
Response to Comments from Aerodyne Research Inc: AMT-2017-260 

The authors would first of all like to thank Aerodyne (and specifically Dr. Eben Cross) for the insightful 

comments on the work we have submitted for publication, and the editor for the opportunity to improve 

the manuscript. Under each comment there is a summary of the response (red text), in addition to the text 

from the paper that was modified, if applicable.  

 

Response to Comment from Aerodyne Research Inc. (Eben Cross et al.) 

1) Scope of work completed: 

The manuscript strongly emphasizes the unprecedented scale/scope of the completed work, stating 

that 19 RAMP systems were deployed for 6 months. At face value this would constitute a ~ 24wk 

interval across which to train & test the model. The actual reported tests appear more selective 

(both in terms of the number of RAMPS and duration of testing interval). As written, this is 

somewhat misleading. The authors should make an effort to more clearly state the scope of work 

as it pertains the results presented in the paper. 

o Pulling data reported in table 3:  

o CO: Test data spanned as few as 10 days, up to 108 days with an average of less than 6 

weeks. Figure S7 shows only 16 of 19 RAMPS for evaluation (despite fact that 19 systems 

were RF-trained)  

o NO2: Test data spanned as few as 2 days up 56 days with an average of 3.4 weeks. Figure 

S8 shows only 10 of 19 RAMPS were evaluated (despite fact that 19 systems were RF-

trained) 

o O3: Test data spanned 11-103 days (average less than 6 weeks) with 16 out of 19 system 

evaluated  

o CO2 15 out of 19 systems evaluated and the number of days of test data were not tabulated.  

o What is the fraction of training-to-test data for each RAMP system for which statistical 

metrics were reported?  

o Data displayed for RAMP #4 in Figure 8 shows 15 weeks of test data. From the average 

number of test sample days reported in Table 3, is RAMP #4 a significant outlier? Did the 

majority of other RAMP systems run for shorter periods of time? 

Response: We agree that the manuscript could have been more direct in terms of actual training 

and testing windows – the reason that longer collocations were not possible was due to deploying 

the RAMP monitors intermittently as part of air quality research campaigns in Pittsburgh, PA. 

While RAMP #4 did run the longest (was permanently located at the Carnegie Mellon supersite), 

there were 5 other RAMP monitors for which the testing period was 8-10 weeks. Additionally, we 

used RAMP #4 to systematically assess the performance of the testing data in Figure 8, and did 

not observe any significant relationship between weeks of testing data and error metrics up to 15 

weeks. We only tested the models if there were at least 48 hrs of collocation data left after training; 

for 3 of the RAMPs, there was not enough data to properly test the model for all pollutants since 

it was deployed in the field. For an additional three RAMPs, there was not enough data to test the 

NO2 model due to the reference monitor being offline and needing repair from the manufacturer. 



We have added additional language throughout the manuscript to more specifically address the 

specific training and testing windows. 

Modified text in Introduction: 

“To ensure calibration model robustness, they were developed for 16-19 RAMP monitors and 

validated for 10-16 RAMP monitors (depending on pollutant), with each monitor containing 

one sensor per species (CO, CO2, NO2, SO2 and O3). Furthermore, the study was conducted over 

a six-month period (August 2016 – February 2017) spanning multiple seasons and a wide range of 

meteorological conditions. During this period, RAMP monitors were intermittently deployed 

for air quality monitoring campaigns, resulting in collocation periods ranging from 5.5 to 16 

weeks (median 9 weeks).” 

Additional text in Section 2.2 (new text in bold): 

“The experiments involved 95 individual pollutant sensors mounted in 19 unique RAMP monitors. 

While the collocation period spanned August 2016-February 2017, many sensors were 

intermittently deployed for air quality campaigns in Pittsburgh, so the collocation period 

ranged from 30 days to the study period, depending on the unit. Additionally, calibrations 

were not built for sensors for which reference data was below detection limits or if reference 

monitoring units were malfunctioning, reducing the total number of sensors in this 

experiment to 73, due to issues with the SO2 and NO2 reference monitors.” 

Modified text in Section 4.1 (additional text in bold): 

Regression plots for 19 RAMP monitors for CO, CO2 and O3 and 16 RAMP monitors for NO2 

illustrating the goodness of fit of the RF model are provided in the Supplemental Information 

(Figures S3-S6). Only 16 of the 19 RAMP monitors had an NO2 calibration, since the NO2 

monitor malfunctioned during the period when three RAMPs were collocated and so a 

calibration model could not be built for NO2 for these three RAMPs. The NO2 malfunction 

occurred between late September and early October, which did not significantly impact the 

range of conditions across the study.  

Modified text in Section 4.2 (additional text in bold): 

“To assess the overall model performance, two performance metrics (Pearson r and CvMAE) were 

calculated for each RAMP monitor using the entire testing dataset (Figure 6). In this study, any 

data remaining after training were used to test model performance, provided there were at 

least 48 hours of testing data (192 data points). This reduced the number of RAMP monitors 

included for testing the model to 16 for CO and O3, 15 for CO2 and 10 for NO2.”’ 

 

2) While the authors point out that the limited NO2 training/test data was due to a malfunction in 

their reference monitor at the co-location site, that does not explain why only 10 out of the 19 

RAMP systems which were trained with the ambient RF model were included in the presented 

results. 



a. The authors should comment on the impact of the significantly shorter evaluation period 

on the NO2 results. Specifically, did the loss of the NO2 reference monitor exclude data 

sampled over the colder or warmer seasons in Pittsburgh and if so, how would this impact 

the range of conditions across which the RF model was found to be robust? 

Response: As noted in the response to the previous comment, only 10 RAMP monitors were tested 

due to insufficient data available (i.e., as soon as those models had data to train the model, they 

were deployed for air quality monitoring). We have been more explicit about this in the text (see 

response to previous comment). Additionally, the NO2 monitor experienced issues in late 

September-early October, which did not affect the range of NO2 sensors for training.  

Modified text in Section 4.1 (additional text in bold): 

Regression plots for 19 RAMP monitors for CO, CO2 and O3 and 16 RAMP monitors for NO2 

illustrating the goodness of fit of the RF model are provided in the Supplemental Information 

(Figures S3-S6). Only 16 of the 19 RAMP monitors had an NO2 calibration, since the NO2 

monitor malfunctioned during the period when three RAMPs were collocated and so a 

calibration model could not be built for NO2 for these three RAMPs. The NO2 malfunction 

occurred between late September and early October, which did not significantly impact the 

range of conditions across the study.  

 

3) Laboratory calibrations 

As the authors’ correctly point out, laboratory calibrations have formed the basis for much of the low-

cost AQ sensor characterization work completed to-date. The manner in which the laboratory 

calibration experiments were executed in the current work raises a number of concerns: 

o The authors should justify their laboratory calibration approach, specifically, sampling the 

sensors under 9 LPM of active flow, under air compositions dominated by (presumably) 

clean air, doped with single species of interest (excluding O3) under RH conditions that are 

outside of the specified operating range of the electrochemical sensors being trained. Given 

that these sensors operate under diffusion limited conditions, active vs passive flow can 

have a significant effect on the rate with which analyte molecules reach the working 

electrode surface of each electrochemical sensor. From the picture of the RAMP node, it 

appears that when fully integrated, the sensors are positioned to sample the air passively. 

This disconnect between the LAB cal. conditions and the ambient sampling configuration 

should be addressed if the authors are honestly trying to assess the validity of the LAB 

model on reconciling ambient concentrations from deployed RAMP monitors. 

 

Response: The design of the sampling manifold was such that the face velocity at the 

sensor surface would be 1.2 m/s, which is in lower end of wind speed range in Pittsburgh 

(e.g. average monthly windspeed from Jan-May 2017 was 2.4-3.4 m/s). The gas flow rate 

for the calibration system was based on the required flow rate for the reference instruments, 

the need to avoid leaks of ambient air into the system, and to minimize calibration gas 

consumption. Additionally, each data point was taken after 20 min when gas concentrations 



had stabilized as seen in the steady gas sensor output voltage. We have added these details 

to the manuscript, and changed the terminology from flow rate to face velocity for clarity. 

 

Modified text in Section 3.1 (additions in bold): 

“The sensors were exposed to each step in the calibration window (Table 1) for 20 minutes 

and a face velocity of 1.2 m/s flowed perpendicular to the sensor surface. This face 

velocity is in the lower end of the wind speed range in Pittsburgh, PA (e.g. average 

monthly windspeed over Jan-May 2017 at 2m height is estimated at 2.4-3.4 m/s).” 

 

o The lack of any systematic logging or control of temperature and RH under these laboratory 

conditions limits the overall usefulness (and relevance) of the laboratory calibration to 

reconciling ambient concentrations. While the LAB model is limited in its sophistication, 

the execution of the lab experiments themselves also presents environmental conditions 

that do not overlap with their ambient co-location conditions. This apparent disconnect 

between the LAB and field needs to be explained further. 

Response: We agree; however, our laboratory calibration was limited by the available 

infrastructure at the time of the study. The goal of the laboratory calibration was to quantify 

the correlation between analyte response and calibration concentrations. While the utility 

of the calibration is limited, it was also useful to know that the CO calibration performed 

well even with a simple linear model. We have added text to Section 3.1 to emphasize that 

the laboratory calibration could be improved and better performance is in theory possible.  

 

Modified text in Section 3.1 (additions in bold): 

“Model performance was evaluated by comparing the calibrated response to reference 

measurements. We refer to the laboratory univariate linear regression calibration as LAB.  

Separate LAB calibrations were developed for each sensor (95 individual calibrations). 

Due to difficulty controlling temperature and RH over a wide range of known ambient 

conditions, we focused on the relationship between analyte response and the 

calibration gas concentration, which any user with access to basic lab infrastructure 

can do. While beyond the scope of this study, an improved LAB calibration would 

involve a chamber with variable T and RH to better match ambient conditions.” 

 

o The absence of any O3 lab calibrations needs to be explained further. Why was this species 

excluded and given the RF model assessment of the Ox-B431 sensor sensitivities to 

different parameters, do the authors think this sensor type would provide more reasonable 

LAB-based calibration models, if such experiments had been conducted? 

Response: We did not conduct a LAB calibration for ozone due to our lack of a controlled 

low-concentration ozone generator and we did not find suitable ozone calibration gas. We 

cannot comment on the outcome of a LAB based calibration for O3 as no such experiments 

were possible. From the RF model, RH and T seemed to have minimal impact on the ozone 

calibration, but this would require further investigation.  

 

Modified text in Section 3.1 (additions in bold): 



“Laboratory calibrations for O3 were not performed due to lack of a suitable ozone 

calibration gas.” 

 

4) RF Model 

With access to 1s reference monitor data it is not clear why the authors chose to use 15 min 

averages to train and test their RF model. Were shorter or longer time-averages tested and found 

to be measurably worse than the 15-min averages? What are the implications of using 15-min 

average data vs 1 or 5-min average data when resolving heterogeneity in local pollution gradients? 

Response: The raw RAMP monitor data is reported at 15 second intervals, and down-averaged to 

15 minutes for two primary reasons: 1) the goal of the RAMP monitor deployment in Pittsburgh 

is to quantify long term spatial and temporal variability in air pollution for exposures and 2) to 

generate a manageable data set for when 50+ monitors are deployed in Pittsburgh.  

 

Modified text in Section 2.2 (additions in bold): 

“The RAMP monitors also log data to an SD card as a fail-safe in case of wireless data transfer 

issues. The data is logged to the server at ~15 second resolution and down-sampled to 15-

minute averages, which was deemed to be an appropriate time resolution for assessing spatial 

variability in air pollution exposure and to reduce the size of the dataset and increase 

computational efficiency. Regulatory bodies typically make their data available at hourly 

resolution.” 

 

The authors should expand on their discussion regarding the lack of any extrapolation in the RF 

model. 

o (related) Figure 5. For RAMPS #9,12,13,18 the authors should explain the straight 

vertical and horizontal at the ~ (50,50) x,y position on each scatter plot. 

 

Response: This point was made by other reviewers and extensive changes have been made to 

emphasize this fact (see below). We have also noted that the horizontal features in Figure 5 are a 

result of the model being unable to extrapolate. 

Modified text in Section 3.3 (additions in bold) 

“The random forest model’s critical limitation is that its ability to predict new outcomes is limited 

to the range of the training data set; in other words, it will not predict data with variable parameters 

outside the training range (no extrapolation). Therefore, a larger and more variable training data 

set should create a better final model. In this study, our collocation window covered a broad 

range of concentrations and meteorological conditions; however, in situations where shorter 

collocation windows with less diverse training ranges are desired, the RF model may not be 

suitable as a standalone model. This is discussed further in Section 4.3.2.” 

Modified text in Section 4.3.2 (additions in bold) 

“To build a robust model, many data points are required at a given concentration to probe the 

extent of the ambient air pollutant matrix.  In this study, the training windows were dispersed 

throughout the collocation period to ensure good agreement of gas species and meteorological 



conditions during both the training and testing windows (see Supplemental Information). The RF 

model may not work well in cases where such a diverse collocation window is not possible or 

where concentrations are routinely expected to exceed the training window. In such 

situations, hybrid calibration models such as combined RF-MLR where MLR is used for 

concentrations above the training window range may be suitable, as MLR tends to perform 

better when concentrations are higher.” 

Modified text in Section 4.3.3 (additions in bold) 

 “Systematic underprediction at the highest concentrations was also observed and is likely a 

consequence of either sensor limitations or the training dataset used to fit the RF model. Unless 

the range of concentrations in the training data encompasses the range of concentrations during 

model testing, there will be underpredictions for concentrations in exceedance of the training range 

due to the RF model’s inability to extrapolate. This is also what causes the horizontal feature 

for some RAMP monitors at high O3 concentrations in Figure 5, as the model will not predict 

beyond its training range.” 

It would be informative if the authors could comment on the computational cost of running the 

model. Does this computational cost place constraints on the time averaging used to train the model 

in the first place? 

Response: We have added a comment on the computational cost of the model. The reviewer is 

correct that increasing the time resolution would come at a significant computational cost, as each 

RAMP monitor takes approximately 45 minutes to train at 15 minute resolution, thus when 

building calibrations for up to 50 RAMP monitors (ultimate goal of the work), increase time 

resolution could be prohibitive computationally. 

Additional text in Section 3.3: 

“The computation time to train a complete RAMP monitor with five sensors was 

approximately 45 minutes. This was another motivating factor for 15 minute resolution data, 

as building models at higher time resolutions would have significantly increased 

computational demand.” 

 

5) P13 discussion of explanatory variables 

What do the authors mean by permuting? Replace with another dataset that's not related to the 

current dataset? A more thorough explanation of this process is warranted as this process appears 

critical to evaluating the importance of various interfering factors on each sensor type.  

 

Response: The term permuting is a mathematical term which means that the signal is randomly 

shuffled, which is not the same as replacing with another dataset not related to the current data set. 

Both within the manuscript and within the figure caption for explanatory variable performance we 

describe permuting by saying “(i.e., randomly shuffled)” and thus we feel that the explanation as 



offered in the manuscript and the standard nature of this mathematical concept does not warrant an 

expanded discussion.  

 

Figure 9. Why is CO2 more sensitive to CO than CO2?  

Response: In periods of high humidity, the CO2 sensor becomes saturated, as the NDIR CO2 sensor 

is also sensitive to water. We hypothesize that when the CO2 sensor saturates, the model must rely 

on other pollutant signals (e.g., CO) as a predictor of CO2 concentration. Additionally, short term 

fluctuations of CO2 are likely from combustion sources which also emit CO. This is currently in the 

manuscript in Section 4.3.2, but we have also added a few words of clarifying text. 

 

Text from Section 4.3.2 (additions in bold): 

“For CO2, all variables are important roughly equally important, with CO being the most important. 

This is likely due to the strong meteorological effect of humidity on the measured CO2 

concentration; the model must rely on other primary pollutants to predict CO2 signal when the 

measured CO2 has reached full-scale (i.e., becomes saturated in periods of high humidity), and 

short-term fluctuations of CO2 are likely from combustion sources (e.g., vehicular traffic in urban 

areas) which also emit CO.  This highlights the value of having sensors for multiple pollutants in 

the same monitor.   

 

The authors state that SO2 concentrations were below detection limits for the duration of the ambient 

co-location study and therefore not discussed further in the manuscript. While it is true that the SO2 

concentrations in Pittsburgh are very low, the extent to which the SO2-B4 sensor output informed 

the RF model is in fact statistically significant according to the data presented in Figure 9 which 

indicates that the MSE can change by ~ 20-40% when the SO2 sensor parameter (presumably 

differential voltage?) is permuted? A more robust assessment of the importance of the SO2-B4 

sensor data to the resulting RF model may be to exclude it altogether from the available input 

parameters used to train the model. 

 

Response:  The SO2 RAMP sensor may in and of itself have useful cross-sensitivities that may 

assist model performance. This is likely why the RAMP SO2 sensor contributes to model 

performance despite low ambient SO2 concentrations, thus we elected to include it. We have added 

some text regarding this hypothesis to Section 4.3.2. 

 

Modified text in Section 4.3.2 (additions in bold): 

“Interestingly, despite low SO2 concentrations, there was some contribution from the RAMP 

SO2 sensor. This may be due to cross-sensitivities within the SO2 sensor itself, as the SO2 sensor 

may respond to more than ambient SO2, warranting future investigation. However, in general 

the SO2 sensor contributed the least to model performance, thus this sensor could be replaced with 

a more relevant sensor, such as NO, in future iterations of the RAMP monitor.” 

 

6) All goodness of fit discussions relative to Cross et al., 2017 need to be revised according to the 

results published in the final accepted version of that manuscript. 



Response: We have updated our tables and mentions within the manuscript body to be correct and 

consistent with the final version of the manuscript. We have also removed any mention of the 

combined testing and training data and updated our comparisons to reflect the new numbers.  

 

7) Additional comments 

P11 L15: The figure caption does not indicate this…  

o Figure 4 shows the calibrated RAMP #1 output regressed against the reference monitor 

concentration for the entire testing period for all three calibration models (LAB, MLR, and 

RF).  

Response: Thank you for pointing this out – the figure caption in the manuscript was from a 

previous iteration of the figure that did not have the regressions. We missed updating it to reflect 

the new version of the manuscript. The updated caption is below: 

“Figure 4: Example time series and regressions comparing the reference monitor data 

(black) to statistically average RAMP (RAMP#1) using LAB model (green), multiple linear 

regression (MLR) model (blue) and random forest (RF) model (pink). The left panel shows 

only 48 hrs of time series data to illustrate approach; the full evaluations (Table 3) were 

performed with much larger testing datasets; example regressions from the full data set for 

RAMP #1 are shown in the right panel.” 

P12 L20: The text states that the MAE comparison is against the number of points, but Figure 9 

displays this data versus the number of weeks, not number of points.  

Response: Thank you for pointing this out. This is another example of text that was not fully 

updated after revising a figure. We have corrected the text to say number of weeks vs number of 

points. We apologize for the error. 

First paragraph of section 2.2 is unnecessarily repetitive  

Response: Thank you, upon re-reading the paragraph, we agree and have deleted the redundant 

sentence describing which sensors are in the RAMP monitor.  

 

Modified text (removed sentence in bold and strikethrough): 

“The study uses the Real-time Affordable Multi-Pollutant (RAMP) monitor, which was developed 

in a collaboration between Carnegie Mellon University and SenSevere. The RAMP monitor 

incorporates widely-used Alphasense electrochemical sensors to measure gaseous pollutants 

(CO, NO2, SO2 O3) and a non-dispersive infrared (NDIR) sensor to measure CO2. The latter 

sensor also includes modules to measure temperature and relative humidity. The RAMP uses 

the following commercially-available electrochemical sensors from Alphasense Ltd: carbon 

monoxide (CO, Alphasense ID: CO-B41), nitrogen dioxide (NO2, Alphasense ID: NO2-B43F), 

sulfur dioxide (SO2, Alphasense ID: SO2-B4), and total oxidants (Ox, Alphasense ID: Ox-B431).  

The unit also includes a nondispersive infrared (NDIR) CO2 sensor (SST CO2S-A) which contains 

built-in T (method: bandgap) and RH (method: capacitive) measurement.” 

 

95 sensor measurements (should be 76). 



Response: As part of our response to your first comment, we have revised the text to be more clear 

on sensor count: 

 

Modified text in Section 2.2 (additions in bold): 

“The experiments involved 95 individual pollutant sensors mounted in 19 unique RAMP monitors. 

While the collocation period spanned August 2016-February 2017, many sensors were 

intermittently deployed for air quality campaigns in Pittsburgh, so the collocation period 

ranged from 30 days to the full study period, depending on the unit. Additionally, 

calibrations were not built for sensors for which reference data was below detection limits 

or if reference monitoring units were malfunctioning, reducing the total number of sensors 

in this experiment to 73, due to issues with the SO2 and NO2 reference monitors.” 

 

P7 L6 ‘beta4’ should be ‘beta3’ according to the formula above  

Response: Thank you for pointing out this typographical error, it has been corrected to β3. 

 

P9 L20 missing ‘resolution’ following ‘temporal’  

Response: Thank you for pointing out this typographical error, it has been corrected to “a higher 

temporal resolution” 

 

P11 L13 Figure 2 should read Figure 3  

Response: Thank you for pointing out this typographical error, it has been corrected to refer to 

Figure 3 in the text. 

 

P18 L7 missing ‘this’ - as written: ‘demonstrate that degree’  

Response: Thank you for pointing out this typographical error, we have added the word “this” in 

the sentence in the Conclusions section. 

 

P20 L30 Levy 2014 reference is the same as Moltchanov et al., 2015 reference.  

Response: We apologize for the error, it seems as though we had an old version of the reference 

that was incorrectly imported into our reference software. The references have been merged and 

we apologize for the mistake.  

 

Figure 2 caption should specify units as ‘a.u.’ following >255.9 

Response: Thank you for suggesting this, we have added units to the CO sensor signal in the 

Figure 2 caption.  

 

Figure 4 (left) – why do the four different pollutant times series all have unique time periods? If 

environmental parameters impact the sensors differently (RH, T) then it would be important to 

keep these parameters self-similar across the evaluation framework presented here (even though 

it’s only 48-hours worth, should be the same 48 hours for all sensors). 

Response: The intent was just as a visual snapshot of a period when there was variation in 

concentration – we also wanted a period when there was uninterrupted testing data.  The ozone 

data is shifted by about two weeks as at that time the ozone reference monitor was offline. Given 



that we are not including T and RH in our plots, we do not feel it is essential to show the same 

time period, and it would not change the manuscript in any meaningful way.  

 

Figure 7. It’s not clear why there are ~ 10 or fewer data points displayed when data from 19 

RAMPS are reportedly presented 

Response: In Figure 7, there are 16 data points for CO and O3, 15 data points for CO2 and 10 data 

points for NO2, as this is the number of RAMP monitor sesnors included as part of the testing data. 

We have more clearly addressed this within the manuscript and these changes are included earlier 

in our response to reviewers (your first comment). In Figure 7 it is occasionally difficult to see all 

10-16 data points as there was significant overlap in many of the points (model performance was 

fairly consistent between RAMP monitors).  

 

Figure 8 caption. ‘long periods’ is relative. Data displayed is for 15 weeks. Lifetime of the sensors 

is significantly longer than this (~100-150 weeks). Language should be revised accordingly. 

o The extent to which the model improves over time should be quantified with 95% 

confidence intervals on the linear fits. By eye, it looks like this confidence interval would 

include 0. 

Response: Both within the caption and in the manuscript body, the relative term “long periods” 

has been replaced with “the study period”. Given the relatively new sensors we worked with, the 

focus of the study was not on temporal degradation which may be where the term “long” is more 

appropriate, as you mention. Thus, we have modified the manuscript to be more specific that the 

maximum period is 15 weeks. We have also calculated 95% confidence intervals for the slopes 

and they do include 0.  

Modified text in Section 4.3.1 (additions in bold): 

“For all the gas species, the MAE was essentially flat across the RAMP monitors and the 95% 

confidence interval on the slope included 0; RAMP monitors with more testing data did not have 

substantially higher (worse) MAE, suggesting the RF models are robust over the study period.” 

 

Table 3. Rather than identifying the number of days of sampling/evaluation – it would be more 

appropriate to identify the total number of data points used in each case study.  

o Add an extra column that identifies the time resolution – as this is an important factor that 

drives signal-to-noise and accuracy and precision metrics as well as various end-use cases 

of interest. 

Response: We agree that adding either time resolution or number of points would be helpful for 

others (but both would be redundant). As such we have added a column for time resolution, as we 

think this would be most helpful for others when considering what sort of model performance is 

achievable at a given time resolution.  

Section 4.4. As written, this section oversimplifies the reality of the situation. When analyzing 

various lower-cost AQ sensor systems it is important to recognize that the combined hardware and 



software configuration impacts the performance metrics, not the software alone. The authors 

shouldn’t gloss over this fact. 

Response: This point was also mentioned by both Reviewer #1 and Reviewer #2 and we have 

made changes in the manuscript to address this. 

Modified text in introduction (additions in bold): 

“The two primary requirements of low cost sensors for ambient measurement are 1) 

hardware that is sensitive to ambient pollutant concentrations, and 2) calibration of the 

sensors. The latter is the focus of this study. A primary challenge of low-cost sensor 

calibration is that the sensors are prone to cross-sensitivities with other ambient pollutants (Bart 

et al., 2014; Cross et al., 2017; Masson et al., 2015b; Mead et al., 2013)” 

Modified text in Section 4.4 is below (additions in bold): 

For NO2, the performance of ‘out-of-the-box’ low-cost sensors varied widely and half the sensors 

in the EuNetAir study (Borrego et al., 2016) reported errors larger than the average ambient 

concentrations. While the quality of the baseline gas sensing unit remains critical (in which 

case no calibration should work), we suggest that advanced calibration models, such as those 

using machine learning, may be critical for accurate measurements of ambient NO2.” 

 


