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Abstract. Low-cost sensing strategies hold the promise of denser air quality monitoring networks, which could significantly
improve our understanding of personal air pollution exposure. Additionally, low-cost air quality sensors could be deployed to
areas where limited monitoring exists. However, low-cost sensors are frequently sensitive to environmental conditions and
pollutant cross-sensitivities, which have historically been poorly addressed by laboratory calibrations, limiting their utility for
monitoring. In this study, we investigated different calibration models for the Real-time Affordable Multi-Pollutant (RAMP)
sensor package, which measures CO, NO>, O3, and CO.. We explored three methods: 1) laboratory univariate linear regression,
2) empirical multiple linear regression and 3) machine-learning based calibration models using random forests (RF).
Calibration models were developed for 16-19 RAMP monitors (varied by pollutant) using training and testing windows
spanning August 2016 through February 2017 in Pittsburgh, PA. The random forest models matched (CO) or significantly
outperformed (NO,, CO,, O3) the other calibration models, and their accuracy and precision was robust over time for testing
windows of up to 16 weeks. Following calibration, average mean absolute error on the testing dataset from the random forest
models was 38 ppb for CO (14% relative error), 10 ppm for CO; (2% relative error), 3.5 ppb for NO; (29% relative error) and
3.4 ppb for Os (15% relative error), and Pearson r versus the reference monitors exceeded 0.8 for most units. Model
performance is explored in detail, including a quantification of model variable importance, accuracy across different
concentration ranges, and performance in a range of monitoring contexts including the National Ambient Air Quality Standards
(NAAQS), and the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure
measurement. A key strength of the RF approach is that it accounts for pollutant cross sensitivities. This highlights the
importance of developing multipollutant sensor packages (as opposed to single pollutant monitors); we determined this is
especially critical for NO, and CO,. The evaluation reveals that only the RF-calibrated sensors meet the US EPA Air Sensors
Guidebook recommendations of minimum data quality for personal exposure measurement. We also demonstrate that the RF
model calibrated sensors could detect differences in NO, concentrations between a near-road site and a suburban site less than
1.5 km away. From this study, we conclude that combining RF models with carefully controlled state-of-the-art multipollutant
sensor packages as in the RAMP monitors appears to be a very promising approach to address the poor performance that has

plagued low cost air quality sensors.
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1 Introduction

Historically, spatial coverage of air quality monitoring stations has been limited by the high cost of instrumentation; urban
areas typically rely on a few reference-grade monitors to assess population scale exposure. However, air pollutant
concentrations often exhibit significant spatial variability depending on local sources and features of the built environment
(Marshall et al., 2008; Nazelle et al., 2009; Pugh et al., 2012; Tan et al., 2014), which may not be well captured by the existing
monitoring networks. In the past several years, there has been a significant increase in the development and applications of
low-cost sensor-based air quality monitoring technology (Lewis and Edwards, 2016; McKercher et al., 2017; Moltchanov et
al., 2015; Snyder et al., 2013). The use of low-cost air quality sensors for monitoring ambient air pollution could enable much
denser air quality monitoring networks at a comparable cost to the existing regime. Increasing the spatial density of air quality
monitoring would help quantify and characterize exposure gradients within urban areas and support better epidemiological
models. Additionally, more highly resolved air quality information can assist regulators with future policy planning, with
identification of hot spots or potential areas of concern (e.g., fracking in rural areas) where more detailed characterization is
needed, and with risk mitigation for noncompliant zones. Furthermore, low-cost air quality sensors are generally characterized
by their compact size and low power demand. These features enable low-cost sensors to be moved with relative ease to rural

areas or developing regions where limited monitoring exists.

The two primary requirements of low cost sensors for ambient measurement are 1) hardware that is sensitive to ambient
pollutant concentrations, and 2) calibration of the sensors. The latter is the focus of this study. The challenge with low-cost air
quality sensor calibration is that the sensors are prone to cross-sensitivities with other ambient pollutants (Bart et al., 2014;
Cross et al., 2017; Masson et al., 2015b; Mead et al., 2013). The most common example is for ozone electrochemical sensors,
which also undergo redox reactions in the presence of NO,. Additionally, NO has also been observed to interfere with NO,,
and CO sensors have exhibited some cross-sensitivity to molecular hydrogen in urban environments (Mead et al., 2013).
Furthermore, low-cost sensors can be affected by meteorology (Masson et al., 2015b; Moltchanov et al., 2015; Pang et al.,
2017; Williams et al., 2013). Most electrochemical sensors are configured such that the reactions are diffusion-limited, and the
diffusion coefficient can be affected by temperature (Hitchman et al., 1997); Masson et al. (2015b) have shown that at relative
humidity exceeding 75% there is significant error, possibly due to condensation on potentiostat electronics. Lastly, the stability
of low-cost sensors is known to degrade over time (Jiao et al., 2016; Masson et al., 2015a). For example, in electrochemical

cells, the reagents are consumed over time and have a typical lifetime of 1-2 years.

Deconvolving the effects of cross-sensitivity and stability on sensor performance is complex. Linear calibration models
developed in the laboratory perform poorly on ambient data (Castell et al., 2017). Attempts to build calibration models from
first principles have shown some success, but the models are difficult to construct and their transferability to new environments

remains unknown (Masson et al., 2015b). Accurate and precise calibration models are particularly critical to the success of
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dense sensor networks deployed in urban areas of developed countries where concentrations are on the low end of the spectrum
of global pollutant concentrations, as poor signal-to-noise ratios and cross-sensitivities may hamper their ability to distinguish
between intra-urban sites. As such, there has been increasing interest in more sophisticated algorithms (e.g., machine learning)
for low cost sensor calibration. To date, there have been published studies using high-dimensional multi-response models
(Cross et al., 2017) and neural networks (Esposito et al., 2016; Spinelle et al., 2015, 2017, De Vito et al., 2008, 2009). Spinelle
et al. (2015) showed that artificial neural network calibration models could meet European data quality objectives for
measuring ozone (uncertainty < 18 ppb); however, meeting these objectives for NO, remained a challenge. In De Vito et al.
(2009), the neural network calibration approach was applied to CO, NO; and NOy metal oxide sensors in Italy with encouraging
results; in general mean relative error was approximately 30%. Cross et al. (2017) built high-dimensional multi-response
calibration models for CO, NO, NO; and Oz which had good agreement with reference monitors (slopes 0.47-0.94, R? 0.39-
0.88). Esposito et al. (2016) demonstrated excellent performance with dynamic neural network calibrations of NO, sensors
(mean absolute error < 2 ppb); however, the same performance for Oz was not observed. Furthermore, these calibrations have
only been tested on a small number of sensor packages. For example, Cross et al. (2017) tested two sensor packages, each
containing one sensor per pollutant over a four-month period, of which 35% was used as training data. Spinelle et al. (2015)
tested a cluster of sensors in a single enclosure, testing 22 individual sensors in total over a period of 5 months, of which 15%
was used as training data. Esposito et al. (2016) reported calibration performance on a single sensor package (5 gas sensors
per package for measuring NO, NO; and Os) and the model was tested on four weeks of data.

In this study, we aim to improve the calibration strategies of low-cost sensors using a random-forest-based machine learning
algorithm, which, to our knowledge, has not been previously applied to low-cost air quality monitor calibrations. To ensure
calibration model robustness, they were developed for 16-19 RAMP monitors and validated for 10-16 RAMP monitors
(depending on pollutant), with each monitor containing one sensor per species (CO, CO2, NO2, SO, and Og3). Furthermore, the
study was conducted over a six-month period (August 2016 — February 2017) spanning multiple seasons and a wide range of
meteorological conditions. During this period, RAMP monitors were intermittently deployed for air quality monitoring
campaigns, resulting in collocation periods ranging from 5.5 to 16 weeks (median 9 weeks). The fitting of the machine learning
algorithms is discussed in detail to determine ideal calibration datasets to maximize performance and minimize overtraining.
The performance of the random forest models is compared to traditional laboratory univariate linear models, multiple linear

regression models, and EPA performance guidelines. The performance of a given model over time is also discussed.

2 Experimental methods
2.1 Measurement sites

Measurements were made from August 3, 2016 to February 7, 2017 on the Carnegie Mellon University campus in the Oakland
neighbourhood of Pittsburgh, PA. The outdoor ambient testing environment (40°26'31.5"N, 79°56'33"W) is located within a
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small (< 100 vehicles) limited access, open air parking lot near the center of campus. It consisted of a mobile laboratory
equipped with reference-grade instrumentation (Section 2.3) and adjacent lawn space where the RAMP monitors were mounted
on tripods (Section 2.2). The dominant local source at the site is vehicle emissions when vehicles enter and exit the parking
lot during the morning and evening rush hours. There was also occasional truck traffic and restaurant emissions from nearby
on-campus restaurants. The small size of the parking lot (< 100 cars) and few other local sources means that for most of the
day the location is essentially an urban background site. During the measurement period, the site mean (range) ambient
temperature and relative humidity were 13°C (-15 to 34 °C) and 71% (27 to 98%), respectively.

The RAMP monitors have also been intermittently deployed across the Pittsburgh region as part of ongoing air quality
monitoring research. To demonstrate the accuracy of the calibrated RAMP, we also show data from a RAMP monitor which
was first calibrated at Carnegie Mellon University and then moved to the Allegheny County Health Department (ACHD,
40°27'55.6"N, 79°57'38.9"W) from February — May 2017. The ACHD site has independent reference monitors for CO, NO,
and O; and thus comparing data from these two sites enables an independent real-world assessment of model performance.
The ACHD site is characterized by increased traffic volume, restaurant density and industry relative to the Carnegie Mellon

site.

2.2 Real-time Affordable Multi-Pollutant (RAMP) monitor

The study uses the Real-time Affordable Multi-Pollutant (RAMP) monitor, which was developed in a collaboration between
Carnegie Mellon University and SenSevere. The RAMP uses the following commercially-available electrochemical sensors
from Alphasense Ltd: carbon monoxide (CO, Alphasense ID: CO-B41), nitrogen dioxide (NO,, Alphasense ID: NO2-B43F),
sulfur dioxide (SO,, Alphasense ID: SO2-B4), and total oxidants (Ox, Alphasense ID: Ox-B431). The unit also includes a
nondispersive infrared (NDIR) CO; sensor (SST CO2S-A) which contains built-in T (method: bandgap) and RH (method:
capacitive) measurement. The experiments involved 95 individual pollutant sensors mounted in 19 unigue RAMP monitors.
While the collocation period spanned August 2016-February 2017, many sensors were intermittently deployed for air quality
campaigns in Pittsburgh, so the collocation period ranged from 30 days to the full study period, depending on the unit.
Additionally, calibrations were not built for sensors for which reference data was below detection limits or if reference
monitoring units were malfunctioning, reducing the total number of sensors in this experiment to 73, due to issues with the

SO, and NO; reference monitors.

The electrochemical sensor outputs were measured using electronic circuitry custom designed by SenSevere optimized for
signal stability. The circuitry includes custom electronics to drive the device, multiple stages of filtering circuitry for specific
noise signatures, and an analog-to-digital converter for measurement of the conditioned signal. The RAMP monitors are housed
in a NEMA-rated weather proof enclosure (Figure 1A) and equipped with GSM cards to transmit data using cellular networks

to an online server. The RAMP monitors also log data to an SD card as a fail-safe in case of wireless data transfer issues. The
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data is logged to the server at ~15 second resolution and down-sampled to 15-minute averages, which was deemed to be an
appropriate time resolution for assessing spatial variability in air pollution exposure and to reduce the size of the dataset and
increase computational efficiency. Regulatory bodies typically make their data available at hourly resolution. The sensors
sample passively from the bottom of the unit (Figure 1B), with screens installed to protect the sensors. Roughly 3 weeks of
measurements of gaseous species, T, and RH are possible on single charge of a built-in 30 amp-hour NiMH battery. The RAMP
monitors are either mounted to a steel plate for easy pole mounting or are deployed on tripods approximately 1.5 m above the

ground (Figure 1C). In this study, all the RAMP monitors were tripod-mounted at a consistent height.

In their simplest configuration, electrochemical sensors function based on a redox reaction within an electrochemical cell in
which the target analyte oxidizes the anode and the cathode is proportionally reduced (or vice versa, depending on target
analyte). The subsequent movement of charge between the electrodes produces a current which is proportional to the analyte
reaction rate, which can be used to determine the analyte concentration. The Alphasense electrochemical sensors utilize a more
complex configuration by using four electrodes (working, reference, counter and auxiliary) to account for zero current changes.
Essentially, the auxiliary electrode, which is not exposed to the target analyte, accounts for changes in the sensor baseline
signal under different meteorological conditions. Additional details on the theory of operation for electrochemical sensors can
be found in Mead et al. (2013).

The RAMP monitors log two output signals from each of the Alphasense sensors: one from the auxiliary electrode and the
other from the working electrode. The net sensor response is determined by subtracting the auxiliary electrode signal from that
of the working electrode. In theory, for a target analyte a linear relationship should exist between the net sensor signal for that
analyte and ambient analyte concentrations, and this expectation forms the basis of univariate linear regression models built
from laboratory calibrations. However, as noted in the introduction, even with an auxiliary electrode, electrochemical sensors
may insufficiently account for the impacts of temperature (which affects the rate of diffusion) and relative humidity under high
humidity conditions where condensation is possible. This has motivated researchers to construct multiple linear regression
models (MLR) to account for these temperature and humidity effects (Jiao et al., 2016). While these calibration models
typically improve performance relative to univariate linear models (Spinelle et al., 2015, 2017), they typically do not
incorporate any cross-sensitivities to other pollutants or any non-linearities in the response. In this study, we attempt to build
a calibration model for each analyte with no underlying assumptions regarding the calibration model structure and allow the

models to consider directly the full suite of data being reported by the RAMP monitors using a machine learning approach.

2.3 Reference instrumentation

Reference measurements were made on ambient air continuously drawn through an inlet on the roof of the mobile laboratory
located approximately 2.5 m above ground. Gaseous pollutants were drawn through approximately 4 m of 0.953 cm outer

diameter Teflon fluorinated ethylene propylene (FEP) tubing with a six-port stainless steel manifold for flow distribution to
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the gas analyzers. Measurements were made using direct absorbance at 405 nm for NO; (2B Technologies Model 405 nm), a
gas filter correlation infrared analyzer for CO (Teledyne T300U), a non-dispersive infrared analyzer for CO, (LICOR 820),
UV absorption for O3 (Teledyne T400 Photometric Ozone Analyzer) and by UV fluorescence for SO, (Teledyne T100A UV

Fluorescence SO, Analyzer). The time resolution for all reference measurements was 1 s.

The reference gas analyzers were checked and calibrated weekly using calibration gas mixtures, except for Os which is
calibrated biannually at a nearby regulatory monitoring site. The CO and NO; analyzers experience modest baseline drift
between weekly calibrations, on the order of approximately 40 ppb for CO and 2 ppb for NO,. Hence, baseline pollutant
concentrations were normalized to a nearby regulatory monitoring site (Allegheny County Health Department, Air Quality
Division, Pittsburgh, PA). The baseline correction was done using a linear regression between the beginning and end of the
week on the baseline signals (local source spikes removed). The regression was based on daytime differences, as night time
inversions may cause real differences in the baseline signals between the two sites. The gas analyzers at the regulatory
monitoring site are checked daily and thus this normalization helped correct for any baseline drift during the days between

calibration. No significant drift was observed for CO; or Os.

3 Calibration methods

Three calibration methods were evaluated: (1) a laboratory-based univariate linear regression based on net sensor response
when exposed to calibration gases, (2): an empirical multiple linear regression of net sensor response, T and RH regressed
against reference monitor concentrations, and (3): a random forest machine learning model using net responses from all
sensors, T, and RH to predict reference monitor concentrations. Calibration models were constructed for the CO, NO,, CO;
and Oszsensors in each RAMP monitor. In this study, no calibration models were built for SO, due to a combination of reference
instrument malfunction and SO, concentrations measured with the reference instrumentation being below the instrument
detection limit (<0.4 ppbv) for most of the campaign (no nearby sources of SO2). While lab calibrations were conducted for
the SO, sensors, this data will be the subject of a future publication on air quality in industrial areas where SO is more

commonly detected.

3.1 Laboratory-based univariate linear regression (LAB)

Prior to outdoor collocation, the sensors inside the RAMP monitors were calibrated in a laboratory environment using a custom
manufactured sensor bed and calibration gas mixtures. The sensors were exposed to each step in the calibration window (Table
1) for 20 minutes and a face velocity of 1.2 m/s flowed perpendicular to the sensor surface. This face velocity is in the lower
end of the wind speed range in Pittsburgh, PA (e.g. average monthly windspeed over Jan-May 2017 at 2m height is estimated
at 2.4-3.4 m/s). The sensor response at each calibration step was averaged once the signal had stabilized (steady sensor output

voltage). Temperature and relative humidity were not controlled during the calibration due to lack of available infrastructure
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at the time of the study. The temperature was at levels typical of indoor laboratory environments (approx. 20 °C), and the dry
calibration gas provided very little humidity (RH <5%). Calibrations were built for CO, NO; and CO,. Laboratory calibrations

for O3 were not performed due to a lack of suitable O3 calibration gas.

The laboratory calibration follows a standard univariate linear regression model of regression net (CO, NO2) or raw (COy)

signal against the reference gas concentration (Eq. 1)

Vreference (£) = Bo + B1 X [Net Sensor Response (CO,NO,) or Raw Sensor Response (CO,)], Q)

Model performance was evaluated by comparing the calibrated response to reference measurements. We refer to the laboratory
univariate linear regression calibration as LAB. Separate LAB calibrations were developed for each sensor (37 individual
calibrations, 9-14 per pollutant). Due to difficulty controlling temperature and RH over a wide range of known ambient
conditions, we focused on the relationship between analyte response and the calibration gas concentration, which any user
with access to basic lab infrastructure can do. While beyond the scope of this study, an improved LAB calibration would

involve a chamber with variable T and RH to better match ambient conditions.

3.2 Empirical multiple linear regression (MLR)

Following laboratory calibration, the individual sensors were mounted in the RAMP monitors and deployed outdoors adjacent
to the Carnegie Mellon University supersite. The collocation period varied by RAMP, with a minimum collocation period of
6 weeks and a maximum collocation period of the entire 6-month study period. The collocation window varied due to
intermittent deployment of some RAMP monitors for ongoing air quality monitoring campaigns in the Pittsburgh area. To
build calibration models, the collocation period was separated into a training and testing period identical to that used for the
random forest calibration (see Section 3.3). Due to the previously established influence of T and RH on sensor response (Jiao
et al., 2016; Masson et al., 2015b; Spinelle et al., 2015, 2017), a multiple linear regression (MLR) model was used to calibrate
the output from each sensor using net sensor response to the target analyte (e.g. CO for the CO sensor), T and RH as explanatory
variables (Eq. 2), similar to the approach described in a recent a European Union report on protocols for evaluating and

calibrating low-cost sensors (Spinelle et al., 2013).
Vreference (£) = Bo + By X [Net Sensor Resp. (CO, NO,, 0;) or Raw Sensor Resp. (CO,)] + B, X T + B3 X RH, (2)
The training data was used to calculate the model coefficients (Bo through B3) and the model performance was evaluated on

withheld testing data. Separate multiple linear regression models were developed for each sensor (73 individual models). We

refer to these models as MLR.
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3.3 Random forest model (RF)

A random forest (RF) model is a machine learning algorithm for solving regression or classification problems (Breiman, 2001).
It works by constructing an ensemble of decision trees using a training data set; the mean value from that ensemble of decision
trees is then used to predict the value for new input data. Briefly, to develop a random forest model, the user specifies the
maximum number of trees that make up the forest, and each tree is constructed using a bootstrapped random sample from the
training data set. The origin node of the decision tree is split into sub-nodes by considering a random subset of the possible
explanatory variables (mgy). The training algorithm splits the tree based on which of the explanatory variables in each random
subset is the strongest predictor of the response. The number of random explanatory variables considered at each node (denoted
Myy) IS tuned by the user. This process of node splitting is repeated until a terminal node is reached; the user can specify the
maximum number of sub-nodes or the minimum number of data points in the node as the indication to terminate the tree. For

our random forest models, the terminal node was specified using a minimum node size of 5 data points per node.

To illustrate the method, consider building a random forest model for one RAMP monitor using a single decision tree and a
subset of 100 training data points to build a CO calibration model (Figure 2). In this highly simplified example, at the first
node, the net CO sensor signal is the strongest predictor of the CO reference monitor concentration, with a natural split in the
data at a net CO sensor voltage of 255.9 a.u. If sensor voltage exceeds 255.9 a.u., a cluster of 7 data points from the training
data predicts an average CO concentration of 357 ppb, if CO net sensor voltage is <255.9 a.u. then the data goes to the next
decision node, in which net CO sensor signal is again the strongest predictor of the CO reference monitor concentration, with
a natural break in the data at a net CO sensor voltage of 167.3 a.u. The splitting proceeds until all the training data are assigned
to a terminal node. The prediction value for each terminal node is the average reference monitor concentration of training
points assigned to that node. To apply the algorithm (i.e., predict the CO concentration from a set of measured inputs), the user
takes the measured T and the net CO, NO; and Os signals and follows the path through the tree to the appropriate terminal
node. The predicted CO concentration for that tree is then the average training value associated with that terminal node. This
process is then repeated through multiple trees (Figure 2 shows only one simple tree) and the predictions from each tree are
averaged to determine the final output from the entire random forest model. In this simple example, there are only six possible
CO concentrations the random forest model will output. In practice, each tree has hundreds of terminal nodes and the forest
typically comprises hundreds of trees, which means that there are thousands of possible answers. The model prediction for a

given set of inputs is the average prediction across all the hundreds of trees that comprise the forest.

The random forest model’s critical limitation is that its ability to predict new outcomes is limited to the range of the training
data set; in other words, it will not predict data with variable parameters outside the training range (no extrapolation).
Therefore, a larger and more variable training data set should create a better final model. In this study, our collocation window

covered a broad range of concentrations and meteorological conditions; however, in situations where shorter collocation
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windows with less diverse training ranges are desired, the RF model may not be suitable as a standalone model. This is
discussed further in Section 4.3.2. To maximize utilization of the training data set to avoid missing any spikes during the
training window, a k-fold cross validation approach was used. A k-fold cross-validation divides the data into k equal sized
groups (where Kk is specified by the user) and k repeats are used to tune the model. Consider an example where k is equal to 5
(a 5-fold cross-validated random forest model). With a 5-fold validation, five unique random forest models are constructed,
one for each fold. In building the first random forest, the first 20% (1/k) of the data will be the testing data, and the remaining
80% [(1-k)/K] of the data will be used as training. In building the second random forest, the next 20% of the data will be used
as test data, and the first 20% and remaining 60% will be used to train. This is repeated until the data are fully covered, at
which point the random forest model is created by combining the five (k) individual models into one large random forest
model. This helps to minimize bias in training data selection when predicting new data, and ensures that every point in the
training window is used to build the model.

In this study, reference gas data, RAMP net sensor data for CO, NO,, SO, O3, and RAMP raw sensor data for CO,, T, and RH
were collected at 15 second resolution, time-matched, and down-averaged to 15 min intervals (IGOR Pro v6.34), which is a
higher temporal resolution than the 1 h intervals at which typical regulatory monitoring information are reported and minimized
computational cost. The down-sampled data were then imported into R (ver. 3.3.3, “Another Canoe”) for random forest model
building. R is an open-source package for tuning and cross-validating many classes of statistical models, including random
forest models. The cross-validated random forest models were compiled using the open-source “caret” package (Kuhn et al.,
2017). The model considered all RAMP data (net voltage outputs from the five gas sensors plus T and RH, 7 possible variables
total) as potential explanatory variables to predict the reference monitor gas concentration. The number of trees was capped at
100 per fold, and a five-fold cross-validation was used for a total of 500 trees. Therefore, the predicted value for a given set of
measured inputs is the average value from this set of 500 trees (each tree provides one prediction). The k-value was chosen
by identifying the minimum number of folds for which an increase in the fold size increased model performance less than 5%
on the held-out data. The number of trees was chosen based on the work of Oshiro et al., (2012), who suggested that the number
of trees range from 64-128. The computation time to train a complete RAMP monitor with five sensors was approximately 45
minutes. This was another motivating factor for 15-minute resolution data, as building models at higher time resolutions would

have significantly increased computational demand.

When fitting the random forest models with the training data, the main tuning parameter is the number of explanatory variables
to consider at each decision node (myy). To determine the optimal myy, the root mean square error (RMSE, equation in
Supplemental Information) and the coefficient of determination (R?) were calculated on the withheld folds of the training data
(Figure 3, step 2) for myy equal to 2, 4 or 7 to span the complete variable range. The random subset of explanatory variables
considered at each node was chosen based on which value of myy, minimized RMSE. The cross-validation and the subset of

explanatory variables randomly considered at each node (myy) was tuned using the caret package in R (Kuhn et al., 2017).
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Following random forest model generation and tuning, the five 100 tree models were combined to create a final model with
500 trees. This process was repeated for each sensor to create 73 separate random forest models. The final models convert the
RAMP output signals into calibrated concentrations. The model conversion was done within R, where it exists as a standalone

object compatible with the standard R configuration.

Data from three RAMP monitors (15 individual gas sensors) were used to investigate the optimal training period, which was
determined by comparing the training data size to mean absolute error (MAE, the average of the absolute value of the
residuals). The optimal training period was the period beyond which increases in the length of the training window (and
therefore size of the training dateset) no longer resulted in significant reductions in the MAE. The initial training window
evaluated was 1 week, and 1 week increments in training period duration were considered until MAE was minimized. The
optimal collocation window was determined to be 4 weeks (or 2688 data points at 15-minute resolution). This was evaluated
for a consecutive collocation window and for 8 non-consecutive collocation windows equally distributed throughout the whole
collocation period (August 2016 — February 2017) in half week increments. Details of this evaluation are provided in the
Supplemental Information, but the non-consecutive collocations generally performed slightly better, with reductions in MAE
of 12 ppb (4% relative error) for CO, 2 ppm for CO, (0.4% relative error), 0.4 ppb for NO; (4% relative error), and 1.6 ppb for
O3 (7% relative error) compared to the consecutive four-week collocation. The motivation for exploring non-consecutive
collocation windows dispersed throughout the study period was to ensure that the training period covered a complete range of
gas species concentrations, temperatures and relative humidity. In practice, the training data utilized in this study is equivalent
to collocating the RAMP monitors with reference monitors for 3-4 days every 1-2 months. If non-consecutive collocation is
inconvenient or not possible, consecutive collocation may be satisfactory as determined by MAE and other accuracy

parameters needed for the application at hand.

3.4 Metrics for performance evaluation

The evaluation of the different models was conducted on 15-minute averaged testing data (i.e., data withheld entirely from
model building). Metrics to quantitatively compare the LAB, MLR and RF model output to the reference monitor
concentrations included Pearson r, which is a measure of the strength and direction of a linear relationship, and the coefficient
of variation of the mean absolute error (CvMAE, Eq. 3). For comparing the RF model performance to other published studies,
we also evaluated mean bias error, mean absolute error, slope of the linear regression of RF model calibrated RAMP data and

reference data, and coefficient of determination (R?).

CvMAE = MAE = L X EZ{;llModeli — Referenceil] : 3)

Avg. Reference Conc. - Avg. Reference Conc.

Another useful tool for visually comparing competing models is a target diagram (Jolliff et al., 2009). A target diagram

illustrates the contributions of the centered root mean square error (CRMSE, which is RMSE corrected for bias) and the mean

10



10

15

20

25

30

bias error (MBE) towards total RMSE. In a target diagram, the x-axis is the CRMSE, the y-axis is the MBE and the vector
distance to the origin is the RMSE. Since CRMSE is always positive, a further dimension is added: if the standard deviation
of the model predictions (calibrated sensor data) exceeds the standard deviation of the reference measurements, the CRMSE
is plotted in the right quadrants and vice versa. To match previously constructed target diagrams (Borrego et al., 2016; Spinelle
etal., 2015, 2017), the CRMSE and MBE were normalized by the standard deviation of the reference measurements, and thus
the vector distance in our diagrams is RMSE/oreference (NRMSE). The resulting diagram enables visualization of four diagnostic
measures: (1) whether the model tends to overestimate (MBE > 0) or underestimate (MBE < 0), (2) whether the standard
deviation of the model predictions (calibrated sensor data) is larger (right plane) or smaller (left plane) than the standard
deviation of the reference measurements, (3) whether the variance of the residuals is smaller than the variance of the reference
measurements (inside circle of radius 1) or larger than the variance of the reference measurements (outside circle), and (4) the
error ("(RMSE), the vector distance between the coordinate and the origin. Details of equations required to build a target
diagram are provided in the Supplemental Information. Model performance metrics were calculated in R (ver. 3.3.3, “Another

Canoe™) using the “tdr” package (Perpinan Lamigueiro, 2015).

4 Results and Discussion
4.1 Calibration model goodness of fit: comparing model predictions to training data

Following model building, the goodness of fit between the model output concentrations and the reference monitor
concentrations during the training window (i.e. the data used to build the model) were evaluated for all three calibration model
approaches (laboratory univariate linear regression “LAB”, field-based multiple linear regression “MLR” and field-based
random forest “RF”). For the training period, the calibrated CO and O3 concentrations were all highly correlated (Pearson r >
0.8) with the reference monitor concentrations for all the calibration model approaches (Table 2). However, only the RF model
achieved strong correlations between the reference monitor and the RAMPs for NO, and CO; (Pearson r: 0.99). Furthermore,
CvMAE for each species was <5% during the training window for the RF models, substantially outperforming the other

models.

Regression plots for 19 RAMP monitors and for CO, CO, and O3 and 16 RAMP monitors for NO illustrating the goodness of
fit of the RF model are provided in the Supplemental Information (Figures S3-S6). Only 16 of the 19 RAMP monitors had an
NO; calibration, since the NO, monitor malfunctioned during the period when three RAMPs were collocated and so a
calibration model could not be built for NO; for these three RAMPs. For the RF models, Table 2 also provides the random
subset of explanatory variables sampled for splitting at each decision node (myy) to achieve the lowest model RMSE. In
general, the larger the myy, the simpler the underlying structure of the model. For example, if there is one dominant variable
but the model is permitted to consider all 7 explanatory variables at each decision node (i.e., myy=7), then the model will most

frequently split the data based on the dominant variable. By contrast, the advantage of a lower myy is that subtle relationships
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between explanatory variables and the response can be probed. When randomly selecting fewer explanatory variables (my,=2
or 4) at each decision node, the probability of selecting a dominant variable decreases and the model is forced to split the data
into sub-nodes based on variables which may have a smaller (but real) effect on the response. If the goodness of fit of the
calibration model is improved by decreasing myy, this suggests more complex variable interactions with the response (Strobl
etal., 2008).

Using the myy metric, we observed that the underlying RF model structure is the simplest for CO, that some model explanatory
variable complexities exist for the Oz and NO, models, and that the CO, model is the most complex and relies on subtle
relationships between the explanatory variables to best fit the data (lowest myy had the best results). This finding matches our
expectations based on the LAB and MLR models; these simpler models performed best for CO and worst for CO,. The trends
in the myy metric highlights the value of the RF model approach which directly accounts for multiple pollutants. This appears
to be critical for O3, NO, and CO; sensors because they are cross-sensitive to other pollutants. Cross-sensitivities have been
shown to have a minimal impact on CO sensors, with the only notable cross-sensitivity being to molecular hydrogen (Mead et
al., 2013). The poor performance of linear models at predicting CO concentration is not surprising, as the sensor was observed
to measure high concentrations under periods of high relative humidity (e.g., during rain) and in some cases during heavy rain
will be saturated at 2000 ppm, the upper limit of the sensor, and then is reset to 400 ppm daily, as per manufacturer
recommendations. The increase in CO under high humidity conditions is likely due to the interference of water with CO; in

the NDIR signal. Linear models are poorly suited to describe this behaviour.

4.2 Evaluation of models using testing data

To test the performance of the three different calibration models, the models were applied to the testing data that were not used
for model fitting. The RAMP monitor concentrations after correction using the calibration models were compared to the actual
measured reference concentrations (Figure 3, step 5). To illustrate the approach, in Figure 4, we show a very short time-series
of the testing data (~48-hour window) for RAMP #1. This RAMP monitor’s performance is representative of the average
model performance across the RAMP monitors and therefore illustrates the quality of an average model. Figure 4 also shows
the calibrated RAMP #1 output regressed against the reference monitor concentration for the entire testing period for all three
calibration models (LAB, MLR, and RF). For this period, the RF model outperformed the LAB and MLR models for all
pollutants except for CO. Differences between the different models were smallest for CO and O3 and largest for CO; and NO;
the LAB models essentially did not reproduce the reference concentrations for CO, and NO,. To illustrate the consistency of
the RF model calibrated RAMP monitors across the entire suite of monitors, regressions for all the RAMP monitors for O3 are
shown in Figure 5. Regression plots for all RAMP monitors across the other gases are provided in the Supplemental
Information (Figures S7-S10).
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In this study, any data remaining after training were used to test model performance, provided there were at least 48 hours of
testing data (192 data points, each point a 15-minute average). The RAMP sensors that met this threshold and are used to test
the model — 16 for CO and Og, 15 for CO,, and 10 for NO, — had at least 1.4 weeks of testing data and a maximum of 15 weeks,
with a median testing dataset of 5 weeks. The amount of data used to test model performance varied by RAMP monitor and
by pollutant because reference monitors were occasionally offline for maintenance and calibration, and some RAMP monitors
were intermittently deployed for concurrent air quality monitoring campaigns in Pittsburgh. Figure S11 shows examples of
testing periods for two RAMPS, one at the low end (#19 with ~2300 testing data points) and one at the high end (#4 with

~10,000 data points), interspersed with training periods (2,688 data points for each sensor.)

To assess the overall model performance, two performance metrics (Pearson r and CvMAE) were calculated for each RAMP
monitor using the entire testing dataset (Figure 6). The aggregate assessment shows that the MLR and RF models are
interchangeable for CO, as both models achieved Pearson r >0.9 and CvMAE <15%. The LAB model achieved a similar
Pearson r, but CYMAE doubled to ~30%. For CO,, NO,, and Os, the RF model substantially outperforms the LAB and MLR
calibration models on the testing data. On average, Pearson r exceeded 0.8 for the RF model for CO, and NO, versus < 0.6 for
the LAB and MLR calibration models. Furthermore, the RF model performance was more consistent across the RAMP
monitors than the MLR and LAB models. For example, the Pearson r for O3 ranged from 0.92 to 0.95 for the RF models versus
0.74 to 0.89 for the MLR models. This means that essentially all the RF models for O3 performed well versus only a subset

of the MLR models. The consistency of the different models is indicated by the smaller range in the box plots of Figure 6.

To compare the LAB, MLR and RF models, target diagrams were constructed for the four gases using all three calibration
models for each RAMP monitor (Figure 7). The target diagrams show that, on average, across the RAMP monitors the random
sensor error (distance to origin) was smaller for RF models and the RF models showed the least RAMP-to-RAMP variability
(less disperse). This contrasts with the MLR models, whose bias and extent of model standard deviation varied much more
widely between RAMP monitors, especially for CO,. For the LAB models, the error for CO,and NO, was approximately an
order of magnitude larger than for the RF and MLR models and had to be plotted on a separate inset due to their poor
performance. Across all gases, the RF models on average were biased towards predicting concentrations slightly lower than
the reference (i.e., slight tendency to under-predict, MBE/Geference <0). Thus, we conclude that the low CvMAE, high Pearson
r correlations, lowest bias and lowest absolute error characteristics of the RF models for all four gases are significant

improvements compared to conventional calibration approaches (LAB and MLR).

4.3 Detailed assessment of RF model performance

To investigate the performance of the RF models in greater detail, we assessed the effect of amount of testing data on model
performance, the relative importance of the seven explanatory variables, the performance of the models across the different

concentration ranges, and the number of data points needed in each concentration range to optimize the fit.
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4.3.1  Drift over amount of testing data

To assess the effect of testing window size on conclusions regarding RF model performance, we compare the MAE to the
number of weeks in the testing window (Figure 8). For all the gas species, the MAE was essentially flat across the RAMP
monitors and the 95% confidence interval on the slope included 0; RAMP monitors with more testing data did not have
substantially higher (worse) MAE, suggesting the RF models are robust over the study period. For NO2, the most data available
for testing was approximately 8 weeks due to instrument maintenance and repair taking the NO, reference monitor offline for
6 weeks of the study. Figure 8 also shows MAE over time from one RAMP, RAMP #4, which remained at the Carnegie Mellon
supersite for the entirety of the six-month study. For RAMP #4, MAE was calculated for an increasing cumulative number of

weeks forward in time, and again, MAE was consistent (and in some weeks improved) over time.

4.3.2 RF model explanatory variable importance

While RF models are non-parametric, some sense of the model structure can be gained by examining the relative importance
of the explanatory variables. The importance of each variable was quantified by comparing the percent increase in mean square
error (MSE) when an explanatory variable signal is permuted - i.e. the values of the selected variable are randomly shuffled,
effectively eliminating this variable from the model (Pearson 2017).. If an explanatory variable strongly affects the model
performance, permuting that variable results in a large increase in MSE. Conversely, if a variable is not a strong predictor of
the response, then permuting the variable does not significantly increase the MSE. Figure 9 shows for each of the gases (CO,
CO2, NO; and O3) the increase in MSE when the explanatory variables were permuted. For both CO and Og, the signal from
the sensor measuring the target analyte (CO or Os) is the most important explanatory variable, as expected. For the Os, the
second most important variable was the NO; signal, an expected cross-sensitivity, as the ozone sensor measures total oxidants
(O3 + NOy) (Spinelle et al., 2015).

The explanatory variable importance is more complex for COzand NO,. For CO,, all variables are roughly equally important,
with CO being the most important. This is likely due to the strong meteorological effect of humidity on the measured CO,
concentration; the model must rely on other primary pollutants to predict the CO; signal when the measured CO- has reached
full-scale (i.e. becomes saturated in periods of high humidity), and short-term fluctuations of CO; are likely from combustion
sources (e.g., vehicular traffic in urban areas) which also emit CO. This highlights the value of having sensors for multiple
pollutants in the same monitor. Including measurements of additional pollutants helps the RF model correct for cross-
sensitivities. However, the drawback of this cross-sensitivity in the model is that the RF model may not perform well in areas
where the characteristic source ratios of CO and CO, have changed. For example, this model was calibrated in an urban
environment with many traffic and combustion-related sources nearby. Such a model would be expected to perform poorly for
CO- in a heavily vegetated rural environment where CO and CO; are not strongly linked. For the NO2 model, RH was the most

important explanatory variable followed by the NO, sensor signal, highlighting again the importance of including
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meteorological data within sensor packages. The NO, model was also more strongly affected by temperature than the other
pollutants. We hypothesize that the sensitivity of the NO; sensor to ambient NO; is suppressed in Pittsburgh, which has low
ambient NO; concentrations compared to other cities where these sensors have been evaluated (see Table 3). NO; is lowest
when Og is highest in the summer, and thus the NO, RF model effectively uses T and RH as indicators for seasonality when
NO; is low and the sensor response is supressed. Furthermore, the relatively equal variable importance of several of the
explanatory variables within a model suggests that a cluster of sensors measuring many different species is critically important
to build robust calibration models. Interestingly, despite low SO, concentrations, there was some contribution from the RAMP
SO; sensor. This may be due to cross-sensitivities within the SO, sensor itself, as the SO, sensor may respond to more than
ambient SO, warranting future investigation. However, in general the SO, sensor contributed the least to model performance,
thus this sensor could be replaced with a more relevant sensor, such as NO, in future iterations of the RAMP monitor. These
findings highlight the value of bundling sensors for measuring a suite of pollutants together, as the different sensors can capture

(at least to some extent) cross-sensitivities to other pollutants and improve the model performance for other sensors.

4.3.3 RF model performance as a function of ambient concentration

In Section 4.2, predicted concentrations were normalized to average reference monitor concentration to quantitatively compare
differences between the calibration models (CvMAE). To evaluate the RF model performance at different reference
concentrations, the testing data were divided into deciles for which the median reference monitor concentration, the absolute
residual, and the residual normalized to the reference monitor concentration were calculated (Figure 10). For all species, the
RF models tended to overestimate at lower concentrations, and underestimate at the highest concentrations. For the CO RF
model, the normalized residual is within 10% of the reference monitor concentration by the 20" percentile of the data (>100
ppb), and continues to improve until the 50" percentile when it plateaus at a normalized residual of about 5%. The US EPA
requires a limit of detection of 100 ppb for CO instruments used for regulatory monitoring (United States Environmental
Protection Agency, 2014), thus our performance meets that goal. In the top decile, the average absolute CO residual for the
RF models approximately doubles but the relative error is still around 5%. However, the top decile spans the broadest
concentration range due to the lognormal shape of the CO concentration distribution, and these points are difficult to capture
in training data sets.

For the CO, RF model, agreement with the reference monitor data are within a few percent up to the 90" percentile, when
agreement drops to within 5%. This is possibly due to the RF model actively supressing high CO, sensor signals, as the sensor
is prone to reading erroneously high concentrations during rain events. Additionally, the top decile of the data spans a wide
range of CO; concentrations due to the lognormal shape of the CO; distribution. As with CO, the NO, RF model agreement
with the reference monitor plateaus around the 50" percentile mark; however, the NO, RF-model error exceeds 100% for the

lowest decile (<5 ppb), suggesting an effective sensitivity of the sensor of 5 ppb. For the O3 RF model, the effective sensitivity
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is also around 5 ppb; when the average reference monitor concentration increased from 5 ppb to 10 ppb (from first to second
decile), the normalized residual decreased from over 100% to about 20%. The US EPA limit of detection for federal regulatory
monitors is 10 ppb for both NO; and Os, suggesting that as with CO, the RF model performance is within 20% of regulatory

standards (United States Environmental Protection Agency, 2014).

Systematic underprediction at the highest concentrations was also observed and is likely a consequence of the training dataset
used to fit the RF model. Unless the range of concentrations in the training data encompasses the range of concentrations
during model testing, there will be underpredictions for concentrations in exceedance of the training range due to the RF
model’s inability to extrapolate. This is also what causes the horizontal feature for some RAMP monitors at high O3
concentrations in Figure 5, as the model will not predict beyond its training range. Additionally, the performance of the RF
model is sensitive to the number of data points at a given concentration and the model performance. To build a robust model,
many data points are required at a given concentration to probe the extent of the ambient air pollutant matrix. In this study,
the training windows were dispersed throughout the collocation period to ensure good agreement of gas species and
meteorological conditions during both the training and testing windows (see Supplemental Information). The RF model may
not work well in cases where such a diverse collocation window is not possible or where concentrations are routinely expected
to exceed the training window. In such situations, hybrid calibration models such as combined RF-MLR, where MLR is used
for concentrations higher than the RF training window range, may be suitable as MLR tends to perform better when

concentrations are higher. An example of this approach is provided by Hagan et al. (2017).

To illustrate the impact of number of training data points on the RF model, we binned the data for the representative RAMP
(RAMP #1) by concentration and the average concentration measured by the reference monitors was plotted against the average
concentration from the calibrated RAMP (Figure 11). The uncertainty in the RF model was plotted as the standard deviation
of the model solutions from the 500 trees and the bins were colour coded by the number of data points within each bin. Figure
11 illustrates that for every pollutant, agreement with the reference monitor and uncertainty in the model prediction was larger
for concentration bins containing fewer than 10 data points. This disproportionately impacted the upper end of the pollutant
distribution where fewer data points were collected due to the intermittent and variable nature of high pollutant episodes. This
suggests that a minimum of 10 data points at a given concentration are needed to adequately train the RF model, which may
inform future RF model building. At NO, concentrations below 5 ppb, deviations from the 1:1 line were also observed despite
the training dataset containing more than 100 data points at these concentrations. As was concluded from Figure 10, 5 ppbv

appears to be the sensitivity limit of these low-cost sensors for NO5.

4.4 Comparison of results to other published studies

In this section, we compare the performance of our RF models to results from other recent studies including the EuNetAir
project in Portugal (Borrego et al., 2016) and EPA Community Air Sensor Network (CAIRSENSE) project (Jiao et al., 2016).
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Additionally, a handful of studies have tested the field performance of low-cost sensors both ‘out of the box’ with factory
calibrations (Castell et al., 2017; Duvall et al., 2016), and after a machine-learning-based calibration (Cross et al., 2017;
Esposito et al., 2016; Spinelle et al., 2015, 2017). We compare the performance of our RF models to these studies in Table 3.
While several low-cost sensor calibration studies have investigated calibration models within laboratory environments
(Masson et al., 2015a; Mead et al., 2013; Piedrahita et al., 2014; Williams et al., 2013), we have elected to limit our comparison
to field data.

There was not a substantial difference in performance of the RF model calibrated vs. LAB calibrated RAMP for CO, and
performance was best for this pollutant on the ‘out-of-the-box’ factory calibrated performance assessments in EuNetAir and
CAIRSENSE, suggesting that rigorous calibration models may not be critical for CO. However, the RAMP CO RF model did
provide improved performance (smallest MAE, 38 ppb) at lower average concentrations compared to the EuNetAir study.
Similarly, the ‘out-of-the-box’ performance of the CO sensors tested as part of CAIRSENSE and by the 24 AQMesh sensors
tested in Castell et al. (2017) was poorer than the RF model calibrated RAMP. Of those studies that used an advanced algorithm
to calibrate the sensors (Cross et al., 2017; Spinelle et al., 2017), the CO RF model resulted in the highest R? values and slightly
lower slopes; the slope closest to 1 was reported by Cross et al. (2017).

For NO,, the performance of ‘out-of-the-box” low-cost sensors varied widely and half the sensors in the EuNetAir study
(Borrego et al., 2016) reported errors larger than the average ambient concentrations. While the quality of the baseline gas
sensing unit remains critical (in which case no calibration should work), we suggest that advanced calibration models, such as
those using machine learning, may be critical for accurate measurements of ambient NO,. Furthermore, sensor performance
was correlated with average ambient concentration; studies in areas with higher NO, concentrations had the best performance,
consistent with our observations (Figure 10). For studies using advanced NO; sensor calibration models (Cross et al., 2017,
Esposito et al., 2016; Spinelle et al., 2015), Esposito et al. (2016) had the best performance, with a MAE of < 2 ppb; however,
this evaluation was done in a location with high NO, concentrations, 45 ppbv (Air Quality England, 2015), more than three
times higher than the 12 ppbv in Pittsburgh. In addition, they only evaluated one sensor array, so the robustness of the approach
is unknown. In our study, the MAEs across the NO, RF model RAMPs ranged from 2.6-3.8 ppb, which is almost as good as
Esposito et al. (2016), but at less than one third the ambient concentrations. The slope of the HDMR model for NO, of Cross
etal. (2017) does exceed that of the RAMP RF model, but the R? and MAE values are similar between both studies. Similarly,
the annual average NO; concentrations in 2015 were 15 ppb at the Massachusetts regulatory site used as a reference in Cross
et al. (2017) (Massachusetts Department of Environmental Protection, 2016), 3 ppb higher than the average concentration
observed in our study. As shown in Figure 10, an increase of a few ppb of NO; can result in almost 100% reductions in relative
residuals in our model, potentially explaining discrepancies in the slope between our study and Cross et al. (2017).

Furthermore, for identical factory calibrated sensors out of the box, such as the Cairclip and AQMesh, a 5 ppb increase in
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average NO; concentration results in R? values more than doubling. As such, the excellent performance of the RF model for

NO; at average ambient concentrations of 12 ppbv shows promise.

For O3, the RF model, the calibrated data from Spinelle et al., (2015), and the measurements from the Aeroqual SM50 (Jiao et
al., 2016) performed the best. Good performance from the Aeroqual when measuring NO has also been previously observed
(Delgado-Saborit, 2012). However, the results were the most consistent across the RAMP monitors calibrated with RF models,
with relative standard deviations of <20% across the 16 RAMPs for all markers of statistical performance. This performance
consistency also holds for the CO and NO; RF models. The Oz RF models were built in Pittsburgh, PA, which has historically
had issues with NAAQS ozone compliance, thus while our model was seemingly one of the most accurate and robust, some
of this performance may be attributed to the higher ambient O3 concentrations. From this comparison, we conclude that the
RAMP monitor calibrated with a RF model is unique in that it is more accurate when considering the combined suite of
pollutants (i.e., all pollutants were accurately measured), it is consistent between many units (<20% relative standard deviation

in performance metrics across 10-16 monitors), and is precise even at lower ambient concentrations.

4.5 RF model calibrated RAMP performance in a monitoring context

We further assess the RAMP monitor performance against three metrics: 1) comparison of a RAMP monitor calibrated at
Carnegie Mellon against an independent set of regulatory reference monitors at the Allegheny County Health Department, 2)
for NAAQS compliance, and 3) for suitability for exposure measurements as per the US EPA Air Sensor Guidebook (Williams
et al., 2014). We also demonstrate the benefit of improved performance of the RF models in a real-world deployment at two

nearby sites in Pittsburgh, PA.

From February through May 2017, a RAMP calibrated at the Carnegie Mellon Campus was deployed at the Allegheny County
Health Department (ACHD) to test the performance of the RAMP relative to an independent reference monitor (Figure 12).
The ACHD site reports data hourly, so RAMP data were down-sampled to hourly averages and the CO, NO, and O3
concentrations were compared (no measurement of CO, is made at ACHD). For all pollutants, R? was >0.75 (CO: 0.85, NO,:
0.75, O3: 0.92) and points were clustered around the 1:1 line. NO performed the most poorly, with a large cluster of points in
the 5-10 ppb range where the model is known to underperform. The MAE was 49 ppb (17% CvMAE) for CO, 4.7 ppb for NO;
(39% CvMAE) and, 3.2 ppb for Os; (16% CvMAE), in line with the performance metrics in Figure 6. At the time of this
submission, RAMPs have been collocated with reference monitors at three additional ACHD sites; these comparisons will be

the subject of a forthcoming publication.

Regulatory agencies must also report compliance with National Ambient Air Quality Standards (NAAQS). In this study, the

time resolution and methods used to assess the effectiveness of the RF models (15 min) do not match the metrics used for
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NAAQS. For example, the NAAQS standard for O3 is based on the maximum daily maximum 8-hour average, and compliance
for NO; is based on the 98™ percentile of the daily maximum 1-hour averages. While acknowledging that the RAMP monitor
collocation period was shorter than typical NAAQS compliance periods (e.g. annually for O3 and across 3 years for NOy) it is
still worth characterizing the RAMP performance using the LAB, MLR and RF models (Figure 13). For the representative
RAMP monitor used previously (RAMP #1), daily maximum 8-hour O3 was in good agreement between the RF calibrated
RAMP and the reference monitor, with all data points falling roughly along the 1:1 line (slope: 0.82, 95% CI: 0.81-0.83), while
for the MLR model, concentrations were skewed slightly low (slope of 0.65, 95% CI: 0.63-0.67). For NO,, the 98" percentile
of the daily maximum 1-hour averages was 34 ppb for the RF model versus 35 ppb measured using a reference monitor
compared to 25 ppb for the MLR model and 51 ppb for the LAB model. The RF model was substantially closer to the reference
monitor estimate and the underestimation was only by 1 ppb. Other RF model calibrated RAMP monitors performed similarly,
all agreeing within 5 ppb.

Air sensor performance goals by application area are also provided by the US EPA Air Sensor Guidebook (Williams et al.,
2014). The performance criteria include maximum precision and bias error rates for applications ranging from education and
information (Tier I) to regulatory monitoring (Tier V). The precision estimator is the upper bound of a 90% confidence interval
of the coefficient of variation (CV) and the bias estimator is the upper bound of a 95% confidence interval of the mean absolute
percent difference between the sensors and the reference (full equations in the Supplemental Information). An overarching
goal of RAMP monitor deployments is to use low-cost sensor networks to quantify intra-urban exposure gradients, thus our
benchmark performance was Tier IV (Personal Exposure), which recommends that low-cost sensors have precision and bias
error rates of less than 30%. For the testing (withheld) periods, we compared the performance of the RF, MLR and LAB
models for all the RAMP monitors used in this study to the precision and bias estimators recommended by the US EPA (Figure
1). The performance across the RAMP monitors was summarized using box plots, and only the RF model calibrated RAMPs
are suitably precise and accurate for Tier IV (personal exposure) monitoring across CO, NO; and Os. Furthermore, both RF
model calibrated CO and O3 RAMP monitor measurements were below the even more stringent Tier 11l (Supplemental
Monitoring) standards, which recommends precision and bias error rates of <20%. The RF model NO, RAMP measurements

may reach Tier Il in locations with higher NO, concentrations.

To demonstrate the improved performance of the RF models in a real-world context, two of the RAMPs used in the evaluation
study were deployed for a 6-week period at two nearby sites in Pittsburgh, PA. One RAMP monitor was located on the roof
of a building at the Pittsburgh Zoo in a residential urban area, and another was placed approximately 1.5 km away at a near-
road site located within 15 m of Highway 28 in Pittsburgh (Figure 15). NO- concentrations are known to be elevated up to 200
m away from a major roadway compared to urban backgrounds due to the reaction of fresh NO in vehicle exhaust with ambient
O3 (Zhou and Levy, 2007). Figure 15 shows the diurnal profiles of the RAMPs at the two locations evaluated using the RF and

MLR models. The RF model indicates an NO, enhancement of approximately 6 ppb at the near-road site (Figure 15, red trace)
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compared to the nearby urban residential site (Figure 15, blue trace) and there are notable increases in NO, during morning
and evening rush hour periods, as expected. However, applying the MLR model to the RAMP data reveals no significant
difference between the two sites (Figure 15, bottom diurnal). In fact, the MLR model predicts negative concentrations during
the day. The results of this preliminary deployment suggest that the RF model calibrated RAMPs could be suitable for

quantification of intra-urban pollutant gradients.

5 Conclusions

This study demonstrates that the RF model applied to the RAMP low-cost sensor package can accurately characterize air
pollution concentrations at the low levels typical of many urban areas in the United States and Europe. The fractional error of
the models at a 15-minute time resolution was <5% for CO, approximately 10-15% for CO and O3 and approximately 30%
for NO,, corresponding to mean absolute errors of 10 ppm, 38 ppb, 3.4 ppb and 3.5 ppb, respectively. This performance meets
the recommended precision and accuracy error metrics from the US EPA Air Sensor Guidebook for Personal Exposure (Tier
IV) monitoring. We demonstrate that this degree of sensitivity allows quantification of intra-urban gradients. Furthermore,
the calibration models were well-constrained across 10-16 RAMP units (all performance metrics <20% relative standard

deviation), and showed minimal degradation over the duration of the collocation study (August 2016 — February 2017),

While the iteration of the RAMP used in this study was equipped with an SO sensor, no calibration model was possible due
to SO, concentrations at our supersite being below reference instrument detection limits. One feature of the RAMP monitor is
that the sensors are modular and can be readily replaced. The assessment of explanatory variable importance combined with
the sub-detection limit levels of SO, during the study suggests that the RAMP monitor did not substantially benefit from the
presence of the SO, sensor in this urban background environment. Future iterations of the RAMP will be equipped with NO

sensors, which may be more relevant in an urban context.

The RF-models described here were built on four weeks of training data equally distributed in 3.5-day periods throughout the
entire collocation (examples shown in Figure S11.) This is nominally equivalent to 3-4 days of calibration every 2 months. As
previously mentioned, the low-cost sensor modules within the RAMP monitors can be readily replaced, and as such, we
recommend for a large urban deployment to prepare a set of sensors at a regulatory monitoring site and to exchange sensors
as they malfunction or as calibration models drift. Since the completion of this study, the sensors have been deployed in
Pittsburgh for over 4 months, and changes in the calibration models over longer periods of deployment (1 year or more) will
be discussed in a future work. Additionally, the sensors were first opened in July 2016, and characterized over the first 7
months of exposure to ambient environments. During this period, no significant temporal drift or sensor degradation was

observed, but longer observational studies are likely needed to characterize sensor decay and end-of-life.
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The calibration models were developed in Pittsburgh, which had higher O3 and lower NO, compared to several published field-
based calibrations and measurements with low-cost sensors. Our results and those of other studies demonstrate that low-cost
sensor performance generally increases with increasing ambient concentration, but despite this, the RF models for NO, had
the second lowest mean absolute error (<4 ppbv) even at low NO; concentrations. The good performance of the RF models
across all pollutants can likely be attributed to the ability of the RF models to account for pollutant and meteorological cross-

sensitivities, highlighting the importance of building multipollutant sensor packages.

Overall, we conclude that with careful data management and calibration using advanced machine learning models, low-cost
sensing with the RAMP monitors may significantly improve our ability to resolve spatial heterogeneity in air pollutant
concentrations. Developing highly resolved air pollutant maps will assist researchers, policymakers and communities in
developing new policies or mitigation strategies to enhance human health. Going forward, a random forest calibrated RAMP
network of up to 50 nodes will be deployed in Pittsburgh, PA. This robustly calibrated network will help support better

epidemiological models, aid in policy planning, and identify areas where more assessment is needed.
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A

Figure 1: Photographs of the RAMP monitors and the sampling set up. (A) Front view of the RAMP unit in the NEMA-rated
enclosure. (B) Bottom view of the RAMPs with sensor layout labelled in yellow. (C) Example of collocation set-up using tripod
mounting (not pictured: supersite containing the reference monitors, immediately beside the tripods).
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C0=177.7 ppb
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C0=143.0 ppb CO=129.3 ppb

Figure 2: Simplified illustration of one potential CO random forest tree for one RAMP using 100 data points (the trees within the
actual models are significantly more complex and 500 such trees are included in the final models). Tree nodes are coloured by
splitting variable and split point is overlaid on the branch (e.g., at first split, points with CO sensor signal >255.9 a.u. are sent to a

10 terminal node, the remaining points go to the next splitting node). CO is the average CO reference monitor concentration (ppb) in
each terminal node; n = number of data points in each terminal node.
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| 1) Outdoor Collocation: Aug. “16 — Feb. ‘17 |

~

1A) Training data: ﬁ

n=2688 (4 weeks at
15 min resolution)

1B) Testing data:
Collocation data excluding
training data

Variables: RAMP Data
CO, CO,, SO,, NO,, 0,,T,RH
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Reference monitor
concentration

Reference
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Monitors Monitors

5) Apply model to testing
data and calculate
performance metrics

4) Combine 5-
folds to build one
aggregate model

2) Divide training data into 5 folds
(k-folds cross validation)

Withheld
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B WN =

3) For each fold, build a
random forest (RF) model and
calculate performance metrics

(RMSE, R?) to tune model

One RF = 100 trees
5 folds = 5 RFs = 500 trees

Figure 3: Flow path for data collection and RF model fitting and testing. From collocation period, 2688 points were sub-selected as
training (1A) data while the remaining data were used for model testing (1B). The training data were further divided into 5 cross-
validation folds and each fold was used to tune and build an RF model. All five models were then combined in R to build one
cumulative model and the predictive power of the model was assessed for the withheld testing data.
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Figure 4: Example time series and regressions comparing the reference monitor data (black) to statistically average RAMP

(RAMP#1) using LAB model (green), multiple linear regression (MLR) model (blue) and random forest (RF) model (pink). The left

panel shows only 48 hrs of time series data to illustrate approach; the full evaluations (Table 3) were performed with much larger
5 testing datasets; example regressions from the full data set for RAMP #1 are shown in the right panel.
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Figure 7: Target diagrams for CO, CO2, NO2 and Oz to compare the LAB, MLR and RF model performance. The y-axis is the bias
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measurements. The CRMSE is in the left plane if model standard deviation is smaller than the standard deviation of the reference
observations, and vice versa. If data falls within the circle, then the variance of the residuals is smaller than the variance of the
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concentration measured by the calibrated RAMP monitors is then plotted against the average concentration from the reference
monitor. The error bars represent the standard deviation of the answers from the 500 trees and the bins are colour coded by the
number of data points within each bin. The dashed black line is the 1:1 line.
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Figure 12: Comparison of CO, NO2 and Os hourly average concentrations measured by a co-located RAMP monitor and the
reference monitors at the Allegheny County Health Department (ACHD). The RAMP monitor was first calibrated on the Carnegie

Mellon campus prior to deployment.
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Suggested Performance Goals By Application
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Figure 14: Precision (left) and bias (right) estimates of RAMP monitors calibrated using LAB, MLR, and RF models compared to
the suggested performance goals by application as recommended in the EPA Air Sensor Guidebook. The precision estimator is the
upper bound of the coefficient of variation (upper bound of the relative standard deviation, RSD). The box plots are the range of

performance across the calibrated RAMP monitors (testing data only). The calibrated RAMP monitors meet the recommended
error limits for exposure (Tier 1V).

16 NO, - RF

1 N
= 124 Near-road site
aQ
£ 404
= 10 Nearby urban
o
4

0 5

NO, (ppb)

a—,\/\..-\/-

41— T T 1

NO, - MLR

10 15 20

Pittsburgh Zoo N

.

b5

oagqle E
\ g

Figure 15: Left: Diurnal NO: patterns at two nearby sites (one urban, one near-road) measured by RAMP monitors calibrated using
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Table 1: Calibration ranges for laboratory-based calibration (LAB)

Pollutant | Calibration Range | Points per Calibration
Co 0-1600 ppb 3-4
NO, 0-50 ppb 3-4
CO, 0—500 ppm 34

Table 2: Performance metrics for fits to training data (i.e., goodness of fit) discussed in Section 4.1

. Avg. Pearson r Avg. MAE Avg. CYMAE Bo B1 B2 Bs
Type  Species  #RAMPs (+5D) (4SD) (4SD) (45D) (+5D) (+5D) (+5D)
co 9 0.99 132 38% -119 0.82 - -
(0.01) (+32 ppb) (+17%) (#53) (+0.69)
LAB CO; 14 0.99 28 24% 20 0.98 - -
(40.01) (424 ppm) (+12%) (+36) (£0.13)
NO, 14 0.99 35 188% -14 0.62 - -
(0.01) (8 ppb) (+48%) (*4.9) (£0.15)
. Avg. Pearson r Avg. MAE Avg. CvMAE Bo B1 B2 B3
Type  Species  #RAMPs (+SD) (+SD) (+:SD) (+SD) (£SD)  (4SD)  (4SD)
0.94 39 15% 32 13 11 0.1
co 19 (0.06) (+13 ppb) (+5%) (#50) (+0.2) (*2.8) (+0.6)
0.59 46 42% 3.9 1.2 0.1 0.1
VLR NO 16 (£0.17) (0.7 ppb) (+£5%) (16) (0.5) (£0.3) (£0.2)
0.81 5.1 24% 9.4 0.92 0.1 0.2
O 19 (+0.06) (0.6 ppb) (+£2%) (14) (#0.2) (0.2) (02)
0.49 19 4% 390 0.1 0.8 0.1
co: 19 (0.13) (3 ppm) (+1%) (#72) (+0.1) (#0.7) (+1.0)
. Avg. Pearson r Avg. MAE Avg. CYMAE Median _
Type Species # RAMPs (+SD) (+SD) (+SD) My Mty = 2 My = 4 My =7
0.99 7.9 3% . . .
co 19 (+0.00) (15 ppb) (40.5%) 7 11% 21% 68%
0.99 0.5 5% . . .
NO, 16 (+0.01) (0.1 ppb) (£1%) 4 21% 74% 5%
a o 19 0.99 0.7 3% 4 0% 84% 16%
: (+0.00) (+0.1 ppb) (+0.4%) 0 ? °
0.99 17 0.4%
Co;, 19 (+0.00) (0.3 ppm) (£0.1%) 2 74% 21% 5%

LAB: Laboratory calibration (Eq. 1), MLR: multiple linear regression (Eq. 2), RF: random forest model.
For the LAB and MLR models, the fit coefficients are provided.
For the RF models, the median mtry value across the 16-19 RAMPs and the breakdown of the mtry tuning results (my, which minimized RMSE)
across the 16-19 RAMPs results are provided.
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Table 3: Comparison to other published studies.

. . N Time Res.  AvgConc 2 MAE MBE
Project Location Sensor Node Type (days) (min) (ppb) Slope R (ppb) (ppb)
EuNetAirt Aveiro, PT AirSensorBox EC 6 60 330 NR 0.76 90 0
EuNetAirt Aveiro, PT NanoEnvi EC 9 60 330 NR 0.53 100 100
EuNetAir! Aveiro, PT Cambridge CAM11 EC 14 60 330 NR 0.87 180 -200
EuNetAir! Aveiro, PT AQMesh EC 15 60 330 NR 0.86 50 0
CAIRSENSE? Decatur, GA, US AQMesh EC 110-111 60 330 NR 0.77-0.87 NR NR

CcO CAIRSENSE? Decatur, GA, US Air Quality Egg MOS 115-196 60 310 NR <0.25 NR NR
Castell et al.® Kirkeveien, NO AQMesh EC 72 15 NR 0.88* 0.36 150 -150
Spinelle et al.* Ispra, IT Figaro, e2V EC, MOS 85 60 230 1.01-1.38 0.29-0.37 NR NR
Cross et al.® Boston, MA, US ARISense EC 75 5 -- 0.94 0.88 24.8 -10.4

. Pittsburgh, PA, 41 15 270 0.86 0.91 38 0.1
U Sy us e EC  10-108] (30) (£0.09)  (£0.05)  (265) (202)
EuNetAirt Aveiro, PT Cambridge CAM11 EC 14 60 16 NR 0.84 5.61 -2.3
EuNetAirt Aveiro, PT AirSensorBox EC 7 60 16 NR 0.06 20.2 17.7
EuNetAirt Aveiro, PT NanoEnvi EC 7 60 16 NR 0.57 14.9 13.1
EuNetAir! Aveiro, PT ECN_Box_10 EC 11 60 16 NR 0.89 4,95 -1
EuNetAir! Aveiro, PT AQMesh EC 6 60 16 NR 0.89 1.46 0
EuNetAirt Aveiro, PT ISAG MOS 13 60 16 NR 0.02 16.2 349.5
CAIRSENSE? Decatur, GA, US Cairclip EC 194-285 60 11 0.96 <0.25-0.57 NR NR
CAIRSENSE? Decatur, GA, US AQMesh EC 110-111 60 10 NR <0.25 NR NR

NO;  CAIRSENSE? Decatur, GA, US Air Quality Egg MOS 115-196 60 11 NR <0.25 NR NR
Duvall et al. Houston, TX, US Cairclip EC 24 60 55 0.25 0.01 NR NR
Duvall et al.® Denver, CO, US Cairclip EC 30 60 5.1 0.04 <0.01 NR NR
Castell et al.® Kirkeveien, NO AQMesh EC 72 15 NR 0.2-0.38* 0.24 26.2 13.3
Esposito etal.”  Cambridge, UK SnaQ EC 28 1 NR NR 0.83 1.27 NR
Spinelle et al.2 Ispra, IT aSense, Citytech EC 86 60 9 0.64-0.79 0.55-0.59 NR NR
Crossetal.® Boston, MA, US ARISense EC 89 5 NR 0.81 0.69 3.45 1.20

. Pittsburgh, PA, 24 15 12 0.64 0.67 3.48 -0.4
USRI us P 22 [2-56] (+14)  (#001)  (012)  (+036) (+1.13)
EuNetAirt Aviero, PT AirSensorBox EC 6 60 17 NR 0.13 22.12 19.2
EuNetAirt Aviero, PT NanoEnvi MOS 9 60 17 NR 0.77 7.66 6.5
EuNetAir! Aviero, PT Cambridge CAM11 EC 11 60 17 NR 0.14 215 15.7
EuNetAirt Aviero, PT AQMesh EC 6 60 17 NR 0.7 2.4 0
EuNetAirt Aviero, PT ISAG MOS 13 60 17 NR 0.12 360.12 356.1
CAIRSENSE? Decatur, GA, US Aeroqual SM50 GSS 168-281 60 18 0.81-0.96 0.82-0.94 NR NR

o CAIRSENSE? Decatur, GA, US Cairclip EC 194-285 60 17 0.68-0.85 0.68-0.88 NR NR
s CAIRSENSE? Decatur, GA, US AQMesh EC 110-111 60 15 NR <0.25 NR NR
Duvall et al.® Houston, TX, US Cairclip EC 24 60 32 0.93 0.80 NR NR

Duvall et al. ® Denver, CO, US Cairclip EC 30 60 46 1.19 0.77 NR NR

Castell et al.® Kirkevein, NO AQMesh EC 72 15 NR 0.11-0.26* 0.29 19.9 6.8
Espositoetal.”  Cambridge, UK SnaQ EC 28 1 NR NR 0.69 7.45 --
Spinelle et al. ® Ispara, IT aSense, Citytech EC 82-84 60 30 1.02-1.12 0.86-0.91 NR NR

Cross et al.® Boston, MA, US ARISense EC 87 5 NR 0.47 0.39 7.34 0.78
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This Study Elgtsburgh, PA, RAMP EC 38 15 22 0.82 0.86 3.36 -0.14

[11-103] (£1.4) (+0.05) (£0.02)  (£0.41) (+0.46)

Y(Borrego et al., 2016), ?(Jiao et al., 2016), }(Castell et al., 2017), *(Spinelle et al., 2017), °(Cross et al., 2017), ®(Duvall et al., 2016), "(Esposito et al., 2016),
8(Spinelle et al., 2015)

EC=electrochemical, MOS=metal oxide sensor, GSS=gas sensitive semiconductor. NR= not reported in manuscript.

For RAMP data, bracketed data is range (for N days) or standard deviation (all other metrics) across all the RAMP units.
*values for slopes only provided for a subset of 2 of 24 sensors
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