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Abstract. Accurate measurement of rainfall is vital to analyze the spatial and temporal patterns of precipitation at various 

scales. However, the conventional rain gauge observations in many parts of the world such as Ethiopia are sparse and 

unevenly distributed. An alternative to traditional rain gauge observations could be satellite-based rainfall estimates. Satellite 15 

rainfall estimates could be used as a sole product (e.g. in areas with no (poor) ground observations) or through integrating 

with rain gauge measurements. In this study, the potential of a newly available Climate Hazards Group Infrared Precipitation 

with Stations (CHIRPS) rainfall product has been evaluated in comparison to rain gauge data over the Upper Blue Nile basin 

in Ethiopia for the period of 2000 to 2015. Besides, the Tropical Applications of Meteorology using SATellite and ground-

based observations (TAMSAT 3) and the African Rainfall Climatology (ARC 2) products have been used as a benchmark 20 

and compared with CHIRPS. From the overall analysis at dekadal and monthly temporal scale, CHIRPS exhibited the better 

performance in comparison to TAMSAT 3 and ARC 2 products. An evaluation based on categorical/volumetric and 

continuous statistics indicated that CHIRPS has the greatest skills in detecting rainfall events (POD = 0.99, 1.00) and 

measure of volumetric rainfall (VHI = 1.00, 1.00), the highest correlation coefficients (r = 0.81, 0.88), the better bias values 

(0.96, 0.96), and the lowest RMSE (28.45 mm/dekad, 59.03 mm/month) than TAMSAT 3 and ARC 2 products at dekadal 25 

and monthly analysis, respectively. CHIRPS overestimates the frequency of rainfall occurrence (up to 31% at dekadal scale), 

although the volume of rainfall recorded during those events was very small. Indeed, TAMSAT 3 has shown a comparable 

performance with that of CHIRPS product, mainly with regard to bias. The ARC 2 product was found to have the weakest 

performance underestimating rain gauge observed rainfall by about 24%. In addition, the skill of CHIRPS is less affected by 

variation in elevation in comparison to TAMSAT 3 and ARC 2 products. CHIRPS resulted an average biases of 1.11, 0.99 30 

and 1.00 at lower (< 1000 m a.s.l.), medium (1000 to 2000 m a.s.l.), and higher elevation (> 2000 m a.s.l.), respectively. 

Overall, the finding of this validation study shows the potentials of CHIRPS product to be used for various operational 

applications such as rainfall pattern and variability study in the Upper Blue Nile basin in Ethiopia. 
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1 Introduction 

Rainfall is a major component of the climate system and plays a key role in the Earth‘s hydrological cycle and energy 

balance. Rainfall variability in its rate, amount, and distribution substantially determine the earth‘s ecosystem, water cycle 

and climate (Huang and Van den Dool, 1993; Stillman et al., 2014). Thus, accurate measurement of rainfall is vital to 

analyze the spatial and temporal patterns of precipitation at various scales and advance our understanding of the effect of 5 

rainfall on agriculture, hydrology, and climatology. Conventionally, the rain gauge is a primary source of rainfall data, which 

has been the most accurate and reliable approach for rainfall measurement. However, ground rainfall stations in many parts 

of the world and most parts of Ethiopia are very sparse and unevenly distributed. As a result, analysis using rain gauge 

observation is significantly limited to point based particular location. Because of this scattered distribution of weather 

stations, the dependability of rain gauge data to estimate areal rain and spatial distribution of rainfall over large areas of 10 

Ethiopia is considerably reduced. However, advances in remote sensing science have provided an opportunity to estimate 

rainfall from satellite observations and are becoming an important source of rainfall data.  

Satellite-derived rainfall estimates (SREs) are widely available from Thermal Infrared Radiation (TIR) and Passive 

Microwave (PMW) Channels, from geostationary and Low-Earth-orbiting satellites, respectively. The TIR-based approaches 

use an indirect relationship to estimate rainfall from cloud top brightness temperatures. The TIR-based rainfall estimates 15 

have some uncertainties because of misidentification of rain-producing clouds such as cirrus clouds while warm clouds 

might generate a considerable amount of rain (Trejo et al., 2016). On the contrary, PMW approach is based on the direct 

measurements of atmospheric liquid water content and rainfall intensity by penetrating clouds and as a result would give 

more accurate rainfall estimates (Kummerow et al., 2001; Young et al., 2014). However, observations from PMW are less 

frequent due to a relatively low temporal resolution from low Earth-orbiting satellites. Combining TIR and PMW has been 20 

the recent approach to estimate rainfall from satellites nowadays. 

Techniques for satellite rainfall estimates have limitation and embedded uncertainties because satellites do not measure 

rainfall by itself and should be related to precipitations based on one or multiple surrogate variables (Wu et al., 2012; Toté et 

al., 2015). The uncertainties, therefore, may instigate in the processes of temporal samplings, error from algorithms and 

satellite instruments itself (Gebremichal et al., 2005). These may affect the accuracy of satellite-derived rainfall products and 25 

may result in a significant error when they are used for various purposes such as rainfall pattern and variability study. The 

issue of accuracy has received substantial attention to the extent that satellite-derived rainfall products are concerned. In this 

respect, stringent validation is essential to verify the performance of the product in a diverse physiographic setting and use 

for the intended applications.  

Several studies have been conducted in Ethiopia (e.g., Dinku et al, 2007, 2008 and 2011a; Hirpa et al., 2010; Romilly and 30 

Gebremichael, 2011; Young et al., 2014 and Gebre et al., 2015) and specifically to the Upper Blue Nile basin (e.g., Dinku et 

al. 2011b; Gebremichael et al., 2014; Fenta et al., 2014 and Worqlul et al., 2014) to validate the performance of satellite-

based rainfall products. These studies validated mainly the skills of Tropical Applications of Meteorology using SATellite 
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and ground-based observations (TAMSAT, Grimes et al., 1999; Thorne et al., 2001, Maidment et al., 2014; Tarnavsky et al., 

2014), Africa Rainfall Climatology version 2 (ARC 2, Novella and Thiaw, 2013), Tropical Rainfall Measuring Mission 

(TRMM, Huffman et al., 2007), Climate Prediction Centre (CPC) morphing technique (CMORPH, Joyce et al., 2004), and 

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN, Hsu and 

Sorooshian, 2008) precipitation products at different spatial and temporal scale and topographic patterns. The results of these 5 

studies indicate that the skills of SREs vary with the characteristics of local climate, topography, and seasonal distributions 

of rainfall and have shown low to moderately high skills. There is now a newly available satellite rainfall product called the 

Climate Hazards Group Infrared Precipitation with Stations (CHIRPS, Funk et al., 2015) with a relatively high spatial and 

temporal resolution (i.e. 5 km resolution at daily temporal scale) and quasi-global coverage. So far, however, there has been 

a very little work on the performance of CHIRPS satellite rainfall estimates over Ethiopia as well as other countries in 10 

Africa. That might be because CHIRPS is a relatively new dataset. The works of Toté et al. (2015) in Mozambique can be 

mentioned here as the first validation work we are aware of that reveals the potential applications of CHIRPS in Africa. 

Maidment et al. (2017) have also validated the performance of satellite rainfall products (including CHIRPS V 2.0) in four 

countries in Africa (Mozambique, Nigeria, Uganda, and Zambia). In general, these few validation works have shown the 

promising skills of CHIRPS in Africa and its potentials for various working applications in the continent. Nevertheless, it is 15 

important to note that for better exploitation of a relatively new CHIRPS rainfall product more validation work needs to be 

done at different spatial and temporal scales in the region.  

For this validation study, the Upper Blue Nile basin in Ethiopia was selected because of a relatively good density of rain 

gauge stations, varied topography, and high spatial and temporal variability of precipitation (Taye and Willems, 2013). The 

aim of this study was, therefore, to compare and validate the performance of CHIRPS with rain gauge observations that were 20 

collected from thirty-two weather stations from 2000 to 2015. CHIRPS performance was also compared against TAMSAT 3, 

TAMSAT 2, and ARC 2 satellite rainfall products. In the course of this analysis, both the TAMSAT and ARC 2 products 

have been validated as well. In addition, this study has also been paid some courtesy to compare TAMSAT 2 and TAMSAT 

3 products to assess the improvements made with the new version (TAMSAT 3, Maidment et al., 2017). The analyses used 

dekadal (10 days) and monthly time scale rainfall data both from the satellite products and rain gauge observations.  25 

The paper is structured as follows. Section 2 provides the site descriptions of the study area, followed by dataset used in the 

study (Section 3). In section 4 detailed descriptions of the methodology used in this study are provided. The results and 

discussions are given in Section 5. Finally, Section 6 presents our conclusions.  

2 Site descriptions 

The Upper Blue Nile (UBN) basin is located in the north-western part of Ethiopia with latitude between 7°45‘ and 12°45‘ N 30 

and longitude between 34°30‘ and 39°45‘ E (Figure 1). The Blue Nile River is originated from Lake Tana in Ethiopia and 

travels all the way to the Sudanese border to finally meet the White Nile at Khartoum. The UBN basin is a primary source of 
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the Nile River, and it contributes about 60% of the annual flow of the Nile (Conway, 2005; Degefu, 2003). The basin has an 

approximate drainage area of 176,000 km
2
 (Conway, 2000). The basin is characterized by a complex topography with 

elevation ranging from 4261 m a.s.l. at the north-eastern part of the basin to 500 m a.s.l. at the western part of the basin near 

the Ethiopian-Sudan border (Figure 1). The incessantly changing topography of the basin leads to varying agro-ecology 

within short distances. The climate of the UBN basin ranges from humid to semi-arid. The main rainfall season (known as 5 

―Kiremt‖) occurs from June to September. The dry season runs from October to January followed by a short rainy season 

(called ―Belg‖) from February to May. According to Kim et al. (2008), about 70% of the annual precipitation in the study 

area (UBN basin) is observed during the Kiremt season. The UBN basin receives up to 2,200 mm of annual rainfall. The 

annual mean rainfall varies between 1200-1800 mm (Conway, 2000) with an increasing trend from northeast to southwest 

(Kim et al., 2008). However, the basin is characterized by large temporal fluctuations in rainfall (Conway, 2000; Taye and 10 

Willems, 2013) both in intra-annual and inter-annual scale. As a result, the hydrological processes in the basin are quite 

complex and highly variable in space and time. The impact of rainfall variability in the basin described by severe and regular 

climatic and hydrological extremes, such as floods and droughts and ensuing low rate of food production and poverty (Taye 

and Willems, 2012). Although quite a diverse land use systems are common, the livelihoods of the majority of the 

populations in the basin are highly dependent on rain-fed agriculture. 15 

3 Data set 

Rainfall data for this study were collected from ground based weather stations and remote sensing satellite estimates. 

3.1 Station data 

Rain gauge observed daily rainfall data from thirty-two 1
st
 and 2

nd
 class stations from 2000 to 2015 were collected from the 

National Meteorological Agency (NMA) of Ethiopia. First class stations (synoptic stations) are those stations where all 20 

meteorological parameters are recorded every hour. While for second class stations observations are taken every three hours.  

Since the SREs evaluated here incorporate rain gauge data, the available rain gauge datasets were compared with the station 

archives (data source for the generation of CHIRPS, TAMSAT, and ARC2) and those datasets used for the generation of 

SREs were removed from the analysis to guarantee the complete independence of the validation datasets. Therefore, a total 

of 3460 complete dekadal observations that were not used for the generation/calibration of SREs were retained for the 25 

validation over the thirty-two stations.  

3.2 Satellite rainfall data 

High resolution satellite rainfall products selected for this study are CHIRPS v.2.0 (a relatively new satellite rainfall 

product), TAMSAT 3, TAMSAT 2, and ARC 2. The TAMSAT 2 product was used in this study mainly to assess the 

improvements made by the recent version TAMSAT 3. These rainfall products were selected because they: (i) have a 30 
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relatively high spatial resolution, (ii) relatively with long time series, and (iii) are freely available. Brief descriptions of these 

datasets are given below. 

3.2.1 CHIRPS, v 2.0 

CHIRPS is a quasi-global (50° S-50° N) gridded products available from 1981 to near-present at 0.05° spatial resolution 

(~5.3 km) and at daily, pentadal, dekadal, and monthly temporal resolution (Funk et al., 2015). The CHIRPS dataset is 5 

developed by the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) at the University of California 

(Knapp et al., 2011; Funk et al., 2015). The development of CHIRPS products entails three major input datasets and 

processes. First, Infrared Precipitation (IRP) pentad (5-day) rainfall estimates are created from two TIR satellite observations 

archives (i.e., Globally Gridded Satellite (GriSat) and NOAA Climate Prediction Center dataset (CPC TIR)) using cold cloud 

durations (CCD) and calibrated using the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA 10 

3B42) precipitation pentads. Then, the IRP pentads were divided by its long-term IRP mean values to present as percent of 

normal. Second, the percent of normal IRP pentad is then multiplied by the corresponding Climate Hazards Precipitation 

Climatology (CHPClim) pentad to produce an unbiased gridded estimate, with units of millimetres per pentad, called the 

CHG IR Precipitation (CHIRP). In the third part of the process, the final product CHIRPS has been produced through 

blending stations with the CHIRP data sets. Details of CHIRPS satellite rainfall products can be found in Funk et al. (2015).  15 

3.2.2 TAMSAT 

TAMSAT product is developed by the University of Reading based on Meteosat TIR (Thermal Infrared) channel. TAMSAT 

rainfall estimation method (Dugdale et al., 1991; Grimes et al., 1999; Thorne et al., 2001; Maidment et al., 2014; Tarnavsky 

et al., 2014) assumes that rainfall is produced from convective clouds that lead to cold cloud tops, and rainfall and CCD are 

linearly correlated. The retrieval algorithm is calibrated using local gauge records. TAMSAT products are available from 20 

1983 onwards at 0.0375° spatial resolution (~4 km) and at dekadal, monthly, and seasonal temporal resolution. This 

validation study has considered the recent version of TAMSAT product (TAMSAT 3) for the comparison to CHIRPS 

product. However, the previous version (TAMSAT 2) was also incorporated to further confirm the improvements made by 

the recent version TAMSAT 3. The principle of the TAMSAT method is still the same for TAMSAT 2 and TAMSAT 3. 

However, there are some improvements on the calibration procedures and approaches. Details on the main difference 25 

between the recent version (TAMSAT 3) and the previous version (TAMSAT 2) have been provided by (Maidment et al., 

2017). 

3.2.3 ARC 2 

ARC 2 is the revised version of the first version ARC 1 (Novella and Thiaw, 2013). The ARC 2 satellite rainfall estimates 

was produced from two primary input data sources: 1) 3-hourly geostationary infrared (IR) data centred over Africa from the 30 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and 2) quality controlled Global 
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Telecommunication System (GTS) gauge observations reporting 24-hour rainfall accumulations over Africa (Novella and 

Thiaw, 2013). The ARC 2 dataset is available at daily time scale with a grid resolution of 0.1° X 0.1°and with a spatial 

domain of 40° S-40° N and 20°  W-55° E, encompassing the African continent from 1983 to the present.  

4 Methodology 

This study has evaluated the performance of CHIRPS satellite rainfall estimates at dekadal and monthly temporal scales 5 

against thirty-two rain gauge observations and compared with TAMSAT 3, TAMSAT 2, and ARC 2 products for the period 

of 2000 to 2015. The dekadal and monthly data were further classified to validate the satellite products per elevations and for 

each month over the UBN basin, respectively. The double mass curve techniques and correlation coefficient analysis (similar 

to Gebere et al., 2015) confirmed the consistency and homogeneity of rain gauge observations, respectively. The dekadal and 

monthly data were created from the aggregates of daily rain gauge observations and TAMSAT 3 and ARC 2 rainfall values, 10 

while CHIRPS and TAMSAT 2 satellite products are available at dekadal and monthly time scale. The comparison between 

gridded satellite rainfall estimates and ground rainfall observations can be made using either grid-to-grid or point-to-grid 

comparison methods. However, an attempt made to convert point ground observations to gridded interpolated dataset lead to 

poor result due to uneven geospatial distributions of gauge stations. Thus, this study has used point-to-grid comparison 

approaches. For each validation station, the grid values of satellite rainfall products containing the stations were extracted 15 

and pair-wise comparisons with rain gauge values have been undertaken. 

4.1 Performance analysis 

The performances of satellite rainfall estimates were analyzed using categorical and volumetric indices and the continuous 

statistical measures. The most common form of categorical indices is a 2 x 2 contingency table which reports the number of 

hit (H), miss (M), false alarm (F) and true null events. To describe whether there is rain or no rain events, a threshold value 20 

of 1.0 mm/dekad or month was used in evaluating the skills of the satellite products. 

4.1.1 Categorical validation indices 

This section summarizes the categorical indices used to assess the intensity of rainfall estimated by satellite products with 

respect to gauge observation. These include the Probability of Detection (POD), the False Alarm Ratio (FAR), and the 

Critical Success Index (CSI). The POD score is defined as H/(H+M), and it describes the fraction of the gauge observations 25 

detected correctly by the satellite, while the false alarm ratio, FAR=F/(H+F), corresponds to the portion of events identified 

by the satellite but not confirmed by gauge observations. The Critical Success Index, CSI=H/(H+M+F), combines different 

aspects of the POD and FAR, describing the overall skill of the satellite products relative to gauge observation. All these 

categorical validation indices have a score values ranging from 0 to 1; and 1 indicates the perfect skill, except for FAR the 

perfect score is 0. 30 
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4.1.2 Volumetric validation indices 

Since the contingency table metrics do not provide information regarding the volume of correctly (incorrectly) detected 

rainfall by the satellite products relative to rain gauge observations, recently AghaKouchak and Mehran (2013) suggested an 

extension of categorical table indices known as ―volumetric indices". In this study, therefore, the volumetric indices that 

include: (a) Volumetric Hit Index (VHI), (b) Volumetric False Alarm Ratio (VFAR), and (c) the Volumetric Critical Success 5 

Index (VCSI) that were proposed by AghaKouchak and Mehran (2013) have been adopted to evaluate the volumetric 

performance of the selected satellite rainfall products. 

VHI =
 (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖>𝑡))𝑛

𝑖=1

 (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖>𝑡))𝑛
𝑖=1 + (𝐺𝑖|(𝑆𝑖≤𝑡 & 𝐺𝑖>𝑡))𝑛

𝑖=1

 ,                                               

(1) 

VHI: volume of correctly detected rainfall by the satellites relative to the volume of the correctly detected satellites and 10 

missed gauge observations 

FAR =
 (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖≤𝑡))𝑛

𝑖=1

 (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖>𝑡))𝑛
𝑖=1 + (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖≤𝑡))𝑛

𝑖=1

 ,                                           

(2) 

VFAR: volume of false rainfall by the satellites relative to the sum of rainfall by the satellites 

VCSI =
 (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖>𝑡))𝑛

𝑖=1

 (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖>𝑡))𝑛
𝑖=1 + (𝐺𝑖|(𝑆𝑖≤𝑡 & 𝐺𝑖>𝑡))+ (𝑆𝑖|(𝑆𝑖>𝑡 & 𝐺𝑖≤𝑡))𝑛

𝑖=1
𝑛
𝑖=1

 ,                                  (3) 15 

VCSI: overall measure of volumetric performance.  

 

Here S is satellite rainfall estimates, G is gauge observations, i=1 to n and n is the sample size, and t is the threshold values 

(t=1mm in this study).  

4.1.3 Continuous statistical tools 20 

In addition, the continuous statistical measures were used to quantify the overall performance of the satellite rainfall 

products. 

r=
  𝐺−𝐺  (𝑆−𝑆)   

  (𝐺−𝐺 )2  (𝑆−𝑆)   2
 ,                     (4) 

Pearson correlation (r) is used to evaluate the goodness of fit of the relation. The value of 1 is the perfect score. 

RMSE =  
 (𝐺−𝑆)2

𝑛
 ,                      (5) 25 
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The root mean square error (RMSE) measures the absolute mean difference between two data sets. The value of 0 is the 

perfect score. 

Bias =
 𝑆

 𝐺
 ,                    (6) 

Bias is a measure of how the average satellite rainfall magnitude compares to the ground rainfall observation. The value of 1 

is the perfect score. A bias value above (below) 1 indicates an aggregate satellite overestimation (underestimation) of the 5 

ground precipitation amounts. 

 

Here G is gauge rainfall observations, S is satellite rainfall estimates, 𝐺  is average gauge rainfall observations, 𝑆  is the 

average satellite rainfall estimates, and n is the number of data pairs. 

5 Results and Discussions 10 

The performances of satellite rainfall estimates were evaluated using the categorical indices (i.e., POD, FAR and CSI), 

volumetric index (i.e., VHI, VFAR, and VCSI), and a set of continuous statistics (i.e., correlation coefficient (r), bias and 

RMSE) at dekadal and monthly temporal scale. High values of POD, VHI, CSI, VCSI, and r, and small values of FAR, 

VFAR, and RMSE, and bias values of one (or near to one) indicate a good performance of the satellite rainfall products. 

5.1 Spatial rainfall patterns of satellite products 15 

Figure 2 provides the 16-years mean rainy season (June to September) and the annual rainfall of TAMSAT 2, ARC 2, 

TAMSAT 3, and CHIRPS satellite rainfall products over the UBN basin in Ethiopia for the period of 2000 to 2015. The 

wet/kiremt season (June to September) produced the majority of the total annual precipitation. Therefore, both the rainy 

season (Figure 2 (a)) and annual estimates (Figure 2 (b)) generated by the satellite products have shown a similar rainfall 

patterns. However, TAMSAT 2 and ARC 2 showed a decreasing trend of rainfall from west to the east region (or from low 20 

to high elevation areas) of the basin, while TAMSAT 3 and CHIRPS show a significant amount of rainfall in the central and 

southwest regions. The large discrepancy in TAMSAT 2 and ARC 2 rainfall pattern in the west and east areas could be 

attributed to the orographic effect on rainfall. 

5.2 Dekadal comparison 

The dekadal comparisons were made using i) all dekadal values from rain gauge observation and satellite products and ii) 25 

classified the dekadal values, for further validation, per elevation of the UBN basin. 
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5.2.1 Overall validation at dekadal temporal scale 

Table 1 gives an overall comparison between the satellite products and rain gauge observation from 2000 to 2015 at a 

dekadal temporal scale. Besides, Figure 3 and Figure 4 provide the cumulative distribution function (CDF) and the scatter 

plot, respectively.  

The overall evaluation and comparison summary, shown in Table 1, indicate that CHIRPS scored relatively higher POD, 5 

VHI, and VCSI values followed by TAMSAT 3 and TAMSAT 2. It is apparent from the same table that, both TAMSAT 

products have shown a similar skill and have scored almost similar POD, VHI and VCSI values. Given these results, it is 

possible to conclude that the improvement made by TAMSAT 3 over the previous version TAMSAT 2 on the skills of 

detecting the frequency of a rainfall event is very insignificant. On the other hand, ARC 2 scored relatively lower POD, VHI 

and VCSI values. 10 

However, ARC 2, TAMSAT 2, and TAMSAT 3 scored lower FAR and higher CSI values than CHIRPS. The CHIRPS 

product resulted in the highest FAR (0.31) and lowest CSI (0.68) values. Similarly, a FAR value of 0.29 (close to 0.31 of this 

study) for CHIRPS has been obtained by Tote et al. (2015) from the dekadal product validation in Mozambique. This means 

that TAMSAT (hereafter refers both version 2 and version 3) and ARC 2 products are better than CHIRPS in detecting the 

relative frequency of rain events. The overestimation of rainy days by CHIRPS might be related to the process of translating 15 

infrared (IR) CCD values into estimates of precipitation using the 0.25° grid cell TMPA datasets, that may result in the 

formation of too much light rain (Funk et al., 2015). Nevertheless, from the volumetric indices, VFAR values (0.06) of 

CHIRPS is much reduced, and its overall performance (VCSI=0.94) is improved and even better than TAMSAT and ARC 2 

products. Since the volumes of rainfall detected by CHIRPS during false events were tiny, it had a minimal contribution to 

the total amounts of rainfall. 20 

Further Table 1 showed that CHIRPS has a better agreement with the rain gauge observations than TAMSAT and ARC 2 on 

most continuous statistical assessments, results in the highest correlation coefficient (r), better bias value and the lowest 

RMSE. The two likely explanations for CHIRPS good performance might be the use of CHPClim and the inclusion of 

stations data in the CHIRPS datasets (Funk et al., 2015). Indeed, TAMSAT 3 has scored very comparable values with 

CHIRPS product, particularly to the bias ratio. Both CHIRPS and TAMSAT 3 have managed to reproduce the rainfall 25 

amount observed by rain gauge stations reasonably well (with an overall bias of 0.96 (i.e., underestimate only by 4%) and 

1.04 (overestimate only by 4%), respectively), while TAMSAT 2 and ARC 2 showed a substantial underestimation of rain 

gauge observation by 31% and 24%, respectively. The underestimations of ARC 2 and TAMSAT 2 might be attributed to 

the complex topography of the validation site (possibly dominated by warm rain processes) that may reduce the ability to 

identify rainy clouds (Dinku et al., 2007; Funk et al., 2015; Maidment et al., 2014) and the calibration process using gauge 30 

stations. However, the statistical analysis in Table 1 reveals that the recent version TAMSAT 3 has well addressed the 

problem of underestimation of rainfall by TAMSAT 2 and it significantly improved the bias ratios. Thus, the overall dekadal 
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validation and comparison indicated that CHIRPS has a high level of correspondence with rain gauge observations and may 

have a useful skill for various functions in the study area. 

In Figure 3, the CDF of dekadal rainfall between the satellite products and the rain gauge observation have presented to 

validate how often the satellite products occur below or above the rain gauge observation values. As can be seen in Figure 3 

(a), TAMSAT 3 has shown a better performance (followed by CHIRPS) in detecting dekadal maximum values observed by 5 

rain gauge stations. The result may show the significant improvements made by TAMSAT 3 in comparison to the previous 

version TAMSAT 2 product. The plot in Figure 3 (b) further reveals that CHIRPS and TAMSAT 3 are very close to the rain 

gauge observation at all rainfall measurement values, except for little rain (< 20 mm) and rainfall between (20 to100 mm) 

accumulation, respectively, where they show a slight overestimation. The CHIRPS product has also demonstrated a little 

underestimation in high rainfall areas. A similar result for CHIRPS product has been noted by prior studies of Tote et al. 10 

(2015) and Trejo et al. (2016) in Mozambique and Venezuela, respectively. However, TAMSAT 2 and ARC 2 are well 

below the rain gauge observations. The comparison between SREs and rain gauge observations at 80% frequency level 

indicated that TAMSAT 3 and CHIRPS only varies with 5.9 mm above and 2.69 mm below, respectively, from the 71.5 mm 

rainfall value observed by rain gauge stations while ARC 2 and TAMSAT 2 are 13.84 mm and 16.3 mm below, respectively, 

at dekadal temporal scale. This shows that CHIRPS (followed by TAMSAT 3) is very close while TAMSAT 2 and ARC 3 15 

are well below to rain gauge observed values. 

In addition, a scatter plots shown in Figure 4 were used to further define the relationship between satellite rainfall products 

and rain gauge observations. The satellite rainfall estimates show better agreement with rain gauge observations at lower 

rainfall amount. The agreement slowly reduces to the higher values. However, CHIRPS and TAMSAT 3 have shown a 

relatively better deal with rain gauge observations (with
 
r = 0.81 and 0.78, in their order of appearance) in comparison to 20 

TAMSAT 3 and ARC 2 at dekadal time-scale. Whereas, ARC 2 has exhibited the lowest agreement with rain gauge values (r
 

= 0.72), compared to other SREs. The regression values are very consistent with the values presented in CDF shown in 

Figure 3. 

5.2.2 Comparison at different elevations using the dekadal time scale data 

The effect of topography on the skill of satellite rainfall products might be substantial (Hirpa et al., 2010). Stations selected 25 

in this study have a broad range of elevation from 790 to 3098 m a.s.l. This wide range of elevation and spatial variation is 

essential to confirm the dependence of the satellite rainfall products on topographic patterns. The dekadal time scale data 

classified into the 32 rain gauge stations. Thus, the skills of the satellite products at different station elevations have been 

validated, and the results are given in Figure 5 and 6. 

Figure 5 depicts the categorical and volumetric indices of the satellite products at different elevation values during 2000 to 30 

2015. CHIRPS has shown a more prominent skill than TAMSAT and ARC 2 products and scored POD and VHI values 

close to 1.00 at most elevations. However, the competencies of TAMSAT and ARC 2 products in detecting rainfall events 

seem to reduce with elevations. 
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A closer look in Figure 5 (a) and to some extent in Figure 5 (c) indicated a clear trend of decreasing the skills of TAMSAT 3 

and ARC 2 with an increase in elevations. Stations with relatively low elevation values ranging from 790 to 1928 m resulted 

in the highest POD and CSI values for TAMSAT and ARC 2 estimates, whereas the majority of TAMSAT and ARC 2‘s 

least skills were recorded by relatively high elevation stations ranging from 2000 to 3098 m. Further analysis of the 

correlation between the satellites skills (i.e. POD, FAR, CSI, VHI, VFAR, and VCSI) and elevations (given in Table 2) 5 

showed that the POD of TAMSAT 3, TAMSAT 2, and ARC 2 products have a substantial negative correlation with 

elevation. The same table (Table 2), indicates that the skill of CHIRPS has resulted in a relatively low correlation coefficient 

with elevations. Overall, these results could imply that the skills of CHIRPS estimate are less affected by variation in 

elevation in comparison to TAMSAT and ARC 2 products. However, in most other indices no clear relationships between 

the skills of the SREs and change in elevations were observed. 10 

From the statistical analysis presented in Figure 6 (a), the satellite products have shown correlation coefficients (r) ranging 

from 0.32 to 0.91 independent of variation in elevations. The lowest correlation (r=0.32) was scored by TAMSAT 2 at 

―Sirinka‖ rain gauge station with an elevation of 1861 m.a.s.l. Moreover, the bias ratios for TAMSAT 2 and ARC 2 seem to 

have elevation dependent trends (Figure 6 (b) and Table 2). The CHIRPS and TAMSAT 3 have scored the best average bias 

ratios (1.00 and 1.07, respectively) independent of elevations, although they considerably under-/over-estimates rainfall 15 

values at some elevations. The average bias ratio among satellite products at wiser elevation range were compared and ARC 

2 (TAMSAT 2) resulted in the mean bias of 1.53 (1.35), 0.86 (0.73) and 0.77 (0.66) at low (< 1000 m a.s.l.), medium (1000 

to 2000 m a.s.l.), and high elevation (> 2000 m a.s.l.), respectively. On the other hand, CHIRPS dataset has scored a bias of 

1.11, 0.99 and 1.00, while TAMSAT 3 gained 1.14, 1.07 and 1.07 at low, medium, and high elevation, respectively. These 

results are in a good agreement with those presented in Table 2 and Figure 7. The results, as shown in Table 2, indicated that 20 

the bias ratio of ARC 2 and TAMSAT 2 have the modest negative correlation with elevations (r=-0.44 and r=-38), 

respectively, while CHIRPS and TAMSAT 3 resulted in correlation values close to zero. 

The same result has been revealed by Figure 7, in which TAMSAT 2 and ARC 2 underestimate rainfall values at higher 

(Figure 7 (a)) and medium (Figure 7 (b)) elevations while they overestimate at lower elevation (Figure 7 (c)) stations. The 

average dekadal values from all stations given in Figure 7 (d) further showed that TAMSAT 2 and ARC 2 consistently 25 

underestimate rain gauge values, while CHIRPS and TAMSAT 3 show very close estimation, with a better performance 

from CHIRPS. The relatively good performance of CHIRPS at different elevations is partly due to the inclusion of typical 

physiographic indicators such as elevation during the development of the datasets (Funk et al., 2015). These could make 

CHIRPS a relatively better satellite rainfall product that might be used in complex topographic areas, such as the UBN basin, 

to detect the pattern and variability of precipitation.  30 

A possible explanation for TAMSAT 2 and ARC 2 overestimations at lower elevation might be the deep convective nature 

of Inter Tropical Convergence Zone (ITCZ), the main rain producing mechanism in Ethiopia (Seleshi and Zanke, 2004), in 

the lower elevation areas that results in too deep cold clouds that may stay for a number of days. The underestimations at 

higher elevation could be linked to the potential evaporation of rainfall at the cloud base in high altitude areas. However, 
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results (in Figure 6, Figure 7 and Table 2) provide confirmatory evidence that the recent TAMSAT product (TAMSAT 3) 

has addressed many of the weaknesses of TAMSAT 2 at complex topographic areas, particularly to the bias ratios, and the 

improvement in this regard is very encouraging.  

Besides, Figure 6 (c) shows that the RMSE of satellite products have no significant relationship with elevations. 

Nevertheless, CHIRPS and TAMSAT 3 have scored the least average RMSE (30.02 and 32.24 mm/dekad) in comparison to 5 

ARC 2 and TAMSAT 2 RMSE (38.44 and 38.13 mm/dekad, respectively). 

5.3 Monthly comparison 

The daily rain gauge observation and TAMSAT 3 and ARC 2 products were aggregated to monthly total rainfall, while 

CHIRPS and TAMSAT 2 satellite rainfall products are available at monthly time scale. The monthly comparison was made 

using i) all monthly values from rain gauge observation and satellite products and ii) classified the monthly values into 10 

twelve classes for further validation of the satellite products for each specific month of the UBN basin. 

5.3.1 Overall comparison at monthly temporal scale 

Table 3 presents the summary of the overall monthly validation results. Figure 8 shows the scatter plot between rain gauge 

observations and satellite rainfall estimates at monthly temporal scale. In general, the overall monthly comparisons between 

the four SREs and the rain gauge observations have shown a better agreement than the comparison at dekadal temporal scale. 15 

This is quite expected because errors at sub-monthly scale are showing closely symmetric characteristics and they may 

finally cancel each other out following the aggregation to monthly temporal scale. The monthly comparisons, shown in 

Table 3, indicated CHIRPS' better performance in most validation tools than TAMSAT and ARC 2. However, CHIRPS is 

still with high FAR values and overestimates the frequency of rainfall events by 14%, but its monthly FAR value is much 

improved in comparison to the dekadal time-scale analysis (FAR=0.31). Comparing the TAMSAT products, TAMSAT 2 has 20 

outperformed the new version TAMSAT 3 in the scores of POD and CSI, while they gained equal values in FAR, VFAR and 

VCSI values. ARC 2 exhibited the lowest categorical and volumetric values. 

Additionally, from the continuous statistical analysis in Table 3 and the scatter plot in Figure 8, a good agreement was found 

between rain gauge observations and all the four SREs (r>=0.80). CHIRPS scored the highest correlation coefficient 

(r=0.88) and the least RMSE (59.03 mm month
-1

). While ARC 2 resulted in the largest RMSE (79.21 mm month
-1

) and the 25 

weakest but fairly good correlation coefficients (r= 0.80).  On the other hand, CHIRPS and TAMSAT 3 satellite products 

resulted in bias values close to the perfect score 1.00, whereas TAMSAT 2 and ARC 2 showed poor bias ratios and 

underestimated monthly gauge observed rainfall by 31% and 24%, respectively. In this respect, a lot has been done in the 

recent version of TAMSAT 3 and has significantly improved the weak bias values of the previous version TAMSAT 2. 

Overall, the skill of CHIRPS is still better than the other satellite rainfall estimates in the monthly time scale analysis as well. 30 

In fact, TAMSAT 3 has shown a comparable performance and very close scores, in the majority of validation tools, with 

CHIRPS, particularly to bias ratio, similar to the dekadal time scale analysis above. 
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5.3.2 Comparison at each month 

The performances of the satellite rainfall products were also evaluated for each month of the UBN basin, where different 

amount of rainfall is recorded. Thus, the monthly data from all the 32 stations for the validation period of 2000-2015 (both 

from SREs and rain gauge observations) were categorized into 12-month classes. Months from June to September (wet 

months) contribute the largest proportion of annual rainfall in the study area, followed by the dry months (from October to 5 

January) and little rainfall months (from February to May). Figure 9 and 10, illustrate the performances of all the four SREs 

for the categorical, volumetric and continuous statistical validation tools. 

The categorical and volumetric analysis, presented in Figure 9, for each month revealed that the performances of all the four 

satellite rainfall products are very encouraging during the wet months and have good agreement with rain gauge 

observations, shown in the lower semicircle of the polar plot (i.e., high POD, VHI, CSI, VCSI and low FAR and VFAR). A 10 

similar result has been obtained by Young et al. (2014) and Dinku et al. (2011b) during the wettest periods in Ethiopian 

highland and over the upper Nile region in Ethiopia, respectively, using TAMSAT 2, ARC 2, TRMM and CMORPH satellite 

rainfall products. This might be because the numbers of hit values are noticeably larger than the number of missed and false 

events during the wet months. Over the upper semicircle of the polar plot in the same figure (Figure 9), dominated by dry 

and small rainfall months, however, the satellite products have shown a relatively wider difference in their skills. CHIRPS 15 

has scored the highest POD, VHI, CSI and VCSI values in comparison to TAMSAT and ARC 2 products. A comparable 

finding has been reported by Tote et al. (2015) and Young et al. (2014). However, CHIRPS is still with high FAR (up to 0.4) 

and VFAR (0.31) values, particularly during the months of January. The increased in FAR and VFAR values of CHIRPS is 

because of the over-detecting of rainfall events that can perhaps be linked to its calibration with TMPA 3B42. The rather 

weak performance of TAMSAT and ARC 2 products during the dry and small rainfall months could be associated with low 20 

frequency of rain events ensuring to less amount of rainfall to be detected by the satellites. Overall, the result highlighted that 

the skill of CHIRPS is relatively better than TAMSAT and ARC 2 products and has a good agreement with rain gauge 

observed rainfall data both in the wet and dry seasons, although it over-predicts rainfall events particularly for dry and small 

rainfall months. 

As can be seen from the continuous statistical validation presented in Figure 10 (a), the correlation coefficient for all four 25 

satellite rainfall products are generally low (as low as r=0.03) during the dry months shown in the upper semicircle of the 

polar plot, except for the month of October. However, over the little rainfall and wet months, the correlation coefficient for 

CHIRPS was relatively high in comparison to TAMAT and ARC2, except for the months of February and May, with values 

of r=0.53, r=0.82, r=0.72 and r=0.77 for the months of March, June, July, and September, respectively. TAMSAT 3 has also 

scored comparable correlation values during these months next to CHIRPS, while TAMSAT 2 and ARC 2 scored the 30 

weakest values. At the months of February (r=0.58) and May (r=0.79), the highest correlation coefficients were recorded by 

TAMSAT 2 and TAMSAT 3, respectively.  Over the months of December, April and August all the four SREs scored low 

correlation values.  
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Further, in Figure 10 (b), CHIRPS has shown better bias ratio in all months, except at the months of November (0.78) and 

December (0.70) and a little overestimation (1.13) at the months of February, when a mainly small amount of rainfall 

recorded. This result is consistent with CDF in Figure 3, where CHIRPS is less above rain gauge observation towards to the 

little rainfall accumulations. TAMSAT 3 scored the second best bias ratio next to CHIRPS, except for the months of 

December to March, in which it considerably underestimates rain gauge observed rainfall. On the other hand, TAMSAT 2 5 

and ARC 2 result in a weak bias ratio for all months, mainly to dry months indicated in the upper semicircle of the polar plot 

(Figure 10 (b)). Overall, the dependency of CHIRPS bias ratio on the monthly temporal pattern, particularly during the wet 

seasons, is very minimal in comparison to TAMSAT 3. These would appear to indicate that the potential of CHIRPS satellite 

rainfall estimates for hydrological functions. Following the performance of CHIRPS during months of high rainfall Trejo et 

al. (2016) has also suggested it for hydrological applications. For hydrological monitoring, it is vital to accurately estimate 10 

significant rain events (Dinku et al., 2007). CHIRPS scored the lowest RMSE followed by TAMSAT 3. TAMSAT 2 and 

ARC 2 presented the relatively largest values of RMSE (Figure 10 (c)). In fact, RMSE is higher in the wet months due to 

increased amounts of rainfall. 

6 Conclusions 

This study was set out with the aim of evaluating the performance of CHIRPS satellite rainfall estimates against 32 rain 15 

gauge observations over the Upper Blue Nile (UBN) basin in Ethiopia for the period of 2000 to 2015.Then, the performance 

of CHIRPS was compared with TAMSAT (TAMSAT 2 and TAMSAT 3) and ARC 2 rainfall products. In the course of the 

analysis, the TAMSAT and ARC 2 products were validated as well. The TAMSAT 2 rainfall estimate was used in this study 

mainly to assess the improvements made by the recent version of TAMSAT product (TAMSAT 3). A point-to-grid based 

comparison was carried out at dekadal and monthly temporal time scale using categorical, volumetric and continuous 20 

statistical validation tools. The dekadal and monthly time scale data were further utilized for the validation of the SREs at 

different elevations and for each particular month of the UBN basin, respectively.  

From the overall validation at dekadal and monthly temporal scale, CHIRPS has shown the highest skill, the lowest RMSE, 

and the better bias values than TAMSAT 3 and ARC 2. Indeed, TAMSAT 3 has scored very comparable values with 

CHIRPS product, particularly to the bias ratio. While ARC 2 underestimates rain gauge observed rainfall by 24%. Although 25 

CHIRPS over-predict rainy days (i.e. high false alarm rate), its volumes of false alarm ratio‘s are much reduced, and its 

overall performance is significantly improved and was better than TAMSAT 3 and ARC 2. Since the volumes of rainfall 

detected by CHIRPS during false events were tiny, it had a minimal contribution to the total amounts of rainfall. The 

findings of this study, therefore, indicated that event-based analysis solely might not be enough to verify the skill of the 

satellite rainfall product as small rain events might lead to wrong conclusions.  30 

Validation at different elevations indicated that all the SREs have generally good agreement with rain gauge observations 

and their performances are independent of elevations, except at the skills of detecting rainfall events (POD) by TAMSAT 3 
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and ARC 2. The POD of TAMSAT 3 and ARC 2 have a considerable negative correlation (r=-55) with elevations and their 

skills of detecting rainfall events reduced with an increase in elevations, while CHIPS result in a relatively small positive 

correlation (r=0.34). Comparing all the satellite rainfall products, CHIRPS still scores better values at most elevations. In 

fact, TAMSAT 3 has also scored a comparable average bias ratio (1.07), pretty close to the CHIRPS' perfect score of 1.00. 

Besides, the bias ratio of TAMSAT 2 and ARC 2 seems affected by variation in elevation.  5 

Generally, the validation for each specific month of the study area indicated that the performances of SREs are better during 

the wet months, except for the RMSE, and has a good agreement with rain gauge observations. In fact, RMSE is higher in 

the wet months due to increased amounts of rainfall. The best values were scored by CHIRPS, closely followed by 

TAMSAT 3 particularly for the correlation coefficient and the bias ratio. However, over the majority of little rainfall and dry 

months, the SREs have shown their weak performance, especially for POD and VHI (TAMSAT and ARC 2), FAR and 10 

VFAR (CHIRPS) and CSI, VCSI, correlation coefficient, and bias (all the four SREs). However, the overall skill of CHIRPS 

is relatively good during these months as well and was better than TAMSAT 3 and ARC 2. A good performance has also 

been observed from TAMSAT 3 next to CHIRPS, particularly to the bias ratios.  

Summing up the results, the performance of CHIRPS in the UBN basin is very encouraging and relatively better than the 

other satellite rainfall products (TAMSAT and ARC 2). More specifically, the reliable performance of CHIRPS at different 15 

elevations and during the wet months could make the product more appropriate for various hydrological and rainfall analysis 

functions in complex topographic areas, such as the UBN basin. The performance of TAMSAT 3 is very comparable to 

CHIRPS product and score close values to CHIRPS in many of the validation indicators, particularly to the bias ratios. This 

validation study has also provided confirmatory evidence that the recent version of TAMSAT product (TAMSAT 3) has well 

addressed many of the weaknesses of TAMSAT 2 (e.g., underestimations up to 31% in this study) at complex topographic 20 

areas, and the improvement in this regard is very encouraging. Future work will involve on validation of the product at 

different rainfall categories, spatial and temporal scale as well as during the drought and wet periods for complete 

understandings of its potential. 
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Figure 1: Elevations map of the Upper Blue Nile (UBN) basin and its location in Africa. The northeastern regions are with high 

elevation scenery while the northwestern regions are with low elevations.  
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Figure 2: Comparison of mean satellite rainfall estimates for: (a) Kiremt season (June-September) and (b) annual rainfall over the 

Upper Blue Nile basin for the period of 2000-2015. Years with missed values were not considered in the mean analysis. 

 5 

Table 1. Summary of the point-to-grid evaluation at dekadal temporal scale using categorical, volumetric and continuous 

statistical tools. Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), Volumetric Hit Index 

(VHI), Volumetric False Alarm Ratio (VFAR), Volumetric Critical Success Index (VCSI), correlation coefficient (r), bias and the 

Root Mean Square Error (RMSE). The RMSE values are shown in millimeters. 

 10 

Datasets  POD FAR CSI VHI VFAR VCSI r bias RMSE 

ARC 2 0.75 0.06 0.71 0.91 0.03 0.89 0.72 0.76 35.02 

TAMSAT 2 0.83 0.09 0.77 0.94 0.03 0.91 0.76 0.69 34.03 

TAMSAT 3 0.83 0.09 0.76 0.96 0.03 0.93 0.78 1.04 32.19 

CHIRPS 0.99 0.31 0.68 1.00 0.06 0.94 0.81 0.96 28.45 
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Figure 3: Cumulative distribution function (CDF) of dekadal rainfall for (a) ground rainfall observation, ARC 2, TAMSAT, and 

CHIRPS rainfall estimates and (b) magnified view of their CDF for 0 to 200 mm part over the Upper Blue Nile basin for the 

period of 2000-2015. 5 

 
 

Figure 4: Scatter plot between rain gauge observations and satellite rainfall estimates at dekadal temporal scale over the Upper 

Blue Nile basin for the period of 2000-2015. 



21 

 

 

 

Figure 5: Categorical and volumetric indices of satellite rainfall products as a function of elevation: (a) Probability of Detection 

(POD), (b) False Alarm Ratio (FAR), (c) Critical Success Index (CSI), (d) Volumetric Hit Index (VHI), (e) Volumetric False Alarm 

Ratio (VFAR), and (f) Volumetric Critical Success Index (VCSI) over the Upper Blue Nile basin for the period of 2000-2015. 5 

Table 2. Pearson correlation between the skills of SREs and station elevations (only important correlations are presented here). 

Probability of Detection (POD), Critical Success Index (CSI), and bias.  

 

Indices  Stations elevation 

 ARC 2 TAMSAT 3 CHIRPS TAMSAT 2 

POD -0.55 -0.55 0.34 -0.44 

CSI -0.43 -0.38 -0.26 -0.31 

bias -0.44 0.18 0.10 -0.39 
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Figure 6: Statistical validation of the satellite products as a function of elevation: (a) Pearson correlation coefficient (r), (b) bias, 

and (c) the Root Mean Square Error (RMSE) over the Upper Blue Nile basin for the period of 2000-2015. 

 5 
Figure 7: Comparison of the satellite products at gauge stations with wider difference in elevation values (e.g., > 2000m), based on 

dekadal average over the Upper Blue Nile basin for the period of 2000-2015: (a) at “Nefas Mewucha” station with an elevation of 

3098 m a.s.l., (b) at “Majate” stations with an elevations of 2000 m a.s.l., (c) at “Metema” stations with an elevation of 790 m a.s.l., 

and (d) at dekadal rainfall average from all rain gauge stations. The x-axis represents the 36 dekadals of a year.  
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Table 3. Summary of the point-to-grid evaluation at monthly temporal scale using categorical, volumetric, and continuous 

statistical tools. Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), Volumetric Hit Index 

(VHI), Volumetric False Alarm Ratio (VFAR), Volumetric Critical Success Index (VCSI), correlation coefficient (r), bias and the 

Root Mean Square Error (RMSE). The RMSE values are shown in millimeters. 5 
 

 

Datasets  POD FAR CSI VHI VFAR VCSI r bias RMSE 

ARC 2 0.78 0.03 0.76 0.95 0.02 0.93 0.80 0.76 79.21 

TAMSAT 2 0.86 0.04 0.83 0.97 0.01 0.96 0.83 0.69 78.65 

TAMSAT 3 0.83 0.04 0.80 0.97 0.01 0.96 0.85 1.03 69.28 

CHIRPS 1.00 0.14 0.86 1.00 0.02 0.98 0.88 0.96 59.03 

 

 

 10 

Figure 8: Scatter plot between rain gauge observations and satellite rainfall estimates at monthly temporal scale over the Upper 

Blue Nile basin for the period of 2000-2015.   
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Figure 9: Categorical and volumetric validation of the satellite products for each month of the Upper Blue Nile basin for the 5 
period of 2000-2015: (a) Probability of Detection (POD), (b) False Alarm Ratio (FAR), (c) Critical Success Index (CSI), (d) 

Volumetric Hit Index (VHI), (e) Volumetric False Alarm Ratio (VFAR), and (f) Volumetric Critical Success Index (VCSI).  

 

Figure 10: Statistical validation of the satellite products for each month of the Upper Blue Nile basin for the period of 2000-2015:  

(a) Pearson correlation coefficient (r), (b) bias ratio, and (c) the Root Mean Square Error (RMSE). The RMSE values are shown in 10 
millimeters.  


