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Referee comments are in italic 

In this work, Griffith et al. have deployed an open path near-IR FTS instrument to measure CO2, CH4, 
O2, H2O, and HDO over a 3 km round-trip path over the city of Heidelberg. These measurements 
were performed nearly continuously over the course of 4 months, and were compared against a 
WMO-calibrated in-situ point sensor instrument (also an FTS, though mid-IR) located at one end of 
the path. The authors are able to use an impressive 60% of the data that was collected over these 
four months. However, the authors find significant discrepancies between the measured O2 
concentrations and the known dry air mole fraction of O2, as well as large differences between the 
CO2 and CH4 measured by the open-path FTS instrument and the point sensor FTS instrument. I have 
some comments that should be addressed prior to publication in AMT. 

We thank both referees for their comments and the consequent improvements to the paper.  
Responses to general and specific comments are detailed below. 

Major comments: 

The authors collect multiple CO2 bands in the spectrum shown in Figure 3, specifically a stronger 
band at 2.01 microns, a medium band at 2.06 microns, and a weaker band at 1.6 microns. The 
authors fit the first two bands, but not the one at 1.6 microns (~6250 cm-1). Have they considered 
doing this and comparing the CO2 retrieved between the two spectral regions? 

Yes. The 1.6 micron bands (which are used by TCCON for the whole atmospheric column, > 8 km 
path) are significantly weaker than the bands near 2.01 and 2.06 microns.  These bands were also 
fitted, but SNR and scatter was such that, when combined in a SNR-weighted mean with the 
stronger bands their contribution to the mean is negligible and potentially added additional non-
random variability.  We therefore did not include them. We have added the following clarification to 
the text in section 2.3: 
The weaker bands near 6200 cm-1 (1.6 µm) used in total column TCCON analyses were also analysed 
but are not included because their SNR is much less than that of the stronger 4800-5000 cm-1 bands 
and their contribution to an SNR-weighted mean CO2 retrieval is negligible. 

 

The authors do not discuss the residuals observed in Figure 4. There are some fits at e.g. 7805 cm-1 in 
the O2 fit that look like imperfect Voigt fits, but the majority of residuals do not have this 
appearance. Do the authors have any ideas what causes these large residuals? Do the residuals 
change as a function of time of day, and could partially result from stray light? 

The residuals are actually already discussed in the extended caption to Table 2, note 7. We have 
added this text to the main text in section 2.3: 
The fibre optic coupling between telescope, source and detector introduces repeatable fringing and 
interferences in the measured spectra at about 1% of the measured signal intensity.  These 
structures can be seen in the residual plots of Figure 4 and are quite reproducible over periods of 
days to weeks. They are larger than the underlying detector noise but much less than the trace gas 
absorptions, at least for CO2 and O2. Removing or co-fitting an average fibre residual spectrum 



during the fit makes only a small (<<1%) difference to the retrieved mole fractions because the fibre 
residual spectrum is itself derived from the least squares fits to real spectra and is approximately 
orthogonal to the target gas spectrum. 

 

The authors use O2 simply as a “system check”. Could they use it to filter out spectra that have been 
influenced significantly by stray light (which then results in the large spikes observed in the O2 time 
series in Figure 7)?  

As the referee suggests, the CO2 and CH4 data presented have already been filtered for O2>0.225 
and time of day between 18:00 and 19:00 which removes almost all the stray-light induced spikes.  
However this was not noted in the text, and we thank the referee for pointing this out. We have 
extended the filter to all data spikes where O2>0.225, which reduces the mean CO2 bias factor from 
1.025 to 1.024.  We have added to the text to clarify this: 
Corresponding spikes are also seen in CO2 and CH4 records and have been filtered to remove data 
where the retrieved O2 mole fraction is greater than 0.225. 

 

Do the authors have an explanation for the additional 1.6% O2 bias beyond what is observed by 
TCCON? If the extra 1.6% discrepancy is due to e.g. unidentified instrumental systematics, could the 
authors use the O2 to correct the CO2 and CH4 data for the same issues and possibly get better 
agreement between the open path and point source measurements? The ability to retrieve O2 is one 
of this instrument’s strengths compared to the frequency comb instrument and I think that the 
authors could capitalize on this strength more than they currently do. 

Although it seems an attractive proposition to scale trace gas amounts to O2 (as is done in TCCON 
because the atmospheric path is less well known),  there are two problems with this approach. 
Firstly, scaling the measured mole fractions to O2 adds noise because the scatter  (random noise) in 
retrieved O2 is similar to that for CO2. Secondly it is not clear that the same quantitative scaling 
factor would apply to O2 and other trace gases.  Some common sources of error would scale equally 
for all analysed species, for example pathlength, and pressure and temperature to the extent that 
they affect calculated air density and hence trace gas mole fractions. These sources of error are 
discussed and quantified in Table 3 – they are small and do not vary significantly.  While an 
imperfect instrument function would most likely affect different gases in the same direction, as we 
see here (all biases are positive), quantitatively the error may be quite different for each species 
depending for example on linewidths and absorption strengths. In comparing biases to TCCON there 
are several effects that may cause different biases such as choice of spectral bands,  instrument 
lineshape, resolution and water vapour interference. 
Nevertheless we calculated the CO2 mole fraction for each measurement analogously to TCCON as 
CO2_column/O2_column*0.2095, which effectively calculates the total air column as O2/0.2095 
rather than from pressure and temperature. This predictably changes the scaling factor relative to in 
situ by 3.6% to -1.1% for CO2 and -0.6% for CH4 (because the O2 mole fraction is 3.6% too high), but 
also increases the standard deviation in the differences for example for CO2 from 1.1% to 1.7%. An 
intermediate solution would be to calculate each trace gas mole fraction from trace gas amount, 
pressure and temperature, but apply a constant overall scaling factor of 1/1.036 to the trace gas 



mole fractions based on the 3.6% positive error in O2 retrieval. This partially but not quantitatively 
offsets the systematically higher concentrations measured with the OP system and appears to 
improve the agreement and overall scaling factors relative to in situ, but hides the true biases and 
we prefer to leave the data uncorrected for O2. The following text has been added to section 4.1: 
Open path – in situ bias 
Raw OP measurements are biased high relative to WMO-calibrated in situ measurements at the IUP 
(western) end of the path, +2.5% for CO2, +3% for CH4 and +3.6% for O2. This assessment relies on 
the assumption that the atmosphere is well mixed along the open path for windspeeds > 6 m s-1 and 
that there are no actual mole fraction differences under these conditions when the open path and in 
situ measurements are compared. For comparison, TCCON measurements over much longer 
atmospheric paths (typically > 10km) have consistent network-wide biases of approximately -3% for 
CO2, -4.4% for CH4, and +2% for O2. (The TCCON network wide bias for O2 is derived from the 
comparison of retrieved column O2 amount with atmospheric pressure, and the network wide biases 
for XCO2 (= CO2/O2*0.2095) and XCH4 (= CH4/O2*0.2095) are -1.0 and -2.4% respectively relative to in 
situ measurements over the atmospheric column with WMO-scale calibrated analysers (Wunch et 
al., 2010, updated 2014).) The biases are also similar in magnitude to those seen in mid IR OP and in 
situ FTIR studies (Smith et al., 2011; Griffith et al., 2012). Thus the observed biases in this study are 
generally consistent in magnitude with other comparisons of FT spectroscopy with WMO calibrated 
in situ measurements. As shown in the next paragraph, they are also consistent with an assessment 
of systematic errors in the retrievals of path-averaged mole fractions from open path infrared 
spectra. 

We have substantially rewritten section 4.1 which discusses errors and biases to address accuracy 
and precision comments. We have re-quantified the repeatability based on Allan Variance, as 
suggested by referee 2, re-assessed the biases and compared to those seen in TCCON.  The revised 
text for 4.1 is not reproduced here (> 2 pages, with Figures) but is highlighted in the revised 
manuscript. 

 

Do the biases for CO2 and CH4 change if the authors use the same wind cutoff for “well mixed” 
conditions for both gases? They currently consider CO2 to be well-mixed at wind speeds >6 m/s and 
CH4 to be well-mixed at wind speeds >2 m/s. 

Yes.  We agree in hindsight that there is no justification for having a different windspeed cutoff for 
CO2 and CH4 and have revised the biases and figures 9-12 accordingly so that both biases are now 
determined from windspeed > 6 m s-1. The tail in the CH4_difference distribution at large differences 
(due to two events in Aug and Sept)  has pushed the CH4 bias up from 0.7% to +3%, and the revised 
text and discussion in 4.1 and 4.2 reflect these changes. 

 

I do not agree with the author’s assessment that the additional difference between the in-situ and 
corrected open path CO2 is the result of local emissions. Based on where the City Center is marked in 
Figure 3, emissions from the city center would affect primarily the open path measurements with S or 
SE winds as mentioned and would thus bias the open path instrument high relative to the point 
sensor, not low. Additionally, if there were very local traffic sources from Berliner Strasse, that should 



be evident as narrow, sharp spikes in the point sensor data (or at the very minimum, the two are 
likely to agree during most of the night when traffic is presumably minimal and there is no stray 
light) and that does not seem to be observed in the data 

in Figure 9. Both time series have similar shapes, but with an offset between the corrected open path 
data and the in situ data that does seem to drift with time. 

Do the authors have any idea what is causing the large discrepancy between the open path and in 
situ CH4 data? Is the power station a natural gas station that would be expected to leak CH4? Are 
there other local sources of CH4 that are not geographically evenly distributed and might come from 
the WSW? 

Actual OP – in situ differences are only 2-4 times the measurement precision for both CO2 and CH4, 
except for two strong positive CH4 events in August and September. It is difficult to make 
unequivocal conclusions based on such a low “signal to noise”.  Taking the reassessment of 
measurement precision and bias into account, as well as the referee’s interpretative comments, we 
have substantially rewritten the interpretation of observed differences  in 4.2 

 

Minor comments: 

Page 4, lines 13-14: the 3000 spectra that were thrown out due to poor visibility and other weather-
related phenomena is approximately 11% of the of the total number of spectra. Why were the other 
~30% rejected? 

26000 spectra corresponds to 68% of the available time over the measurement period. Of these 11% 
were rejected and during the other 21% of the time no spectra were collected due to background 
spectrum measurement, maintenance or extended bad weather periods. We have revised the text 
accordingly: 
Over the 4 month measurement period more than 26,000 spectra were collected, of which approx. 
3000 (11%) were rejected due to poor visibility and low signal or other, normally weather-related 
effects. In total, taking into account hourly background spectrum measurements, downtime due to 
maintenance and extended poor weather periods, we collected and analysed usable data for 68% of 
the total time from 10 July to 4 Nov. 

 

Page 4, line 25: When was the point sensor last calibrated against the WMO-GAW standards? How 
often does this instrument need to be calibrated? Could drift or lineshape change in this instrument 
cause some of the offset between the open-path and point sensor instruments? 
The in situ FTIR analyser calibration strategy is described in detail by Hammer et al (2013) and 
Vardag et al (2014) – in summary daily target gas measurements and weekly calibration tank 
measurements to ensure that all measurements are within GAW compatibility goals.  We added the 
sentence: 

The calibration frequency (daily target tank, weekly calibration tanks) ensured that all 
measurements meet GAW compatibility requirements.   



Page 7, line 12: How are the CO2 and CH4 corrected to dry air mole fraction? 

Added: 

All raw path averaged mole fractions were converted to dry air using the path-averaged water 
vapour mole fraction retrieved from the same spectrum: 
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Page 9, lines 1-2: It is not clear whether the 2.5% and 0.7% biases observed for CO2 and CH4 include 
the correction or not. Is the total CO2 bias 5%? 
 

Clarified: 
When raw OP measurements are compared to in situ measurements at the IUP (western) end of the 
path, CO2 and CH4 differences show biases of 2.5% and 0.7% respectively (OP > in situ). 

 
Figure 2: Please label the launch/receive and retroreflector ends of the path, as well as the location 
of the point sensor and Berliner Strasse. Please add a North indicator or compass rose. Is there a 
dominant wind direction that can be added to the plot as well? 
Done, including expanded caption. 

 

Figure 7: A zoom in on one of the spikes would be nice so the reader can see that they are indeed 
sharp and centered at ~6 pm local time. 

Done, Insert added to Fig 7, caption amended. 

 

 

  



Figure 11: A zoom in on a time period similar to Figure 9 would be nice. 
Added Figure 11(b). 

 

 

Figure 12: y axis in a and x-axis in histogram should be changed to ppb. 
Corrected. 
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Referee comments are in italic. 

Griffith et al present an open-path Fourier transform spectrometer operating in the near 
infrared with the ability to measure CO2, CH4, O2, H2O and HDO. Such a system has the 
potential to be useful for small-scale, continuous greenhouse gas observations. The 
measurements were performed nearly continuously for 4 months over a 3-km-round-trip 
path, which is large enough to compare with high-resolution atmospheric models, and 
reached sensitivities of 1-2 ppm for CO2 and 40 ppb for CH4 with 5-minute measurement 
times. The authors attempt to quantify the bias and potential systematic errors by 
comparing to a WMO-calibrated point sensor located at one end of the open path. Overall, 
the manuscript provides a useful characterization of the system; however, there are some 
modifications and additional details that I think should be addressed prior to publication. 
 
We thank both referees for their comments and the consequent improvements to the paper.  
Responses to general and specific comments are detailed below. 

 
Major Comments: 
First, for the precision of the measurements, could the authors please provide an Allan 
deviation from a well-mixed time period? I find this much easier to understand than just 
listing the precision in words. Also, why was one-quarter of the peak-to-peak used to 
estimate the precision instead of taking the standard deviation? Finally, the I found the 
terminology for variability, precision, uncertainty, and repeatability to be a bit confusing 
because multiple terms were used interchangeably throughout the manuscript (for example, 
uncertainty, precision, and repeatability). For clarity, could the authors use a consistent set 
of terms? I suggest perhaps variability for a time series of data and precision for the final 
derived result (i.e., remove uncertainty and repeatability). 
The referee’s suggestion to use Allan Variance as a measure of repeatability is a good one. 
The decision to use ¼ of the peak-peak measurements instead of standard deviation was 
based on (a) the rule of thumb that the peak-peak value of a gaussian distribution for a 
“reasonable” number of points  is approximately 4-5 times the standard deviation (99.3% of 
points in a normal distribution lie within5 standard deviations of the mean), and (b) with 
diurnal variability, there are no periods of time of stable concentrations long enough to 
adequately calculate standard deviation. However this is an inexact definition and the 
square root of Allan variance (Allan deviation) is better. We have made and included an 
extended Allan Variance analysis, and substantially amended the text at  4.1 and Table 2, 
which has been split into two, with and retrieval sensitivities separate in new Table 3. Note 
that the repeatability determined from 5 min Allan Variance is significantly lower than the 
previous estimates in the Discussion paper for CH4 and O2, and unchanged for CO2. 
 
We have reviewed the terms precision, accuracy, uncertainty and variability in the data used in the 
paper and standardized these to be consistent with terms recommended by the Joint Committee for 
Guides in Metrology “Evaluation of measurement data — Guide to the expression of uncertainty in 
measurement (GUM)”. According to GUM, “precision” and “accuracy” are non-quantitative terms 
which should not be assigned numerical values, while terms such as repeatability have quantitative 
meaning.  In cases where “precision” and “accuracy” have their general, non-quantitative meanings, 



we have retained them; where numerical quantities are required we use appropriate terms such as 
repeatability and bias. 
Section 4.1 has been substantially rewritten and is not reproduced here in full (> 2 pages, + tables). It 
is highlighted in the revised manuscript. 

 
Could the authors provide some more details about the spectral analysis, specifically: How 
were the wet measurements converted to dry mole fraction? What polynomial order was 
used in each spectral region? Was any other filtering or rejection done (e.g., were spectra 
rejected for anything other than poor signal) or were other corrections applied (e.g., 
“ghosting” corrections)? Was the ILS measured at multiple times to check for any drift in the 
ILS?  
 
For correction to dry air, see response to referee 1. Text added at the top of section 3: 
All raw path averaged mole fractions were converted to dry air using the path-averaged water 
vapour mole fraction retrieved from the same spectrum: 
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The continuum was fitted with a 5-term polynomial, this has been added to the text. 
 
Filtering and rejection was also addressed in the response to referee 1: 
26000 spectra corresponds to 68% of the available time over the measurement period. Of these 11% 
were rejected and during the other 21% of the time no spectra were collected due to background 
spectrum measurement, maintenance or extended bad weather periods. We have revised the text 
accordingly: 
Over the 4 month measurement period more than 26,000 spectra were collected, of which approx. 
3000 (11%) were rejected due to poor visibility and low signal or other, normally weather-related 
effects. In total, taking into account hourly background spectrum measurements, downtime due to 
maintenance and extended poor weather periods, we collected and analysed usable data for 68% of 
the total time from 10 July to 4 Nov. 

 
The ILS was measured on only a few occasions but remained stable. 
 
The authors note an addition 1.6% O2 bias beyond what is observed in TCCON? Since the 
authors are using the TCCON spectral database, it does not seem that this added bias would 
be due to line parameters. Do the authors have a suspected source for this added bias? Is the 
bias constant in time? 
 
This comment is covered in detail in the response to referee 1 and the revised section 4.1. 
 
 
Have the authors tried fitting CO2 in the 1.6 μm band to compare to the 2 μm region? 
Yes, see response to referee 1: 
The 1.6 micron bands (which are used by TCCON for the whole atmospheric column, > 8 km path) 



are significantly weaker than the bands near2.01 and 2.06 microns.  These bands were also fitted, 
but SNR and scatter was such that, when combined in a SNR-weighted mean with the stronger bands 
their contribution to the mean is negligible and potentially added additional non-random variability.  
We therefore did not include them. We have added the following clarification to the MS text in 
section 2.3: 
The weaker bands near 6200 cm-1 (1.6 µm) used in total column TCCON analyses were also analysed 
but are not included because their SNR is much less than that of the stronger 4800-5000 cm-1 bands 
and their contribution to an SNR-weighted mean CO2 retrieval is negligible. 
 
For CH4, do the authors have an explanation for what causes the positive tail in the 
distribution for >6 m/s wind speeds? This would imply that the open-path measurement 
reads higher than the point sensor, which seems odd at high wind speeds. 
The positive tail in CH4 record is due mostly to two episodes of high CH4 in the OP data, 
seen clearly in Figure 10. See also the response to referee 1, who had a similar comment: 
Actual OP – in situ differences are only 2-3 times the measurement precision for both CO2 and CH4, 
except for two strong positive CH4 events in August and September. It is difficult to make 
unequivocal conclusions based on such a low “signal to noise”.   
Taking the reassessment of measurement precision and bias into account, as well as the referee’s 
interpretative comments, we have substantially rewritten the interpretation of observed differences 
in 4.2. 

 
There is significant structure in the residuals shown in Figure 4 that is not discussed in 
Section 2.3. Note 7 of Table 2 briefly discusses some fringing in the residuals, which should 
be covered in Section 2.3. There also seems to be other structure in the residuals such as low-
frequency baseline wobble and maybe also structure at the lines. Have the authors looked at 
the residuals in more detail? How stable are the residuals? What causes the additional 
structures (they look to be larger than the residuals seen by TCCON)? 
See response to referee 1: 
The residuals are actually already discussed in the extended caption to Table 2, note 7. We have 
added this to the main text in section 2.3: 
The fibre optic coupling between telescope, source and detector introduces repeatable fringing and 
interferences in the measured spectra at about 1% of the measured signal intensity.  These 
structures can be seen in the residual plots of Figure 4 and are quite reproducible over periods of 
days to weeks. They are larger than the underlying detector noise but much less than the trace gas 
absorptions, at least for CO2 and O2. Removing or co-fitting an average fibre residual spectrum 
during the fit makes only a small (<<1%) difference to the retrieved mole fractions because the fibre 
residual spectrum is itself derived from the least squares fits to real spectra and is approximately 
orthogonal to the target gas spectrum. 

 
Finally, have the authors performed any laboratory measurements, e.g., using a multipass 
cell, with the system to characterize the bias in that configuration? This would be a useful 
check to see how the open path compares to a controlled system. 
No, and yes. We did not have a White cell or appropriate optics available for such a test 
using the same NIR interferometer and transfer optics. In any case, any available cell would 
be at most of 100m pathlength, which is inappropriate for any quantitative comparison with 
the 3.2 km open path. Biases due to the optical setup would not be properly assessed by 



such a comparison.  The in situ FTIR analyser is such an FTIR-White Cell instrument, but 
operating in the mid IR with different spectral bands and optics, so again the comparison is 
not meaningful for the referee’s purpose. 
 
Minor comments: 
In the introduction, there is no mention of OP-TDLAS or LIDAR systems (e.g., DIAL or IPDA). It 
would be worthwhile to mention these other technologies and how they compare. 
We have added references to these techniques, however the paper focuses on broad-band-
multi species measurements. Following text added to the introduction: 
Other recent developments include open path tunable diode laser (TDL) systems (e.g. Dobler et al., 
2013; Queisser et al., 2016), and commercially available laser-based open path analysers (e.g. Boreal 
Laser Inc., Edmonton, Canada). TDL systems are generally applicable only to a single target gas. 

 
 
Page 7, line 15: I was under the impression that the WMO scale is not directly SI traceable. 
Could the authors please clarify where the SI traceability comes from? 
The WMO scales for CO2 and CH4 are traceable to manometric (CO2) or gravimetric (CH4) 
primary standards generated in the relevant World Calibration Centres (in this case NOAA 
Boulder labs) and traceable to the standard SI quantities – kilogram, meter etc.  The 
reference gases used to calibrate the in situ analyser are traceable to these primaries 
through the ICOS laboratory at MPI-Jena. 
 
Page 10, line 4: CH4 needs subscript 
Done 
 
Page 10, line 30: Typo in the units (cm-2) 
Done 
 
Section 4.3: Have you tried over a longer path? 
We tried briefly with measurements to a small retroreflector at approx.. 3 km one-way path. 
The return beam intensity was too low with this system to achieve useful precision, the 
weather was not cooperative, and we did not pursue the longer path further. 
 
Table 1: The values given for the CO2 spectral range do not agree between the wavenumber 
and micron columns (i.e., 4800 cm-1 = 2.08 um). 
Corrected. 
 
Table 2: in the dO2 column, linestrengths row, what is the “()” for? 
This table has been revised and the () removed 
 
Fig 7: Perhaps zoom in vertically so that the majority of the time series can be seen. 
Following the suggestion of referee 1 we have added an insert to the figure expanded 
around one of the spikes. In this insert the reader can also assess the variations in the 
steady O2 background.  Expanded vertically, the main plot would still appears as “noise” 
across this wide time range. 
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Abstract 10 

In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point 

measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial 

averaging to compare against developing high resolution atmospheric models of composition and small scale meteorology 

with resolutions of the order of a kilometre. Open path measurement techniques provide path average concentrations and 

spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open 15 

path Fourier Transform Spectroscopy (FTS) in the mid infrared region, and Differential Optical Absorption Spectroscopy 

(DOAS) in the UV and visible, have been used for many years for open path spectroscopic measurements of selected species 

in both clean air and in polluted environments. Compared to the mid infrared, nearNear infrared instrumentation allows 

measurements over longer paths than mid infrared IR FTS, for species such as greenhouse gases which are not easily accessible 

to DOAS.  20 

In this pilot study we present the first open path near infrared (4000-10,000 cm-1, 1.0 – 2.5 µm) FTS measurements of CO2, 

CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open path FTS 

system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results 

from a four-month trial measurement period in July-November 2014. The open path measurements are compared to calibrated 

in situ measurements made at one end of the open path. There are small but significant differences between in situ and open 25 

path measurements coincident in time which reflect local sources and sinks and the way in which they are sampled by the point 

and path-averaged measurements. Open path FTS may provide a valuable new tool for investigations of atmospheric trace gas 

composition in complex, small scale environments such as cities. 
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Introduction 

The cycling of carbon between Earth’s surface and the atmosphere is dominated by carbon dioxide (CO2) and methane (CH4), 

which are also the two most important anthropogenically-influenced greenhouse gases. The steady increases in atmospheric 

CO2 and CH4 concentrations in the global atmosphere since industrialisation have been well documented by the global network 

of surface in situ point measurements (e.g.GLOBAL-VIEW-CO2, 2009). Such point-based in situ measurements in clean 5 

baseline air are well suited to monitoring long term global changes in atmospheric greenhouse gases (including also nitrous 

oxide (N2O) and other minor species), and have provided most of the data from which long term global trends have been 

assessed. However to characterise and quantify individual sources and sinks of greenhouse gases, measurements in regional, 

urban, agricultural and industrial environments located near the sources and sinks, combined with fine-resolution local and 

regional-scale atmospheric transport modelling, are required. In recent worka recent modelling study, Turner et al. (2016) 10 

concluded from a modelling study that a dense (2 km) fixed network of point sensors with only moderate precision was 

sufficient to characterise CO2 sources with 5% accuracy in the San Francisco Bay area. Lee et al. (2016) trialled a network of 

five mobile CO2 sensors in the Vancouver urban area combined with an aerodynamic model to calculate fluxes.  

Point measurements are sensitive to the immediate local environment, and may or may not adequately represent the mean 

concentrations over the grid-scale of the relevant atmospheric models in non-background environments. Open path (OP) 15 

measurements provide spatially averaged concentrations by measuring an optical absorption spectrum along a path between a 

light source and the measuring instrument and retrieving component concentrations from the spectra. Spatial averaging at 

similar scales to those of the finest urban and regional scale models should be advantageous in combining measurements and 

models to deduce the strengths of localised sources and sinks of greenhouse gases. But how accurately can we measure such 

spatially averaged trace gas concentrations? 20 

The longest-established surface OP techniques (i.e. excluding satellite and ground based total column measurements) are 

Differential Optical Absorption Spectroscopy (DOAS), typically employing the UV and visible spectral regions (Platt and 

Stutz, 2008), and Open Path -Fourier Transform Spectroscopy (OP-FTS) in the mid infrared (e.g. Tuazon et al., 1978; 

Russwurm and Childers, 2002; Griffith and Jamie, 2006; Smith et al., 2011; Laubach et al., 2013; Flesch et al., 2016; You et 

al., 2017). While DOAS can operate over pathlengths of several kilometres, suitable absorptions for accurate and precise 25 

measurements of CO2, CH4 and other GHGs are not available in the UV-visible spectrum. In the mid IR suitable absorptions 

are available, but when restricted to conventional broadband blackbody sources such as a globar, low source brightness limits 

beam collimation across the open path and restricts pathlengths to typically a few hundred metres. Until recently the near 

infrared (NIR) region has been little used. The For broadband studies, the NIR allows the use of a high temperature, bright 

white light source (such as quartz halogen or Xe lamp) allowing good beam collimation over kilometre-scale pathlengths, but 30 

absorption strengths of the available overtone and combination vibrational spectral bands are much lower than for the 

fundamental transitions in the mid IR. Previous work to extend DOAS into the NIR region using a conventional white-light 

source, monochromator and detector array  was limited by the weak absorptions and interfering spectral structures to an 
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accuracya repeatability of approximately 30% and uncertain accuracy for CO2 and CH4 (Sommer, 2012).  More recently, 

DOAS - type NIR measurements using broadband laser sources (Saito et al., 2015; Somekawa et al., 2011), and frequency 

comb spectroscopy (Rieker et al., 2014; Waxman et al., 2017) have been described to measure CO2 and CH4 in the NIR over 

pathlengths of up to 5 km.  These methods achieved measurement precisions repeatabilities of 1-4 ppm with absolute 

differences bias of up to 7 ppm for CO2 when compared to point in situ measurements. Other recent developments include 5 

open path tunable diode laser (TDL) systems (e.g. Dobler et al., 2013; Queisser et al., 2016), and commercially available laser-

based open path analysers (e.g. Boreal Laser Inc., Edmonton, Canada). TDL systems are generally applicable only to a single 

target gas. 

The recent and rapid development of TCCON, the Total Carbon Column Observing Network (Wunch et al., 2011) has shown 

that the near IR spectrum with a ground based FT spectrometer and the sun as a source is suitable for highly accurate and 10 

precise repeatable (<0.25%) measurements of total column CO2, CH4, N2O and other trace gases. Smith et al., (2011) assessed 

the performance of OP-FTS in the mid infrared, finding accuracies of a few percent without calibration against standards. In 

this work, drawing on our combined experience in TCCON, mid IR OP-FTS and DOAS, we describe measurements of CO2, 

CH4, H2O, HDO, O2 and other gases with a Fourier Transform Spectrometer (FTS) operating in the near infrared (4000-10000 

cm-1, 1.1 – 2.5 µm) using a simple broad-band tungsten halogen light source combined with a long open path telescope and 15 

retro reflector system over a 1.5 km path (one-way, 3.1 km total absorption pathlength) in urban Heidelberg, Germany. The 

spectroscopy is similar to that used in TCCON, and in this pilot study we aimed to (1) assess the precision, accuracy and 

stability of such ground based long open path measurements and (2) compare and test for biases between open path 

measurements and point measurements made with a calibrated in situ analyser at one end of the open path. The measurement 

system operated for 4 months from July – November 2014 in urban Heidelberg, Germany. 20 

2 Experimental 

2.1 FT Spectrometer and long path optics 

The optical system is shown schematically in Figure 1. The spectrometer and telescope were located in the rooftop observatory 

on the 6-storey Institute of Environmental Physics (IUP)  building on the University of Heidelberg campus in urban Heidelberg, 

(49.4172°N, 8.6745°E, 145 masl, 33 m above ground) and the retroreflector array on the Institute of Physics (PI) building 25 

1555 m east at (49.4149°N, 8.6956°E, 169 masl). The distance was measured with a laser rangefinder to ±1 m accuracy. The 

intervening path is illustrated in Figure 2 and crossed above a residential area approximately 0.5 km north of the Neckar River 

and 1.5 km NE of the Heidelberg city centre. A 35W tungsten-quartz-halogen light source was focussed by a 25 mm focal 

length, 25 mm diameter NIR-coated glass lens  (Edmund Scientific, not shown) into a 6 x 200 µm fibre bundle (3 m long, 

200/240 IRAN, Loptec GmbH) and directed to the primary focus of a 300 mm diameter, 150 cm focal length Newtonian 30 

telescope (aluminium primary mirror with SiO2 overcoat). The collimated beam from the telescope was directed via fine step-

control alignment motors to an array of 17 x 63 mm diameter UV solid UV quartz cornercubes which acted as retroreflectors 
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to return the beam to the telescope. The focussed return beam was collected by a single 200 µm fibre in the centre of the 6-

fibre bundle in the same sheath, which forked to direct the single central fibre to the input of the FT spectrometer. The fibre 

coupling to the telescope is described in detail by Merten et al. (2011). In practice the fibre end at the telescope was slightly 

defocussed to maximise the light throughput to the spectrometer. 

The return beam from the fibre was focussed by a 75 mm focal length NIR-coated lens into the 1 mm entrance stop of the FT 5 

spectrometer (IRcube, Bruker Optics, Ettlingen Germany) which had a quartz beamsplitter and InGaAs detector optimised for 

the NIR spectral region (3800 – 10000 cm-1). An overview of aA typical spectrum is shown in Figure 3. The lower frequency 

cutoff was determined by the transmission of the UV-quartz cornercubes, and fibres and detector. 

Measurements reported here were collected continuously from 10 July – 4 November 2014. Spectra were recorded with a 

resolution of 0.55 cm-1 (maximum optical path difference 1.8 cm), each by coadding 84 scans over 5 minutes. Each hour a 10 

background stray light spectrum was recorded by blocking the source at the fibre input and a short path reference spectrum 

was recorded by blocking the beam at the telescope end of the fibre with an aluminium diffuse reflector plate to return a small 

fraction of the intensity to the detector without traversing the long open path. Over the 4 month measurement period over more 

than 26,000 spectra were collected, of which approx. 3000 (11%) were rejected due to poor visibility and low signal or other, 

normally weather-related effects. In total, taking into account hourly background spectrum measurements, downtime due to 15 

maintenance and extended poor weather periods,  we collected and analysed usable data for 6068% of the available total time 

from 10 July to 4 Nov.. 

Atmospheric pressure and temperature for the measurement path are,  required for the spectrum analysis and to calculate air 

density, and were measured and averaged over the period of each spectrum measurement by an electronic barometer (Vaisala 

PTB110) and LM335 diode respectively, co-located with the FT spectrometer. The acquisition of spectral data, pressure and 20 

temperature, shutter control and real-time spectrum analysis were executed automatically by the software available for the 

Ecotech Spectronus in situ FTIR analyser (Ecotech, Knoxfield , Australia). Initially the IUP weather station temperature and 

height-adjusted pressure were used in the spectrum analysis; the weather station temperature was subsequently replaced by the 

path-averaged temperature derived from the spectra themselves, as described below. 

2.2 In situ trace gas measurements 25 

At the IUP end of the open path, air from a roof-level inlet on the IUP building was sampled and analysed continuously with 

an in situ trace gas analyser described in detail elsewhere (Griffith et al., 2012; Hammer et al., 2013; Vardag et al., 2015). This 

analyser is based on an FTIR spectrometer operating in the mid-IR and provided simultaneous high precision measurements 

of CO2, CH4, CO, N2O, δ13C and δ18O in CO2 calibrated against WMO-GAW standards and provided calibrated point 

measurements for comparison with the path averaged open path measurements. The calibration frequency (daily target tank, 30 

weekly calibration tanks) ensured that all measurements meet GAW compatibility requirements.  Measurements were made 

continuously, averaged every 3 minutes, and the time series was interpolated to the mean times of the open path measurements 

for point-by-point comparison. 
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Meteorological measurements 

Standard measurements of pressure, temperature, humidity, wind speed, wind direction and solar radiation were obtained from 

the IUP weather station located on the roof of the building as 5 minute averages and interpolated to the times of the open path 

measurements. 

2.3 Spectrum analysis and retrieval of trace gas amounts 5 

Path averaged trace gas mole fractions were retrieved from spectra by iteratively best-fitting a calculated spectrum to the 

measured spectrum. The forward model, MALT (Griffith, 1996) calculates the transmission spectrum from a set of input 

parameters including absorption line parameters, trace gas amounts, pressure, temperature and pathlength as well as instrument 

parameters including resolution, apodisation function, lineshape, spectral shift and a five-term polynomial fit to the continuum, 

which in these single beam spectra is generally not flat. The line parameters are based on Hitran 2008 (Rothman et al., 2009) 10 

updated by Toon and co-workers for the GFIT software used throughout TCCON (Wunch et al., 2015). The inverse model 

uses non-linear least squares following the Levenberg-Marquart algorithm (Press et al., 1992) to retrieve the path averaged 

concentration of each trace gas species. The path averaged concentrations are converted to mole fractions by dividing by the 

concentration of air determined from pressure and temperature. More details are given by Griffith et al. (2012). 

Details of the spectral windows used for the NIR long path analysis are summarised in Table 1 and typical fits for spectral 15 

regions used to retrieve O2, CO2 and CH4 are shown in Figure 4. The weaker bands near 6300 cm-1 (1.58 µm) used in total 

column TCCON analyses were also analysed but are not included because their signal-to-noise ratio (SNR) is much less than 

that of the stronger 4800-5000 cm-1 bands used here and their contribution to an SNR-weighted mean CO2 retrieval is 

negligible. Note these spectral windows are quite different from those used in the mid-IR in the in situ analyser (Griffith et al., 

2012).  20 

The fibre optic coupling between telescope, source and detector introduces repeatable fringing and interferences in the 

measured spectra at about 1% of the measured signal intensity.  These spectral structures can be seen in the residual plots of 

Figure 4 and are quite reproducible over periods of days to weeks. They are larger than the underlying detector noise but much 

less than the trace gas absorptions, at least for CO2 and O2 (Figure 4). Removing or co-fitting an average fibre residual spectrum 

during the fit makes only a small (<<1%) difference to the retrieved mole fractions because the fibre residual spectrum is itself 25 

derived from the least squares fits to real spectra and is approximately orthogonal to the target gas spectrum. 

 

Background spectra of stray light measured hourly by blocking the source had intensities up to 1% of those of the open path 

spectra, maximising in the early morning and late evening when the solar elevation was low and direction roughly parallel (E-

W) to the open path. Scattered solar stray light collected by the FTIR spectrometer has an effective atmospheric path of >8 – 30 

30  km depending on zenith angle, leading to stronger path-average trace gas absorption and higher apparent column amounts 

of trace gases retrieved from the spectra – for CO2 the enhancement can be up to 5 ppm at low sun elevations with an additional 
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spike apparent when the near-direct solar beam is captured (see example for O2 below). The enhancement is typically less than 

1-2 ppm during the middle of the day and at night. The analyses were not corrected for stray light because (a) the stray light 

spectra were measured only once per hour so we do not getthey do not provide an accurate measurement of the scattered light 

at the time of each 5 minute OP measurement, and (b) the stray light spectrum is weak and noisy and adds noise to the retrieved 

trace gas amounts from the measurements. Periods of high stray light levels have been removed from the record. An 5 

improvement to the optical configuration to avoid scattered light interference is described below in section 4.3 under future 

directions. 

2.4 Path averaged temperature measurement 

Significant differences of up to 5°C became apparent between measurements of temperature from the point sensors located at 

the instrument and at the weather stations at each end of the optical path. An effective path-averaged temperature for each 10 

measurement is preferable to a point measurement, and was therefore retrieved from the spectra themselves by allowing 

temperature to be an adjustable parameter in the least-squares fit. The IUP station temperature was used as the initial estimate 

for the fit. Temperature was retrieved from the CO2 window at 4980 cm-1 (Figure 4b) which has good signal to noise ratio and 

absorption lines with a range of temperature sensitivities. Figure 5 illustrates typical temperatures and differences over a period 

of four sunny days – there is a systematic offset, with the point measurement always higher relative to the path average, and 15 

larger differences during daytime. This may be due to the thermal mass of the building on which the weather station was 

located or radiative heating of the sensor, while the open optical path is typically 10-30 m above the ground and buildings in 

free air. We expect the retrieved path averaged temperature to be a better estimate of the true path averaged temperature; this 

is confirmed when used to fit O2 as described further below, as it led to less apparent artefact diurnal variability in the retrieved 

O2.  The CO2-spectrum-derived path-average temperatures were therefore used in all spectrum re-analyses in other spectral 20 

regions. 

2.5 Instrument lineshape (ILS) characterisation 

To check the instrument lineshape function (ILS) of the FTS, we followed Frey et al. (2015), by measuring the spectrum of 

water vapour in a short-path reference spectrum over a pathlength in air of approximately 3 m and fitting it using both MALT 

and Linefit (Hase et al., 1999)  programs. Assuming the nominal field of view (FOV) of the FTS of 7.2 mrad, we found a linear 25 

drop in modulation efficiency to 0.67 at the maximum optical path difference. Alternatively, setting the modulation to its 

nominal value of 1.0 and fitting the field of view, we retrieved an effective FOV of 10.8 mrad.  The effective ILS width is thus 

approximately 30% broader than the nominal value for a perfect optical system. This is consistent with the short focal length 

optics and aberrations in the compact optical system. The ILS is shown in Figure 6. The full width at half height is 0.58 cm-1, 

equivalent to 0.12 nm at 7000 cm-1 (1428 nm) and 0.24 nm at 5000 cm-1 (2000 nm). 30 
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3 Results 

All raw mole fractions (except water vapour) were converted to dry air mole fractions using the path-averaged water vapour 

amount retrieved from the same spectrum: 
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3.1 Oxygen, O2 

Retrieval of the O2 mole fraction from the 1.27 µm (7880 cm-1) band (Figure 4a) provides a system check since the O2 mole 

fraction is constant and well known, 0.2095 relative to dry air. Initial retrievals using the weather station pressure and 

temperature displayed diel variations of measured O2 of the order of 1-2% that were reduced significantly using path-averaged 

temperatures derived from the CO2 spectrum fit, as described above. The O2 measurements for the whole period are shown in 10 

Figure 7. The positive spikes observed regularly near 18:00-19:00 local time on clear sunny days are due to direct sunlight 

scattered into the FTS and detector as described in the previous section - when the solar beam path is from the west at low 

elevation and approximately aligned with the optical path (Figure 2), solar radiation is back-reflected from the retroreflectors 

and captured by the telescope.  Corresponding spikes are also seen in CO2 and CH4 records.  and have been filtered to remove 

all data where the raw retrieved O2 mole fraction is greater than 0.225. 15 

The mean mole fraction (excluding evening scattered sunlight anomalies) is 0.217, a bias of +3.6% (OP – in situ) from the 

known value of 0.2095. This is larger than the ~+2% bias found consistently at all TCCON sites, where it is attributed to 

inaccuracies in the spectroscopic line parameters (Wunch et al., 2010). Biases are discussed further in section 4. 

 

3.2 Water vapour, H2O and HDO 20 

Water vapour provides a further check of the FTS measurements against weather station humidity. (The in situ analyser does 

not measure ambient water vapour as the sample is dried for measurement.) H2O and its deuterated isotopologue HDO were 

co-fitted in a window 4910 - 5080 cm-1 (Figure 4b, Table 1) and results are shown in Figure 8. δD was calculated as  

𝛿𝛿𝛿𝛿 = �
(𝐻𝐻𝛿𝛿𝐻𝐻/𝐻𝐻2𝐻𝐻)𝑎𝑎𝑎𝑎𝑎𝑎

(𝐻𝐻𝛿𝛿𝐻𝐻/𝐻𝐻2𝐻𝐻)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
− 1� ∗ 1000‰  

where (𝐻𝐻𝛿𝛿𝐻𝐻/𝐻𝐻2𝐻𝐻)𝑎𝑎𝑎𝑎𝑎𝑎  is the measured isotopologue ratio and (𝐻𝐻𝛿𝛿𝐻𝐻/𝐻𝐻2𝐻𝐻)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is the corresponding reference ratio for 25 

Standard Mean Ocean Water. The spectroscopically measured water vapour amount is in excellent agreement with the weather 

station record, with a 6% high bias which may be due in part to the humidity sensor accuracyitself. The uncalibrated mean δD 

is -68 ± 59 ‰, somewhat higher than recent summer measurements near Zurich, 230 km south of Heidelberg, -120 to -180 ‰ 
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(Aemisegger et al., 2012). However the precision of the δD measurements is not sufficient to distinguish any variability related 

to temperature, and we do not analyse the δD results further here.  

3.3 Carbon dioxide, CO2 

As is the case for O2, the raw OP CO2 mole fractions retrieved from the spectra are systematically higher than the calibrated in 

situ measurements at the IUP end of the open path. We attribute this bias to a calibration scale difference between the SI-5 

traceable WMO scale of the in situ measurements and the uncalibrated OP measurements which are derived from spectrum 

fitting based on Hitran line parameter data and a spectrum model. To estimate the bias, we take the mean ratio of the OP to 

calibrated in situ measurements at wind speeds above 6 m s-1 when the atmosphere is most likely to be well mixed and real 

differences between point and open path measurements are minimal. The bias is +2.5% (~10 ppm) and all raw OP data have 

been scaled down by a factor of 1.025 in the following discussion.   10 

The bias-corrected OP and calibrated in situ measurements are shown in Figure 9, together with their differences. Figure 10 

shows the differences plotted (a) against wind speed, (b) against wind direction, and (c) as a histogram. The data are discussed 

in section 4. 

3.4 Methane, CH4 

Similar analyses for CH4 are shown in Figure 11 and Figure 12. The mean OP - in situ difference for windspeeds >6 m s-1 is 15 

+3.0% (~60 ppb). In this case there is a significant positive tail in the distribution of differences at all windspeeds (Figure 12) 

which increases the mean bias  for windspeed > 6 m s-1; for the bulk of the data with windspeed < 2 m s-1, the bias is 0.7% (17 

ppb). 

3.5 Carbon monoxide, CO  

Absorption by the UV-quartz retroreflectors below 4600 cm-1 in the region of the CO overtone band centred near 4300 cm-1 20 

prevents analysis of CO from these spectra. With more appropriate IR quartz, glass or hollow mirror retroreflectors of higher 

transmission in this region, a simulation of the resultant expected spectra based on the performance achieved with the current 

system suggests CO measurements with a 5-minute measurement averaging time would provide repeatability of the order of 

5-10 ppb, which would be sufficient precision to resolve real variability in polluted urban environments.  

3.6 Nitrous oxide, N2O 25 

N2O absorbs only weakly in the NIR. Analysis of the spectra in the strongest available band centred at 4730 cm-1 provides a 

mean and standard deviation of the N2O mole fraction over the whole measurement period of 353 ± 680 ppb.  While the mean 

is realistic, the precision is not sufficient to detect meaningful changes in N2O amounts, which are small (a few ppb) due to 
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the weak sources and sinks and long lifetime of N2O. A stronger band near 4415 cm-1 would become accessible with glass 

retroreflectors, but would provide only a factor of two improvement. 

4 Discussion 

4.1 Precision, accuracy and open path – in situ bias 

Precision of measurements 5 

Table 2 summarizes Allan deviations (AD, the square root of Allan Variance (Werle et al., 1993)) for  open path and in situ 

CO2, CH4 and O2 measurements and the open path – in situ differences. The ADs in Table 2 were calculated from the period 

11 - 27 Aug when diurnal variation was minimal and short term repeatability can be best estimated; they are presented for 5 

min (single measurements), 1 hour and 6 hour averaging times. The 5 minute ADs provide upper limits for the instrument or 

measurement noise, since the variability is dominated by instrument noise but there is also the possibility of a small 10 

contribution from atmospheric variability over 5 min time scales. ADs of the same mole fractions after subtracting a smoothed 

curve through them to remove the gross diurnal variation are similar to those of the raw data at 5 min, but decrease with 

averaging time out to 6 hours approximately as expected for random noise. The standard deviations of the smoothed-subtracted 

5 min data are also similar to the 5 min ADs and are also presented in Table 2. The 5 min Allan deviation values are 1.6 ppm 

(0.4%) for CO2, 23 ppb (1.2%) for CH4 and 0.0015 (0.7%) for O2. For in situ measurements they are lower, reflecting the 15 

better repeatability of the in situ analyser: 0.63 ppm (0.15%) for CO2 and 2.1 ppb (0.1%)  for CH4.  We take these values as 

our best estimates of the 1-σ repeatability of the measurements due to the instrument noise. 

 

For both open path and in situ CO2 the AD increases with averaging time to ~ 11 ppm at 6 hours, reflecting the increased 

atmospheric (mostly diurnal) variability over the longer time periods of 20-40 ppm peak-peak. For open path CH4 the increase 20 

in AD with averaging time is not as pronounced for OP data (23 to 40 ppb) because the measurement noise and atmospheric 

variability are of comparable magnitudes. Diurnal variability of CH4 is not as pronounced as for CO2. For in situ CH4 data the 

AD increases from 2 to 13 ppb. For O2 there is no natural variability and the AD decreases with averaging time (0.0015 to 

0.0006 mole fraction). 

 25 

For CO2 the 5 minute AD of OP - in situ differences is also 1.6 ppm but remains approximately constant over averaging times 

up to 6 hours, reflecting real (non-random) OP - in situ differences over hourly timescales. Over the full dataset 10 Jul – 4 Nov 

that includes periods of greater atmospheric variability, the 6-hour AD increases to 3.0 ppm. The distribution of the differences 

across all data appears near-normal with standard deviation 6.3ppm (Figure 10 (c)), but over shorter timescales can be seen 

not to be simply random (Figure 9). These ADs and standard deviations taken together reflect that the actual variations of OP 30 

- in situ differences are 2-4 times larger than the 5 minute OP measurement noise of 1.6 ppm. For such a normal distribution 

of differences with standard deviation 6.3 ppm and a 1-σ measurement repeatability of 1.6 ppm, approximately 40% of the 
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measured differences lie more than two measurement standard deviations from the mean and may be considered 

atmospherically significant. 

 

For CH4 the 5 minute AD of OP - in situ differences increases slightly with time due to real atmospheric variability. The 

distribution of differences also appears near-normal over the whole dataset but with short term non-random variations and a 5 

positive tail due to two significant enhancements in OP CH4 in August and September; the standard deviation of the distribution 

is 90 ppb (Figure 11, Figure 12); as for CO2, 3-4 times the 1-σ measurement repeatability. 

 

Open path – in situ bias 

Raw OP measurements are biased high relative to WMO-calibrated in situ measurements at the IUP (western) end of the path, 10 

+2.5% for CO2, +3% for CH4 and +3.6% for O2. Quantifying these biases relies on the assumption that the atmosphere is well 

mixed along the open path for windspeeds > 6 m s-1 and that there are no actual mole fraction differences under these 

conditions. For comparison, TCCON measurements over much longer atmospheric paths (typically > 10km) have consistent 

network-wide biases of approximately -3% for CO2, -4.4% for CH4, and +2% for O2. (The TCCON network wide bias for O2 

is derived from the comparison of retrieved column O2 amount with atmospheric pressure, and the network wide biases for 15 

XCO2 (= CO2/O2*0.2095) and XCH4 (= CH4/O2*0.2095) are -1.0 and -2.4% respectively relative to in situ measurements over 

the atmospheric column with WMO-scale calibrated analysers (Wunch et al., 2010, updated 2014).) The biases are also similar 

in magnitude to those seen in uncalibrated mid IR OP and in situ FTIR studies (Smith et al., 2011; Griffith et al., 2012). Thus 

the observed biases in this study are generally consistent in magnitude with other comparisons of FT spectroscopy with WMO-

calibrated in situ measurements. As shown in the next paragraph, they are also consistent with an assessment of systematic 20 

errors in the retrievals of path-averaged mole fractions from open path infrared spectra. 

 

Table 3 presents the sensitivity of mole fraction retrievals from the spectra to realistic uncertainties in input parameters and 

choices in the retrieval. Details are given in the caption to Table 3. There is no dominant single source of uncertainty; the main 

contributors are derived from uncertainties in spectroscopic data, the instrument lineshape, stray radiation, and details of the 25 

fitted spectral window. A simple quadrature sum of the estimated systematic errors (4.5% for CO2, 3.3% for CH4 and 5.9% 

for O2) is larger than the observed systematic biases relative to calibrated in situ measurements; thus the observed biases are 

consistent with our a priori estimates of systematic errors. Although the open path measurements in this work and TCCON 

measurements use the same general spectral region, the near IR, there is no reason to expect that the biases would be the same 

in both cases. The measurements differ in spectral bands analysed, spectral resolution and instrumentation, and most input 30 

parameters listed in Table 3. 

 

Data from recent work using broadband DOAS and laser-based long open path techniques are shown for comparison in Table 

4. Compared to conventional DOAS with a grating monochromator, array detector and the same long path fibre-telescope 
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optics (Sommer, 2012; Saito et al., 2015; Somekawa et al., 2011), the FTS system achieves greatly improved repeatability. 

Compared to more recent work with dual frequency comb laser spectroscopy (Rieker et al., 2014; Waxman et al., 2017), the 

repeatability is less by about a factor of two. The frequency comb was operated over a longer pathlength with shorter 

measurement times and achieved lower bias when compared to co-located in situ measurements, but at this stage of 

development is less portable for remote field measurements and applicable only to a narrower range of species. The FTS setup 5 

has advantages in terms of mobility and costs. 

4.2 Comparison of open path and in situ measurements 

From the preceding discussion, measured differences between open path and in situ measurements are only ~2-4 times the OP 

measurement repeatability. Actual differences are thus not well distinguished from measurement noise, and difficult to assign 

unequivocally to specific sources.  The discussion of differences is therefore brief. 10 

CO2 

For CO2 there is a mean OP – in situ difference of -3.2 ppm (in situ > OP) at low windspeeds relative to assumed well mixed 

conditions at wind speeds > 6 m s-1. This difference is larger at night (-4.5 ppm) than during the day (-2.0 ppm), with a slight 

tendency to be larger for winds from the SE.  This diurnal dependence of CO2 difference could in principle be partly due to 

time-of-day-dependent changes or errors in systematic temperature measurement (see section 2.4 and Figure 5), but in practice 15 

there is no correlation between OP – in situ CO2 difference and the difference between weather station and path-averaged 

temperature (R2=0.0003, 0.1 ppm °C-1).  The corresponding local source of CO2 leading to higher CO2 amounts at the IUP end 

of the path is unlikely to be local traffic from the nearby main road, Berliner Strasse, with most traffic and activity during 

daytime. The more distant Heidelberg city centre is distributed along the S bank of the river, and would be expected to affect 

both OP and in situ measurements more equally. The most likely CO2 contribution which is higher at night but lower during 20 

the day is the biosphere, with respiration at night and photosynthetic drawdown during the day, but it is not immediately clear 

why this would be more prevalent in the in situ measurements than the open path since trees and plants in the local area are 

quite evenly distributed.  Agricultural areas to the NW may play some role. To summarise, we find that the measured 

differences are probably significant at a level of a few ppm, but not sufficiently clear above the measurement noise to be able 

to draw any definitive conclusions or to assign to any specific sources or sinks. 25 

 

CH4 

For CH4, there is also a mean negative difference in situ – OP difference at low windspeeds relative to windspeed > 6 m s-1(-

44 ppb) which is also larger at night (-53 ppb) than during the day (-32 ppb). There is no dominant wind direction for these 

negative differences, and as for CO2 the source is unclear. For CH4 there are two distinct episodes of positive differences where 30 

OP measurements are significantly higher than in situ, around 9 August and 5 September. The August period corresponds to 

winds from NW of the IUP, while for the September period the enhancements are broadly distributed from the eastern sector. 

In both periods the enhanced differences occur mainly at night. 
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The OP-in situ differences and geographical scales of these measurements approach the accuracy and resolution of developing 

regional scale models such as the Weather Research and Forecasting model (WRF) in high resolution mode (Viatte et al., 

2017). A detailed high resolution modelling analysis of the measurements presented here might help in interpreting the 

observed in situ – OP differences, but is beyond the scope of this paper. 5 

4.3 Future improvements 

This study was made with available instrumentation in a restricted timeframe as a pilot study of the open path FTS technique 

in the NIR and did not optimise some aspects of the measurements. Several options are available to improve the accuracy and 

precision of the OP-FTS-NIR measurements: 

- Interferences from stray radiation: especially at low solar elevations, background (stray) radiation is modulated and 10 

detected by the interferometer and leads to broad enhancements and spikes in measured concentrations. This can be almost 

entirely removed by reversing the source and detector in the optical system shown in Figure 1, first modulating the source in 

the interferometer before transmission over the open path.  With this option stray environmental radiation such as direct or 

scattered sunlight is viewed directly by the detector and not modulated by the interferometer; it does not contribute to the 

Fourier-transformed infrared spectrum. This option was not possible with the available optics and spectrometer for this pilot 15 

study, but will be incorporated in the next build. With the present system, increasing the frequency of the background stray 

light measurements (1 per hour in this work) would allow better correction for stray light interferences due to short term 

variations in stray radiation, but at the cost of lower precision, measurement time and duty cycle. 

- Increased optical throughput: using a brighter source and/or larger telescope and retroreflector area will translate 

directly into lower measurement noise and improved precisionrepeatability. This is particularly true of retroreflectors, which 20 

had a total area of around 510 cm-2 compared to the telescope primary mirror area of 700 cm2. A close packed retroreflector 

array large enough to capture the (slightly divergent) open path beam could thus improve precision by a factor of about two 

for the same primary telescope aperture. 

- Extension to include CO: for urban studies the measurement of CO is advantageous, both for its intrinsic interest and 

as a tracer for combustion sources of other trace gases. In this work we used available UV quartz retroreflectors optimised for 25 

UV/vis DOAS measurements. The transmission of UV quartz cuts off below 4500 cm-1, precluding CO measurement in the 

overtone band around 4300 cm-1. The use of corner cube retroreflectors with transmission to 4000 cm-1 (for example hollow 

mirror, BK7 glass or IR quartz) will allow measurements to extend to CO. A simulation with the measurement noise realised 

in this work suggest a CO measurement precision repeatability of a few ppb, which should be sufficient for studies in urban 

areas. 30 
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4.4 Conclusions and final comments 

We have introduced a long open path Fourier Transform spectrometer operating in the near infrared over a 3.1 km return path 

in open air. The system is able to make measurements of several species simultaneously by virtue of the broadband nature of 

the spectroscopy. We have demonstrated measurements of CO2, CH4, O2, H2O and HDO; with a minor variation of optics CO 

is also possible, which would be of advantage in urban environments. The spectrometer is reasonably portable, able to be 5 

tripod mounted, and requires power (~ 150 W) and shelter at only one end of the path, with a passive retroreflector array at the 

far end of the path. 

We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open path 

and point measurements that are significant relative to the2-4 times the measurement precisions.repeatability. In the context 

of fine scale atmospheric models, which now provide kilometre scale resolution, open path measurements have the potential 10 

to bridge the gap between high accuracy point measurements and spatially-averaging atmospheric models.  With improvements 

in precision and accuracy to be expected in both broadband (FTS) and laser based techniques, open path spectroscopy provides 

a valuable new tool for urban and regional scale studies. 
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Tables 

 

Table 1. Details of spectral windows used for fitting. * In O2 there is also a weak contribution from collision-induced continuum 
absorption which is fitted with the overall continuum. 5 

 

 

 

Species fitted Interfering species  

co-fitted 

Spectral region 

cm-1 

Spectral region 

µm 

O2 H2O * 7790 – 7960 1.26 – 1.28 

CO2 H2O 4800 - 5050 1.989 – 2.084 

CH4 H2O 5885 - 6150 1.63 – 1.70 

H2O, HDO CO2 4910 – 5080 1.97 – 2.04 
 
 10 
 

 

Table 2. Allan deviations for open path and in situ measurements and their differences.  The Allan deviation analysis is taken over 
the period 11 - 27 Aug, a period when diurnal variations were minimum.  *The standard deviations (last row) are for raw mole 
fractions after removing the gross diurnal variability and represent the measurement noise – they can be compared with the 5 min 15 
Allan deviations. See text for further details. 

 

Allan 
Deviation 

CO2 / ppm CH4 / ppb O2 
OP in situ diff OP in situ diff OP 

5 min 1.6 0.63 1.7 23 2.1 23 0.00147 
1 hr 3.0 3.4 1.5 22 6.7 21 0.00076 
6 hr 11 11 1.4 26 13 42 0.00063 

Std.dev.* 1.6 0.82  21 2.3   
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Table 3. Sensitivity of retrieved mole fractions to retrieval inputs in the OP-FTIR measurements. Each input parameter or choice 
was varied by an estimate of its uncertainty in the MALT spectrum analysis and its effect on retrieved mole fractions calculated.  

 

Quantity ∆ ∆% CO2 CH4 O2 

   ppm % ppb % molfrac % 
1Temperature/°C +3 +1% +6.04 1.4% +24.7 1.3% +0.0032  1.5% 
1Pressure/mb +1.0  +0.1% -0.69 0.2% -2.0 0.1% -0.0002 0.1% 
2Pathlength/m + 3  +0.1% -0.4 0.1% -1.8 0.1% -0.0002 0.1% 
3Linestrengths  +2% -8.0 2% -36 2% -0.002 2% 
3Linewidths   +2% -4.88 1.2% +5.4 0.3% -0.0004 0.2% 
4Zero offset +0.01 +1% +10.5  2.5% +21.0 1.1% 0.0029 1.4% 
5ILS width  +5% +5.0  1.2%   0.0079 3.8% 
6Window selection    2%  2%  2% 
6Continuum 

polynomial  

   1%  0.1%  3% 

7Fibre Residual     <<1%  <<1%  <<1% 

Quadrature sum  4.5%  3.3%  5.9% 

 
1 Temperature and pressure errors affect retrieved mole fractions in two ways – proportionally through the dilution of air to 5 
calculate mole fraction from concentrations, and through the temperature and pressure sensitivities of linestrengths and lineshapes. 
From the net sensitivities, it can be seen that the errors are dominated by the dilution effects. 

2 Pathlength error propagates proportionally into the path average mole fraction, since the spectrum analysis retrieves the 
concentration- pathlength product. 

3 We estimate for a 2% error on Hitran linestrengths and linewidths – these errors are not well characterised (Toth et al., 2008). 10 

4 Adding a zero offset of 1% to the spectrum simulates the effect of 1% stray sunlight added to the spectrum, and can be taken as 
an estimate of the maximum effect due to stray light. 

5 The Instrument Line Shape (ILS) is fitted for every spectrum by allowing the FTIR field of view (FOV), phase error and frequency 
shift to vary in the least squares minimisation. The quoted error is calculated by forcing the width to increase by 5% above the best-
fit value to estimate the effect of a non-ideal ILS. 15 

6 The selection of spectrum window to be fitted, and the number of terms in the polynomial used to fit the continuum, is somewhat 
subjective – the selections are based on visual assessment of the spectral residual and the minimum mean residual achieved. The 
sensitivity taken from the variation in retrieved concentrations across a range of “acceptable” window and baseline choices.  Note 
the continuum choice for O2 is more sensitive because the polynomial is effectively used to fit the unstructured pressure-induced 
continuum in the O2 spectrum.  Although we measured short path spectra every hour, in principle to characterise the continuum 20 
spectrum, using these spectra to define the continuum rather than fitting it did not improve fits, but added noise and an extra source 
of variability. All results were thus obtained with the continuum fitted with a 5-term polynomial. 

Formatted Table
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7 The fibre optic coupling between telescope, source and detector introduces repeatable fringing and interferences in the measured 
spectra at about 1% of the measured signal intensity.  These structures can be seen in the residual plots of Figure 4 and are quite 
reproducible over periods of days to weeks. They are larger than the underlying detector noise but much less than the trace gas 
absorptions, at least for CO2 and O2. Removing or co-fitting an average fibre residual spectrum during the fit makes only a small 
(<<1%) difference to the retrieved mole fractions because the fibre residual spectrum is itself derived from the least squares fits to 5 
real spectra and is approximately orthogonal to the target gas spectrum. 
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Table 4. Comparison of precision and accuracyrepeatability and bias  of long path techniques in the NIR region. 1 (Sommer, 2012; 
Saito et al., 2015; Somekawa et al., 2011); 2 (Rieker et al., 2014; Waxman et al., 2017) 

 

 

 CO2 / ppm CH4 / ppb 

 Open path 

 

Repeatability 

(Allan dev. 

5 min) 

OP – in situ difference Open path 

 

Repeatability 

(Allan dev.  

5 min) 

OP – in situ difference 

 

 Repeatability 

(Allan dev., 

5 min) 

Bias 

 

Repeatability 

(Allan dev., 

5 min) 

Bias 

FTS 

(this work) 

1.6 1.7 10 12 23 60 

       

DOAS1 2-4 - - >200 - >200 

       

Freq. 

Comb2 

<1 - 3- 6 <5 - 4-20 

 5 

 
 

 

 
  10 
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Figures 

 

 

 

 5 

Figure 1. Schematic drawing of the long open path FT spectrometer and optical system. Radiation from the source is fed close to the 
focus of the telescope through the outer bundle of six fibres (blue) and transmitted across the open path. The return beam is collected 
by the central  fibre (red) and focussed onto the input aperture of the interferometer. The modulated beam from the interferometer 
is detected by the InGaAs detector and the resultant interferogram is Fourier transformed to provide the long open path spectrum. 

  10 
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Figure 2. Aerial view of Heidelberg and the 1.5 km measurement path. IUP = Institute of Physics (FTS and telescope, in situ 
measurements),  PI = Physics Institute (retroreflector), PS = power station. The measurement path is mostly over residential areas. 5 
There is an extensive small-agricultural area to the N and NW 
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Figure 3. Typical NIR long path spectrum, recorded 01 Oct 2014. 5 
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Figure 4. Typical fits for (a) O2 band centred near 7880cm-1 (b) CO2 bands centred near 4850 and 4980 cm-1 and (c) CH4 band 
centred near 6000 cm-1. 

  5 
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Figure 5. Comparison of IUP meteorological station temperature (red) and spectrum-derived path averaged temperature (blue) for 
an illustrative period of 4 sunny days. The differences are plotted in green and range from 0 – 6 °C. 5 
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Figure 6. Retrieved instrument lineshape function for the IRcube FTS at nominal 0.55 cm-1 resolution. The measured half width at 5 
half height is 0.58 cm-1. 
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 5 

Figure 7. Measured O2 mole fractions for the measurement period. The narrow spikes are artefacts due to stray solar radiation near 
18:00 on sunny days, as discussed in the text. The insert shows details of the spike on 2 Sept 2014. 
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Figure 8. Water vapour, δD and air temperature for the whole measurement period. In the upper panel the FTIR retrieved water 5 
vapour is in red and the IUP meteorological station absolute humidity in blue (as mole fractions in %). 
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 5 
Figure 9. Open path (blue), in situ (red) and difference (OP – in situ, blackcoloured by time) measurements of CO2. All raw OP data 
have been reduced by a factor of 1.025 (~ 10 ppm) to remove measurement bias relative to the in situ data. In the corrected data, 
there is zero bias for wind speeds > 6 m s-1 over the entire measurement period (see text for detail). (a) shows the whole measurement 
period. (b) illustrates a selected period with a consistent, real OP-in situ difference relative to the well mixed average.  
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 5 

 
 

Figure 10. CO2 mole fraction differences between open path and in situ measurements (OP – in situ) (a) vs wind speed (b) as a wind 
speed rose, and (c) as a histogram of the differences. The standard deviation of the distribution is 6.3 ppm. (a) and (b) are coloured 
by time to compare with Figure 9. 10 
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Figure 11. Open path (blue), in situ (red) and difference (OP – in situ, blackcoloured by time) measurements of CH4 for the whole 
measurement period. The uncalibrated OP data have been reduced by a factor of 1.030 (~60 ppb) to fit the in situ data for wind 
speeds > 6 m s-1 (see text). (a) whole measurement period. (b) expanded period. 5 
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 5 

 
Figure 12. CH4 mole fraction differences between open path and in situ measurements (OP – in situ) (a) vs wind speed (b) as a wind 
speed rose, and (c) as a histogram of the differences. (a) and (b) are coloured by time to compare with Figure 11. 

 
 10 
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