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Abstract	
A	new	method	for	retrieving	aerosol	optical	depth	(AOD)	and	its	uncertainty	from	Multi-angle	
Imaging	SpectroRadiometer	(MISR)	observations	over	dark	water	is	outlined.	MISR’s	aerosol	
retrieval	algorithm	calculates	cost	functions	between	observed	and	pre-simulated	radiances	for	a	
range	of	AODs	(from	0.0	to	3.0)	and	a	prescribed	set	of	aerosol	mixtures.	The	previous	Version	22	15	
(V22)	operational	algorithm	considered	only	the	AOD	that	minimized	the	cost	function	for	each	
aerosol	mixture,	then	used	a	combination	of	these	values	to	compute	the	final,	“best	estimate”	
AOD	and	associated	uncertainty.	The	new	approach	considers	the	entire	range	of	cost	functions	
associated	with	each	aerosol	mixture.	The	uncertainty	of	the	reported	AOD	depends	on	a	
combination	of	a)	the	absolute	values	of	the	cost	functions	for	each	aerosol	mixture,	b)	the	widths	20	
of	the	cost	function	distributions	as	a	function	of	AOD,	and	c)	the	spread	of	the	cost	function	
distributions	among	the	ensemble	of	mixtures.	A	key	benefit	of	the	new	approach	is	that,	unlike	
the	V22	algorithm,	it	does	not	rely	on	empirical	thresholds	imposed	on	the	cost	function	to	
determine	the	success	or	failure	of	a	particular	mixture.	Furthermore,	a	new	Aerosol	Retrieval	
Confidence	Index	(ARCI)	is	established	that	can	be	used	to	screen	high-AOD	retrieval	blunders	25	
caused	by	cloud	contamination	or	other	factors.	Requiring	ARCI≥0.15	as	a	condition	for	retrieval	
success	is	supported	through	statistical	analysis	and	outperforms	the	thresholds	used	in	the	V22	
algorithm.	The	described	changes	to	the	MISR	dark	water	algorithm	will	become	operational	in	
the	new	MISR	aerosol	product	(V23),	planned	for	release	in	2017.	
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1.	Introduction	
Uncertainty	estimation	in	satellite	remote	sensing	is	a	highly	challenging	endeavor	that	requires	
diligent	assessment	of	many	potential	sources	of	error.	Some	of	these	errors	are	random	and	well	35	
understood	and	generally	follow	a	traditional	error	propagation	pathway.	Other	errors—which	in	
underconstrained	retrievals	of	geophysical	quantities	can	be	the	dominant	sources	of	
uncertainty—are	not	readily	assessed	as	they	stem	from	various	approximations	and	
assumptions	that	lead	to	non-linear	systematic	responses.	Additionally,	there	are	sources	of	error	
that	cannot	be	quantified	at	all	that	are	attributable	to	the	resolution	of	an	instrument	and	40	
variability	at	scales	smaller	than	those	observed.	
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	 Recently,	Povey	and	Grainger	(2015)	provided	a	detailed	overview	and	classification	of	
possible	sources	of	error	in	satellite	retrievals.	They	clearly	distinguish	between	pixel-level	
uncertainties	associated	with	individual	retrievals	and	bulk	uncertainty	metrics	originating	from	
validation	studies.	The	two	terms,	however,	are	often	not	properly	differentiated	in	the	literature.	
This	is	in	part	due	to	a	lack	of	awareness	about	the	issue	as	most	studies	focus	on	external	5	
validation	of	satellite	data	products,	which	often	do	not	contain	information	about	the	
uncertainties	associated	with	individual	retrievals.	This	status	quo	started	changing	due	to	
growing	pressure	from	the	data	assimilation	community,	which	requires	information	on	pixel-
level	uncertainties	in	order	to	make	proper	use	of	satellite-derived	geophysical	quantities	within	
the	framework	of	a	numerical	model.		10	
	 An	example	of	a	remotely	sensed	geophysical	parameter	that	is	being	increasingly	used	in	
data	assimilation	applications	is	the	aerosol	optical	depth	(AOD)(Lynch	et	al.,	2016;	Shi	et	al.,	
2011,	2013;	Zhang	et	al.,	2008;	Zhang	and	Reid,	2006,	2009,	2010).	AOD	represents	the	total	
extinction	by	aerosol	particles	in	the	atmospheric	column	from	the	surface	to	the	top	of	the	
atmosphere.	Model	data	assimilation	generally	requires	a	value	of	AOD	and	an	uncertainty	15	
associated	with	this	value	in	order	to	determine	whether	or	by	how	much	the	model	should	be	
adjusted	to	agree	with	the	retrieval.	AODs	are	readily	available	in	many	satellite	data	products,	
such	as	those	from	the	Moderate	Resolution	Imaging	Spectroradiometer	(MODIS),	the	Multi-angle	
Imaging	SpectroRadiometer	(MISR),	and	the	Visible	Infrared	Imaging	Radiometer	Suite	(VIIRS),	
whereas	individual	retrieval	uncertainties,	in	many	cases,	are	not.	Pixel-level	information	often	20	
consists	of	retrieval	quality	assurance	flags,	which	categorize	the	“usability”	of	a	retrieval	based	
on	a	qualitative	judgment	of	the	algorithm	performance.	For	example,	MODIS	Collection	6	uses	
four	coarse	labels	to	communicate	retrieval	quality,	ranging	from	0	to	3,	with	0	being	the	least	
trusted	and	3	indicating	the	highest	quality	(Hubanks,	2015;	Levy	et	al.,	2013;	Remer	et	al.,	2005).	
Other	metrics	conveying	some	useful	information	about	AOD	retrieval	uncertainty	are	the	25	
proximity	of	clouds	and	cloud	coverage	in	the	retrieval	region	(Shi	et	al.,	2011,	2013,	2014;	Witek	
et	al.,	2013;	Zhang	and	Reid,	2006).	While	such	metrics	are	very	valuable,	they	comprise	only	
crude	proxies	for	pixel-level	uncertainties	and,	therefore,	have	limited	quantitative	utility	in	
applications	such	as	aerosol	forecasting	and	data	assimilation.		
	 The	most	frequently	used	metric	that	quantitatively	characterizes	the	quality	of	a	30	
particular	AOD	dataset	as	a	whole	is	the	error	envelope	(EE)(Bréon	et	al.,	2011;	Garay	et	al.,	2016;	
Kahn	et	al.,	2010;	Levy	et	al.,	2010,	2013;	Limbacher	and	Kahn,	2014;	Omar	et	al.,	2013;	Remer	et	
al.,	2008;	Sayer	et	al.,	2012,	2013;	Witek	et	al.,	2013).	EE	results	from	a	validation	study	where	a	
particular	satellite	AOD	dataset	is	compared	against	another	AOD	dataset,	typically	ground-based	
information	from	the	Aerosol	Robotic	Network	(AERONET)	(Dubovik	et	al.,	2000;	Holben	et	al.,	35	
1998),	which	is	considered	to	represent	the	“truth”.	Taking	the	general	form	of	±(a+b×AOD)	(or	
max[±a,	±(b×AOD)]),	where	a	and	b	are	empirically	determined	constants,	EE	represents	the	
range	required	so	that	about	68%	(one	standard	deviation)	of	the	matched	data	agree,	providing	
an	overall	characterization	of	the	entire	dataset.	The	EE	is	often	regarded	as	an	expected	retrieval	
error,	or	confidence	envelope.	External	validation	is	fundamental	to	assessing	a	dataset’s	overall	40	
quality	and	serves	as	a	useful	guide	for	identifying	the	presence	of	systematic	errors	in	the	dataset	
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(e.g.,	Kahn	et	al.,	2010).	The	EE,	which	describes	the	performance	of	the	dataset	as	a	whole	
relative	to	a	reference	dataset,	however,	does	not	represent	and	should	not	be	confused	with	the	
uncertainty	characteristics	of	an	individual	retrieval.		
	 More	appropriate	attempts	to	address	the	true	AOD	retrieval	uncertainty	involved	
sensitivity	tests	of	the	retrieval	algorithm	with	respect	to	varying	external	factors	such	as	lower	5	
boundary	conditions	or	aerosol	microphysical	properties	(Kahn	et	al.,	2001;	Kalashnikova	and	
Kahn,	2006;	Sayer	et	al.,	2016).	These	studies	were	limited	in	scope	as	they	were	unable	to	
address	all	possible	sources	of	error.	Povey	and	Grainger	(2015)	suggested	the	use	of	ensemble	
techniques	as	a	comprehensive	means	of	quantifying	uncertainties	in	satellite	remote	sensing	of	
the	environment.	Each	member	of	the	ensemble	adds	a	random	perturbation	to	the	10	
measurements,	ancillary	parameters,	and	underlying	retrieval	assumptions	in	order	to	
comprehensively	map	the	probability	distribution	of	the	retrieved	quantity.	Even	though	such	an	
approach	would	face	significant	conceptualization	and	computational	challenges,	especially	in	
operational	data	processing,	there	are	already	examples	of	ensembles	being	used	in	aerosol	
remote	sensing.	One	example	is	MISR	(Diner	et	al.,	1998),	which	employs	many	different	particle	15	
microphysical	mixtures	as	part	of	its	operational	aerosol	retrieval	process	(Kahn	et	al.,	2001;	
Martonchik	et	al.,	1998).	The	resulting	spread	of	AOD	solutions	for	this	ensemble	of	aerosol	
mixtures	offers	quantitative	insight	into	the	uncertainty	of	the	individual	retrieval.	Such	an	
approach,	if	extended	to	all	poorly	quantifiable	nonlinear	sources	of	error	and	physically	plausible	
realizations	of	parameter	space,	has	the	potential	of	providing	a	robust	and	comprehensive	20	
measure	of	retrieval	uncertainty	in	the	manner	suggested	by	Povey	and	Grainger	(2015).		
	 This	study	describes	a	new	approach	to	determining	AODs	and	AOD	uncertainties	in	MISR	
retrievals.	MISR	is	an	instrument	aboard	the	National	Aeronautics	and	Space	Administrations	
(NASA)	Earth	Observing	System	(EOS)	Terra	satellite	that	performs	radiometric	observations	of	
the	Earth	using	nine	pushbroom	cameras	pointing	at	nine	different	angles	(Diner	et	al.,	1998,	25	
2005).	All	nine	cameras	observe	the	same	area	on	Earth	within	seven	minutes,	at	four	different	
wavelengths.	The	multi-angle	viewing	capability	allows	MISR	to	sample	portions	of	the	scattering	
phase	function	simultaneously,	providing	information	that	helps	distinguish	between	different	
aerosol	types	(Kahn	et	al.,	2001;	Kalashnikova	and	Kahn,	2006).	The	retrieval	process	is	based	on	
the	minimization	of	a	cost	function	evaluated	between	the	instrument	observations	and	pre-30	
calculated	radiometric	look-up	tables	(LUTs)	that	are	in	turn	based	upon	a	prescribed	set	of	
aerosol	mixtures.	Version	22	(V22)	of	the	algorithm,	which	has	been	in	operational	production	
since	December	2007,	considers	74	aerosol	mixtures	with	different	microphysical	properties	that	
are	intended	to	represent	typical	atmospheric	conditions	found	on	Earth	(Kahn	et	al.,	2009,	
2010).	MISR	has	two	aerosol	processing	pathways,	one	for	dark	water	(oceans,	seas,	deep	lakes)	35	
and	the	other	for	the	land	surface	(Martonchik	et	al.,	2002).	The	modifications	described	in	this	
study	currently	apply	only	to	the	dark	water	algorithm	(Kalashnikova	et	al.,	2013;	Witek	et	al.,	
2013).		
	 The	paper	is	organized	as	follows.	Section	2	describes	the	V22	operational	approach	to	
determining	AODs	and	their	uncertainties	in	MISR	aerosol	retrievals	over	dark	water.	In	section	3	40	
critical	modifications	and	changes,	which	form	the	basis	of	a	new	methodology,	are	presented.	
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Section	4	introduces	an	important	new	metric	that	is	employed	to	assess	the	quality	of	retrievals.	
This	criterion	is	used	for	distinguishing	between	“good”	and	“poor”	retrievals.	Section	5	offers	
statistical	analysis	of	the	new	AOD	retrieval	uncertainty	and	comparisons	against	the	V22	
approach.	Finally,	a	short	summary	of	the	study	follows	in	section	6.		
	5	
	
2.	Previous	MISR	V22	dark	water	algorithm		
A	detailed	description	of	the	MISR	retrieval	strategy	is	described	in	the	Level	2	Aerosol	Retrieval	
Algorithm	Theoretical	Basis	document	(Diner	et	al.,	2008).	The	MISR	aerosol	retrieval	algorithm	
follows	two	separate	lines	of	processing	depending	on	the	surface	type:	dark	water	and	land.	The	10	
two	retrieval	types	are	independent	of	each	other	and	largely	rely	on	different	physical	and	
empirical	assumptions.	Only	the	dark	water	algorithm	(Kalashnikova	et	al.,	2013)	is	considered	in	
this	study.	Here	some	key	elements	of	the	V22	algorithm	relevant	to	the	new	approach	are	
reviewed.		 	
	 The	problem	of	retrieving	aerosol	properties	over	large	water	bodies,	such	as	oceans,	seas,	15	
or	deep	lakes,	is	greatly	simplified	by	the	fact	that	reflectance	from	such	surfaces	is	uniform	and	
that	such	deep-water	bodies	are	essentially	black	at	red	and	near-infrared	(NIR)	wavelengths.	
One-dimensional	radiative	transfer	(RT)	theory	is	sufficient	for	determining	the	relationship	
between	top-of-atmosphere	(TOA)	radiances	and	AOD.	However,	this	calculation	assumes	an	
aerosol	model	that	specifies	the	particle	size	distribution,	shape,	complex	refractive	index,	and	20	
vertical	distribution.	Additional	assumptions	are	made	about	the	gaseous	concentration	in	the	
atmosphere	(ozone	absorption,	Rayleigh	scattering)	and	surface	whitecap	fraction	(i.e.,	the	area	of	
the	surface	covered	by	white	foam	from	breaking	waves).	MISR’s	ability	to	observe	multi-angle	
radiances,	which	are	in	large	part	governed	by	the	shape	of	the	aerosol	scattering	phase	functions,	
provides	a	wealth	of	information	with	which	to	refine	aerosol	retrievals	over	dark	water	25	
(Kalashnikova	and	Kahn,	2006).		
	 The	MISR	aerosol	retrieval	algorithm	relies	on	a	LUT	generated	for	a	predefined	set	of	
mixtures	with	known	optical	properties.	The	V22	operational	algorithm	defines	74	aerosol	
mixtures,	each	of	which	consists	of	up	to	three	unique	particle	types	having	prescribed	optical	
and	microphysical	properties	(Kahn	et	al.,	2010;	Kahn	and	Gaitley,	2015).	The	74	mixtures	consist	30	
of	combinations	of	eight	primary	particle	types.	The	MISR	particle	types	and	mixtures	are	
designed	to	represent	several	compositional	categories	typically	found	in	the	atmosphere,	such	as	
sea	spray,	sulfate/nitrate,	mineral	dust,	carbonaceous,	and	urban	soot	aerosols.	Recently,	Kahn	
and	Gaitley	(2015)	provided	a	thorough	verification	of	MISR’s	aerosol	type	retrieval	capabilities	
and	Lee	et	al.	(2016)	demonstrated	that	the	MISR	aerosol	particle	climatologies	regionally	35	
showed	good	agreement	with	the	results	of	chemical	transport	models.	The	current	74	mixture	
set,	however,	is	not	complete	and	has	some	documented	deficiencies	(Kahn	et	al.,	2010;	
Kalashnikova	et	al.,	2013;	Limbacher	and	Kahn,	2014).	A	more	comprehensive	set	of	aerosol	types	
and	mixtures	will	be	considered	in	a	future	release	of	the	MISR’s	aerosol	algorithm.		
	 For	each	of	the	74	mixtures,	forward	RT	calculations	are	performed	to	provide	top-of-40	
atmosphere	(TOA)	radiances	for	the	36	MISR	channels	(9	angles	and	4	wavelengths).	These	
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radiances	are	stored	in	the	form	of	“equivalent	reflectances”	in	the	Simulated	MISR	Ancillary	
Radiative	Transfer	(SMART)	Dataset,	where	equivalent	reflectance	is	defined	as		

ρ =
πL
E0

,		 	 	 	 	 	 	 	 	 	 	 (1)	

where	L	is	the	radiance	and	E0	is	the	exo-atmospheric	solar	irradiance	determined	for	each	MISR	
spectral	band.	The	RT	calculations	of	TOA	radiances	are	carried	out	for	discrete	values	of	mixture	5	
optical	depth,	from	0	to	3,	referenced	to	MISR’s	558	nm	(green)	band	for	all	plausible	
combinations	of	view	and	solar	geometries.	The	simulations	incorporate	a	modified	linear	mixing	
theory	for	mixtures	containing	more	than	one	aerosol	type,	a	wind-speed-driven	glitter	and	
whitecap	model,	ozone	correction,	and	Rayleigh	scattering	(Abdou	et	al.,	1997).	The	modeled	TOA	
radiances	are	then	directly	compared	with	the	MISR	observations.	The	criterion	used	to	find	the	10	
best-fitting	optical	depth	for	a	particular	mixture	is	minimization	of	the	reduced	 χabs

2 	parameter,	
calculated	as	a	function	of	green-band	AOD	(τ)	

χabs
2 τ( ) =
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	 In	Eq.	2,	ρMISR	are	MISR	equivalent	reflectances,	ρm	are	modeled	TOA	equivalent	
reflectances	for	a	given	aerosol	mixture,	and	σabs	are	the	absolute	radiometric	uncertainties	in	15	
ρMISR	calculated	as	σ abs l, j( ) = 0.05max ρMISR l, j), 0.04( )( ) .	The	summation	index	l	is	over	the	4	MISR	
wavelengths	and	j	is	over	the	9	MISR	cameras.	The	parameter	 v l, j( ) =1 	if	a	valid	value	of	
ρMISR l, j( ) 	exists,	and	is	set	to	0	otherwise.	The	weights	wl	are	always	equal	1	for	the	red	and	NIR	
bands,	and	are	≤	1	for	the	blue	and	green	bands,	depending	on	τ.	These	weights	allow	individual	
bands	to	contribute	varying	amounts	to	the	 χabs

2 	calculation	as	a	function	of	optical	depth.	For	20	
example,	at	low	τ	(<0.5)	the	MISR	446	nm	(blue)	and	558	nm	(green)	bands	are	not	used	in	 χabs

2 	
calculations	since	at	these	wavelengths	and	τ	values	the	water	leaving	radiance	could	be	a	
significant	contributor	to	the	TOA	signals.		
	 For	each	mixture,	the	best	fitting	value	of	τmix 	is	taken	to	be	the	value	that	minimizes	 χabs

2 	
using	a	parabolic	fitting	approach	(Diner	et	al.,	2008).	Additional	parameters	are	used	to	25	
determine	the	goodness	of	fit	of	the	particular	aerosol	mixture	to	the	MISR	data.	Those	are	 χgeom

2 ,	
χ spec
2 ,	and	 χmaxdev

2 	which	are	calculated	at	the	previously	obtained	value	of	τmix .	Definitions	of	
these	parameters	can	be	found	in	Diner	et	al.	(2008)	and	Kalashnikova	et	al.	(2013).	An	aerosol	
mixture	is	considered	“successful”	if	all	four	metrics	 χabs

2 ,	 χgeom
2 ,	 χ spec

2 ,	and	 χmaxdev
2 	do	not	exceed	

certain	empirically	established	thresholds.	In	V22,	these	thresholds	are	set	to	2,	3,	3,	and	5,	30	
respectively.		
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	 As	a	result	of	this	procedure,	each	retrieval	region	is	assigned	a	set	of	mixtures	and	
associated	AODs	that	pass	all	the	threshold	criteria.	In	the	special	case	when	none	of	the	74	
mixtures	pass	the	threshold	tests,	the	retrieval	is	considered	unsuccessful	and	no	AOD	is	
reported.	In	most	cases,	however,	multiple	mixtures	are	deemed	successful.	They	typically	have	
somewhat	different	τmix 	values	corresponding	to	their	minimum	 χabs

2 .	The	arithmetic	mean	of	all	5	
AODs	from	the	passing	mixtures	is	reported	as	the	“best	estimate”	AOD	in	the	V22	Level	2	aerosol	
product	with	the	field	name	“RegBestEstimateSpectralOptDepth”.	The	retrieval	uncertainty,	with	
the	field	name	“RegBestEstimateSpectralOptDepthUnc”,	is	determined	from	the	standard	
deviation	of	the	AODs	from	the	passing	mixtures.	In	the	case	where	only	a	single	mixture	is	
successful,	the	uncertainty	is	determined	directly	from	the	parabolic	fit	for	that	mixture	(Diner	et	10	
al.,	2008).	
	 A	critical	aspect	of	the	retrieval	process	and	its	outcome	is	its	dependence	on	a	number	of	
empirically	determined	thresholds.	The	specific	numerical	values	for	the	 χabs

2 ,	 χgeom
2 ,	 χ spec

2 ,	and	
χmaxdev
2 	thresholds	were	chosen	based	on	pre-production	tests	aimed	at	eliminating	obvious	

blunders	while	maintaining	adequate	spatial	coverage.	However,	the	reported	AOD	and	its	15	
uncertainty	are	directly	linked	to	these	thresholds,	which	entails	a	certain	degree	of	subjectivity.	
For	example,	a	mixture	and	AOD	combination	resulting	in	a	 χabs

2
	value	of	1.99	would	be	

considered	successful,	while	a	mixture/AOD	combination	with	a	 χabs
2
	value	of	2.01	would	not	be.	

Alternatively,	mixtures	with	very	different	AODs,	for	example	a	non-absorbing	and	an	absorbing	
mixture,	might	both	be	considered	successful	and	be	included	in	the	uncertainty	calculation,	but	20	
have	dramatically	different	 χabs

2
	values,	something	which	is	not	taken	into	account	when	

determining	the	uncertainty.	Mitigating	such	issues	was	an	important	driver	for	developing	a	new	
approach	to	AOD	determination	and	its	uncertainty	for	MISR	dark	water	retrievals	in	a	more	
objective	manner.		
	25	
	
3.	New	approach	to	AOD	retrieval	and	its	uncertainty	
The	empirical	thresholds	in	goodness-of-fit	parameters	in	the	V22	MISR	dark	water	aerosol	
retrieval	algorithm	are	used	to	select	successful	aerosol	mixtures.	This	affects	the	frequency	of	
retrieval	success	as	well	as	the	resulting	AODs,	AOD	uncertainties,	and	aerosol	properties.	A	more	30	
desirable	approach	would	minimize	the	reliance	on	empirical	thresholds.	In	this	section,	a	new	
method	is	described	that	meets	this	objective	and	simplifies	the	retrieval	of	the	“best	estimate”	
AOD	and	its	associated	uncertainty.	Furthermore,	it	results	in	a	single	parameter	that	enables	
screening	of	retrieval	blunders	and	AOD	outliers	and	which	outperforms	results	derived	using	the	
original	V22	thresholds.	This	algorithm	revision	has	been	implemented	in	the	software	used	to	35	
generate	the	next	version	of	the	MISR	operational	aerosol	product,	V23,	scheduled	for	public	
release	in	2017.	
	 The	new	method	relies	solely	on	the	 χabs

2 values	calculated	using	Eq.	2.	The	other	goodness-
of-fit	metrics	are	retained	solely	for	diagnostic	purposes.	Extensive	testing	showed	that	AOD	
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selection	in	V22	was	governed	primarily	by	 χabs
2 ,	with	the	other	parameters	typically	having	little	

effect	due	to	the	magnitude	of	their	thresholds,	except	in	a	limited	set	of	cases.	The	key	elements	
of	the	new	method	are	visualized	in	Figure	1	using	actual	MISR	data	from	a	randomly	selected	
case.	First,	the	values	of	 χabs

2 	for	each	mixture	are	calculated	as	continuous	functions	of	τ.	The	
result	is	then	inverted,	yielding	the	distribution	of	1 χabs

2 .	Taking	the	reciprocal	has	two	primary	5	
benefits.	First,	it	gives	a	smaller	weight	to	retrievals	with	large	values	of	 χabs

2 	that	represent	poor	
agreement	between	the	model	and	the	MISR	observations.	Second,	the	distribution	of	1 χabs

2
	tends	

to	look	Gaussian,	with	a	peak	at	τmix .	In	the	next	step,	these	functions	are	averaged	over	all	N=74	
mixtures,	leading	to:		

f τ( ) = 1
N

1
χabs,m
2 τ( )m=1

N

∑ .	 	 	 	 	 	 	 	 	 (3)	10	

The	position	of	the	peak	of	the	average	distribution	f	is	the	new	retrieved	AOD	
AOD = τ max f τ( )( )( ) .	 	 	 	 	 	 	 	 	 (4)	

The	function	f	can	be	interpreted	as	a	probability	density	function	(PDF)	for	AOD.	The	most	likely	
AOD	is	the	one	that	maximizes	f	(Eq.	4),	and	the	retrieval	uncertainty	is	related	to	the	width	of	the	
PDF.	The	function	f,	which	in	most	cases	closely	resembles	a	Gaussian	(normal)	distribution,	has	a	15	
peak	that	is	narrow	or	wide	depending	on	how	closely	the	individual	τmix 	from	the	74	mixtures	are	
clustered.	Furthermore,	because	the	absolute	values	of	1 χabs,m

2
	from	each	mixture	contribute	to	

the	overall	shape	of	the	PDF,	aerosol	models	fitting	the	observations	well	(low χabs
2 )	dominate	the	

shape	of	f	and	the	position	of	its	peak,	whereas	mixtures	with	poor	fits	(high χabs
2 )	contribute	less.	

The	retrieval	uncertainty	(σ)	is	determined	from	the	full	width	at	half	maximum	(FWHM)	of	f,	and	20	
scaled	to	a	standard	deviation	under	the	assumption	that	the	functional	form	of	f	in	the	vicinity	of	
its	peak	can	be	approximated	by	a	Gaussian	distribution:	

σ =
FWHM f( )
2 2 ln2

≈
FWHM f( )
2.3548

.	 	 	 	 	 	 	 	 (5)	

Equations	4	and	5	form	the	backbone	of	the	new	approach	for	determining	AODs	and	their	
uncertainties	in	MISR	retrievals	over	dark	water	in	the	V23	algorithm.	One	important	benefit	of	25	
the	method	is	that	it	does	not	rely	on	empirically	determined	thresholds.	In	all	cases,	all	74	
mixtures	contribute	to	the	retrieved	AOD,	but	the	amount	they	contribute	depends	on	how	well	
they	agree	with	the	MISR	observations.	The	retrieval	uncertainty	is	then	related	to	the	degree	to	
which	the	AODs	associated	with	the	entire	ensemble	of	aerosol	mixtures	cluster	around	a	specific	
AOD.	If	all	mixtures	are	consistent	with	the	same	AOD	and	are	highly	sensitive	to	its	specific	value,	30	
the	peak	in	f	will	be	narrow	and	the	uncertainty	low.	If	mixtures	disagree	as	to	a	single	value	of	
AOD,	or	the	 χabs

2 	parameter	is	relatively	insensitive	to	the	AOD,	the	distribution	will	be	broad	and	
the	reported	uncertainty	will	be	larger.		
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While	the	width	of	the	average	distribution	 f τ( ) 	contains	information	about	the	retrieval	
uncertainty,	the	peak	of	the	distribution,	max f τ( )( ) ,	has	an	additional	important	benefit:	it	can	be	
utilized	as	a	retrieval	screening	parameter.	max f τ( )( ) 	represents	the	overall	agreement	of	the	
TOA	equivalent	reflectances	from	the	aerosol	mixtures	in	the	LUT	with	the	MISR	observations,	
which	can	be	considered	a	measure	of	the	confidence	in	the	retrieval.	max f τ( )( ) 	is	designated	5	

the	“Aerosol	Retrieval	Confidence	Index”,	or	ARCI.	Low	ARCI	implies	that	generally	high	 χabs
2 	were	

obtained,	indicating	that	the	aerosol	models	fit	the	MISR	observations	poorly.	Large	ARCI,	on	the	
other	hand,	means	that	for	some	models	sufficiently	low	 χabs

2 	were	obtained,	signifying	good	
agreement	with	the	observations.	In	a	sense,	a	threshold	on	ARCI	is	similar	to	a	threshold	on	 χabs

2 ,	
except	that	the	former	incorporates	all	aerosol	mixtures	simultaneously	while	the	latter	is	applied	10	
mixture	by	mixture.	Furthermore,	as	will	be	shown	in	section	4,	ARCI	is	more	effective	than	 χabs

2 	
in	filtering	out	retrieval	blunders	and	other	obvious	outliers.		

Figure	1	visualizes	the	important	steps	of	the	method	using	actual	MISR	data.	In	this	
example,	the	new	retrieved	AOD	is	0.182,	whereas	the	V22	method	gave	a	value	of	0.174.	The	new	
retrieval	uncertainty	is	0.049,	which	is	more	realistic	than	the	0.003	uncertainty	reported	by	the	15	
V22	algorithm.	The	very	small	uncertainty	in	V22	is	due	to	the	fact	that	only	two	mixtures	were	
considered	successful	by	passing	the	V22	thresholds.	This	example	highlights	a	deficiency	in	the	
V22	assessment	of	retrieval	uncertainty	as	the	uncertainty	is	highly	dependent	on	the	number	of	
passing	mixtures	as	well	as	the	value	of	the	four	separate	thresholds	used	to	determine	which	
mixtures	are	considered	successful.	The	new	procedure	eliminates	the	need	for	thresholds	in	20	
determining	AOD	and	its	uncertainty,	and	the	only	threshold	involved	is	applied	to	the	single	
ARCI	parameter,	which	is	used	as	a	retrieval	quality	indicator.	
	
	
4.	Retrieval	quality	assessment	25	
In	the	MISR	V22	retrieval	algorithm	several	thresholds	were	set	to	filter	out	mixtures	that	do	not	
provide	a	good	match	to	the	instrument	observations.	The	threshold	that	provides	the	most	strict	
screening	in	V22	is	 χabs

2 ≤ 2 ,	which	is	applied	individually	to	each	aerosol	mixture.	Because	the	
thresholds	provide	an	additional	line	of	defense	against	clouds	that	were	not	screened	by	other	
procedures	in	the	aerosol	retrieval	process,	elimination	of	these	thresholds	can	result	in	a	large	30	
number	of	high-AOD	retrievals	in	areas	that	are	notorious	for	frequent	cloud	cover,	but	have	
climatologically	very	low	AODs.			

This	situation	is	illustrated	in	Figure	2,	which	shows	the	average	AOD	for	the	combination	
of	January	and	July	of	2007	obtained	with	the	new	retrieval	methodology.	Vast	areas	of	the	high-
latitude	oceans	are	speckled	with	unrealistically	high	AODs,	clearly	indicating	an	issue	with	cloud	35	
contamination.	In	V22	the	 χabs

2
	and	other	thresholds	are	able	to	limit	the	occurrence	of	such	

blunders.	In	the	new	algorithm,	which	performs	aerosol	retrievals	on	a	4.4	km	grid,	in	contrast	to	
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the	coarser	17.6	m	grid	used	in	V22,	the	problem	of	cloud	contamination	is	further	amplified	due	
to	closer	proximity	to	cloud	edges.	Applying	the	same	thresholds	as	in	V22	does	not	fully	mitigate	
the	issue:	substantially	more	4.4	km	retrievals	remain	cloud	contaminated	than	in	V22	(results	
not	shown).	Fortunately,	the	ARCI	metric	introduced	in	the	previous	section	proves	to	be	
extremely	effective	at	filtering	out	potentially	cloud-contaminated	AOD	retrievals.		5	
	 Figure	3a	shows	average	AOD	from	4.4	km	retrievals	as	a	function	of	the	minimum	value	of	
χabs
2 .	In	total	about	49	million	retrievals	were	analyzed	here.	After	a	rapid	initial	drop	related	to	a	

similar	rapid	increase	in	sampling	(Fig.	3b),	the	average	AOD	increases	gradually	with	increasing	
min χabs

2( ) ,	while	the	sampling	continues	decreasing.	The	AOD	increase	could	be	due	to	a	
combination	of	the	increasing	number,	magnitude,	and	relative	occurrence	of	cloud-10	
contaminated,	high-AOD	retrievals	with	increasing	min χabs

2( ) .	Based	on	the	V22	 χabs
2 	threshold	

approach,	all	retrievals	with	min χabs
2( ) ≤ 2.0 	would	have	been	considered	successful.	However,	no	

clear	justification	for	a	threshold,	either	at	2.0,	or	any	other	value,	is	evident	in	the	average	AOD	
data.	Choosing	a	value	for	the	threshold	that	minimizes	the	average	AOD	would	screen	clouds	but	
also	potentially	screen	optically	thick	aerosol	plumes,	such	as	the	heavy	dust	that	is	prevalent	off	15	
the	west	coast	of	Africa.	The	picture	looks	different,	however,	when	one	considers	the	average	
AOD	as	a	function	of	ARCI	(Fig.	3c).	After	excluding	the	initial	fluctuation	for	extremely	small	ARCI	
related	to	poor	sampling,	two	distinct	regimes	in	the	trend	of	average	AOD	can	be	noticed.	In	the	
first	regime,	the	average	AOD	is	highly	sensitive	to	the	specific	value	of	ARCI,	characterized	by	a	
sharp	decrease	in	AOD	with	increasing	ARCI	between	about	0.03	and	0.13.	This	suggests	that	a	20	
decreasing	number	of	cloud-contaminated,	high-AOD	retrievals	are	included	in	the	average	as	the	
ARCI	is	increased.	Indeed,	the	percentage	of	retrievals	with	AOD	higher	than	2.0	reaches	its	peak,	
16%,	at	ARCI	equal	to	0.03,	and	decreases	to	about	2%	when	ARCI	is	0.13.	In	the	second	regime,	
there	are	relatively	small	changes	in	the	average	AOD	as	ARCI	increases	above	0.15.	The	low	AOD	
gradient	in	the	second	regime	suggests	a	low	prevalence	of	cloud	contaminated	or	erroneous	25	
AODs.	The	retrieval	count	decreases	slowly	with	increasing	ARCI	(Fig.	3d),	indicating	that	the	
observed	trends	in	the	average	AOD	cannot	be	ascribed	to	a	change	in	frequency.	Conveniently,	
the	number	of	screened	retrievals	with	ARCI	≥	0.15	is	similar	to	the	number	of	retrievals	that	do	
not	pass	the	 χabs

2 ≤ 2.0 	threshold.	Out	of	about	49	million	retrievals,	35.9%	are	below	the	ARCI	
threshold	(not	passing),	and	37.1%	are	above	the	 χabs

2 ≤ 2.0 	threshold.	We	set	ARCI	≥	0.15	as	the	30	
value	to	be	used	as	a	threshold	for	screening	retrieval	blunders	due	to	potential	cloud	
contamination	or	other	factors.		

Another	way	to	look	at	the	difference	between	the	two	screening	approaches	is	presented	
in	Fig.	4a,	which	shows	the	two-dimensional	distribution	of	average	AOD	as	a	function	of	min( χabs

2

)	and	ARCI	using	combined	data	from	January	and	July	of	2007.	Figure	4b	shows	the	respective	35	
retrieval	count.	The	previous	 χabs

2
	threshold	limit	at	2.0	is	marked	with	the	black	vertical	line.	All	

retrievals	to	the	left	of	this	line	would	have	been	considered	successful	in	the	V22	algorithm.	This	
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includes	a	small	group	of	high-AOD	retrievals	with	min( χabs
2 )	close	to	0.2	and	ARCI	about	0.1.	

Another	suspicious	group	of	retrievals	with	high	average	AODs	that	would	have	passed	the	
previous	threshold	is	close	to	min( χabs

2 )	=	2.0.	The	new	ARCI	threshold	limit,	marked	with	the	
gray	horizontal	line,	eliminates	most	of	the	suspiciously	high-AOD	regions.	All	retrievals	above	the	
gray	horizontal	line	are	considered	to	be	of	sufficiently	good	quality.	Of	course,	more	complicated	5	
relationships	could	be	investigated,	but	the	use	of	ARCI	as	a	single	screening	parameter	proves	to	
be	highly	efficient	and	furthermore	has	the	advantage	of	simplicity.	The	V23	MISR	aerosol	
product	will	provide	the	values	of	both	ARCI	and	 χabs

2 	for	use	in	exploring	custom-made	cloud	
screenings	and	for	other	purposes.	

Figure	5	presents	the	average	AOD	distribution	obtained	using	the	combination	of	the	10	
January	and	July	2007	data	with	retrieval	screening	based	on	the	ARCI	metric	(ARCI≥0.15).	This	
result	is	directly	comparable	to	Fig.	2,	which	uses	the	unscreened	data.	The	benefit	of	ARCI	
screening	is	readily	apparent.	AODs	in	large	swaths	of	remote	oceans	are	now	represented	by	
smaller	and	more	realistic	values	(Witek	et	al.,	2013).	At	the	same	time,	climatologically	large	
AODs	off	the	coasts	of	Africa	and	South	and	East	Asia	are	retained,	indicating	that	the	new	15	
screening	method	does	not	unintentionally	remove	all	high	AODs	that	are	likely	valid.	The	global	
average	AOD	is	reduced	from	0.295	for	the	unscreened	data	to	0.141	with	ARCI	screening.	
However,	speckles	of	high	AOD	values	are	still	present	in	many	remote	and	cloudy	regions.	The	
majority	of	these	retrievals	are	visibly	cloud	contaminated.	This	demonstrates	that	the	ARCI	
screening	is	not	ideal	as	some	erroneous	AODs	pass	the	threshold.	Increasing	the	threshold	20	
reduces	the	appearance	of	blunders,	but	also	decreases	the	number	of	valid	low-	and	moderate-
AOD	retrievals,	reducing	the	overall	coverage.	Because	the	choice	of	setting	the	ARCI	threshold	
limit	at	0.15	is	well	supported	statistically	(see	Figs.	3c,	4a),	the	remaining	cloud-contaminated	
AOD	retrievals	should	be	addressed	using	another	screening	method.	A	possible	approach	is	to	
employ	the	clear	flag	fraction	metric	discussed	in	Witek	et	al.	(2013).	The	application	of	this	25	
approach	to	removing	the	remaining	cloud-contaminated	retrievals	in	the	MISR	V23	aerosol	
product	will	be	discussed	in	a	separate	paper.	
	
	
5.	Statistical	assessment	of	AOD	retrieval	uncertainty.	30	
The	AOD	retrieval	uncertainty	described	by	Eq.	4	is	a	measure	of	the	sensitivity	of	the	algorithm	
to	the	assumed	aerosol	microphysical	properties.	This	is	an	important	factor	affecting	retrieval	
uncertainty	(Li	et	al.,	2009;	Povey	and	Grainger,	2015),	but,	as	mentioned	in	the	introduction,	
there	are	many	other	sources	of	error	not	accounted	for	in	this	approach.	Hence,	the	AOD	
uncertainty	obtained	from	the	algorithm	should	not	be	interpreted	as	a	measure	of	how	far	the	35	
retrieved	AOD	deviates	from	the	“truth”.	This	is	an	important	distinction	that	needs	to	be	properly	
understood.	The	calculated	uncertainty	is	purely	algorithmic	and	depends	on	the	initial	choice	of	
aerosol	mixtures	that	go	into	the	MISR	SMART	LUT.	Any	changes	in	the	prescribed	mixtures	
would	lead	to	different	uncertainty	estimates.	Furthermore,	if	Eq.	2	is	modified	such	that	a	
different	goodness-of-fit	metric	is	used,	a	different	uncertainty	result	would	be	expected.	For	40	
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these	reasons,	interpretation	of	the	established	uncertainty	does	not	extend	beyond	the	
algorithm’s	performance.	It	does,	however,	help	establish	confidence	intervals	on	the	retrievals	
when	comparing	one	pixel	to	another.		

In	Figure	6,	AOD	uncertainty	is	plotted	as	a	function	of	AOD	using	the	combined	data	from	
January	and	July	of	2007.	Only	ARCI-screened	retrievals	are	considered.	Reported	uncertainties	5	
are	generally	much	smaller	than	their	associated	AODs.	Only	for	very	low	AOD	values	do	the	
uncertainties	exceed	the	retrieved	AODs.	The	linear	fit	to	the	data	indicates	that	the	uncertainty	is	
about	12%	of	the	AOD	and	has	an	offset	of	0.012.	This	offset	is	much	smaller	than	what	has	been	
traditionally	discussed	in	the	literature,	specifically	the	0.03	or	0.05	in	the	smaller	and	larger	EE,	
respectively	(e.g.	Kahn	et	al.,	2010).	At	low	AODs	(<0.03)	the	reported	uncertainty	is	almost	10	
always	below	these	offset	levels.	At	higher	AODs,	uncertainties	are	often	smaller	than	20%	or	
even	10%	of	the	retrieved	AODs.	Note	that	there	is	always	a	substantial	spread	of	AOD	
uncertainties	at	any	given	AOD	level,	often	over	an	order	of	magnitude.	This	shows	that,	at	least	
from	a	statistical	perspective,	the	algorithm	is	capable	of	representing	variability	in	retrieval	
confidence.	For	example,	a	retrieved	AOD	of	0.1	can	have	an	uncertainty	of	0.05	or	of	0.005	15	
depending	on	circumstances.	Assigning	physical	meaning	to	a	particular	uncertainty	value	as	a	
departure	from	the	true	value,	as	stated	earlier,	is	a	task	that	needs	to	be	addressed	separately.		

A	comparison	of	the	new	AOD	uncertainties	against	their	V22	predecessors	reveals	many	
similarities	between	the	two,	as	evidenced	in	Figure	7.	Recall	that	the	V22	algorithm	calculated	
uncertainties	based	on	the	AOD	that	minimized	 χabs

2 	for	each	mixture,	while	the	V23	algorithm	20	
evaluates	the	full	range	of	 χabs

2 	as	a	function	of	AOD,	so	this	agreement	is	not	accidental.	On	
average	the	V23	uncertainty	is	larger	than	that	reported	in	V22.	There	does	not	seem	to	be	a	
lower	limit	on	uncertainties	in	V22,	often	exhibiting	values	below	10-3	whereas	in	V23	they	
mostly	stay	above	2×10-3.	The	small	values	reported	in	V22	may	be	due	to	situations	where	only	a	
single	mixture	was	considered	successful.	Furthermore,	there	is	discernable	quantization,	or	25	
clustering,	of	uncertainties	in	V22,	visible	as	vertical	striping	in	Fig.	7.	This	quantization	is	clearly	
eliminated	in	V23.	Overall,	the	new	AOD	uncertainties	appear	to	have	a	more	reasonable	
statistical	behavior	compared	to	the	uncertainties	obtained	in	V22.	
	
	30	
6.	Conclusions	and	summary.	
Ensemble	techniques	have	been	widely	used	in	weather	forecasting	applications	and	climate	
research.	They	are	indispensable	in	characterizing	uncertainties	and	errors	of	highly	non-linear	
systems,	where	standard	error	propagation	techniques	cannot	be	applied.	These	techniques	are	
also	useful	tools	for	quantifying	uncertainties	in	satellite	remote	retrievals	of	geophysical	35	
quantities	(Povey	and	Grainger,	2015).	MISR’s	aerosol	retrieval	strategy	is	a	good	example	of	the	
application	of	ensemble	techniques	to	retrieval	uncertainty	assessment	in	operational	data	
processing.		
	 MISR’s	aerosol	retrieval	algorithm	uses	minimization	of	a	cost	function	between	
observations	and	pre-calculated	signals	as	a	function	of	AOD.	The	spread	of	the	cost	function	40	
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around	a	particular	AOD	value	is	one	indication	of	the	uncertainty	of	the	retrieved	solution.	
Additionally,	an	ensemble	of	cost	functions	for	different	aerosol	mixtures	samples	sensitivity	of	
the	retrieval	process	to	the	assumed	aerosol	optical	and	microphysical	properties.	This	is	one	of	
the	major	sources	of	uncertainty	in	passive	remote	sensing	of	AOD.	By	including	an	ensemble	of	
aerosol	types	in	the	retrieval	approach,	an	algorithmic	measure	of	AOD	retrieval	uncertainty	that	5	
includes	the	impacts	of	measurement	uncertainties,	model	errors,	and	aerosol	type	variability	can	
be	effectively	derived	using	MISR	data.	
	 This	study	presents	a	new	approach	to	determining	AODs	and	AOD	uncertainties	in	MISR	
retrievals.	The	new	method	will	become	operational	for	dark	water	aerosol	processing	in	the	
upcoming	release	of	V23	of	the	MISR	aerosol	product	(scheduled	for	2017).	Unlike	the	V22	10	
algorithm,	the	new	approach	eliminates	several	empirical	thresholds.	Instead,	the	AOD	and	AOD	
uncertainty	determination	relies	solely	on	the	 χabs

2 	metric	defined	by	Eq.	1.	All	considered	
mixtures	contribute	to	the	final	result	with	a	varying	influence	depending	on	the	shape	and	
magnitude	of	the	associated	cost	functions.	This	approach	allows	for	a	consistent	calculation	of	
AOD	and	AOD	uncertainty	without	the	need	for	screening	acceptable	mixture	solutions	based	on	a	15	
complex	interplay	of	multiple,	and	somewhat	arbitrary,	thresholds.		
	 An	unintended	side	effect	of	the	new	retrieval	approach	is	an	increased	abundance	of	
(mostly)	cloud-contaminated,	high-AOD	retrievals	in	oceanic	areas	where	very	low	aerosol	
concentrations	are	expected.	Those	blunders—remnants	of	imperfect	cloud	screening—were	also	
present	in	V22,	but	many	were	rejected	through	the	use	of	thresholds	on	different	cost	functions.	20	
They	are	more	apparent	in	the	V23	results	due	to	the	increase	in	the	spatial	resolution	of	the	
product	from	17.6	km	in	V22	to	4.4	km	in	V23.	Fortunately,	an	effective	screening	criterion	has	
been	established	that	filters	out	most	cloud-contaminated	retrievals.	An	analysis	of	the	ARCI	
metric	strongly	suggests	a	specific	threshold	value,	below	which	the	retrievals	become	
increasingly	contaminated	by	clouds.	Although	this	screening	method	does	not	eliminate	all	AOD	25	
outliers,	it	is	superior	to	the	previously	used	thresholds	in	the	V22	of	the	MISR	aerosol	product.	
Additional	cloud	screening	making	use	of	the	clear	fraction	flag	with	retrieval	regions	is	built	into	
the	V23	algorithm,	and	will	be	described	separately.	Comparison	of	the	new	V23	algorithm	results	
(AODs	and	AOD	uncertainties,	in	particular)	to	other	products,	specifically	AERONET	
sunphotometer	measurements,	will	be	addressed	in	future	publications.	30	
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Figure	1	Example	of	calculation	steps	performed	in	the	new	methodology	for	determining	AOD	and	its	uncertainty.	(a)	

χabs
2 	values	for	74	MISR	mixtures	as	a	function	of	AOD	(τ)	(Eq.	1);	(b)	inverse	(reciprocal)	values	for	the	74	mixtures;	and	5	

(c)	inverse	residuals	averaged	over	all	mixtures	(Eq.	2),	with	the	new	retrieved	AOD,	ARCI,	and	FWHM	indicated	on	the	
distribution.	The	x-axis	scale	is	logarithmic	in	panel	(a)	for	a	better	visualization	of	the	cost	function	at	low	τ.	

	
	
	10	

	
Figure	2	Average	AOD	obtained	using	unscreened	data	from	January	and	July	of	2007.	The	data	are	mapped	to	a	0.5º	×	
0.5º	grid.	High	AOD	values	over	remote	oceans	indicate	issues	with	cloud	contamination	in	the	retrieval	process.	
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	5	
Figure	3	Histograms	of	average	AOD	as	a	function	of	(a)	min( χabs

2 ),	and	(c)	ARCI	for	January	2007,	July	2007,	and	the	two	

months	combined.	Panels	(b)	and	(d)	are	histograms	of	retrieval	counts	corresponding	to	min( χabs
2 )	and	ARCI	values,	

respectively.	

	
	10	
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Figure	4	(a)	average	AOD	as	a	function	of	ARCI	and	min( χabs

2 )	for	the	combined	months	of	January	and	July	of	2007,	(b)	
retrieval	count	for	the	data	plotted	in	panel	(a).	

	
	5	
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Figure	5	Average	AOD	distribution	with	ARCI≥0.15	screening	for	the	combination	of	January	and	July	2007.	The	data	are	
mapped	to	a	0.5º	×	0.5º	grid.	There	is	substantial	improvement	in	the	global	distribution	of	mean	AODs	when	compared	
to	the	unscreened	data	in	Fig.	2.	However,	some	residual	high	AOD	values	remain	over	remote	oceans.	They	can	be	
further	screened	using	other	approaches.		5	
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Figure	6	Density	plot	of	AOD	uncertainty	in	log-log	space	as	a	function	of	AOD	for	the	combined	January	and	July	2007	
data	with	ARCI	screening.	The	black	line	is	the	1-to-1	line,	included	as	a	visual	guide	to	illustrate	that,	over	most	of	the	
AOD	range,	the	uncertainties	are	smaller	than	the	AOD	values	themselves.	The	gray	line	is	a	linear	fit	to	the	data.	Two	
dashed	lines	represent	two	arbitrary	uncertainty	envelopes.	5	
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Figure	7	Density	plot	showing	comparison	between	the	previous	(V22)	AOD	uncertainty	and	the	new	(V23)	AOD	
uncertainty.	The	black	line	is	the	1-to-1	line.	

	


