
Response to Comments from Reviewer #1 AMT-2017-260 

The authors would first of all like to thank reviewer #1 for the insightful comments on the work 

we have submitted for publication, and the editor for the opportunity to improve the manuscript. 

Under each comment there is a summary of the response (red text), in addition to the text from the 

paper that was modified, if applicable.  
 

Reviewer #1 

The title is a bit ambitious, ambiguous, or both. How much of the performance "gap" is closed by 

a) improved hardware compared to past studies, b) the algorithm (i.e., Random Forest), c) sensor 

combinations at each node, and d) range of different sample types collected? Application of 

machine learning for sensor calibration in the field has been performed before, but the title and 

abstract seems to give the impression that this reduces the gap. There is much focus given to RF 

but there is no indication that it has an inherent advantage over other machine learning methods. 

For instance, it is possible that a MLR model could also handle cross-sensitivities only if it were 

provided all variables (though RF and other machine learning algorithms are more flexible in that 

it does not require the assumption regarding global linearity). 

The past work of De Vito et al. (2008, 2009) also show encouraging results from a long-term 

evaluation of field calibrations (for low-cost multi-sensor devices for benzene, CO, and NO2 

against government monitoring station instruments using machine learning algorithms).: 

De Vito S., Massera E., Piga M., Martinotto L., and Di Francia G.: On field calibration of an 

electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensors and 

Actuators B: Chemical, 129(2):750–757, doi:10.1016/j.snb.2007.09.060, 2008. 

De Vito S., Piga M., Martinotto L., and Di Francia G.: CO, NO2 and NOx urban pollution 

monitoring with on-field calibrated electronic nose by automatic bayesian regularization, Sensors 

and Actuators B: Chemical, 143(1):182–191, doi:10.1016/j.snb.2009.08.041, 2009. 

Response: Thank you for suggesting the papers by De Vito et al. and for correctly pointing out 

that the title is too bold. We have revised the title to: “A machine learning calibration model to 

improve low-cost sensor performance”. We have also added references to De Vito et al. 2008 

and 2009: 

Modified text in Introduction (additions in bold): 

“To date, there have been published studies using high-dimensional multi-response models (Cross 

et al., 2017) and neural networks (Esposito et al., 2016; Spinelle et al., 2015, 2017, De Vito et al., 

2008, 2009). Spinelle et al. (2015) showed that artificial neural network calibration models could 

meet European data quality objectives for measuring ozone (uncertainty < 18 ppb); however, 

meeting these objectives for NO2 remained a challenge. In De Vito et al. (2009), the neural 

network calibration approach was applied to CO, NO2 and NOx metal oxide sensors in Italy 

with encouraging results; in general mean relative error was approximately 30%.” 

The manuscript is perhaps too bold in its tone. Accurate predictions are shown for concentration 

(and T, RH) domains that are present at the location of the reference monitor used for calibration, 



even while using different data points. (As stated by the authors, current implementation of RF is 

limited to the domain of the training set.) Dense network coverage implies monitor placement in 

different microenvironments (e.g., nearroadway, etc.) which would experience different 

concentration regimes. Moreover, some of the explanatory variables used for calibration may be 

surrogates for another variable which may vary differently at another site. There is mention of two 

RAMPS units deployed in Pittsburgh and their positive evaluation against other reference 

measurements in a mobile van (p. 17, line 15), but no results are shown. 

Response: Due to the currently long length of the manuscript, we have elected to not go into details 

of the mobile van measurements, and they will be presented in a forthcoming publication. 

However, we did deploy a RAMP that was calibrated at Carnegie Mellon University at the 

Allegheny County Health Department (ACHD) in February 2017-May 2017 and observed good 

agreement between the hourly ACHD concentrations of O3, NO2 and CO and the calibrated-

RAMP. We have modified the manuscript to include this additional figure. 

Below is the complete Section 4.5, which was re-organized to improve narrative flow and now 

includes the ACHD assessment (additions in bold), followed by the new Figure 12. 

“4.5 RF model calibrated RAMP performance in a monitoring context 

We further assess the RAMP monitor performance against three metrics: 1) comparison of a 

RAMP monitor calibrated at Carnegie Mellon against an independent set of regulatory 

reference monitors at the Allegheny County Health Department, 2) for NAAQS compliance, 

and 3) for suitability for exposure measurements as per the US EPA Air Sensor Guidebook 

(Williams et al., 2014). We also demonstrate the benefit of improved performance of the RF 

models in a real-world deployment at two nearby sites in Pittsburgh, PA. 

From February through April 2017, a RAMP calibrated at the Carnegie Mellon Campus 

was deployed at the Allegheny County Health Department (ACHD) to test the performance 

of the RAMP relative to an independent reference monitor (Figure 12). The ACHD reports 

data hourly, so RAMP data were down-sampled to hourly averages and the CO, NO2 and O3 

concentrations were compared (no measurement of CO2 is made at ACHD). For all 

pollutants, R2 was ≥0.75 (CO: 0.85, NO2: 0.75, O3: 0.92) and points were clustered around 

the 1:1 line. NO2 performed the most poorly, with a large cluster of points in the 5-10 ppb 

range where the model is known to underperform. The MAE was 49 ppb (17% CvMAE) for 

CO, 4.7 ppb for NO2 (39% CvMAE) and, 3.2 ppb for O3 (16% CvMAE), in line with the 

performance metrics in Figure 6.   

Regulatory agencies must also report compliance with National Ambient Air Quality 

Standards (NAAQS). In this study, the time resolution and methods used to assess the 

effectiveness of the RF models (15 min) do not match the metrics used for NAAQS. For example, 

the NAAQS standard for O3 is based on the maximum daily maximum 8-hour average, and 

compliance for NO2 is based on the 98th percentile of the daily maximum 1-hour averages. While 

acknowledging that the RAMP monitor collocation period was shorter than typical NAAQS 

compliance periods (e.g. annually for O3 and across 3 years for NO2) it is still worth characterizing 



the RAMP performance using the LAB, MLR and RF models (Figure 13).  For the representative 

RAMP monitor used previously (RAMP #1), daily maximum 8-hour O3 was in good agreement 

between the RF calibrated RAMP and the reference monitor, with all data points falling roughly 

along the 1:1 line (slope: 0.82, 95% CI: 0.81-0.83), while for the MLR model, concentrations 

were skewed slightly low (slope of 0.65, 95% CI: 0.63-0.67). For NO2, the 98th percentile of the 

daily maximum 1-hour averages was 34 ppb for the RF model versus 35 ppb measured using a 

reference monitor compared to 25 ppb for the MLR model and 51 ppb for the LAB model. The 

RF model was substantially closer to the reference monitor estimate and the underestimation was 

only by 1 ppb. Other RF model calibrated RAMP monitors performed similarly, all agreeing within 

5 ppb.   

Air sensor performance goals by application area are also provided by the US EPA Air Sensor 

Guidebook  (Williams et al., 2014). The performance criteria include maximum precision and bias 

error rates for applications ranging from education and information (Tier I) to regulatory 

monitoring (Tier V). The precision estimator is the upper bound of a 90% confidence interval of 

the coefficient of variation (CV) and the bias estimator is the upper bound of a 95% confidence 

interval of the mean absolute percent difference between the sensors and the reference (full 

equations in the Supplemental Information). An overarching goal of RAMP monitor deployments 

is to use low-cost sensor networks to quantify intra-urban exposure gradients, thus our benchmark 

performance was Tier IV (Personal Exposure), which recommends that low-cost sensors have 

precision and bias error rates of less than 30%. For the testing (withheld) periods, we compared 

the performance of the RF, MLR and LAB models for all the RAMP monitors used in this study 

to the precision and bias estimators recommended by the US EPA (Figure 1). The performance 

across the RAMP monitors was summarized using box plots, and only the RF model calibrated 

RAMPs are suitably precise and accurate for Tier IV (personal exposure) monitoring across CO, 

NO2 and O3. Furthermore, both RF model calibrated CO and O3 RAMP monitor measurements 

were below the even more stringent Tier III (Supplemental Monitoring) standards, which 

recommends precision and bias error rates of <20%. The RF model NO2 RAMP measurements 

may reach Tier III in locations with higher NO2 concentrations.  

To demonstrate the improved performance of the RF models in a real-world context, two of the 

RAMPs used in the evaluation study were deployed for a 6-week period at two nearby sites in 

Pittsburgh, PA. One RAMP monitor was located on the roof of a building at the Pittsburgh Zoo in 

a residential urban area, and another was placed approximately 1.5 km away at a near-road site 

located within 15 m of Highway 28 in Pittsburgh (Figure 15). NO2 concentrations are known to be 

elevated up to 200 m away from a major roadway compared to urban backgrounds due to the 

reaction of fresh NO in vehicle exhaust with ambient O3 (Zhou and Levy, 2007). Figure 13 shows 

the diurnal profiles of the RAMPs at the two locations evaluated using the RF and MLR models.  

The RF model indicates an NO2 enhancement of approximately 6 ppb at the near-road site (Figure 

15, red trace) compared to the nearby urban residential site (Figure 15, blue trace) and there are 

notable increases in NO2 during morning and evening rush hour periods, as expected. The 

concentrations reported by the RF model calibrated RAMPs were further verified with 

measurements using a mobile van equipped with reference instrumentation at different periods 

throughout the day. However, applying the MLR model to the RAMP data reveals no significant 



difference between the two sites (Figure 15, bottom diurnal).  In fact, the MLR model predicts 

negative concentrations during the day. The results of this preliminary deployment suggest that 

the RF model calibrated RAMPs could be suitable for quantification of intra-urban pollutant 

gradients.” 

 

Figure 12: Comparison of CO, NO2 and O3 hourly average concentrations measured by a co-located RAMP 

monitor and the reference monitors at the Allegheny County Health Department (ACHD). The RAMP monitor 

was first calibrated on the Carnegie Mellon campus prior to deployment.  

Since corrections of the supersite reference monitors against the Allegheny County Health 

Department instruments are necessary, why not make this Allegheny County Health Department 

site the reference site? Given the local contributions of vehicle emissions to CO and NO2 that are 

present in the parking lot site, how were the corrections for baseline drift determined? 

Response: We have added two sentences to section 2.3 to describe the baseline correction 

approach. We would like to emphasize that the baseline corrections were modest and did not 

substantially affect the dataset from our reference monitors. The incentive for using the Carnegie 

Mellon site as the reference monitoring station is due to the higher time resolution of the data (we 

report at 1 Hz), the availability of the data in near-real time, and the ability to explore calibrations 

for pollutants not measured at the Allegheny County Health Department (ACHD) (e.g., CO2). 

Given the large numbers of RAMPs and availability of reference-grade instruments at CMU, the 



CMU Supersite was much easier to access and hence used as the reference site. Other users who 

do not have the facilities we do could use their local regulatory monitors as a reference site if 

accessible. 

Modified text in Section 2.3 (additions in bold) 

“The CO and NO2 analyzers experience modest baseline drift between weekly calibrations, on the 

order of approximately 40 ppb for CO and 2 ppb for NO2. Hence, baseline pollutant concentrations 

were normalized to a nearby regulatory monitoring site (Allegheny County Health Department, 

Air Quality Division, Pittsburgh, PA). The baseline correction was done using a linear 

regression between the beginning and end of the week on the baseline signals (local source 

spikes removed). The regression was based on daytime differences, as night time inversions 

may cause real differences in the baseline signals between the two sites.” 

While the authors describe the use of 5-fold CV to selection the explanatory variables to use, the 

choice of 5 data points per terminal node / 100 trees per fold does not seem to be explained. This 

was also selected in the CV process? 

Response: The typical range of cross-validations that are explored is from 3-20 folds. We observed 

that by 5 folds, the model performance had roughly stabilized, thus to optimize computational 

power we chose the minimum number of folds such that an increase in folds produced a <5% 

increase in model RMSE and R2. Similarly, random forests are typically constructed with 64-128 

trees, so we chose a number in the middle of this range (100 trees). We agree that these details 

should be included in the manuscript, and have been added to Section 3.3. 

Modified text in Section 3.3 (additions in bold): 

“The number of trees was capped at 100 per fold, and a five-fold cross-validation was used for a 

total of 500 trees. Therefore, the predicted value for a given set of measured inputs is the average 

value from this set of 500 trees (each tree provides one prediction).  The k-value was chosen by 

identifying the minimum number of folds for which an increase in the fold size increased 

model performance less than 5% on the held-out data. The number of trees was chosen based 

on the work of Oshiro et al. (2012), who suggested that the number of trees range from 64-

128.” 

p. 14 Line 18 paragraph: Is this not possibly a limitation of the hardware? 

Response: In this instance, we do not believe it is a limitation of the hardware. In our laboratory 

calibrations, we have exposed the sensors to several ppm of NO2 and have not observed a flat 

response (i.e., sensors are sensitive at high concentrations).  

Minor comments:  

Section 2.2: Data coverage (i.e., missing data) and the time resolution should be stated here rather 

than (or in addition to) later in the manuscript.  



Response: Thank you for this comment that has also been pointed out by other reviewers. We 

have been more upfront with missing data and time resolution earlier in the manuscript to make 

the scope of the work clear. 

Modified text in Section 2.2 (additions in bold) 

“The experiments involved 95 individual pollutant sensors mounted in 19 unique RAMP monitors. 

While the collocation period spanned August 2016-February 2017, some sensors were 

intermittently deployed for air quality campaigns in Pittsburgh, thus the range of collocation 

available ranged from 30 days to the full collocation period, depending on the unit. 

Additionally, calibrations were not built for sensors for which reference data was below 

detection limits or if reference monitoring units were malfunctioning, reducing the total 

number of sensors in this experiment to 73, due to issues with the SO2 and NO2 monitors. 

The electrochemical sensor outputs were measured using electronic circuitry custom designed by 

SenSevere optimized for signal stability.  The circuitry includes custom electronics to drive the 

device, multiple stages of filtering circuitry for specific noise signatures, and an analog-to-digital 

converter for measurement of the conditioned signal. The RAMP monitors are housed in a NEMA-

rated weather proof enclosure (Figure 1A) and equipped with GSM cards to transmit data using 

cellular networks to an online server. The RAMP monitors also log data to an SD card as a fail-

safe in case of wireless data transfer issues. The data is logged to the server at ~15 second 

resolution and down-sampled to 15-minute averages, which was deemed to be an appropriate 

time resolution for assessing spatial variability in air pollution exposure and to reduce the 

size of the dataset. Regulatory bodies typically make their data available at hourly 

resolution.” 

P. 9 Line 15 to end of paragraph. The authors switch from describing "intermittent" collocation to 

"distributed" collocation. Given the discussion of multiple RAMP monitors, "distributed" can be 

confusing. Also, "degree of collocation" is referring to frequency or effective duration?  

Response: Thank you for pointing this out, we agree that it is confusing. We have switched the 

terminology to “consecutive” and “non-consecutive” collocations. 

Modified Text in Section 3.3 (additions/changes in bold) 

“This was evaluated for a consecutive collocation window and for 8 non-consecutive collocation 

windows equally distributed throughout the whole collocation period (August 2016 – February 

2017) in half week increments. Details of this evaluation are provided in the Supplemental 

Information, but the non-consecutive collocations generally performed slightly better, with 

reductions in MAE of 12 ppb (4% relative error) for CO, 2 ppm for CO2 (0.4% relative error), 0.4 

ppb for NO2 (4% relative error), and 1.6 ppb for O3 (7% relative error) compared to the consecutive 

four-week collocation.  The motivation for exploring non-consecutive collocation windows 

dispersed throughout the study period was to ensure that the training period covered a complete 

range of gas species concentrations, temperatures and relative humidity. In practice, the training 

data utilized in this study is equivalent to collocating the RAMP monitors with reference monitors 

for 3-4 days every 1-2 months. If non-consecutive collocation is inconvenient or not possible, 



consecutive collocation may be satisfactory as determined by MAE and other accuracy 

parameters needed for the application at hand.” 

p. 10 Line 19: value of correlation for NO2 and CO2 with reference monitors is missing.  

Response: Thank you, this has been added.  

Modified text in Section 4.1 (additions in bold): 

“However, only the RF model achieved strong correlations between the reference monitor and the 

RAMPs for NO2 and CO2 (Pearson r: 0.99).” 

p. 10 Line 22: insert figure numbers (SI Fig S3-S6).  

Response: Thank you, this has been added.  

Modified text in Section 4.1 (additions in bold): 

“Regression plots for all 19 RAMPs and all four gas species illustrating the goodness of fit of the 

RF model are provided in the Supplemental Information (Figures S3-S6).” 

p. 10 Line 30: The relationship between m_try and model complexity is not very clear.  

Response: We have edited Section 4.1 to add additional details to help make this connection 

clearer. In general, by having a larger m_try, there is a higher probability that one dominant 

variable will be what the split is decided on. In other words, there is a lower probability that all the 

variables will participate in the model structure. If the model performance improves by 

diversifying the variables it splits based on, it is generally considered to have a more complex 

underlying structure. We have modified the text to better convey this point. 

Modified Section 4.1 below (additions in bold) 

“In general, the larger the mtry, the simpler the underlying structure of the model.  For example, 

if there is one dominant variable but the model is permitted to consider all 7 explanatory variables 

at each decision node (i.e., mtry=7), then the model will most frequently split the data based on 

the dominant variable. By contrast, the advantage of a lower mtry is that subtle relationships 

between explanatory variables and the response can be probed. When randomly selecting fewer 

explanatory variables (mtry=2 or 4) at each decision node, the probability of selecting a 

dominant variable decreases and the model is forced to split the data into sub-nodes based 

on variables which may have a smaller (but real) effect on the response.  If the goodness of fit 

of the calibration model is improved by decreasing mtry, this suggests more complex variable 

interactions with the response (Strobl et al., 2008).” 

p. 11 Line 13: "clearly outperformed" -> not for CO  

Response: As a general theme, we have toned down the language. We agree that for CO, any 

calibration seems to perform well and have modified the manuscript to reflect this.  

Modified text in Section 4.2 (additions in bold, also removed the word “clearly”: 



“For this period, the RF model clearly outperformed the LAB and MLR models for all pollutants 

except for CO.” 

p. 11 Line 21: insert figure numbers (SI Figs S7-S10). Slopes, correlations, or some of the metrics 

listed in Table S2 included in the panels would be informative. Why are some RAMPS not 

included?  

Response: Thank you, we acknowledge that why some RAMPs were not included was not totally 

clear, so we have made several revisions throughout the manuscript to be more descriptive of the 

calibration and collocation process. The total study domain was from August 2016 – February 

2017, but RAMP monitors were intermittently deployed for air quality campaigns, so the average 

collocation period ranged from 5.5-15 weeks (median 9 weeks). After determining that 4 weeks of 

data was needed for proper calibration, some RAMP monitors did not have sufficient data to build 

a complete model (only 16 of the 19 RAMPs for NO2) and some did not have enough data for a 

meaningful testing period (minimum threshold 48 hrs, actual test window: 1.4-15.5 weeks). Thus 

for testing the model, the total number of RAMP monitors was reduced to 16 for CO and O3, 15 

for CO2 and to 10 for NO2. We have modified the text in several sections to indicate this more 

clearly, with one example shown below. We have also added references to the Figure numbers in 

the text, and added the MAE and Pearson r metrics to the panels in Figures S7-S10, as requested 

(not showing here due to size of Figures, but is in Revised Manuscript). 

Modified text (additions in bold) in Section 4.2: 

“To assess the overall model performance, two performance metrics (Pearson r and CvMAE) were 

calculated for each RAMP monitor using the entire testing dataset (Figure 6). In this study, any 

data remaining after training were used to test model performance, provided there were at 

least 48 hours of testing data (192 data points). This reduced the number of RAMP monitors 

included for testing the model to 16 for CO and O3, 15 for CO2 and 10 for NO2. The size of 

the testing dataset varied from 1.4 to 15 weeks, with a median value of 5 weeks.   

p. 11 Line 31: "NO2" -> "O3" here? 

Response: Yes, thank you, that was a typographical error and has now been corrected. 

 


