back over land and ocean Remer et al. (2005) 

Aggregation to 6 × 6 km2 resolution 

9 The number of available pixels after masking 
among 12 × 12 pixels > 72 

Discarding darkest 20 % and bright 40 % pixels 
(reference: TOA reflectance at 490 nm), and 
average of remaining pixels 

Remer et al. (2005) 
Levy et al. (2007) 
Choi et al. (2016) 

Additional masking in 6 × 6 km2 resolution 

10 Stddev of TOA reflectance at 412 nm > 0.003 
and mean TOA reflectance at 412 nm in 12 by 
12 pixels > 0.22 

Cloud over land and ocean  

11 Mean TOA reflectance in 412 nm > 0.33 and 
mean TOA reflectance in 555 nm > 0.33 

Cloud over land and ocean  

12 Mean TOA reflectance in 412 nm < 0.30 and 
mean TOA reflectance in 660 nm > 0.2 

Low aerosol signals and arid area masking  

13 Difference of TOA reflectance at 660 nm 
between direct one and linear-interpolated one 
from 412 and 865 nm < −0.01 

Highly turbid pixels masking over ocean Li et al. (2003)  
Choi et al. (2016) 
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Table 2 The statistics of land and ocean AOD comparisons between AERONET/SONET and satellite products as shown in Figure 
3. 

Satellite AOD algorithm N R MB f within EEDT RMSE 

Land AOD comparison with AERONET 

GOCI YAER V1 all QA 47850 0.86 −0.01509 0.49 0.24 

GOCI YAER V1 QA3 38183 0.92 −0.06581 0.49 0.18 

GOCI YAER V2 45818 0.91 0.01947 0.60 0.16 

MODIS DT 3228 0.92 0.042744 0.62 0.18 

MODIS DB 3463 0.93 0.007057 0.73 0.16 

Land AOD comparison with SONET 

GOCI YAER V1 all QA 12974 0.83 −0.04817 0.45 0.29 

GOCI YAER V1 QA3 10483 0.88 −0.1034 0.42 0.27 

GOCI YAER V2 12345 0.85 −0.00668 0.52 0.24 

MODIS DT 733 0.82 0.104176 0.46 0.29 

MODIS DB 1258 0.86 3.22E−05 0.67 0.27 

Ocean AOD comparison with AERONET 

GOCI YAER V1 all QA 19945 0.83 0.056303 0.55 0.17 

GOCI YAER V1 QA3 18308 0.88 0.042779 0.62 0.13 

GOCI YAER V2 18588 0.89 0.008028 0.71 0.11 

MODIS DT 680 0.92 0.033227 0.73 0.09 
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Table 3 The expected errors of MODIS C6, VIIRS EDR, and GOCI over ocean and land. 𝝁𝟎 and 𝝁 are the cosine of solar zenith 
angle and satellite zenith angle, respectively. 𝛕𝐀 and 𝛕𝐒 are AERONET and satellite AOD, respectively. 

Algorithm Diagnostic expected error (DEE) Prognostic expected error (PEE) Reference 

Ocean 

MODIS DT Linear regression with bias consideration  

: −0.10τ' − 0.02 (lower bound) 

and 0.10τ' + 0.04 (upper bound) 

 Levy et al. (2013) 

VIIRS EDR Linear regression with bias consideration  

: −0.238τ' + 0.01 (lower bound) 

and 0.194τ' + 0.048 (upper bound) 

Linear regression: ±(0.25τU + 0.009) Huang et al. (2016) 

GOCI YAER V2 Linear regression:  ±(0.183τ' + 0.037) Linear regression:  ±(0.206τU + 0.03)   

Different regression per AOD range: Table 4 

This study 

Land 

MODIS DT Linear regression:±(0.15	
  τ' + 0.05)   Levy et al. (2010) 

MODIS DB Linear regression: ±(0.20τ' + 0.05) Linear regression with air mass factor 

consideration 

: ±(0.56 + 0.086)/(1/𝜇. + 1/𝜇) 

Sayer et al. (2013) 

VIIRS EDR Linear regression with bias consideration  

: −0.470τ' − 0.01 (lower bound) 

and −0.0058τ'+0.09 (upper bound) 

Linear regression: ±(0.34τU + 0.023) Huang et al. (2016) 

GOCI YAER V2 Linear regression:  ±(0.135τ' + 0.075) Linear regression:  ±(0.192τ3 + 0.06) 

Different regression per AOD range: Table 4 

This study 
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Table 4 Prognostic expected error (PEE) estimation of GOCI YAER V2 AOD according to AOD range. The minimum PEE is 
represented as “noise floor”. 

GOCI AOD range Ocean algorithm Land algorithm 

“noise floor” 0.044 0.048 

−0.05 ≤ τ" < 0.50  0.07– 0.59τ" + 4.40τ"2– 10.36τ"< +

10.64τ"[– 3.76τ"\  

0.11– 1.28τ" + 9.81τ"2– 27.75τ"< +

37.72τ"[– 19.86τ"\  

τ" ≥ 0.70  −0.01 + 0.27τ"  0.14 + 0.12τ"  

0.50 ≤ τ" < 0.70  Higher one between two fitting equations Higher one between two fitting equations 

  

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-251
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



29 
 

Figures 

 

Figure 1 Flow chart of the GOCI Yonsei aerosol retrieval version 2 algorithm. Yellow-colored parts are improved from version 1 
to version 2, and gray-colored parts are identical with version 1. 
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Figure 2 GOCI RGB image and AOD images of GOCI V1 all QA, GOCI V1 QA3, GOCI V2, MODIS/Aqua DT, MODIS/Aqua DB, 
and VIIRS EDR algorithms in 05 May 2015 over North-East Asia. 
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Figure 3 Comparison of AOD between AERONET/SONET and GOCI/MODIS DT/MODIS DB over land and ocean. Variables of 
x-axis are land AERONET AOD, land SONET AOD, and ocean AERONET AOD from top to bottom, respectively. Variables of y-
axis are GOCI YAER V1 for all QA, GOCI YAER V1 for QA of 3 only, GOCI YAER V2, MODIS DT, and MODIS DB from left 5 
to right, respectively. Colored pixels represent a bin size of 0.02. Black dashed line denotes the one-to-one line and dotted lines 
denote the expected error range of MODIS DT AOD. 
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Figure 4 Relative frequency histograms of retrieved AOD from AERONET and satellites over (a) land and (b) ocean. 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-251
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



33 
 

 
Figure 5 Histogram of normalized fitting residuals of retrieved (a)ocean and (b) land AOD with V1 of QA3 and V2, respectively. 
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Figure 6 AE comparison between AERONET and GOCI YAER V2 over (a) land and (b) ocean only for AERONET AOD > 0.3. 
Each colored pixel represents a bin size of 0.10. Black dashed line denotes the one-to-one line.  
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Figure 7 The difference of GOCI and AERONET AOD according to (a) AERONET AOD, (b) AERONET AE, (c) scattering angle, 
and (d) GOCI NDVI. Each point represents the 50th percentile of each 1000 collocated data sorted in ascending order of each x-
axis value. Under and upper dotted lines represent the 16th and 86th percentiles range of each point, respectively. Horizontal line of 5 
each point represents the range of collocated x axis variable.  
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Figure 8 The difference of GOCI and AERONET AOD according to (a) GOCI cloud fraction within aerosol product pixel size (6 × 
6 km2), (b) the number of spatially collocated GOCI pixels within 25 km distance from AERONET site, and (c) spatial standard 
deviation of collocated GOCI AOD. The points, dotted lines, and horizontal line in (a) and (c) are defined identically with Figure 7. 
The points and vertical whiskers lines in (b) represent the 50th percentile and 16th-84th range of collocated data corresponding to x-5 
axis data. 
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Figure 9 The difference of GOCI and AERONET AOD according to local observation time, month and year. The points and 
vertical whiskers lines are identical are defined identically with Figure 8(b). Each point is shifted along x-axis slightly for better 
viewing. 5 
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Figure 10 The absolute difference between GOCI YAER V2 AOD and AERONET AOD according to (a) AERONET ocean AOD, 
(b) AERONET land AOD, (c) GOCI YAER V2 ocean AOD, and (d) GOCI YAER V2 land AOD. The diamond, triangle, and 
square symbols represent the 38th, 68th, and 95th percentiles of 200 collocated data sorted in ascending order of x-axis value, 
respectively. In (a)-(d), the red line of each panel is the linear least squares fit of the 68th percentiles, and the blue and green lines 5 
are the half and double of the red line, respectively.  
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Figure 11 The absolute difference between GOCI YAER V2 AOD and AERONET AOD according to (a) GOCI YAER V2 ocean 
AOD, and (b) GOCI YAER V2 land AOD, respectively. The triangle symbols represent the 68th percentiles of 200 collocated data 
sorted in ascending order of x-axis value, respectively. 5 
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Figure 12 Comparison of observed (a) ocean and (b) land AOD error distribution with theoretical Gaussian distribution for the 
linear PEE (red) and multiple PEE (blue). 
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Figure 13 Spatial distribution of statistical evaluation metrics for GOCI YAER V1 QA3 land AOD (1st and 3rd columns) and V2 
land AOD (2nd and 4th columns). Left panels indicate mean AERONET AOD, correlation coefficient, and RMSE from top to 
bottom, respectively. Right panels indicate median bias, fraction within DEE, and fraction within multiple PEE from top to 
bottom, respectively. 5 
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Figure 14 As Figure 13 except for GOCI ocean AOD. 
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