
First of all, we would like to warmly thank the reviewer for her/his time in improving our work 
through helpful and suggestive comments.  

This paper updates existing SO2 emission inventories over China by using OMI observations and 
CTM. New source areas missing from the bottom-up inventories are identified and SO2 emission 
trends are interpreted. However, it is not very easy for readers to follow the contents, in 
particular the methodology part. I strongly suggest the authors spend some time on improving 
this part. 

General comments: 

1. The introduction section needs to be improved. I suggest focusing on literatures related to 
authors’ own work, instead of a very general introduction. The relationship between the previous 
studies and this work needs to be clarified. More recent work, e.g., Krotkov et al., 2016, van der A 
et al., 2017, needs to be included. 

Introduction expanded as requested.  

2. The method developed by Martin et al., 2003 works very well for NOx, because NOx lifetime is 
relatively short and it does not bring significant uncertainties by ignoring transport between grid 
cells. However, this is not the case for SO2. A further analysis is necessary to convince the method 
is still solid for SO2. 

 
The issue is known to the authors and we have long discussed it also with esteemed colleagues in 
the field. In contrast to the equivalent recent NOx emission estimates by the Martin technique [see 
for e.g. Zyrichidou et al., 20151], we are working on a coarser 0.25x0.25 degree grid. However, since 
both the apriori emissions as well as the modelling inputs are on a monthly scale, we were unable 
to configure a way to quantify any smearing effect due to transport [daily effect]. Hains et al., 20082, 
provide a global scale estimate for the SO2 lifetime to be 19 ± 7 h, while Fioletov et al, 20153, provide 
a range of 4h to 12h for the lifetime for SO2. Other studies (Lee et al, 20114) show even larger 
variability for the lifetime of SO2, between 16 and 40h. Considering this large range of estimates for 
the lifetime of SO2 we can only claim that our estimates should be valid for the lower lifetime 
estimates of SO2 and of course this range of uncertainty in the SO2 lifetime would be a main source 
of uncertainty in our aposteriori estimates. We have added an explanatory section at the end of 
section 2.2 on the matter. 
 

3.  In section 4.2, the authors tabulate the significant differences between inventories, but 
without any explanations for the reasons. I suggest a similar analysis as conducted in your recent 
work (Ding et al., 2017) to explore the possible reasons. 
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This is indeed the next logical step in this work, one which we are already undertaking. First results 
were presented to the scientific community during the 18th GEIA conference in Hamburg in 
September 2017 [presentations online here: http://www.geiacenter.org/community/geia-
conferences/2017-conference] and we are actively working on a comparison paper, following the 
logic of the work performed for NOx in Ding et al., 2017. However, we feel that adding this material 
to this paper would render it rather long and beyond the scope which is to introduce the new 
emission inventory.  

Specific comments: 

1. Page 2, line 14, the meaning of “usable manner” is confusing. Please consider rephrasing it. 

You are correct, line simplified.  

2. Page 2, line 38, please consider rephrasing “emission fields”. 

Line rephrased.  

3. Page 3, line 16, please state the reason for the given error of 50%. 

The MEIC inventory does not have an associated error estimate included and we were forced to 
assume one. In our new work, where the bottom-up and the top-down inventories are inter-
compared in detail, we have performed sensitivity studies on the methodology by altering this 
value from a small estimate of 10% to a large estimate of 90% and will present the effect this has 
on the final updated emission inventory.   

4. Page 3, line 27, please clarify the reason why the emissions in “great Beijing areas” is best 
represented. 

Line added in the text. 

5. Figure 1. It is not easy to distinguish the differences between graphs using the current legend. 
 

We have altered the colour bars accordingly.  

6. Page 8, line 3, please clarify the sources of the uncertainty of the CHIMERE SO2 columns. 

In the work of Beekmann and Derognat, 20035, and subsequently in Deguillaume, et al., 20076, a 
Bayesian Monte Carlo analysis was applied to the CHIMERE model over Paris in order to estimate 
the overall uncertainty with respect to the following CHIMERE model input parameters: 
anthropogenic and biogenic emissions, meteorological parameters such as wind speed and mixing 
layer height, actinic fluxes, quantum yields, and chemical rate coefficients. However, they only 
report assessments for tropospheric ozone, and then on secondary NOx and VOC formation, and 
not on SO2. CHIMERE runs were also used to assess SCIAMACHY observations [Blond  et al., 20077] 
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which includes error estimates but again for NO2 only.  

Within the framework of the EU FP7 MarcoPolo project, http://www.marcopolo-panda.eu/, an 
ensemble of modelled SO2 estimates were inter-compared with in-situ observations and Figure 1 
shows the relative percentage error of each model. During the OMI/Aura overpass time, CHIMERE 
has about 20-40% uncertainty SO2 on surface concentration. 

 
Figure 1. Inter-comparison of SO2 estimates by different model runs [in different colours] to the CHIMERE 
estimate [red line]. From top to bottom: mean SO2, STD SO2, CORR SO2 and RMS SO2. Unpublished results.  

7. Page 9, line 21, it is not accurate to say “the OMI observations are point daily measurements”. 
The OMI observation cannot be treated as a “point”. 

You are of course correct, line re-phrased. 

8. Page 9, line 29. How many levels of CHMIERE output are used in this study? It says 8 here, but 7 
before. 

Apologies, small typo error mixing up the words layers and levels. The entire text was checked 
and amended accordingly. 

9. Page 9, line 30. What is the “OMI 58 AK levels”? 

Phrase added. 

10. Page 17, line 19. What is the definition of “SO2 emission fields”? 

Wording rephrased throughout the text. We simply meant that we are producing an actual spatial 
domain, in lat/lon, of emissions and not total SO2 emitted masses over specific source locations.  

                                                           
D10311, doi:10.1029/2006JD007277. 
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We warmly thank for referee for her/his positive take on our work and helpful comments.  
 

General Comments 
 
The paper is well written and all sources well referenced. The method used and the data sources 
are well described, however I have one specific question that I would like the authors to clarify: 
 
In order to calculate the aposteriori emissions using the inversion methodology pre- sented in 
section 3.1 the apriori emission field is multiplied by the satellite-derived SO2 field divided by the 
model SO2 field.  In order to calculate the satellite-derived field from the OMI satellite 
observations, AMFs are calculated using an anthropogenic SO2 profile from the IMAGES CTM. Why 
didn’t the authors use the same SO2 profile for the calculation of the satellite field (i.e. in the AMF 
calculation) AND the model SO2 field? In this way one would exclude differences between the 
IMAGES and CHIMERE CTM when calculating the updated emission inventory. 
 
The reviewer is raising a very interesting suggestion which might have been possible if the satellite 
field calculations and the CHIMERE CTM run where performed within the same operational chains. 
However, the former are produced in an operational manner by BIRA whereas the latter by KNMI. 
The suggestion of the reviewer would hence require the reprocessing of the satellite data, which 
is beyond the scope of this paper.  
 
Specific comments 
 
Unfortunately all multiplot maps shown in the paper are far too small. This is especially the case 
for Fig 1,5 and 7.  In order to increase the image size I would suggest to remove the lat/lon axis 
labels between the single maps since all show the same area. Furthermore for Fig 1, I would 
suggest to use a different color bar, using white as the color for zero emissions. 
 
Thank you for this comment, indeed you are right. Figures 1, 5, & 7 have been updated 
accordingly. 
 
Abstract 
 
In the abstract it is written that ‘novel inversion techniques’ are used, however a broadly used 
technique is used (according to the papers cited in Section 3.1) and there is no ‘novel technique’ 
presented in this manuscript. This is misleading and I would suggest replacing ‘novel’ with ‘state-
of-the-art’ or ‘broadly used’.  
 
Line re-phrased. 
Introduction 
• Wording: Sulphur dioxide / Sulfur dioxide – I have found both in the paper. Please 
use only one notation and check the paper again 



 
Sulphur dioxide was kept as notation. 
 
• Page 2, line 17: Please name sources for hydrogen sulfide 
 
Line added in the relevant section.  
 
• Page 2, line 23: What are ‘scheduled biomass burning events’? Please clarify 
 
Basically, the burning of croplands in order to re-plant for the new season, i.e. the agriculture 
sector. Line added in the relevant section.  
 
Section 2.2 
 
• Page 5, line 11:  Are daily/monthly/fixed SO2 profiles from the IMAGES CTM 
used? Please clarify 
 
Daily profiles were used, at the overpass time of OMI. Line added in the relevant section. 
 
• Page 5, line 20: SO2 algorithm flagging: What exactly is flagged? Perhaps add a short list or 
example. 
 
Wording altered.  
 
• Page 6, line 4/5: NS,0 is not used in any equation What is meant by SCD-SCD 
correction? Typo: AMD precision. I guess this should be AMF precision 
 
Thank you for being so attentive. The NS,0 does not appear in these equations, indeed. The SCD-
SCD correction is the Slant Density minus the Slant Density correction, and the AMD precision is 
indeed a typo.  
 
Section 2.3 
 
• Page 7, line 17/ Page 9, line 29/ Fig4: There is general confusion when using the terms layer or 
level throughout this section.  What I understood is that the model provides SO2 vmr in ppm on 
nine (or eight???)  levels from which SO2 partial columns in eight (or seven??) layers can be 
calculated. Hence Fig 4 is not correct – you can’t show the SO2 profiles in ppb and DU on the 
same grid – for 
the SO2 profile in DU the layer midpoints should be used and not the levels from the vmr. The 
text should be corrected accordingly: 
 
– P.7, l 16/17: . . .on nine vertical layers levels in ppb, i.e. seven vertical layers 
– P.9, l 29 Fig. 4 – eight or nine levels for vmr? Please clarify! Section 4.1 
Thank you for this comment, indeed, we confused the terms layer and level in the text, it should 
be clear now. You are also correct on the depiction comment on ppb and DU, it was 
inadvertently plotted on the “wrong” altitude grid. The calculations were performed 
appropriately.  
 



• Page 13. Line 24-26. This is not clear for me. Why did only a part of the 8414 
grid cells actually provide information? 
 
The domain studied is between 102° to 132°E and 15° to 55°N, on a 0.25x0.25° spacing, however 
the MEIC emission inventory covers only part of that domain, mainland China. As a result, only 
8414 grid cells out of the possible 19200 can be analyzed.  
 
• Figure 6. One could also add the MEIC emissions for the years 2008,2010 and 
2012 to the plots to get a better overview of the agreement in different years. 
 

This is a very good point. We are currently working towards a companion paper which will present 
the comparisons between the different emission inventories for SO2 over the region, as per Ding 
et al., 2007. First results were presented to the scientific community during the 18th GEIA 
conference in Hamburg in September 2017 [presentations online here: 
http://www.geiacenter.org/community/geia-conferences/2017-conference]. We hence feel that 
adding this material to Figure 6 of this paper would make it difficult to interpret, without all the 
supporting material already in the companion paper.  

 
• Page 16, Line 16: It is unclear from the text that the increase for 2010 is wrt to the MEIC apriori 
inventory. Please clarify in the text 
 
Wording altered. 
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Abstract 12 

The main aim of this paper is to update existing sulphur dioxide (SO2), emission inventories over China 13 

using novel modern inversion techniques, state-of-the-art chemistry transport modelling (CTM), and 14 

satellite observations of SO2. Within the framework of the EU FP7 Monitoring and Assessment of 15 

Regional air quality in China using space Observations, MarcoPolo project, a new SO2 emission inventory 16 

over China was calculated using the CHIMERE v2013b CTM simulations, ten years of OMI/Aura total 17 

SO2 columns and the pre-existing Multi-resolution Emission Inventory for China (MEIC v1.2). It is shown 18 

that including satellite observations in the calculations increases the current bottom-up MEIC 19 

inventory emissions for the entire domain studied [102° to 132°E and 15° to 55°N] from 26.30 Tg/annum 20 

to 32.60 Tg/annum, with positive updates which are stronger in winter [~36% increase]. New source 21 

areas where identified in the South West [25-35°N and 100-110°E] as well as in the North East [40-50°N 22 

and 120-130°E] of the domain studied as high SO2 levels were observed by OMI, resulting in increased 23 

emissions in the aposteriori inventory that do not appear in the original MEIC v1.2 dataset. 24 

Comparisons with the independent Emissions Database for Global Atmospheric Research, EDGAR 25 

v4.3.1, show a satisfying agreement since the EDGAR 2010 bottom-up database provides 33.30 26 

Tg/annum of SO2 emissions. When studying the entire OMI/Aura time period [2005 to 2015 inclusive], 27 

it was shown that the SO2 emissions remain nearly constant before year 2010 with a drift of -0.51±0.38 28 

Tg/annum and show a statistically significant decline after year 2010 of -1.64±0.37Tg/Annum for the 29 

entire domain. Similar findings were obtained when focusing on the Greater Beijing Area [110° to 120°E 30 

and 30° to 40°N] with pre-2010 drifts of -0.17±0.14 and post-2010 drifts of -0.47±0.12Tg/annum. The new 31 

SO2 emission inventory is publicly available and forms part of the official EU MarcoPolo emission 32 

inventory over China which also includes updated NOx, VOCs and PM emissions.  33 

 34 

 35 
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1 Introduction 1 

 2 

Due to its undoubtable rapid economic growth, swift urbanization and consequent enlarged energy 3 

needs, large parts of China have been suffering from severe and persistent environmental issues 4 

including major air pollution episodes (Song, et al., 2017.) Developing and implementing effective air 5 

quality control policies is essential in combating such pollution problems and requires timely as well as 6 

dependable information on emission levels (Zhang et al., 2012; van der A, et al., 2016.) Understanding 7 

and monitoring the local long-term trends of different atmospheric pollutants is paramount in 8 

updating, and predicting, pollution emission scenarios (Kan, et al., 2012.) Satellite atmospheric 9 

observations have recently become an important information source for the atmospheric state, not 10 

only of the academic community, but also by public authorities and international environmental 11 

agencies (Streets et al., 2013; Lu and Liao, 2016). Recent reductions of the two major pollutants emitted 12 

mainly by industrial sources, nitrogen and sulphur dioxide, have already successfully been observed 13 

and quantified in a usable manner from space-born instruments over China (Wang et al., 2010; 2015, 14 

Liu et al., 2015; 2017).  15 

Sulphur dioxide, SO2, is released into the atmosphere through both natural and anthropogenic 16 

processes. In the former category lie chemical processes, such as the reaction of hydrogen sulfide with 17 

the atmospheric oxygen, seasonal biomass burning events, which may be foreseen to some extent, if 18 

not modelled, as well as volcanic degassing and unexpected eruptions (see for e.g. Seinfeld and Pandis, 19 

1998). In the former category lie chemical processes, such as the reaction of hydrogen sulfide, which 20 

is naturally occurring in crude petroleum and natural gas as well as from the breakdown of organic 21 

matter, with the atmospheric oxygen, seasonal biomass burning events, which may be foreseen to 22 

some extent, if not modelled, as well as volcanic degassing and unexpected eruptions (see for e.g. 23 

Seinfeld and Pandis, 1998). In the latter category fall the combustion of coal and oil fuel which account 24 

for more than 75% of global SO2 emissions (Klimont et al., 2013), a figure found to be similar when 25 

focusing on the Chinese domain (Smith et al., 2001; 2011). Lu et al., 2011, showed that SO2 emissions 26 

over China, calculated from all major anthropogenic sources as well as scheduled biomass burning 27 

events by the agricultural sector in order to clear vegetation and rejuvenate croplands, increased from 28 

~24 Tg in year 1996 to ~31 Tg for year 2010, including fluctuations due to the onset of environmental 29 

protection measures as well as the international economic crisis.Lu et al., 2011, showed that SO2 30 

emissions over China, calculated from all major anthropogenic sources as well as scheduled biomass 31 

burning events, increased from ~24 Tg in year 1996 to ~31 Tg for year 2010, including fluctuations due 32 

to the onset of environmental protection measures as well as the international economic crisis. The 33 

balance between encouraging China’s economic development and dealing with its environmental side-34 

effects often causes irregular changes in the SO2 emitted amounts, further dependent on the Province 35 

observed.  36 

Satellite SO2 observations have proven to be a reliable way to monitor emissions from space and are 37 

increasingly used in order to update bottom-up emission inventories (Streets et al., 2013). Numerous 38 

works have already amply demonstrated the ability of satellite sensors to observe regional 39 

anthropogenic emission sources such as studying the SO2 load over China using OMI/Aura 40 

observations. (Krotkov et al., 2008; Witte et al., 2009; Li et al., 2010; Jiang et al., 2012; Fioletov et al., 41 
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2013; 2016.) Krotkov et al. 2016, have shown how using long-term atmospheric data records from the 1 

same instrument [OMI/Aura] can provide consistent spatiotemporal coverage enabling the analysis of 2 

both anthropogenic and natural emissions. For the North China Plain, of direct interest to this work, it 3 

was show that while exhibiting the World’s most severe SO2 pollution, since 2011 a decreasing trend 4 

with a 50% reduction in emissions has been verified from space. It is of course not only the varying 5 

economy and enforcing legislation that affects air quality; Witte et al., 2009, calculated a 13% reduction 6 

in sulphur dioxide emissions due to strict pollutant control for the August-September 2008 Olympic 7 

and the Paralympic Games held in Beijing observed from space. Li et al., 2010, further demonstrated 8 

that the OMI/Aura observations are capable of verifying the effectiveness of China's SO2 emission 9 

control measures on power plants while the imbalance in coal consumption between the different 10 

provinces in China was also shown by Jiang et al., 2012. This inter-province diversion was further 11 

examined in van der A, et al., 2017, who showed how provinces enforcing desulphurization devices on 12 

their power plants have a decreasing SO2 trend whereas emerging provinces, which built new power 13 

plants to accommodate the rapid urbanization of the Chinese population, contribute with  high 14 

emissions to the country’s estimates.  15 

Quite recently a new technique uses OMI/Aura observations as means to detect large point SO2 16 

emission sources from diverse origins presented by Fioletov et al., 2013; 2016. Satellite observations 17 

were used not only to identify but also to group SO2 emissions into emissions by volcanoes, power 18 

plants, smelters, oil and gas industry. The technique has been evolved [Fioletov et al., 2017] into 19 

directly assessing traditional statistically-obtained emission levels using OMI as well as OMPS/NPP SO2 20 

columns, with excellent validation results.  21 

Following the aforementioned findingsir lead, in this work we aim to present a new spatially-resolved 22 

SO2 emission inventory on a monthly time scale for years 2005 to 2015 based on satellite observations 23 

and modern chemical transport modelling simulations. The technique used here has recently been 24 

applied in both Europe [Zyrichidou et al., 2015] as well as China [Gu et al., 2014] for NOx emissions 25 

based on both GOME/ERS-2 and OMI/Aura observations. We aim at showing how it can be applied also 26 

to SO2 emissions, and how the new, top-down emissions, compare against traditional bottom-up 27 

emission inventories.  28 

 29 

2 Data Description  30 

 31 

The mathematical analysis used in this work in order to extract an updated SO2 emission 32 

inventoryfields is fully described in Section 3. The main gist is that three inputs pieces of information 33 

are required; an original, also known as apriori, emission inventory, the satellite observations of the 34 

SO2 load and SO2 profiles provided by an air quality chemistry transport model.  The quality of these 35 

three pieces of information ensures the accuracy of the updated, aposteriori, SO2 emissions estimates. 36 

Since the mathematical formulism requires also quantifiable error estimates on these three input 37 

parameters, using the new OMI/Aura BIRA SO2 dataset [Theys et al., 2015; 2017] ensures that the 38 

satellite observations used here are fully characterized in this manner. In Sections 2.1 to 2.3 the three 39 

input datasets are presented and discussed appropriately.  40 
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2.1 The MEIC emission inventory 1 

 2 

The Multi-resolution Emission Inventory for China (MEIC v1.2) model has been developed for years 3 

2008, 2010 and 2012, by the School of Environment, Tsinghua University, Beijing, China and is 4 

downloadable from http://www.meicmodel.org/. SO2 emissions, in Mg/month, are calculated on a 5 

monthly basis for four sectors: power, industry, residential, and transportation, in a spatial resolution 6 

of 0.25x0.25 degrees. The domain applicable spans from 102°E to 132°E and from 15°N to 55°N. For the 7 

requirements of the methodology applied here the error on these emissions has been assumed to rise 8 

to 50% of the actual reported value since the MEIC inventory does not include such an error estimate, 9 

nor were we able to procure such a value from literature.. 10 

An example of the SO2 MEIC v1.2 emissions in Mg/month for March 2010 is shown in Figure 1.The 11 

relative strength of the four sectors is shown as well, with industry on the top left panel, the power 12 

sector on the top right, the residential emissions in the bottom left and transportation in the bottom 13 

right. Different colour scales in the panels were used for the different emission strengths. In Zhang et 14 

al., 2015, the 2010 MEIC v1.2 emissions have been used as spin-up information in order to perform 15 

sensitivity simulations with different SO2 emission reduction scenarios. It was shown that reducing SO2 16 

emissions from one region has a small effect on SO2 concentrations over the other regions. The 17 

national mean SO2 concentration however is most sensitive to SO2 emissions from Northern China, in 18 

this work called the Greater Beijing Area. This strengthens the importance of providing accurate and 19 

updated emission levels over that region in China even though it is considered to be the best 20 

represented within existing inventories since the large population and industry density renders 21 

the .evaluation of emission levels easier than at remote, less populated, regions.   22 

  23 
 24 
 25 

http://www.meicmodel.org/


5 

 

 1 

Figure 1. The SO2 MEIC v1.2 emissions in Mg/month for March 2010. The relative strength of the four 2 

sectors is shown here; industry, top left; power, top right; residential, bottom left and transportation, 3 

bottom right. Note the different colour bars used. 4 

 5 

2.2 The OMI/Aura SO2 observations 6 

 7 

The Ozone Monitoring Instrument (OMI) is a nadir-viewing instrument on board the NASA Aura 8 

satellite flying in a Sun-synchronous polar orbit with an equator crossing time of around 13:30 local 9 

time in the ascending node launched in July 2004. The OMI imaging spectrograph measures 10 

backscattered sunlight in the ultraviolet-visible range from 270 nm to 500 nm with a spectral resolution 11 

of about 0.5 nm [Levelt et al., 2006]. The OMI spatial swath is around 2600 km wide achieving near-12 

complete global coverage in approximately one day. The OMI ground pixel size varies from 13 × 24 km2 13 

at nadir to 28 × 150 km2 at the edges of the swath. Since June 2007, the radiance data of OMI for some 14 

particular viewing directions have been corrupt, a feature known as the OMI row anomaly 15 
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(http://www.knmi.nl/omi/research/product/rowanomaly-background.php). Hence, the suggested 1 

OMI observations are excluded de facto from the analysis.  2 

In this work, we employ the retrieved SO2 Vertical Column Densities (VCDs) using the Royal Belgian 3 

Institute for Space Aeronomy, BIRA, algorithm [Theys et al., 2015] which are calculated using the 4 

Differential Optical Absorption Spectroscopy (DOAS) technique [Platt and Stutz, 2008] to the 5 

measured spectra in the 312–326 nm wavelength range. This step is followed by data filtering for the 6 

row anomaly issue and a background correction to account for possible biases on the retrieved slant 7 

columns. The obtained quantity is converted into a SO2 VCD using an air mass factor, AMF, which 8 

accounts for changes in measurement sensitivity due to observation geometry, ozone column, clouds, 9 

and surface reflectivity. The anthropogenic SO2 profile required in the AMF calculation has been 10 

extracted from the IMAGES tropospheric chemistry transport model [see Stavrakou et al., 2013, and 11 

references therein]. All details on the BIRA OMI SO2 algorithm can be found in Theys et al. [2015] 12 

updated recently in Theys et al., 2017. The anthropogenic SO2 profile required in the AMF calculation 13 

has been extracted from the Intermediate Model of the Global and Annual Evolution of Species, 14 

IMAGESv2, global tropospheric chemistry transport model [Stavrakou et al., 2013, and references 15 

therein] on a daily basis and for the overpass time of OMI. All details on the BIRA OMI SO2 algorithm 16 

can be found in Theys et al. [2015] updated recently in Theys et al., 2017 in preparation for the TROPOMI 17 

instrument. The dataset has already been employed in different studies; in van der A et al. [2016] in 18 

order to estimate the effectiveness of current air quality policies for SO2 and NOx emissions in China; 19 

in Koukouli et al., 2016, in order to quantify the anthropogenic SO2 load over China using different 20 

satellite instruments and algorithms; in Schmidt et al., 2015, in order to study the 2014–2015 21 

Bárðarbunga-Veiðivötn fissure eruption in Iceland, among others.  22 

The domain considered extends from 102° to 132°E and from 18° to 50°N and covers Eastern China. Daily 23 

observations were filtered for high Solar Zenith Angle, SZA, of > 70°, cloud fraction of > 0.2 as well as 24 

row anomaly flagging and also SO2 algorithm flagging, as per Theys et al. [20157]. The filtered data 25 

were then averaged onto a 0.25°x0.25° monthly grid using a 0.75° smoothing average box. For further 26 

details on this pre-processing refer to Koukouli et al. [2016].  27 

Within the OMI BIRA SO2 product, error contributions resulting from each step of the retrieval to the 28 

final vertical column error are provided separately, including their random and systematic parts [Theys 29 

et al., 2017]. This allows the estimation of the total error on the column averages, an important feature 30 

in this analysis where the instantaneous OMI observations are gridded and then averaged on a 31 

monthly mean basis. The formulation of the error on the vertical SO2 column is derived by basic error 32 

propagation, shown in Eq. (1).  33 

𝜎𝑁𝑉
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𝜎𝑁𝑆

𝑀
)
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+ (
𝜎
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back

𝑀
)
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(𝑁𝑆 − 𝑁𝑆

back
) 𝜎

𝑀
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)

2
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 34 

where 𝜎𝑁𝑆
, 𝜎𝑀 and 𝜎𝑁𝑠

𝑏𝑎𝑐𝑘  are the errors on the slant column, 𝑁𝑠, the air mass factor, M, and Ns
back the 35 

reference correction, respectively. When averaging the observations, the systematic and random 36 

components of each given error source need to be discriminated and so Eq. (1) evolves into Eq. (2) 37 

http://www.knmi.nl/omi/research/product/rowanomaly-background.php
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 2 

where 𝑁  is the number of ground pixels considered in the average and 𝜎𝑁𝑆_𝑠𝑦𝑠𝑡  is the systematic 3 

uncertainty on the slant column density, SCD, which also includes the systematic uncertainty 4 

associated to the background correction. The Vertical Column Density, VCD, is denoted by Nv; the  SCD 5 

by Ns; the SCD correction by Ns,0; the SCD minus the- SCD_ correction by ΔNs; the AMF by M; the VCD 6 

precision by σNV; the SCD precision by σNS_rand; the AMFD precision by σM_rand and the AMF trueness by 7 

σM_syst. The error analysis is accompanied by the total column averaging kernel (AK) calculated as the 8 

weighting function divided by the air mass factor, M [Eskes and Boersma, 2003]. The weighting 9 

function characterizes the sensitivity of the extracted atmospheric column to changes in the true 10 

profile and its importance in the analysis of satellite observations, alongside their correct comparison 11 

to other datasets, has long been established [see for e.g. Rodgers 2000, Ceccherini and Ridofli, 2010, 12 

Zhang et al., 2010, etc. ] In Section 2.3 the importance of the AKs in co-analyzing satellite observations 13 

and modelling results in this work is discussed extensively.  14 

An example of the OMI SO2 product used in this work is shown in Figure 2, for the month of March 15 

2010. The retrieved SO2 VCD in Dobson Units (D.U.) is shown in the upper panel with the systematic 16 

component to the error in the bottom left and the random component in the bottom right.  17 
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Figure 2. Upper panel: the monthly mean OMI/BIRA SO2 columns in D.U. for March 2010. Lower panel: the 1 
associated systematic error [left] and random error [right] in D.U. calculated using Eq. (2). 2 

In the original work of Martin et al., 2006, which was based on GOME/ERS-2 observations and GEOS-3 

CHEM model data on a resolution of 2° by 2.5°, the authors conclude that the major limitations in their 4 

work were the coarse horizontal resolution of GOME – which is not the case here for OMI– and the 5 

lack of direct validation of the GOME tropospheric NO2 product – again, not this case here as the OMI 6 

BIRA SO2 measurements have been already been verified against other satellite observations [Bauduin 7 

et al., 2016; Koukouli et al., 2016] as well as long term ground-based measurements in polluted 8 

locations [Theys et al., 2015, Wang et al., 2017].  9 

However, we would be amiss not to mention the issue of the possible horizontal transport of SO2 10 

during its lifetime in the lower troposphere which would alter the linear relationship inherent in Eq. 11 

(4). Hains et al., 2008, calculated the SO2 lifetime on a global scale to be 19 ± 7 h, whereas Lee et al., 12 

2011, have updated this estimate, at northern US mid-latitudes where anthropogenic emissions 13 

dominate, to 16–40h with a maximum in winter and a minimum in summer. Using OMI/Aura 14 

observations over the highest emitting power plant locations in the US, Fioletov et al., 2015, have 15 

provided a shorter lifetime estimates of between 4 and 12 h. Even though it is hence not inconceivable 16 

that with moderate wind speeds SO2 may have traversed a grid point on our 0.25°x0.25° grid, on the 17 

monthly mean scale that this work is based on it is impossible to evaluate the magnitude to this 18 

possible smearing effect.  19 

 20 

 21 

Formatted: English (United States)
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2.3 The CHIMERE model output 1 

 2 

A multi-scale model for air quality forecasting and simulation, CHIMERE, 3 

http://www.lmd.polytechnique.fr/chimere/, is providing SO2 profiles over the Chinese domain between 4 

102°E - 132°E and 18°N - 50°N for the mean overpass hour of OMI/Aura over the domain. The model 5 

version is CHIMERE v2013b [Menut et al. 2013]  at a spatial resolution of 0.25°x0.25° and on eight vertical 6 

layers levels in ppb, i.e. seven vertical levelslayers, spanning from the surface up to 500hPa, for year 7 

2010. The meteorological input was provided by ECMWF, http://www.ecmwf.int/, operational data. 8 

The anthropogenic emission inventory in this CHIMERE run was a mix of the MEIC v1.2 inventory for 9 

mainland China and the Intex-B emission inventory, http://mic.greenresource.cn/intex-b2006 for areas 10 

outside China. The biogenic emissions are provided by the MEGAN database, 11 

http://lar.wsu.edu/megan/. For the background of the particular CHIMERE set-up refer to Mijling and 12 

van der A, (2012), whereas more specific details on the CHIMERE v2013b run used here may be found 13 

in Ding et al., (2015).  14 

The uncertainty of the CHIMERE SO2 columns is assumed to rise to 25%. Estimating mathematically 15 

modelling errors is quite challenging due to the large number of modelling processes and input 16 

parameters that have no defined error, such as for e.g. the boundary and initial conditions, the species 17 

emissions, rate constant uncertainties, even unresolved aspects of atmospheric physics and chemistry 18 

[Deguillaume et al., 2008; Boersma et al., 2016]. Typically such uncertainties are deduced from 19 

comparisons to other CTMs [Pirovano et al., 2012] and/or to independent observational datasets [Lee 20 

et al., 2009]. Even so, due to the innumerous differences in mathematically expressing atmospheric 21 

processes in the former case and between model simulations and observations in the latter case, 22 

calculating a definite value remains elusive. In Figure 3, upper, the March 2010, CHIMERE integrated 23 

SO2 column is shown as example for the domain in question.  24 

Before proceeding to the CHIMERE profiles convolution to the OMI AKs and subsequent vertical 25 

integration, we investigated whether the differences in orography heights assumed by the CHIMERE 26 

and OMI datasets in the respective algorithms may introduce artifacts in the final CHIMERE VDCs. Zhou 27 

et al., 2009, have shown that, for the case of NO2 profiles retrieved from OMI measurements over the 28 

Po Valley and the Alps, the difference in orography between satellite pixel and CTM grid may lead to 29 

either over- or under-estimation of the NO2 VCDs by between 10 and 25%.  Theys et al., 2017, in order 30 

to utilize more realistic apriori SO2 profiles, employed CTM model profiles at 1°x1° resolution and used 31 

the hypsometric equation (Eq. (3) to scale them down to the future TROPOMI/S5P 7 km × 3.5 km spatial 32 

resolution. In this equation, a new effective pressure, Peff, which differs from the model surface 33 

pressure PERA, is calculated under the assumption that the surface temperature, TERA, varies linearly 34 

with height with a lapse rate of Γ = -6.5Kkm-1, gas constant of R=287 Jkg-1K-1 and gravitational 35 

acceleration of g = 9.8ms-2. This variation depends on the difference between the orography height of 36 

CHIMERE, hCHIM, and the OMI-reported height per observation, heff. The surface pressure and 37 

temperature have been extracted from the ERA-interim dataset, 38 

https://www.ecmwf.int/en/research/climate-reanalysis/era-interim, on a daily temporal and 0.75°x0.75° 39 

spatial resolution [Dee et al., 2011].  40 

http://www.lmd.polytechnique.fr/chimere/
http://www.ecmwf.int/
http://mic.greenresource.cn/intex-b2006
http://lar.wsu.edu/megan/
https://www.ecmwf.int/en/research/climate-reanalysis/era-interim
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In the case of SO2 anthropogenic emissions, this whole issue may be significant in locations where the 1 

surface height alters significantly within our 0.25°x0.25° grid whereupon the OMI pixel may have 2 

viewed an entirely different atmospheric state, by more than ~1km in the vertical. In this work and for 3 

the entire ten years of OMI observations, only 3% of the entire domain of 15609 grid points show an 4 

over-estimation of hCHIM heights above 500m and less than 0.5% of the grid points show an over-5 

estimation of  heff heights.  6 

 7 

𝑃𝑒𝑓𝑓 = 𝑃𝐸𝑅𝐴(
𝑇𝐸𝑅𝐴

𝑇𝐸𝑅𝐴 + 𝛤(ℎ𝐶𝐻𝐼𝑀 − ℎ𝑒𝑓𝑓)
)−

𝑔
𝑅𝛤⁄  (3) 

 8 

 9 

Even so, and for completeness sake, the CHIMERE profiles were re-scaled accordingly to the new 10 

pressure levels, calculated from Peff and the CHIMERE pressure parameters as applied in Equations 2 11 

and 6 of Zhou et al., 2009.  Grid points with associated CHIMERE heights of greater than 1500m, which 12 

represent 7.5% of the domain, almost exclusively in the western-most part [west of 110°E] where the 13 

Tibetan plateau rises, are excluded from this re-scaling due to interpolation issues. Those pixels are in 14 

any case excluded in the analysis for the new emission database further on due to their non-existent 15 

SO2 contributions. Overall, the non-seasonally dependent differences found in the CHIMERE columns 16 

before and after scaling were of the order to ~10-12%, on the low side of the Zhou et al., 2009, estimates 17 

for NOx who were however faced with far greater topological variabilities in the locations of their 18 

study. As a consequence, we consider the convolution of modelling profiles to the satellite AK a far 19 

more important factor in the solidity of the proposed methodology that anything else.  20 

An extremely small fraction of our domain showed significant variation of above 0.5 D.U. in absolute 21 

differences, of less than ~0.05% of the pixels for the entire domain irrespective of month, due to 22 

numerical uncertainties introduced by the re-shaping, re-scaling and altering between the different 23 

altitude domains of the CHIMERE and OMI profiles. Hence, for the main aim of this paper which is to 24 

update the SO2 emission fields spatial inventory over Eastern China and not to provide absolute SO2 25 

emitted quantities, we deem this difference well within the final emission inventory error budget 26 

discussed below in Section 4.1. 27 

We then proceed in convolving the re-scaled CHIMERE profiles with the OMI column averaging kernel 28 

as discussed in Eskes and Boersma, 2003 and Boersma et al., 2008a. The CHIMERE model profiles were 29 

already in a 0.25°x0.25° monthly grid whereas the OMI observations are point daily measurements on 30 

a variable pixel size, between 13 × 24 km2 at nadir to 28 × 150 km2 at the edges of the swath. Hence, the 31 

CHIMERE profile for each grid was convolved with each of the corresponding OMI AKs that fall within 32 

the same 0.25°x0.25° grid and then averaged [see Figure 3, bottom]. On average, the convolution of 33 

the CHIMERE re-shaped profiles with the OMI AKs introduced a seasonally dependent decrease in the 34 

SO2 modelled levels, between ~0-5% [for the summer months] and 10-15% [for the autumn-winter 35 

months] for the entire domain, as expected.  36 

An example of this entire process is provided in Figure 4 for the grid box 38.0°N, 113.25°E, a location 37 

slightly to the West of Greater Beijing Area with a moderate orography height of ~1km. In the left panel 38 
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the original CHIMERE SO2 profile in 8 levels in ppb is shown in blue, the same profile but in Dobson 1 

units per layer is given in red whereas the profile in Dobson units but on the OMI 58 AK levels is given 2 

in black since. the OMI algorithm performs calculations on a 58 level pressure grid. The y-axis ranges 3 

up to ~5 km which is approximately the vertical range of the CHIMERE model. In the middle panel the 4 

OMI AK profile is presented. In the right panel the original CHIMERE profile in Dobson units is shown 5 

again in black so as to compare easily to the convolved CHIMERE profile, in olive green. Insert in this 6 

panel the total SO2 load in D.U. for the two profiles is also given. The re-shaped CHIMERE total SO2 7 

column is 1.50 D.U. whereas after convolution with the OMI AK it decreases to 0.885 D.U. while the 8 

actual load is also re-structured in order to approach the atmosphere sense by the satellite instrument. 9 

It is hence shown that even though the total column has not changed the vertical distribution of that 10 

column does change to reflect the sensitivity of the satellite observations, which peaks higher up in 11 

the boundary layer and lower troposphere.  12 

 13 

 14 
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Figure 3. The March 2010 SO2 columns in D.U. as integrated in height from the original CHIMERE model ppb levels: 1 
upper, without rescaling to the effective pressure and without convolution with the OMI AKs; lower, with 2 
rescaling and with convolution with the OMI AKs.  3 

 4 

 5 
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Figure 4. An example of the convolution of the CHIMERE SO2 profile with the OMI Averaging Kernel to produce 1 
the convolved CHIMERE total SO2 column for the grid 38.0°N, 113.25°E. Left panel: The original CHIMERE SO2 2 
profile in 8 levels in ppb is shown in blue, the same profile but in Dobson units per layer is given in red whereas 3 
the profile in D.U. but on the OMI 58 AK levels is given in black. Middle panel: the OMI AK profile. Right panel: 4 
the original CHIMERE profile in D.U. per layer is shown in black, as in the left panel, and the convolved CHIMERE 5 
profile is D.U. per layer is shown in olive green. The original CHIMERE total SO2 column is 1.50 D.U. whereas after 6 
convolution with the OMI AK it decreases to 0.885 D.U.  7 

3 Mathematical formulism 8 

3.1 Top-down and aposteriori emissions estimates 9 

 10 

The inversion methodology applied here is the one first presented in Martin et al., 2003, and further 11 

applied in Martin et al., 2006, Boersma et al., 2008b, Lamsal et al., 2010, Lin et al., 2010, Gu et al., 2014, 12 

Zyrichidou et al., 2015, among others. The main premise of the methodology resides in the mass 13 

balance equation [Leue et al., 2001] and requires three input parameters; the apriori emission field, Ea 14 

[Sect. 2.1], the satellite-derived SO2 field, Ωt [Sect.2.2] and the model SO2 field, Ωa [Sect.2.3]. Using 15 

those, as per Eq. (4), the top-down emission inventory, Et, is calculated. Using standard propagation 16 
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error analysis, the error on the top-down emission field may be calculated through Eq. (5), where the 1 

error on the apriori emissions, εa, is required, as well as the error on the model estimates, εΩa and the 2 

satellite retrieval error, εΩt. These error levels have been discussed in the equivalent sections. 3 

 4 

𝐸𝑡 = Εa ∗
Ωt

Ωa
 (4) 

 5 

𝜀𝑡
2 = (

Ω𝑡

Ωa
∗ 𝜀a)2 + (

Εa

Ωa
∗ 𝜀Ωt)2 + (

ΕaΩ𝑡

Ωa
2 ∗ 𝜀Ωa

)2
 

(5) 

 6 

The calculated top-down emission inventory, Et, may be combined with the apriori emission inventory, 7 

Ea, to provide an aposteriori emission inventory, Ep, following the maximum likelihood theory and a 8 

log-normal distribution of errors. In Eq. (6) the calculation of the aposteriori emission inventory is given, 9 

and its associated relative error in Eq. (7). Hence, in this methodology, the original bottom-up emission 10 

inventory is combined with the top-down satellite observations, weighted by their respective errors, 11 

and using modeling outputs as background field, in order to constraint, update and provide new 12 

emissions estimates. It also follows that since the apriori emission field is weighted by the top-down 13 

emission field error, and vice versa, the aposteriori will depend mostly on the apriori should the errors 14 

of the top-down be too large, and vice versa. In that way, it is assured that at locations where the 15 

satellite observations are too sparse or the information content in the SO2 load too low, the aposteriori 16 

emission field will revert back to the apriori.  17 

 18 

ln 𝐸𝑝 =
ln 𝐸𝑎 (ln 𝜀𝑡)2 + ln 𝐸𝑡 (ln 𝜀𝛼)2

(ln 𝜀𝑡)2 + (ln 𝜀𝑎)2
 

(6) 

 19 

(ln 𝜀𝑝)−2 =  (ln 𝜀𝑡)−2 + (ln 𝜀𝑎)−2 (7) 

 20 

We should clarify at this point that the calculations of Eq. (4) to Eq. (6) are performed on domain space, 21 

i.e. for completeness sake these equations should have an i.j indicator everywhere designating the 22 

lat/lon location of the gridded domain space. The i,j were not included because it was deemed the 23 

equations would become too complicated unnecessarily.  However, the relative error calculated by Eq. 24 

(7), which represents the geometric standard deviation about the expected value as per Martin et al., 25 

2003, is calculated on the final, total top-down error, εt,  and apriori error, εa, which are calculated as 26 

the known summation of error terms, 𝜀2 = 𝜀𝑖,𝑗
2 + 𝜀𝑖,𝑗+1

2 + ⋯ + 𝜀𝑖+1,𝑗
2 + 𝜀𝑖+1,𝑗+1

2 + ⋯.  27 
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In the very recent paper by Cooper et al., 2017, an iterative version of the mass balance methodology 1 

[Martin et al., 2003] was shown to provide results of similar accuracy as the more computationally 2 

demanding adjoint method [used for e.g. in Stavrakou et al., 2013] in estimating satellite-born NOx 3 

emissions, which encourages the usage of the mass balance technique when one cannot employ from 4 

modelling results that calculate an adjoint matrix as well.  5 

3.2 Roadmap of this analysis 6 

 7 

The statistical methodology described above will be applied to the entire eleven years of OMI/Aura 8 

observations, from 2005 to 2015 inclusive. Since the CHIMERE v2013b simulations were performed 9 

using the 2010 MEIC v1.2 inventory, year 2010 will be used as reference year in the following analysis. 10 

The first step is to present the 2010 updated emissions over the entire domain and how these compare 11 

against the apriori fieldsemissions; secondly, monthly mean time series of different locations within 12 

the domain are shown and the changes of the SO2 emissions over the years is discussed. Finally, 13 

comparisons against pre-existing bottom-up emission inventories are presented.  14 

4 Results and statistics 15 

4.1 Updated emissions over China 16 

 17 

In Figure 5 the seasonal variability of the aposteriori emissions calculated with the methodology above 18 

are shown in the middle column for spring, summer, autumn and winter [top to bottom.] The 19 

equivalent MEIC v1.2 apriori inventory on the same seasonal basis is shown in the left column and the 20 

percentage differences of the two in the right column. The main take-away message from this pictorial 21 

representation of the inventory is that the new inventory is producing higher emissions for the entire 22 

domain for all seasons, which are stronger in winter and have positive biases that span from ~10% to 23 

~35% accordingly [Table 1]. Note from the fifth column of the Table the amount of grid points that 24 

actually provide information out of an original 8414 grid cells for the domain considered in this work, 25 

i.e. the grid cells of the MEIC v1.2 inventory. In the final column of the table, the percentage differences 26 

between the two inventories are calculated in two ways: the first value depicts the difference between 27 

the first and third columns, i.e. on the sum of emissions for the entire domain. The second value, in 28 

square brackets, has been calculated as the mean of the per grid point percentage differences within 29 

the domain, hence it contains the geographical deviations of the emission inventories as well. In order 30 

to further delve into this geographical variability we present in Figure 6 time series of emissions over 31 

four domains of interest; the entire domain studied [18-50°N and 102-132°E], the Greater Beijing region 32 

[30-40°N and 110-120°E], the South West region [25-35°N and 100-110°E] and the North East region [40-33 

50°N and 120-130°E]. The two regions in the corners of the area studied were chosen since high SO2 34 

levels were observed by OMI, resulting in increased emissions in the aposteriori inventory, that do not 35 

appear in the original MEIC v1.2 dataset.  36 

 37 
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Figure 5. The seasonal variability of the aposteriori emissions calculated in this work [middle column] in 1 
Gg/season compared to the apriori MEIC v1.2 emissions [left column] in Gg/season as well as their percentage 2 
differences [right column] in %. From top to bottom; spring, summer, autumn and winter of reference year 2010. 3 

 4 

Table 1. The average SO2 emission levels over China for the four seasons of year 2010 as presented in Figure 5.  5 

 Apriori 
[Gg/season] 

Apriori error 
[Gg/season] 
 

Aposteriori 
[Gg/season] 

Aposteriori 
error 
[Gg/season] 

# cells % 
difference 
 

Spring     6.36 0.135 7.77 1.57 6975 18.0  [24.0] 
Summer 5.96 0.132 6.46 1.01 5765 8.0    [14.0] 
Autumn 6.77 0.137 7.68 1.40 7126 13.0  [20.0] 
Winter 7.07 0.140 9.12 2.66 7254 29.0  [34.0] 

 6 

 7 
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Figure 6. Monthly mean time series for the aposteriori emissions in Tg/month calculated in this work [dark blue 1 
points] between years 2005 and 2015 inclusive. Insert, the reference year 2010 is shown to include the MEIC v1.2 2 
apriori emissions in maroon diamonds. The light blue shaded area depict the calculated apriori error [Eq. (7)]. 3 
From top to bottom: the entire domain studied [18-50°N and 102-132°E], the Greater Beijing region [30-40°N and 4 
110-120°E], the North East region [40-50°N and 120-130°E] and the South West region [25-35°N and 100-110°E]. 5 

 6 

In Figure 6 the monthly mean time series for the aposteriori emissions in Tg/month [dark blue lines] 7 

are presented for the four domains of interest, so as to enable a more in depth discussion of the new 8 

inventory. The light blue shaded area depicts the extracted aposteriori error on the emissions and the 9 

inset sub-figures depict the reference year 2010 with the aposteriori levels shown in blue and the MEIC 10 

v1.2 emissions in maroon. The pre- and post-2010 drifts are also calculated since year 2010 is considered 11 

a turning point as far as regulating SO2 emissions are concerned [Wang et al., 2015; van der A, et al., 12 

2016, and references therein]. A very similar picture was shown for all domains: a near-stable decrease 13 

in emissions within the statistical error of the analysis for the pre-2010 levels and a stronger and 14 

statistically significant decrease for the post-2010 levels.  15 

For the entire domain [Figure 6, first panel] aposteriori emissions on all months show an increase for 16 

year 2010 compared to the apriori MEIC inventory, apart from the JJA summer ones, with the highest 17 

increases for the winter months. The pre-2010 drift is calculated at the limit of the statistically 18 

significance, at -0.51±0.38 Tg/month, whereas the post-2010 drift is stronger and significant at -19 

1.52±0.36 Tg/month. For the greater Beijing region [Figure 6, second panel] a small increase in 20 

emissions, nearly constant on all months of 2010, is found with the post-2010 drift also negative at the 21 

-0.44±0.11 Tg/month level. Two special regions of interest, with low emission levels in general, were 22 

revealed by the OMI observations, in the North East and the South West of the domain and are 23 

examined in the third and fourth panels respectively. The first three months of year 2010 in the 24 

aposteriori emission database show quite higher levels that the MEIC v1.2 compilation, whereas the 25 

rest of the months show the same level, for the NE whereas in the SE the first six months of the year 26 

have an increased SO2 emitting signature.  27 

 28 
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4.2 Comparison with existing emission inventories  1 

 2 

Table 2. Details of the existing emission databases used for comparative purposes.  3 

Database Years 
available  

Spatial 
resolution 

Temporal 
resolution 

Main 
reference 

Publicly available from:   

REASv2.1 2000 to 
2008 

0.25°x0.25° monthly  Kurokawa 
et al., 2013 

https://www.nies.go.jp/REAS/ 

 

Intex-B 2006 0.5°x0.5° yearly Zhang et 
al., 2009 

https://cgrer.uiowa.edu/projects/emmison-
data 

EDGAR 
v4.3.1 

2010 0.1°x0.1° monthly Crippa et 
al., 2016 

http://edgar.jrc.ec.europa.eu/  

 

 4 

Apart from the MEIC v1.2 emission inventory discussed in Section 2.1, which is currently publicly 5 

available for years 2008, 2010 and 2012, there exist other emission inventories that are frequently used 6 

in chemical transport models as input; the Regional Emission inventory in Asia (REAS) v2.1 [Kurokawa 7 

et al., 2013]; the 2006 Asia Emissions for Intex-B [Zhang et al., 2009] and the Emissions Database for 8 

Global Atmospheric Research, EDGAR v4.3.1 [Crippa et al., 2016]. Comparing with similar published 9 

works is not as straightforward as one would assume since in this work a sub-domain of what is termed 10 

China in other publications is used. For e.g. when calculating the total annual SO2 emissions reported 11 

by the REASv2.1 database for year 2000, those are found to be 25.62Tg per annum when allowing the 12 

entire domain provided in the database but only rise to 15.86Tg per annum when restricting in the 13 

domain we are studying. As a result, large differences and erroneous comparisons may be presented 14 

if one simply compares emissions estimates as reported in published works. For completion purposes 15 

we refer the reader to Table 3 of Lu et al., 2010 and Table 8 of Kurokawa et al., 2013, for similar 16 

comparative studies, however great care is needed when quoting absolute SO2 emission levels.  17 

In Table 2 the details of the three databases are given. Since we are interested in evaluating the SO2 18 

emission fields as spatial patterns and not point source levels, we focused on these three databases 19 

which provide their databases in actual spatiotemporal resolutions. As a first inspection, in Table 3, the 20 

annual SO2 emissions for the domain 102°E - 132°E and 15°N - 50°N in Tg per annum are presented. We 21 

should point out that, due to the fact that our methodology is based on the MEIC v1.2 emission 22 

inventory, within the domain stated there are large areas with no emissions, mostly over sea and the 23 

Korean peninsula. In the following comparisons, only the common pixels between all inventories are 24 

used for the calculations naturally.   25 

Several issues arise; firstly, for the common years between this work and the REAS v2.1, i.e. years 2005 26 

to 2008 inclusive, the differences span between ~30 and ~60% with REAS v2.1 underestimating the 27 

emission levels in the domain studied. For the one common year between REAS v2.1 and MEIC v1.2, 28 

namely 2008, this underestimation still holds but is smaller, of the order of ~10%. Similarly, for the one 29 

common year between REAS v2.1 and Intex-B, namely 2006, REAS v2.1 underestimates by ~30%. All 30 

these point to an underestimation of SO2 levels in the domain considered by the REAS v2.1 database.  31 

Comparing the 2006 Intex-B emissions to the ones calculated in this work, we find a difference of the 32 

order of ~10% whereas comparing to the 2010 EDGAR v4.3.1 emissions the difference is almost 33 

https://www.nies.go.jp/REAS/
https://cgrer.uiowa.edu/projects/emmison-data
https://cgrer.uiowa.edu/projects/emmison-data
http://edgar.jrc.ec.europa.eu/
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insignificant, at ~3.5%.  Since the EGDAR v4.3.1 emissions are provided on a monthly basis, in contrast 1 

to the Intex-B ones, we can evaluate our spatial patterns as well. After regridding the EDGAR v4.3.1 2 

emissions onto a 0.25°x0.25° spatial resolution on a monthly basis, the seasonal variability of the 3 

inventory is compared to the one presented in this work in Figure 7.  4 

 5 

Table 3. Annual SO2 emissions over the domain 102°E - 132°E and 15°N - 50°N in Tg per annum; first column the 6 
year; second column this work; third column the REASv2.1; fourth column, EDGAR v4.3.1 and fifth column, the 7 
Intex-B database. 8 

Year This work REASv2.1 MEIC v1.2 EDGAR v4.3.1 Intex-B  

 Tg/annum for the 102°E - 132°E and 15°N - 50°N domain  

2000  15.86    
2001  15.94    
2002  17.53    
2003  19.70    
2004  21.77    
2005 35.27±1.75 24.68    
2006 35.33±1.76 24.45   32.08 
2007 37.58±1.76 24.40    
2008 35.75±1.76 26.96 29.80   
2009 31.74±1.75     
2010 32.14±1.74  26.26 33.34  
2011 33.50±1.75     
2012 31.30±1.75  26.48   
2013 32.05±1.74     
2014 28.32±1.72     
2015 23.34±1.71     
      

 9 

 10 
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Figure 7. The seasonal variability of the aposteriori emissions calculated in this work [middle column] in 1 
Gg/season compared to the EDGAR v4.3.1 emissions [left column] in Gg/season as well as their absolute 2 
differences [right column]. From top to bottom; spring, summer, autumn and winter of the reference year 2010. 3 

 4 

5 Summary 5 

 6 

In this work, an updated SO2 emission inventory based on OMI/Aura observations and the CHIMERE 7 

v2013b simulations has been presented for years 2005 to 2015 inclusive, as part of the EU FP7 8 

MarcoPolo project which provides updated emissions over China based on satellite observations of 9 

key air quality species. For the domain between 102°E - 132°E and 15°N - 50°N it was shown that the 10 

annual SO2 emissions calculated remain stable at 36.0±1.0 Tg/annum between years 2005 and 2008, 11 

decreasing to 32±0.8Tg/annum between 2008 and 20103, leading to a low of ~23.0 Tg/annum for year 12 

2015, with highs during the winter months and lows during the spring and summer time. Trend analysis 13 

performed on the monthly mean spatial averages show that pre-2010, the monthly SO2 emissions were 14 

~3.0±1.0 Tg/month whereas the statistically significant decrease in the post-2010 era rises to -1.52±0.36 15 

Tg. The higher differences to the original apriori MEIC v1.2 2010 inventory were found for the winter 16 
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months, especially February, with seasonal differences of the order of ~40% and the smallest for the 1 

summer months at ~10%. Comparisons with completely independent emission inventories show a good 2 

agreement to the 2010 EDGAR v4.3.1 emissions at the 3.5% level, whereas moderate agreement was 3 

found against the 2006 Intex-B database at the ~10% level.  4 

The subsequent logical step in this work is to employ the new emission inventory as input information 5 

for a chemistry transport model so as to assess the effect of the updated SO2 emissions on the output 6 

simulations, as well as validation against independent sources of information on the point SO2 sources 7 

around China, a work under development.  8 

Data availability  9 

 10 

Input datasets: 11 

OMI/Aura SO2 BIRA algorithm, main reference: Theys, N., De Smedt, I., van Gent, J., et al., (2015), 12 

Sulphur dioxide vertical column DOAS retrievals from the Ozone Monitoring Instrument: Global 13 

observations and comparison to ground-based and satellite data, J. Geophys. Res. Atmos., 120(6), 14 

2470–2491, doi:10.1002/2014JD022657. 15 

CHIMERE v2013b simulations, main reference: Ding, J., van der A, R. J., Mijling, B., Levelt, P. F., and Hao, 16 

N.: NOx emission estimates during the 2014 Youth Olympic Games in Nanjing, Atmos. Chem. Phys., 17 

15, 9399-9412, doi:10.5194/acp-15-9399-2015, 2015. 18 

Output datasets: 19 

EU FP7 MarcoPolo SO2 emission inventory is publicly available from http://www.marcopolo-20 
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Auxiliary datasets:  22 

The MEIC v1.2 database is publicly available from http://www.meicmodel.org/ and the main reference 23 

is n/a. 24 
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main reference is Zhang, Q., D.G. Streets, G.R. Carmichael, et al., (2009), Asian emissions in 2006 26 

for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, doi:10.5194/acp-9-5131-2009. 27 

The EDGAR v4.3.1 database is publicly available from http://edgar.jrc.ec.europa.eu/  and the main 28 

reference is Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., 29 

Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of improvements in European air 30 

quality: regional policy-industry interactions with global impacts, Atmos. Chem. Phys., 16, 3825-31 

3841, doi:10.5194/acp-16-3825-2016, 2016. 32 

The REAS v2.1 database is publicly available from https://www.nies.go.jp/REAS/ and the main reference 33 

is Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., 34 

Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian 35 

regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. 36 

Phys., 13, 11019-11058, doi:10.5194/acp-13-11019-2013, 2013. 37 
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http://www.meicmodel.org/
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