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Abstract. Accurate measurement of rainfall is vital to analyze the spatial and temporal patterns of precipitation at various
scales. However, the conventional rain gauge observations in many parts of the world such as Ethiopia are sparse and
unevenly distributed. An alternative to traditional rain gauge observations could be satellite-based rainfall estimates. Satellite
rainfall estimates could be used as a sole product (e.g. in areas with no (poor) ground observations) or through integrating
with rain gauge measurements. In this study, the newly available Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) data has been evaluated in comparison to rain gauge data for the period of 2000 to 2015 across the Upper Blue
Nile basin in Ethiopia. Besides, the Tropical Applications of Meteorology using SATellite and ground-based observations
(TAMSAT) version 2 and 3 (TAMSAT 2 and TAMSAT 3) and the African Rainfall Climatology (ARC 2) products have
been used as a benchmark and compared with CHIRPS. The TAMSAT 2 rainfall estimate was used in this study mainly to
assess the improvements made with the recent version of a TAMSAT product (TAMSAT 3). From the overall analysis at
SR ond monthly temporal scale, CHIRPS exhibited higher skills and the best bias value in comparison to ARC 2 but
overestimates the frequency of rainfall occurrence particularly during the dry months. On the other hand, TAMSAT 3 has
shown very comparable performance with that of CHIRPS product, particularly with regards to bias. The ARC 2 product
was found to have the weakest performance underestimating rainfall amounts by about 24%. The skill of CHIRPS is less
affected by variation in elevation in comparison to TAMSAT 3 and ARC 2 products. While ARC 2 was found to be affected
by elevation with the average biases of 1.53, 0.86 and 0.77 at lower (< 1000 m a.s.l), medium (1000 to 2000 m a.s.l) and
higher elevation (> 2000 m a.s.1), respectively. Comparing the overall performance of the three products, CHIRPS exhibited
the best performance followed closely by TAMSAT 3. This validation study also shows that the TAMSAT 3 has overcome
the main weaknesses of TAMSAT 2, which is underestimation of high rainfall amounts by up to 31% in this study. Overall,
the finding of this validation study shows the potentials of CHIRPS product to be used for various operational applications
such as rainfall pattern and variability study in the Upper Blue Nile basin in Ethiopia.
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1 Introduction

Rainfall is a major component of the climate system and plays a key role in the Earth’s hydrological cycle and energy
balance. Rainfall variability in its rate, amount, and distribution substantially determine the earth’s ecosystem, water cycle
and climate (Huang and Van den Dool, 1993; Stillman, et al., 2014). Thus, accurate measurement of rainfall is vital to
analyze the spatial and temporal patterns of precipitation at various scales and advance our understanding of the effect of
rainfall on agriculture, hydrology, and climatology. Conventionally, the rain gauge is the primary source of rainfall data,
which has been the most accurate and reliable approach for rainfall measurement. However, ground rainfall stations in many
parts of the world and most parts of Ethiopia are very sparse and unevenly distributed. As a result, analysis using rain gauge
stations is significantly limited to point based particular location. Because of this scattered distribution of weather stations,
the dependability of rain gauge data to estimate areal rain and spatial distribution of rainfall over large areas of Ethiopia is
considerably reduced. However, advances in remote sensing science have provided the opportunity to estimate rainfall from
satellite observations and are becoming an important source of rainfall data.

Satellite-derived rainfall estimates (SREs) are widely available from Thermal Infrared Radiation (TIR) and Passive
Microwave (PMW) Channels, from geostationary and Low-Earth-orbiting satellites, respectively. The TIR-based approaches
use an indirect relationship to estimate rainfall from cloud top brightness temperatures. The TIR-based rainfall estimates
have some uncertainties because of misidentification of rain producing clouds such as cirrus clouds while warm clouds
might generate a considerable amount of rain (Trejo et al., 2016). On the contrary, PMW approach is based on the direct
measurements of atmospheric liquid water content and rainfall intensity by penetrating clouds and as a result would give
more accurate rainfall estimates (Kummerow et al., 2001; Young et al., 2014). However, observations from PMW are less
frequent due to a relatively low temporal resolution from low Earth-orbiting satellites. Combining TIR and PMW has been
the recent approach to estimate rainfall from satellites nowadays.

Techniques for satellite rainfall estimates have limitation and embedded uncertainties because satellites do not measure
rainfall by itself and should be related to precipitations based on one or multiple surrogate variables (Wu et al., 2012; Toté et
al., 2015).The uncertainties, therefore, may instigate in the processes of temporal samplings, error from algorithms and
satellite instruments itself (Gebremichal et al., 2005).These may affect the accuracy of satellite-derived rainfall products and
may result in a significant error when they used for various purposes such as rainfall patterns and variability study. The issue
of accuracy has received substantial attention to the extent that satellite derived rainfall products are concerned. In this
respect, stringent validation is essential to verify the performance of the product in a diverse physiographic setting and use
for the intended applications.

Several studies have been conducted in Ethiopia (e.g., Dinku et al, 2007, 2008 and 2011a; Hirpa et al., 2010; Romilly and
Gebremichael, 2011; Young et al., 2014 and Gebre et al., 2015) and specifically to the Upper Blue Nile basin (e.g., Dinku et
al. 2011b; Gebremichael et al., 2014; Fenta et al., 2014 and Worqlul et al., 2014) to validate the performance of satellite-
based rainfall products. These studies validated mainly the skills of Tropical Applications of Meteorology using SATellite
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and ground-based observations (TAMSAT, Grimes et al., 1999; Thorne et al., 2001, Maidment et al., 2014; Tarnavsky et al.,
2014), Africa Rainfall Climatology version 2 (ARC 2, Novella and Thiaw, 2013), Tropical Rainfall Measuring Mission
(TRMM, Huffman et al., 2007), Climate Prediction Centre (CPC) morphing technique (CMORPH, Joyce et al., 2004) and
Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN, Hsu and
Sorooshian, 2008) precipitation products at different spatial and temporal scale and topographic patterns. The results of these
studies indicate that the skills of SREs vary with the characteristics of local climate, topography, and seasonal distributions
of rainfall and have shown low to moderately high skills. There is now a newly available satellite rainfall product called the
Climate Hazards Group Infrared Precipitation with Stations (CHIRPS, Funk et al., 2015) with a relatively high spatial and
temporal resolution (i.e. 5 km resolution at daily temporal scale) and quasi-global coverage. So far, however, there has been
a very little work on the performance of CHIRPS satellite rainfall estimates over Ethiopia as well as other countries in
Africa. That might be because CHIRPS is a relatively new dataset. The works of Toté et al. (2015) in Mozambique can be
mentioned here as the first validation work we are aware of that reveals the potential applications of CHIRPS in Africa.
Maidment et al. (2017) have also validated the performance of satellite rainfall products (including CHIRPS V 2.0) in four
countries in Africa (Mozambique, Nigeria, Uganda, and Zambia). In general, these few validation works have shown the
promising skills of CHIRPS in Africa and its potentials for various working applications in the continent. Nevertheless, it is
important to note that for better exploitation of the relatively new CHIRPS product more validation work needs to be done at
different spatial and temporal scales in the region.

For this study, the Upper Blue Nile basin in Ethiopia was selected for CHIPRS validation because of a relatively good
density of rainfall stations, varied topography, and high spatial and temporal variability of precipitation (Taye and Willems,
2013). The aim of this study was, therefore, to compare and validate the performance of CHIRPS with rain gauge
observations that were collected from thirty-two weather stations from 2000 to 2015. CHIRPS performance was also
compared against TAMSAT 3, TAMSAT 2, and ARC 2 satellite rainfall products. In the course of this analysis, both the
TAMSAT and ARC 2 products have been validated as well. Also, this study has also been paid some courtesy to compare
TAMSAT 2 and TAMSAT 3 products to assess the improvements made with the new version (TAMSAT 3, Maidment et al.,
2017). The analyses used dekadal (10 days) and monthly time scale rainfall data both from the satellite products and rain
gauge observations.

The paper is structured as follows. Section 2 provides the site descriptions of the study area, followed by dataset used in the
study (Section 3). In section 4 detailed descriptions of the methodology used in this study are provided. The results and

discussions are given in Section 5. Finally, Section 6 presents our conclusions.

2 Site descriptions

The Upper Blue Nile (UBN) basin is located in the north-western part of Ethiopia with latitude between 7°45° and 12°45° N
and longitude between 34°30° and 39°45° E (Figure 1). The Blue Nile River is originated from Lake Tana in Ethiopia and
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travels all the way to the Sudanese border to finally meet the White Nile at Khartoum. The UBN basin is the primary source
of the Nile River, and it contributes about 60% of the annual flow of the Nile (Conway, 2005; Degefu, 2003). The basin has
an approximate drainage area of 176,000 km? (Conway, 2000). The basin is characterized by a complex topography with
elevation ranging from 4261 m a.s.l. at the north-eastern part of the basin to 500 m a.s.l. at the western part of the basin near
the Ethiopian-Sudan border (Figure 1). The incessantly changing topography of the basin leads to varying agro-ecology
within short distances. The climate of the UBN basin ranges from humid to semi-arid. The main rainfall season (known as
“Kiremt”) occurs from June to September. The dry season runs from October to January followed by a short rainy season
(called “Belg”) from February to May. According to Kim et al. (2008), about 70% of the annual precipitation in the study
area (UBN basin) is observed during the Kiremt season. The UBN basin receives up to 2,200 mm of annual rainfall. The
annual mean rainfall varies between 1200-1800 mm (Conway, 2000) with an increasing trend from northeast to southwest
(Kim et al. 2008). However, the basin is characterized by large temporal fluctuations in rainfall (Conway, 2000; Taye and
Willems, 2013) both in intra-annual and inter-annual scale. As a result, the hydrological processes in the basin are quite
complex and highly variable in space and time. The impact of rainfall variability in the basin described by severe and regular
climatic and hydrological extremes, such as floods and droughts and ensuing low rate of food production and poverty (Taye
and Willems, 2012). Although quite a diverse land use systems are common, the livelihoods of the majority of the

populations in the basin are highly dependent on rain-fed agriculture.

3 Data set

Rainfall data for this study were collected from ground based weather stations and remote sensing satellite estimates.

3.1 Station data

Rain gauge observed daily rainfall data from thirty-two 1% and 2™ class stations from 2000 to 2015 were collected from the
National Meteorological Agency (NMA) of Ethiopia. First class stations (synoptic stations) are those stations where all
meteorological parameters are recorded every hour. While for second class stations observations are taken every three hours.
Since the SREs evaluated here incorporate rain gauge data, the available rain gauge datasets were compared with the Climate
Hazard Group (CHG) station archives (primary data source for CHIRPS) and those datasets used for the generation of
CHIRPS product were removed from the analysis to guarantee the complete independence of the validation datasets.
Therefore, a total of 3460 complete dekadal observations that were not used for the generation/calibration of SREs were

retained for the validation over the thirty-two stations.

3.2 Satellite rainfall data

High resolution satellite rainfall products selected for this study are CHIRPS v. 2.0 (a relatively new satellite rainfall

product), TAMSAT 3, TAMSAT 2 and ARC 2. The TAMSAT 2 product was used in this study mainly to assess the

4



10

15

20

25

30

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-294 Atmospheric
Manuscript under review for journal Atmos. Meas. Tech. Measurement
Discussion started: 1 November 2017 Techniques
(© Author(s) 2017. CC BY 4.0 License.

Discussions

improvements made by the recent version TAMSAT 3.These rainfall products were selected because they: (i) have a
relatively high spatial resolution, (ii) relatively with long time series, and (iii) are freely available. Brief descriptions of these

datasets are given below.

3.2.1 CHIRPS, v 2.0

CHIRPS is a quasi-global (50° S-50° N) gridded products available from 1981 to near-present at 0.05° spatial resolution
(~5.3 km) and at daily, pentadal, dekadal, and monthly temporal resolution (Funk et al., 2015). The CHIRPS dataset is
developed by the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) at the University of California
(Knapp et al., 2011; Funk et al., 2015). The development of CHIRPS products entails three major input datasets and
processes. First, Infrared Precipitation (IRP) pentad (5-day) rainfall estimates are created from satellite data using cold cloud
durations (CCD) and calibrate using the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA
3B42) precipitation pentads. Then, the IRP pentads were divided by its long-term IRP mean values to present as percent of
normal. Second, the percent of normal IRP pentad is then multiplied by the corresponding Climate Hazards Precipitation
Climatology (CHPClim) pentad to produce an unbiased gridded estimate, with units of millimetres per pentad, called the
CHG IR Precipitation (CHIRP). In the third part of the process, the final product CHIRPS has been produced through
blending stations with the CHIRP data sets. Details of CHIRPS satellite rainfall products can be found in Funk et al. (2015).

3.2.2 TAMSAT

TAMSAT product is developed by the University of Reading based on Meteosat TIR (Thermal Infrared) channel. TAMSAT
rainfall estimation method (Dugdale et al., 1991; Grimes et al., 1999; Thorne et al., 2001; Maidment et al., 2014; Tarnavsky
et al., 2014) assumes that rainfall is produced from convective clouds that lead to cold cloud tops, and rainfall and CCD are
linearly correlated. The retrieval algorithm is calibrated using local gauge records. TAMSAT products are available from
1983 onwards at 0.0375° spatial resolution (~4 km) and at dekadal, monthly, and seasonal temporal resolution. This
validation study has considered the recent version of TAMSAT product (TAMSAT 3) for the comparison to CHIRPS
product. However, the previous version (TAMSAT 2) was also incorporated to further confirm the improvements made by
the recent version TAMSAT 3. The principle of the TAMSAT method is still the same for TAMSAT 2 and TAMSAT 3.
However, there are some improvements on the calibration procedures and approaches. Details on the main difference
between the recent version (TAMSAT 3) and the previous version (TAMSAT 2) have been provided by (Maidment et al.,
2017).

3.23 ARC2

ARC 2 is the revised version of the first version ARC 1 (Novella and Thiaw, 2013). The ARC 2 satellite rainfall estimates
was produced from two primary input data sources: 1) 3-hourly geostationary infrared (IR) data centred over Africa from the

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and 2) quality controlled Global
5
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Telecommunication System (GTS) gauge observations reporting 24-hour rainfall accumulations over Africa (Novella and
Thiaw, 2013).The ARC 2 dataset is available at daily time scale with a grid resolution of 0.1° X 0.1°and with a spatial
domain of 40° S-40° N and 20° W-55° E, encompassing the African continent from 1983 to the present.

4 Methodology

This study has evaluated the performance of CHIRPS satellite rainfall estimates at dekadal and monthly temporal scales
against thirty-two rain gauge observations and compared with TAMSAT 3, TAMSAT 2, and ARC 2 products for the period
0f 2000 to 2015. The dekadal and monthly data were further classified to validate the satellite products at different elevations
and for each of 12 months over the UBN basin, respectively. The double mass curve techniques and correlation coefficient
analysis (similar to Gebere et al., 2015) confirmed the consistency and homogeneity of rain gauge observations, respectively.
The dekadal and monthly data were created from the aggregates of daily rain gauge observations and TAMSAT 3 and ARC
2 rainfall values, while the CHIRPS and TAMSAT 2 satellite products are available at dekadal and monthly time scale. The
attempt made to convert point data to gridded interpolated data set lead to poor result due to uneven geo-spatial distributions
of gauge stations. Thus, this study has used point-to-grid comparison approaches. For each validation station, the grid values
of satellite rainfall products containing the stations were extracted and pair-wise comparisons with rain gauge values have

been undertaken.

4.1 Performance analysis

The performances of satellite rainfall estimates were analyzed using categorical and volumetric indices and the continuous
statistical measures. The most common form of categorical indices is a 2 x 2 contingency table which reports the number of
hit (H), miss (m), false alarm (F) and true null events. To describe whether there is rain or no rain events, a threshold value

of 1.0 mm/dekad or month was used in evaluating the skills of the satellite products.

4.1.1 Categorical validation indices

This section summarizes the categorical indices used to assess the intensity of rainfall estimated by satellite products with
respect to gauge observation. These include the Probability of Detection (POD), the False Alarm Ratio (FAR), and the
Critical Success Index (CSI). The POD score is defined as H/(H+M), and it describes the fraction of the gauge observations
detected correctly by the satellite, while the false alarm ratio, FAR=F/(H+F), corresponds to the portion of events identified
by satellite but not confirmed by gauge observations. The Critical Success Index, CSI=H/(H+M+F), combines different
aspects of the POD and FAR, describing the overall skill of the satellite products relative to gauge observation. All these
categorical validation indices have a score values ranging from 0 to 1; and 1 indicates the perfect skill, except for FAR the

perfect score is 0.
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4.1.2 Volumetric validation indices

Since the contingency table metrics do not provide information regarding the volume of correctly (incorrectly) detected
rainfall by the satellite products relative to rain gauge observations, recently AghaKouchak and Mehran (2013) suggested an
extension of categorical table indices known as “volumetric indices". In this study, therefore, the volumetric indices that
include: (a) Volumetric Hit Index (VHI), (b) Volumetric False Alarm Ratio (VFAR), and (c) the Volumetric Critical Success
Index (VCSI) that were proposed by AghaKouchak and Mehran (2013) have been adopted to evaluate the volumetric
performance of the selected satellite rainfall products.

STHSi(Si>t&G>1))

VAL = o G taeo0)+ 5 (Gl (5= t86,50)

M

VHI: volume of correctly detected rainfall by the satellites relative to the volume of the correctly detected satellites and

missed gauge observations

SHSi(Si>t&Gst))

FAR = , 2
SH(SiI(Si>t&G>1)+ X1 (Si| (Si>t&G;<t)) @)
VFAR: volume of false rainfall by the satellites relative to the sum of rainfall by the satellites
T(Sil(Si>t&G >t
VCS] = X (Sil(5i>t&Gi>t)) 3)

TR(SiI(Si>t&G>1)+ X (G| (Si<t&G>1)) + X TS| (Si>t&G<t))

VCSI: overall measure of volumetric performance.

Where S is satellite rainfall estimates, G is gauge observations, n is the sample size, and 7 is the threshold values (=1 in this

study).

4.1.3 Continuous statistical tools

In addition, the continuous statistical measures were used to quantify the overall performance of the satellite rainfall
products.

2(G-G)(S=S)

= _ 4
TR G-02/ 52’ @

Pearson correlation (7) is used to evaluate the goodness of fit of the relation. The value of 1 is the perfect score.

RMSE = |25 5)
n

The root mean square error (RMSE) measures the absolute mean difference between two data sets. The value of 0 is the

perfect score.



10

15

20

25

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-294 Atmospheric

Manuscript under review for journal Atmos. Meas. Tech. Measurement
Discussion started: 1 November 2017 Techniques
(© Author(s) 2017. CC BY 4.0 License. Discussions
s = 25
Bias = SG° 6)

Bias is a measure of how the average satellite rainfall magnitude compares to the ground rainfall observation. The value of 1
is the perfect score. A bias value above (below) 1 indicates an aggregate satellite overestimation (underestimation) of the

ground precipitation amounts.

Where G is gauge rainfall observations, S is satellite rainfall estimates, G is average gauge rainfall observations, S is the

average satellite rainfall estimates, and » is the number of data pairs.

5 Results and Discussions

The performances of satellite rainfall estimates were evaluated using the categorical indices (i.e., POD, FAR and CSI),
Volumetric Index (i.e., VHI, VFAR, and VCSI), and a set of continuous statistics (i.e., Correlation coefficient (r), Bias and
RMSE) at dekadal and monthly temporal scale. High values of POD, VHI, CSI, VCSI, and r, and small values of FAR,

VFAR, and RMSE, and bias values of one (or near to one) indicate good performance of the satellite rainfall products.

5.1 Spatial rainfall patterns of satellite products

Figure 2 below provides the 16-years mean rainy season (June to September) and the annual rainfall of TAMSAT 2, ARC 2,
TAMSAT 3, and CHIRPS satellite rainfall products over the UBN basin in Ethiopia. The wet/kiremt season (June to
September) produced the majority of the total annual precipitation. Therefore, both the rainy season (Figure 2 (a)) and annual
estimates (Figure 2 (b)) generated by the satellite products have shown similar rainfall patterns. However, TAMSAT 2 and
ARC 2 (particularly to the seasonal pattern) showed a decreasing trend of rainfall from west to the east region (or from low
to high elevation areas) of the basin, while TAMSAT 3 and CHIRPS show a significant amount of rainfall in the central and
southwest regions. The large discrepancy in TAMSAT 2 and ARC 2 rainfall pattern in the west and east areas could be
attributed to the orographic effect on rainfall.

5.2 Dekadal comparison
The dekadal comparisons were made using i) all dekadal values from rain gauge observation and satellite products and ii)
classified the dekadal values, for further validation, at a different elevation of the UBN basin.

5.2.1 Overall validation at dekadal temporal scale

Table | gives an overall comparison between the satellite products and rain gauge observation from 2000 to 2015 at a
dekadal temporal scale. Besides, Figure 3 and Figure 4 provide the cumulative distribution function (CDF), and the scatter

plot, respectively.
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The overall evaluation and comparison summary, shown in Table 1, indicate that CHIRPS scored relatively higher POD,
VHI, and VCSI values followed by TAMSAT 3 and TAMSAT 2. It is apparent from the same table that, both the TAMSAT
products have shown a similar skill and have scored almost similar POD, VHI and VCSI values. Given these, it is possible to
conclude that the improvement made by TAMSAT 3 over the previous version TAMSAT 2 on the skills of detecting the
frequency of rainfall event is very insignificant. On the other hand, ARC 2 scored relatively lower POD, VHI and VCSI
values.

However, ARC 2, TAMSAT 2, and TAMSAT 3 scored lower FAR and higher CSI values than CHIRPS. The CHIRPS
product resulted in the highest FAR (0.31) and lowest CSI (0.68) values. Similarly, a FAR value of 0.29 (close to 0.31 of this
study) for CHIRPS has been obtained by Tote et al. (2015) from the dekadal product validation in Mozambique. This means
that TAMSAT (hereafter refers both version 2 and version 3) and ARC 2 products are better than CHIRPS in detecting the
relative frequency of rain events. The overestimation of rainy days by CHIRPS might be related to the process of translating
infrared (IR) CCD values into estimates of precipitation using the 0.25° grid cell TMPA datasets, that may result in the
formation of too much light rain (Funk et al., 2015). Nevertheless, from the volumetric indices, VFAR values (0.06) of
CHIRPS is much reduced, and its overall performance (VCSI=0.94) is improved and even better than TAMSAT and ARC 2
products. Since the volumes of rainfall from false events detected by CHIRPS were tiny, it had a minimal contribution on the
total amounts of rainfall.

Further Table 1 above revealed that CHIRPS has a better agreement with the rain gauge observations than TAMSAT and
ARC 2 on most continuous statistical assessments, results in the highest correlation coefficient (r), the best bias value and
the lowest RMSE. The two likely explanations for CHIRPS good performance might be the use of CHPClim and the
inclusion of stations data in the CHIRPS data sets (Funk et al., 2015). Indeed, TAMSAT 3 has scored very comparable
values with CHIRPS product, particularly to the bias ratio. Both CHIRPS and TAMSAT 3 have managed to reproduce the
rainfall amount measured by rain gauge stations reasonably well (with an overall bias of 0.96 and 1.04, respectively), while
TAMSAT 2 and ARC 2 showed a substantial underestimation of rain gauge observation by 31% and 24%, respectively. The
underestimations of ARC 2 and TAMSAT 2 might be attributed to the complex topography of the validation site (possibly
dominated by warm rain processes) that may reduce the ability to identify rainy clouds (Dinku et al., 2007; Funk et al., 2015;
Maidment et al., 2014) and the calibration process using gauge stations. However, the statistical analysis in Table 1 reveals
that the recent version TAMSAT 3 has well addressed the problem of underestimation of rainfall by TAMSAT 2 and it
significantly improved the bias ratios. Thus, the overall dekadal validation and comparison indicated that CHIRPS has a high
level of correspondence with rain gauge observations and may have a useful skill for various functions in the study area.

In Figure 3, CDF of dekadal rainfall between the satellite products and the rain gauge observation have presented to validate
how often the satellite products occur below or above the rain gauge observation values. Regarding their dekadal maximum
values, rain gauge observations scored a value of 380 mm, while TAMSAT 3, CHIRPS, ARC 2, and TAMSAT 2 scored
348.8 mm, 274.52 mm, 260.99 mm and 159 mm, respectively. The TAMSAT 3 and CHIRPS are 31.2 mm, and 105.48 mm
below to rain gauge observed dekadal maxima while ARC 2 and TAMSAT 2 are with 119.01 and 221 mm, respectively. The

9
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result may show the significant improvements made by TAMSAT 3 (in comparison with the previous version TAMSAT 2)
product and has shown a good result and even better than CHIRPS in detecting maximum dekadal rainfall values.

The plot in Figure 3 further reveals that CHIRPS and TAMSAT 3 are very close to the rain gauge observation at all rainfall
measurement values, except at little rain (< 20 mm) and rainfall between (20 to100 mm) accumulation, respectively, where
they show a slight overestimation. The CHIRPS product has also demonstrated a little underestimation in high rainfall areas.
A similar result for CHIRPS product has been noted by prior studies of Tote et al. (2015) and Trejo et al. (2016) in
Mozambique and Venezuela, respectively. However, TAMSAT 2 and ARC 2 are well below the rain gauge observations.
Further, the comparison between SREs and rain gauge observations at 80% frequency level revealed that TAMSAT 3 and
CHIRPS only varies with 5.9 mm above and 2.69 mm below, respectively, from the 71.5 mm rainfall value recorded by
gauge observations while ARC 2 and TAMSAT 2 are 13.84 mm and 16.3 mm below, respectively, at dekadal temporal
scale. This shows that CHIRPS (followed by TAMSAT 3) is very close while TAMSAT 2 and ARC 3 are well below to rain
gauge observed values.

Also, a scatter plots shown in Figure 4 were used to further define the relationship between satellite rainfall products and rain
gauge observations. The satellite rainfall estimates show better agreement with rain gauge observations at lower rainfall
amount. The agreement slowly reduces to the higher values. However, CHIRPS and TAMSAT 3 have shown a relatively
better deal with rain gauge observations (with R?=0.66 and 0.60, in their order of appearance) in comparison with other
satellite rainfall estimates at dekadal time scale. Whereas, ARC 2 has exhibited the lowest agreement with rain gauge values
(R?=0.52), compared to other SREs. The regression values are very consistent with the values presented in CDF shown in

Figure 3.

5.2.2 Comparison at different elevations using the dekadal time scale data

The effect of topography on the skill of satellite rainfall products might be substantial (Hirpa et al., 2010). Stations selected
in this study have a broad range of elevation from 790 to 3098 m a.s.l. This wide range of elevation and spatial variation is
essential to validate the dependence of the satellite rainfall products on topographic patterns. The dekadal time scale data
classified into the 32 rain gauge stations. Thus, the skills of the satellite products at different station elevations have been
validated, and the results are given in Figure 5 and 6, below.

Figure 5 depicts the categorical and volumetric indices of the satellite products at different elevation values during 2000 to
2015. CHIRPS has shown a prominent skill than TAMSAT and ARC 2 products and scored POD and VHI values of close to
1.00 at most elevations. However, the competencies of TAMSAT and ARC 2 products seem to reduce with elevations at
POD and CSI.

A closer look in Figure 5 (a) and to some extent in Figure 5 (c) above indicated that there is a clear trend of decreasing the
skills of TAMSAT 3 and ARC 2 with an increase in elevations. Stations with a relatively low elevation values ranging from
790 to 1928 m detected the highest POD and CSI values of TAMSAT and ARC 2 estimates, whereas the majority of the
lowest values of these skills (by TAMSAT and ARC 2) recorded by relatively high elevation stations ranging from 2000 to
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3098 m. Further analysis of the correlation between the satellites skills (i.e. POD, FAR, CSI, VHI, VFAR, and VCSI) and
elevations (given in Table 3 below) showed that the POD of TAMSAT 3 and ARC 2 product have a substantial negative
correlation with elevation (r=-0.55), followed by TAMSAT 2 (r=-44). The relationship between the overall skills (CSI) of
the satellite and elevations have also scored r=-0.43, -0.38 and -0.31 for ARC 2, TAMSAT 3, and TAMSAT 2, respectively.
The same table ([BIGIB) indicates that the skills of CHIRPS has resulted in a relatively low positive (=0.34) and negative
(r=-0.26) correlation coefficients with elevations. Overall, these results could imply that the skills of CHIRPS estimate are
less affected by variation in elevation in comparison to TAMSAT and ARC 2 products. However, in most other indices there
are no evident relationships between the skills of the SREs and change in elevations.

From the statistical analysis presented in Figure 6 (a), the satellite products have shown correlation coefficients (r) ranging
from 0.32 to 0.91 independent of variation in elevations. ARC 2 scored the highest correlation (r=0.91), closely followed by
CHIRPS (r=0.90), TAMSAT 2 (r=0.89), and TAMSAT 3 (+=0.87).

The lowest correlation (7=0.32) was scored by TAMSAT 2 at “Sirinka” rain gauge station with an elevation of 1861 m.a.s.l.
Also, Figure 6 (b) below illustrates the bias distributions of satellite rainfall estimates at different elevations. In general,
therefore, it seems that SREs bias ratios have slight elevation dependent trends, except for CHIRPS and TAMSAT 3 (Figure
6 (b) and Table 2). The CHIRPS and TAMSAT 3 have scored the best average bias ratio of (1.00 and 1.07, respectively)
independent of elevations, although they considerably under- or overestimates rainfall values at some elevations. However,
the bias ratio of TAMSAT 2 and ARC 2 seems affected by variation in elevations. For example, the average bias ratio
among satellite products at different elevation range were compared and ARC 2 (TAMSAT 2) resulted in the mean bias of
1.53 (1.35), 0.86 (0.73) and 0.77 (0.66) at low (< 1000 m a.s.l), medium (1000 to 2000 m a.s.l) and high elevation (> 2000 m
a.s.l), respectively. On the other hand, CHIRPS data set has scored a bias of 1.11, 0.99 and 1.00, while TMSAT 3 gained
1.14, 1.07 and 1.07 at low, medium and high elevation, respectively. These results are in good agreement with those
presented in Table 2 (above) and Figure 7 below. The results, as shown in Table 2, indicated that the bias ratio of ARC 2 and
TAMSAT 2 have the modest negative correlation with elevations (r=-0.44 and r=-38), respectively, while CHIRPS and
TAMSAT 3 resulted in a correlation values close to zero.

The same result has been revealed by Figure 7 above, in which TAMSAT 2 and ARC 2 underestimate rainfall values at
higher (Figure 7 (a)) and medium (Figure 7 (b)) elevations while they overestimate at lower elevation (Figure 7 (c)) stations.
The average dekadal values from all stations given in Figure 7 (d) further showed that TAMSAT 2 and ARC 2 consistently

underestimate rain gauge values, while CHIRPS and TAMSAT 3 show very close estimation, with a better performance

from CHIRPS. The relatively good performance of CHIRPS at different elevations partly because of the inclusion of typical

These could make CHIRPS a relatively better satellite rainfall product that might be used in complex topographic areas, such
as the UBN basin, to detect the pattern and variability of precipitation.
A possible explanation for TAMSAT 2 and ARC 2 overestimations at lower elevation might be the deep convective nature

of Inter Tropical Convergence Zone (ITCZ), the main rain producing mechanism in Ethiopia (Seleshi and Zanke, 2004), in
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the lower elevation areas that result in too deep cold clouds that may stay for a number of days. The underestimations at
higher elevation could be linked to the potential evaporation of rainfall at the cloud base in high altitude areas. However,
results (in Figure 6, Figure 7 and Table 2) above provide confirmatory evidence that the recent TAMSAT product
(TAMSAT 3) has addressed many of the weaknesses of TAMSAT 2 at complex topographic areas, particularly to the bias
ratios, and the improvement in this regard is very encouraging.

Besides, Figure 6 (c) above reveals that the RMSE of satellite products have Bl significant relationship with elevations.
Nevertheless, CHIRPS and TAMSAT 3 have relatively scored the least average RMSE (30.02 and 32.24 mm/dekad), while
ARC 2 and TAMSAT scored the largest RMSE (38.44 and 38.13 mm/dekad), [ESPCCHNGH.

5.3 Monthly comparison

The daily rain gauge observation and TAMSAT 3 and ARC 2 products were aggregated to monthly total rainfall, while
CHIRPS and TAMSAT 2 satellite rainfall products are available at monthly time scale. The monthly comparison was made
using i) all monthly values from rain gauge observation and satellite products and ii) [ISSHIGE the monthly values into

twelve classes for further validation of the satellite products at each specific month of the UBN basin.

5.3.1 Overall comparison at monthly temporal scale

Table 3 below summarized the overall monthly validation results. Figure 8 shows the scatter plot between rain gauge
observations and satellite rainfall estimates at monthly temporal scale. In general, the overall monthly comparisons between
the four SREs and the rain gauge observations have shown a better agreement than the comparison at dekadal temporal scale.
This is quite expected because errors at sub-monthly scale are showing closely symmetric characteristics and they may
finally cancel each other out following the aggregation to monthly temporal scale. The monthly comparisons, shown in
Table 3, indicated CHIRPS' -performance in most validation tools than TAMSAT and ARC 2. However, CHIRPS is still
with high FAR values and overestimates the frequency of rainfall events by 14%, but its monthly FAR value is much
improved in comparison to the dekadal time scale analysis (FAR=0.31). Comparing the TAMSAT products, TAMSAT 2 has
outperformed the new version TAMSAT 3 in the scores of POD and CSI, while they gained equal values in FAR, VFAR and
VCSI values. ARC 2 exhibited the lowest categorical and volumetric values.

BIBB, from the continuous statistical analysis in Table 3, a good agreement was found between rain gauge observations and
all the four SREs (r>=0.80). CHIRPS scored the highest correlation coefficient (#=0.88) and the least RMSE (59.03 mm
month™), closely followed by TAMSAT 3. While TAMSAT 2 and ARC 2 result the largest RMSE (78.65 mm and 79.21
mm month™) and the weakest but fairly good correlation coefficients (r=0.83 and 0.80), respectively. On the other hand,
CHIRPS and TAMSAT 3 satellite products resulted in bias values close to the perfect score 1.00, whereas TAMSAT 2 and
ARC 2 presented a poor bias ratios and underestimated monthly gauge observed rainfall by 31% and 24%, respectively. In
this respect, a lot has been done in the recent version of TAMSAT 3 and has significantly improved the weak bias values of

the previous version TAMSAT 2.
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The scatter plot in Figure 8 has been generated using all the monthly values from both the SREs and rain gauge observations
from 2000 to 2015. CHIRPS has the highest coefficient of determination (R?>=0.78) followed by TAMSAT 3 with R?>=0.73,
whereas TAMSAT 2 and ARC 2 scored the lowest coefficient of determinations with R>=0.69 and R*=0.63, respectively.
Overall, the skill of CHIRPS is still better than the other satellite rainfall estimates in the monthly time scale analysis as well.
In fact, TAMSAT 3 has shown a comparable performance and very close scores, in the majority of validation tools, with

CHIRPS, particularly to bias ratio, similar to the dekadal time scale analysis above.

5.3.2 Comparison at each month

The performances of the satellite products were also evaluated at each twelve months to understand the performance of SREs
at each month of the UBN basin, where different amount of rainfall is recorded. Thus, the monthly data from all the 32
stations for the validation period of 2000-2015 (both from SREs and rain gauge observations) were categorized into 12-
month classes. Months from June to September (wet months) contribute the largest proportion of annual rainfall in the study
area, followed by the dry months (from October to January) and little rainfall months (from February to May). Locally the
wet, dry and tiny rainfall months are called as “Kiremet,” “Bega” and “Belg” seasons, respectively. Figure 9 & 10 below,
illustrates the performances of all the four SREs at the categorical, volumetric and continuous statistical validation tools.

The categorical and volumetric analysis, presented in Figure 9 above, at each month revealed that the performances of all the
four satellite rainfall products are very encouraging during the wet months and have good agreement with rain gauge
observations, shown in the lower semicircle of the polar plot (i.e., high POD, VHI, CSI, VCSI and low FAR and VFAR). A
similar result has been obtained by Young et al. (2014) and Dinku et al. (2011b) during the wettest periods in Ethiopian
highland and over the upper Nile region in Ethiopia, respectively, using TAMSAT 2, ARC 2, TRMM and CMORPH satellite
rainfall products. This might be because the numbers of hit values are noticeably larger than the number of missed and false
events during the wet months. Over the upper semicircle of the polar plot in the same figure (Figure 9), dominated by dry
and small rainfall months, however, the satellite products have shown a relatively wider difference in their skills. CHIRPS
has scored the highest POD, VHI, CSI and VCSI values in comparison to TAMSAT and ARC 2 products. A comparable
finding has been reported by Tote et al. (2015) and Young et al. (2014). However, CHIRPS is still with high FAR (up to 0.4)
and VFAR (0.31) values, particularly during the months of January. The increased FAR, and VFAR values of CHIRPS is
because of the over-detecting of rainfall events that can perhaps be linked to its calibration with TMPA 3B42. The rather
weak performance of TAMSAT and ARC 2 products during the dry and small rainfall months could be associated with low
frequency of rain events ensuring to less amount of rainfall to be detected by the satellites. Overall, the result highlighted that
CHIRPS is relatively better than TAMSAT and ARC 2 products in the overall skill performance and a good agreement with
rain gauge observed rainfall data both in the wet and dry seasons, although it over-predicts rainfall events particularly for dry
and small rainfall months.

As can be seen from the continuous statistical validation presented in Figure 10 (a), the correlation coefficient for all four

satellite rainfall products are generally low (as low as r=0.03) during the dry months shown in the upper semicircle of the
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CHIRPS was relatively high, - the months of February and May, with values of r=0.53, r=0.82, r=0.72 and r=0.77
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for the months of March, June, July, and September, respectively. TAMSAT 3 has also scored comparable correlation values
during these months next to CHIRPS, while TAMSAT 2 and ARC 2 scored the weakest values. At the months of February
(r=0.58) and May (r=0.79), the highest correlation coefficients were recorded by TAMSAT 2 and TAMSAT 3, respectively.
Over the months of December, April and August all the four SREs scored low correlation values.

Further, in Figure 10 (b), CHIRPS has shown better bias ratio in all months, the months of November (0.78) and
December (0.70) and a little overestimation (1.13) at the months of February, [lCICHuMGNISHaIIOUnoN
-This result is consistent with CDF in Figure 3, where CHIRPS is less above rain gauge observation towards to the
little rainfall accumulations. SNl TAMSAT 3 scored the second best bias ratio next to CHIRPS, except in months from
December to March, in which considerably underestimates rain gauge observed rainfall. On the other hand, TAMSAT 2 and
ARC 2 result in a weak bias ratio at all months, mainly to dry months indicated in the upper semicircle of the polar plot
(Figure 10 (b)). Overall, the dependency of CHIRPS bias ratio on the monthly temporal pattern, particularly during the wet
seasons, is very minimal in comparison to TAMSAT 3. These would appear to indicate that the potential of CHIRPS satellite
rainfall estimates for hydrological functions. Following the performance of CHIRPS during months of high rainfall Trejo et
al. (2016) has also suggested it for hydrological applications. For hydrological monitoring, it is vital to accurately estimate
significant rain events (Dinku et al., 2007). CHIRPS scored the lowest RMSE followed by TAMSAT 3. TAMSAT 2 and
ARC 2 presented the relatively largest values of RMSE (Figure 10 (c)). In fact, RMSE is higher in the wet months due to

increased amounts of rainfall.

6 Conclusions

This study was set out with the aim of evaluating the performance of CHIRPS satellite rainfall estimates against 32 rain
gauge observations for the period of 200-2015 in the Upper Blue Nile Basin in Ethiopia. Then, the performance of CHIRPS
was compared with TAMSAT (TAMSAT 2 and TAMSAT 3) and ARC 2 rainfall products. In the course of the analysis, the
TAMSAT and ARC 2 products were validated as well. The TAMSAT 2 rainfall estimate was used in this study mainly to
assess the improvements made by the recent version of TAMSAT product (TAMSAT 3). A point-to-grid based comparison
was carried out at dekadal and temporal time scale using categorical, volumetric and continuous statistical validation tools.
The dekadal and monthly time scale data were further utilized for the validation of the SREs at different elevations and each
particular month of the UBN basin, respectively.

From the overall validation at dekadal and monthly temporal scale, CHIRPS has shown high skill and 88 bias ratio than
TAMSAT 3 and ARC 2. Indeed, TAMSAT 3 has scored very comparable values with CHIRPS product, particularly to the
bias ratio. While ARC 2 underestimates, rain gauge observed rainfall by 24%. Although CHIRPS over-predict rainy days

(i.e. - false alarm rate), its volumes of false alarm ratio are much reduced, and its overall performance is significantly
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improved and was better than TAMSAT 3 and ARC 2. Since the volumes of rainfall from false events detected by CHIRPS
were tiny, it had a minimal contribution on the total amounts of rainfall. The findings of this study, therefore, indicated that
event-based analysis solely might not be enough to verify the skill of the satellite rainfall product as small rain events might
lead to wrong conclusions.

Validation at different elevations indicated that all the SREs have generally good agreement with rain gauge observations
and their performances are independent of elevations, except at the skills of detecting rainfall events (POD) by TAMSAT 3
and ARC 2. The POD of TAMSAT 3 and ARC 2 have a considerable negative correlation (r=-55) with elevations and their
skills of detecting rainfall events reduced with an increase in elevations, while CHIPS result in a relatively small positive
correlation (7=0.34). Comparing all the satellite rainfall products, CHIRPS still scores the best values at most elevations. In
fact, TAMSAT 3 has also scored the best average bias ratio (1.07), pretty close to the CHIRPS' perfect score of 1.00.
Besides, the bias ratio of TAMSAT 2 and ARC 2 seems affected by variation in elevations. For instance, ARC 2 (TAMSAT
2) resulted in the average bias of 1.53 (1.35), 0.86 (0.73) and 0.77 (0.66) at lower (< 1000 m a.s.I), medium (1000 to 2000 m
a.s.l) and higher elevation (> 2000 m a.s.l), respectively.

The validation at each specific month of the study area has also generally indicated that the performances of SREs are good
during the wet months, except for the RMSE, and has a good agreement with rain gauge observations. In fact, RMSE is
higher in the wet months due to increased amounts of rainfall. The best values were scored by CHIRPS, closely followed by
TAMSAT 3 particularly for the correlation coefficient and the bias ratio. However, over the majority of little rainfall and dry
months, the SREs have shown their weak performance, especially for POD and VHI (TAMSAT and ARC 2), FAR and
VFAR (CHIRPS) and CSI, VCSI, correlation coefficient, and bias (all the four SREs). However, the overall skill of CHIRPS
is relatively good during these months as well and was better than TAMSAT 3 and ARC 2. The good performance has also
been observed from TAMSAT 3 next to CHIRPS, particularly to the bias ratios.

Summing up the results, the performance of CHIRPS in the UBN basin in Ethiopia is very encouraging and relatively better
than the other satellite rainfall products (TAMSAT and ARC 2). More specifically, the reliable performance of CHIRPS at
different elevations and during the wet months could make the product more appropriate for various hydrological and
rainfall analysis functions in complex topographic areas, such as the UBN basin. The performance of TAMSAT 3 is very
comparable to CHIRPS product and score close values to CHIRPS in many of the validation indicators, particularly to the
bias ratios. This validation study has also provided confirmatory evidence that the recent version of TAMSAT product
(TAMSAT 3) has well addressed many of the weaknesses of TAMSAT 2 (e.g., underestimations up to 31% in this study) at
complex topographic areas, and the improvement in this regard is very encouraging. Future work will involve on validation
of the product at different rainfall categories, spatial and temporal scale as well as during the drought and wet periods for

complete understandings of its potential.
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Table 1. Summary of the categorical, volumetric and continuous statistical validations at dekadal temporal scale. Probability of

Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), Volumetric Hit Index (VHI), Volumetric False Alarm
Ratio (VFAR), Volumetric Critical Success Index (VCSI), Correlation coefficient (r), bias and Root mean square error (RMSE). Q

Datasets POD FAR CSI VHI VFAR VCSI r bias RMSE

ARC 2 0.75 0.06 0.71 0.91 0.03 0.89 072 0.76  35.02

TAMSAT 2 0.83 0.09 0.77 0.94 0.03 0.91 076 [MEE 34.03 D
TAMSAT 3 0.83 0.09 0.76 0.96 0.03 0.93 0.78 1.04 32.19

CHIRPS 0.99 031 0.68 1.00 0.06 0.94 0.81 096 2845

19


Mean Square Error - in order to be consistent with the other parameters typing



why in bold?


Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-294 Atmospheric

Manuscript under review for journal Atmos. Meas. Tech. Measurement
Discussion started: 1 November 2017 Techniques
(© Author(s) 2017. CC BY 4.0 License. Discussions

. T L E—

CDF

Rain gauge observation
= ARC2
TAMSAT3
== CHIRPS
e TAMSAT2
I

0 | L | I | I
0 50 100 150 200 250 300 350 400
Dekadal rainfall (mm)

Figure 3: Cumulative distribution function (CDF) of dekadal rainfall . ground rainfall observation, ARC 2, TAMSAT, and
5 CHIRPS rainfall estimates.

S 400 § 400

g g

g g 300 5 "y 300

2 38

§1 ézoo Z,’ E 200

= =

S E100 s E100¢-

o c

g o s . L F o e AT ‘ ‘
0 50 100 150 200 250 300 0 100 200 300 400

ARC2 rainfall estimates (mm dekad'1) TAMSATS3 rainfall estimates (mm dekad'1)

0 50 100 150 200 250 300 0 50 100 150 200
CHIRPS rainfall estimates (mm dekad'1) TAMSAT2 rainfall estimates (mm dekad'1)

Rain gauge observation
(mm dekad'1)

Rain gauge observation
(mm dekad™)

Figure 4: Scatter plot between rain gauge observations and satellite rainfall estimates at dekadal temporal scale.
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Figure 5: Categorical and volumetric validations of satellite rainfall products at different elevation values: (a) Probability of
Detection (POD), (b) False Alarm Ratio (FAR), (¢) Critical Success Index (CSI), (d) Volumetric Hit Index (VHI), (¢) Volumetric

10

False Alarm Ratio (VFAR), and (f) Volumetric Critical Success Index (VCSI).

®

Table 2. Pearson correlation between the skills of SREs and station elevations (- important correlation coefficients are
presented here)l Probability of Detection (POD) and Critical Success Index (CSI).

Indices Stations elevation
ARC 2 TAMSAT 3 CHIRPS TAMSAT 2
POD -0.55 -0.55 0.34 -0.44
CSI -0.43 -0.38 -0.26 -0.31
BIAS -0.44 0.18 0.10 -0.39
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Figure 7: Comparison of the satellite products with the rain gauge observations B clevation range based on dekadal average
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x-axis represents the 36 dekadals of year.
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Table 3. Summary of the categorical, volumetric and continuous statistical validations at monthly temporal scale. Probability of

Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), Volumetric Hit Index (VHI), Volumetric False Alarm
Ratio (VFAR), Volumetric Critical Success Index (VCSI), Correlation coefficient (r), bias and Root _ (RMSE). Q

Datasets POD FAR CSI VHI VFAR VCSI r bias RMSE

ARC 2 0.78 0.03  0.76 0.95 0.02 0.93 0.80 0.76 79.21

TAMSAT 2 0.86 0.04 0.83 0.97 0.01 0.96 083 [MEE 7865 Q
TAMSAT 3 0.83 0.04 0.80 0.97 0.01 0.96 0.85 1.03 69.28

CHIRPS 1.00 0.14 0.86 1.00 0.02 0.98 0.88 096 59.03
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Figure 8: Scatter plot between rain gauge observations and satellite rainfall estimates at monthly temporal scale.
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Figure 9: Categorical and volumetric validation of the satellite products at each twelve months of the UBN basin for 2000-2015. (a)
Probability of Detection (POD), (b) False Alarm Ratio (FAR), (c) Critical Success Index (CSI), (d) Volumetric Hit Index (VHI), (e)
Volumetric False Alarm Ratio (VFAR), and (f) Volumetric Critical Success Index (VCSI).
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Figure 10: Statistical validation of the satellite products at each twelve months of the UBN basin for 2000-2025. (a) Pearson
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