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Abstract 

The use of low-cost air quality sensors for air pollution research has outpaced our understanding 

of their capabilities and limitations under real-world conditions, and there is thus a critical need 

for understanding and optimizing the performance of such sensors in the field. Here we describe 

the deployment, calibration, and evaluation of electrochemical sensors on the Island of Hawai‘i, 20	

which is an ideal test-bed for characterizing such sensors due to to its large and variable sulfur 

dioxide (SO2) levels and lack of other co-pollutants. Nine custom-built SO2 sensors were co-

located with two Hawaii Department of Health Air Quality stations over the course of five 

months, enabling comparison of sensor output with regulatory-grade instruments under a range 

of realistic environmental conditions. Calibration using a nonparametric algorithm (k-Nearest 25	

Neighbors) was found to have excellent performance (RMSE < 7 ppb, r2 > 0.997) across a wide 

dynamic range in SO2 (<1 ppb, >2 ppm). However, since nonparametric algorithms generally 

cannot extrapolate to conditions beyond those outside the training set, we introduce a new hybrid 

linear/nonparametric algorithm, enabling accurate measurements even when pollutant levels are 
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higher than encountered during calibration. We find no significant change in instrument 

sensitivity toward SO2 after 18 weeks, and demonstrate that calibration accuracy remains high 

when a sensor is calibrated at one location and then moved to another. The performance of 

electrochemical SO2 sensors is also excellent at lower SO2 mixing ratios (<50 ppb), where they 

exhibit an error of less than 4 ppb. While some specific results of this study (calibration 5	

accuracy, performance of the various algorithms, etc.) may not hold for measurements of other 

pollutant species in other areas (e.g., polluted urban regions), the calibration and validation 

approaches described here should be widely applicable to a range of pollutants, sensors, and 

environments. 

1 Introduction 10	

The last several years have seen an explosion in the use of low-cost sensor technologies for air 

pollution monitoring efforts (Snyder et al., 2013). The low cost, small size, and low power 

consumption of these sensors offers the promise of distributed measurements over wide 

geographical areas, with potential applications for topics such as air quality monitoring, source 

attribution, human exposure and epidemiology, and atmospheric chemistry. However, because of 15	

questions associated with their sensitivity, calibration, and long-term reliability, there is a critical 

need to establish a cohesive approach for evaluation and performance assessment of low-cost 

sensors prior to their large-scale adoption (Lewis and Edwards, 2016). 

 

One of the most commonly-used technologies for low-cost air quality sensing is the 20	

electrochemical sensor, in which a pollutant of interest reacts electrochemically within a cell, 

drawing a current that is proportional to the analyte concentration (Cao et al., 1992). Modern 

electrochemical sensors have sensitivities in the parts-per-billion by volume (ppb) range 
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(Hodgson et al., 1999), enabling sensitive, real-time pollutant measurements. However, accurate 

calibration of such sensors poses a major challenge. Even setting aside the logistical difficulties 

associated with calibrating a large number of sensors distributed throughout a network, there are 

specific technical challenges that can limit the accuracy of any calibration; these include the 

sensitivity of sensors to environmental conditions (temperature and relative humidity) (Cross et 5	

al., 2017; Masson et al., 2015; Mead et al., 2013; Popoola et al., 2016), cross-sensitivities to 

other (sometimes unknown or unmeasured) atmospheric species (Lewis et al., 2015; Mueller et 

al., 2017; Spinelle et al., 2015), and long-term sensitivity decay (drift) associated with the 

evaporation of electrolyte solution (Mead et al., 2013; Smith et al., 2017). 

 10	

Thus far, two primary approaches have been applied for the calibration of electrochemical (and 

other low-cost) air quality sensors: laboratory calibration and co-location with reference 

instruments. The first involves calibrating the sensor in a laboratory over a controlled and well-

defined range of conditions (Castell et al., 2017; Mead et al., 2013; Piedrahita et al., 2014), as is 

standard for calibration of high-fidelity atmospheric chemistry and air quality instrumentation. 15	

However, because electrochemical sensors tend to be less selective and more prone to 

interferences than such higher-fidelity instruments (Lewis et al., 2015), identifying and 

calibrating over the full range of relevant measurement conditions in the laboratory can be 

challenging, and the presence of additional interfering components cannot always be anticipated. 

In addition, this approach requires high-quality analytical instruments and standard gas mixtures, 20	

and so is generally not an option for anyone who is not affiliated with a research institution (e.g., 

community organizations, citizen scientists, etc.) or is conducting research in less-well funded 

environments (e.g., developing countries). 
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The second approach for calibrating low-cost sensors is by co-location with reference 

instruments, typically government-run air quality (AQ) stations equipped with regulatory-grade 

monitors. There are multiple advantages to this approach: the reference instruments are regularly 

calibrated, the reference measurement data are generally made publicly available (e.g., EPA 5	

AirNow (US EPA, 2017), OpenAQ (Hasenkopf, 2017)), and the calibrations are carried out 

under ambient conditions that are (at least partially) representative of the sensor measurements to 

be made. Indeed, the effectiveness of co-location has been demonstrated in several recent 

studies, with sensor outputs (voltages) and other environmental parameters (e.g., temperature) 

related to the true concentration values (from the reference instruments) via some form of 10	

regression, either from parametric models (Jiao et al., 2016; Lewis et al., 2015; Masson et al., 

2015; Mueller et al., 2017; Popoola et al., 2016; Smith et al., 2017) or machine-

learning/nonparametric methods (Cross et al., 2017; Spinelle et al., 2015). 

 

While this previous work has demonstrated the effectiveness of sensor calibration by co-location, 15	

this general approach has not yet been systematically explored or optimized for realistic 

deployment conditions. Specifically, there has been little consideration of the performance of 

sensors after they are moved from the calibration location to their measurement locations. 

Important open topics include: ideal calibration algorithms (regression techniques), criteria for an 

acceptable calibration (range of conditions sampled, length of calibration time) prior to sensor 20	

deployment, and performance of calibration algorithms when faced with conditions outside the 

training set. In fact, to our knowledge it has never been demonstrated whether a sensor can be 

calibrated at one ambient location and collect accurate data at another, which is a fundamental 
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requirement of any sensor deployment. Here, we attempt to address such questions by collecting 

an extensive co-location dataset and using it to assess various calibration algorithms. Central to 

this work is the development of models that are accurate, robust, repeatable, and predictive.  

 

All measurements in the present study are made on the Island of Hawai‘i (USA); due to the 5	

ongoing eruption of Kīlauea, local levels of SO2 can be extremely high (even exceeding 1 ppm) 

(Kroll et al., 2015), constituting serious air quality and human health concerns (Longo, 2009; 

Longo et al., 2010; Longo and M., 2013; Longo and Yang, 2008; Mannino et al., 1996; Tam et 

al., 2016). The SO2 is emitted from just two point sources (Halema‘uma‘u and Pu‘u ‘Ō‘ō; see 

Fig. 1) into an otherwise clean environment, leading to large spatial and temporal variability in 10	

SO2 levels throughout the island. Accurate air quality measurements and estimates of human 

exposure to volcanic pollution (“vog”) thus require a relatively dense monitoring network; in 

fact, the present calibration study is part of a planned island-wide AQ sensor network. Moreover, 

this location represents an ideal testbed for sensor characterization and validation, since air 

pollution is dominated by SO2, with no interfering gas-phase co-pollutants (H2S emissions from 15	

Kīlauea are generally quite low (Edmonds et al., 2013)), and the dynamic range in SO2 can be 

very large (varying from <1 ppb to >1 ppm). This is in contrast to environments targeted in most 

other AQ sensor studies (e.g., polluted urban areas), which tend to have more pollutants, 

typically present at lower concentrations. This location is thus an ideal environment for the 

detailed characterization of the sensor response to a single target analyte, the focus of the present 20	

study. At the same time, because of the unique features of this environment, not all results from 

this work (such as accuracy of the calibration) will necessarily directly translate to other 
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pollutants and environments. However, the general calibration and characterization approaches 

described here should be suitable for use in a wide range of sensor applications. 

 

In this study, we install a set of low-cost, autonomous SO2 sensor nodes at AQ stations on the 

island for a period of five months. This provides a large dataset for testing, validating, and 5	

optimizing this in-field co-location approach to calibration. We evaluate a number of sensor 

calibration algorithms (both parametric and nonparametric), with a particular focus on the 

temperature dependence of the baseline. Further, we investigate the performance of the 

calibrations given practical constraints (e.g., the possibility that measurement conditions may be 

different from those of the calibration period), and examine how sensitivity changes over a 10	

period of several months.   

 

2 Experimental Techniques and Design 

2.1 Sensor Node Design 

Measurements were made using a custom sensor node for continuous, real-time monitoring of 15	

ambient SO2 and environmental variables (temperature, relative humidity) at a fixed-site 

location. Each node is powered by a small solar panel and is internet-connected via a 3G cellular 

module to allow bi-directional communication between a server and the sensor node. The nodes 

are weatherproof (housed in a UL-certified weather-proof enclosure) and low-power (~1W), with 

a total component cost of ~$400. Major components of the design are shown in Fig. 2. 20	

 

SO2 is measured using an Alphasense SO2-B4 electrochemical sensor (purchased December 

2016, opened January 2017) in conjunction with the Alphasense potentiostat circuitry. This 4-
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electrode sensor includes a working electrode (WE), at which the electrochemical reaction 

(oxidation of SO2) takes place, as well as an auxiliary electrode (AE), which is isolated from the 

gas phase, but responds to changes in the signal associated with changing environmental 

variables. In particular, it has been shown that the AE response to changes in ambient 

temperature and relative humidity is non-linear (Cross et al., 2017; Lewis et al., 2015; Masson et 5	

al., 2015; Mead et al., 2013) and depends on not only these parameters but also their derivatives 

(Masson et al., 2015; Pang et al., 2017). The SO2 sensor and adjacent relative humidity and 

temperature (RHT) sensor (HIH6130, Honeywell) are embedded in a 3D-printed flow chamber, 

with a small direct current (DC) fan used to pull air perpendicular to the surface of the sensors. 

This design is improved from an earlier prototype that used a passive external sensor, which was 10	

susceptible to large temperature variations caused by direct irradiation by sunlight, and may have 

exhibited poorer sensitivity (Masson et al., 2015). The inlet and outlet of the recent design are 

protected from the elements by 3D-printed awnings that are epoxied in place. 

 

The analog signals are sampled at 20 Hz using a 16-bit Analog-to-Digital (ADC) converter 15	

(Texas Instruments ADS1115), before being averaged and saved locally as a 1-Hz measurement 

on a micro-SD card. The 1-Hz measurements are then averaged over a user-defined interval and 

transmitted to a remote server where data is stored in a MySQL database and visualized in real-

time. Flags were set to mark the first four hours after a node was turned on to indicate a sensor 

warm-up period (Roberts et al., 2012; Smith et al., 2017). In addition, flags are set whenever the 20	

ADC or RHT sensor reported a failure.	Throughout this deployment, data are transmitted to the 

server at a 1-minute interval. The node is operated using a 3G-enabled, ARM-based 

microcontroller (Particle Electron), allowing for two-way communication between the node and 
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the server. Each node is powered continuously using a 9W solar panel (Voltaic Systems) with a 

4000 mAh battery (Voltaic Systems V15) serving as the power supply when the solar panels are 

not supplying enough power. In areas with less sunlight, two 6W panels in parallel are used 

rather than a single 9W panel. At full charge the battery can supply continuous backup power for 

20 hours, allowing the nodes to run overnight without loss of power. 5	

 

2.2 Co-Location Details	 

2.2.1 Site Description and Reference Data 

Sensor nodes were first deployed on the island of Hawai‘i beginning January 15th, 2017 and most 

are still active as of August 2017. The Hawaii Department of Health (DOH) operates six AQ 10	

monitoring stations that continuously monitor SO2 and supporting meteorological variables 

including wind speed, wind direction, relative humidity, and temperature (Hawaii Department of 

Health, 2017). Continuous SO2 measurements are made by a pulsed-fluorescence analyzer 

(Thermo Scientific 43i), which provide data as 1-minute averages, and are calibrated at least 

once every two weeks. The data are continuous except during periods of calibration, which are 15	

excluded from the dataset. The AQ stations are spread across the island; the two primary sites 

used in this work are Pahala and Hilo (see Fig. 1). Pahala (pop. ~1,300; location: 19o12’9” N, 

155o28’38” W) is located 37 km southwest of the main volcanic vent (Halema‘uma‘u), and so is 

subjected to the volcanic plume when the trade winds (the prevailing winds, from the northeast) 

are dominant.  The mean 1-hour SO2 level is 39 ppb, though levels can exceed 1 ppm during 20	

direct plume hits (typically in the morning, when the boundary layer is low) (Kroll et al., 2015). 

Hilo (pop. ~43,300; location: 19o42’20” N, 155o5’9” W) is located 50km northeast of the 
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volcanic vent and is characterized by much lower SO2 values, with a mean 1-hour level of 6 ppb 

and a yearly maximum of 500 ppb (during southwesterly “Kona winds”).  

 

2.2.2 Co-Location of Nodes 

Nine sensor nodes were installed at the Pahala AQ station for no less than 48 hours each over a 5	

four-day period (January 15th – January 19th, 2017) for initial calibration. (Two additional nodes 

lost power for some fraction of this calibration period, and thus are not included in this study.) At 

the end of this calibration period, two nodes were re-located to the Hilo AQ station (January 23rd, 

2017 – ongoing as of August 2017), and three nodes remained at Pahala (still operating as of 

August 2017). The remaining four nodes were distributed to elementary and middle schools 10	

across the island; due to the lack of co-location data, measurements taken at the schools will not 

be discussed here. All co-located nodes were mounted on the roof of the air quality monitoring 

station, within 2 meters of the reference instrument’s inlet. In this work, we focus on the data 

collection period of January 15th- May 22nd, 2017. Power loss due to lack of sufficient sunlight 

impacted several nodes (mostly during early morning periods), though the two nodes located at 15	

Hilo and one node located at Pahala suffered no power loss. Beginning April 25th, the RHT 

sensor on one of the Pahala nodes (SO2-02) began to behave erratically for hours at a time, 

making it difficult to assess the data beyond that date. 

 

2.3 Data Analysis 20	

2.3.1 Data Preparation 

A time delay between the sensor data and AQ station reference data caused by differences in 

clock times and inlet residence times was corrected by determining the maximum cross-
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correlation (typically ~3 min) between the two time-series (Knapp and Carter, 1976) . 

Measurements marked by flags (indicating calibration of the reference instrument, sensor warm-

up time after power-on, etc.) were removed in both data streams prior to removing all sensor data 

for which no reference data was available. This process led to the exclusion of less than 1% of all 

sensor data collected. 5	

 

2.3.2 Sensor Calibration Approaches. 

Calibration of sensor response based on the AQ station data was attempted using several 

techniques, including both a parametric method (linear regression) and several nonparametric 

methods. All algorithms were implemented using the scikit-learn python library (Pedregosa et 10	

al., 2012) which is open source and available under a BSD license. (Several open-source 

software python packages were also used in this work for data analysis and visualization, 

including seaborn (Waskom et al., 2017), pandas (McKinney and Team, 2015), and numpy (Van 

Der Walt et al., 2011)). 

 15	

2.3.3 Linear Regression 

A multivariate linear regression (LR) using ordinary least squares (OLS) was constructed using 

the WE voltage (𝑉"#), AE voltage (𝑉$#), and temperature (𝑇) as inputs. Relative humidity (RH) 

was not included as an input parameter since no unique contribution to the variance in our signal 

could be attributed to it, as per the results of a commonality analysis (Seibold and McPhee, 20	

1979). This does not mean that sensor response is completely independent of RH, but rather that 

in the present dataset RH does not contribute to signal uniquely, as RH inversely tracks T in this 

environment. The form of the regression used is thus 
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   [SO)]	 𝑉"#, 𝑉$#, 𝑇 = 𝑐/𝑉"# + 𝑐)𝑉$# + 𝑐1𝑇    (1) 

 

To reduce instability and uncertainty in our model caused by outliers, we used an ensemble 

meta-estimator rather than a single linear model using a bootstrap process (Kohavi, 1995). This 5	

involves the construction of many individual linear models on random subsets of the original 

training data, followed by their combination based on median individual parameters. 

 

2.3.4 Machine Learning Approaches 

Because of concerns associated with the nonlinear dependence of sensor response on 10	

environmental variables (namely T), various nonparametric regression techniques were also 

explored. These algorithms were chosen based on their potential ability to determine the 

relationship between inputs (VWE, VAE, T) and outputs ([SO2]) without needing to know the 

functional form of the relationship itself. The methods examined were: ridge regression (RR), 

which attempts to reduce standard error by introducing bias to reduce multicollinearity among 15	

independent variables (Rifkin, 2007); least absolute shrinkage and selection operator (LASSO) 

regression, which similarly reduces covariance and overfitting by eliminating similar features 

and imposing an absolute limit on the sum of the coefficients (Tibshirani, 1996); classification 

and decision trees (CART), which forms a collection of rules based in a recursive fashion by 

selecting data that differentiate observations based on the dependent variable (Breiman et al., 20	

1984); and k nearest neighbors regression (kNN), which estimates the regression curve without 

making assumptions about the structure of the model (Altman, 1992). The kNN approach, which 

was found to have the best performance (see Results, below), involves mapping input variables 
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from the training data (VWE, VAE, T) to the output variable (SO2 mixing ratio) in an n-dimensional 

vector space. Determination of SO2 concentration using new sensor data involves mapping those 

data to the k nearest points in the same vector space, and computing the predicted value by taking 

the weighted average.  

 5	

3 Results and Discussion 

3.1 SO2 Sensor Response 

The 1-minute time-series for one sensor (SO2-02) located at the Pahala AQ station is shown in 

Fig. 3 for a four-day period at the beginning of the co-location campaign. The working electrode 

voltage (𝑉"#) is generally well-correlated to the reference SO2 measurement, except for periods 10	

of high temperature, where they clearly diverge. The auxiliary electrode (𝑉$#) peaks with an 

increase in T (and decrease in RH) and appears to follow the divergence between the 𝑉"# and 

SO2. As described above, RH does not provide any additional information because it is inversely 

correlated with T in this environment.  

 15	

3.2 Algorithm Selection 

The performance of each calibration algorithm (LR, RR, LASSO, CART, and kNN) was 

evaluated using the data from a sensor node SO2-02, located at Pahala from January 15th –April 

25th (for a total of 145, 467 1-minute data points). Assessment of each was done by performing a 

10-fold cross-validation, by randomly splitting the data into 10 subsets and then training the 20	

algorithm on 9 of the subsets and evaluating on the final one. This process is repeated such that 

every possible combination of training and evaluation dataset is tested. Scoring for each 
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algorithm was evaluated using the negative mean squared error and was performed both on 

normalized (scaled) and raw (un-scaled) data.  

 

Performance of each algorithm, described by the root mean squared error (RMSE) of the 

regression, is shown in Fig. 4. While all techniques show generally strong performance, kNN 5	

(scaled) gives the most accurate results. The linear regression performs at least as well as the 

remaining nonparametric algorithms. We thus focus on the results from these two regression 

algorithms, for all co-located sensor nodes. Parameters were tuned through a grid-search process 

(iterating over each possible parameter value) to determine the optimum settings. Finally, an 

ensemble meta-estimator was built using a bootstrap process (Breiman, 1996) where subsets of 10	

the data were pulled with replacement to be trained and voted into the final algorithm. For the 

kNN method, the optimized number of neighbors was found to be between 3 and 15 depending 

on sensor node. 

	
3.3 Algorithm Validation 15	

These two approaches (LR and kNN) are evaluated for all sensors by splitting the data into 

training and validation subsets: 70% of the data was randomly selected for training, and the 

remaining 30% for validation throughout the entire data collection period (which varies for each 

sensor). Predictive power of the models is described by their correlation coefficient (r2) and root 

mean square error (RMSE), evaluated only on the previously unseen validation data (and not on 20	

the training dataset itself). Results for node SO2-02 are presented in Fig. 5. 

 

The left panels of Fig. 5 show results from the multivariate linear regression (Eq. 1). SO2 mixing 

ratios measured by the electrochemical sensor are well-correlated with the reference SO2 monitor 
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(r2=0.987; 95% CI: 0.986, 0.988) and are reasonably accurate (RMSE = 9.7; 95% CI:  9.6, 9.9). 

The relative error (as a percentage of absolute concentration) decreases as the concentration of 

SO2 increases, dropping below 20% around 50 ppb, and below 5% at 100 ppb. This model 

performs well at high concentrations because the 𝑉"# response (which is linear with 

concentration) dominates the signal, and is large relative to any shifts in the baseline. However, 5	

the LR calibration performs less well at low SO2 concentrations, overestimating SO2 levels when 

the temperature is highest. Under these conditions the temperature response dominates the sensor 

signal, and since it is apparently nonlinear, is not captured well by the LR. 

 

The right panels of Fig. 5 show results for the kNN model, which offers improved performance 10	

over the LR model: the correlation coefficient is 0.995 (95% CI: 0.994, 0.995) and the RMSE is 

6.3 ppb (95% CI: 6.2, 6.5 ppb). kNN outperforms the linear model at lower SO2 concentrations, 

while performing similarly at higher concentrations, with the relative error dropping below 20% 

around 20 ppb and below 5% at 100 ppb. Unlike in the LR case, there is no clear relationship 

between T and measurement bias, indicating that kNN successfully captures the nonlinear 15	

temperature response of the sensor. kNN cannot infer the derivative of any feature (T, RH), thus 

may be a limitation in cases where environmental conditions shift rapidly, or for other types of 

sensors for which derivatives are more important (Masson et al., 2015; Pang et al., 2017). 
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The results shown in Fig. 5 are for a single sensor node co-located with the Pahala AQ station for 

the entire study period, but applying these algorithms to results from the other sensors (over the 

time they were located at Pahala) gives qualitatively similar results. A complete statistical 

summary of results for all nine sensors can be found in Table 1. Regardless of the algorithm 

used, results from the calibrated sensors are well-correlated to the reference measurements. In 5	

the few previous studies where ambient SO2 was measured using electrochemical sensors (Jiao et 

al., 2016; Lewis et al., 2015), all have found little to no correlation to reference data, likely due 

to exceedingly low ambient SO2 levels in the study regions, and the cross-sensitivities of the 

sensor to more abundant pollutant species (Lewis et al., 2015). For context, co-location studies of 

different electrochemical sensors targeting more abundant pollutants have found correlations 10	

with reference instruments (r2) to range between 0.7 and 0.96 for O3, NO2, NO, and CO (Cross et 

al., 2017; Jiao et al., 2016; Mead et al., 2013; Popoola et al., 2016) with RMSE estimates of >60 

ppb for O3 (Spinelle et al., 2015) and 22 ppb for NO (Masson et al., 2015). However, it is 

difficult to directly compare performance metrics (r2, RMSE) obtained from the different 

calibration algorithms taken in these different studies, given the differences not only in sensor 15	

types, but also environmental conditions (T, RH, analyte concentrations, and interferences by 

other pollutants).  

 

3.4 Practical Calibration Considerations 

The results in Fig. 5 and Table 1 show that the kNN regression performs well when the full range 20	

of measurement conditions (pollutant levels, T) are covered in the training set. However, training 

and validating sensors in the same physical location, under similar environmental conditions, is 

in many ways a best-case scenario, and is not always possible for most calibration efforts. 
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Because calibration (co-location) periods are generally limited in time, they likely will not cover 

the full range of environmental conditions; for example, they might not cover the highest levels 

of pollutants, or the full range of temperatures at a given site (which can require 6-12 months of 

co-located measurements). It is therefore important to understand how such real-world 

constraints may affect the accuracy of sensor calibrations. 5	

 

Figure 6 shows results from the LR and kNN algorithms, trained under subsets of our data to 

mimic such real-world calibration scenarios. Each row in the diagram represents a different 

calibration scenario: models in row one were trained on data ranging from 0-50 ppb SO2, row 

two 0-150 ppb SO2, and row three 0-500 ppb SO2. After being trained on the truncated datasets, 10	

they were evaluated using the entire previously withheld validation dataset (with full dynamic 

range in SO2). 

 

In such limited training-set cases, the LR performs about the same as in the full training-set case 

(Fig. 5). The only exception is the ≤50 ppb condition (row 1), whose calibration lacks the 15	

dynamic range for an accurate determination of sensitivity (c1 in Eq. 1). In all cases, performance 

of LR at low SO2 concentrations is relatively poor, again due to the importance of nonlinear 

temperature effects under these conditions. By contrast, when the SO2 levels in the training sets 

are limited, kNN performs poorly when SO2 levels in the validation set are high. This is because 

kNN cannot extrapolate outside the range of data with which it was trained. This is problematic 20	

in an area like Hawai‘i where it is difficult to know the upper bounds of SO2 concentrations; 

similar scenarios may occur in polluted urban areas, where plumes could be intercepted or new 

sources emerge. Thus, when the full range of pollutant concentrations is not accessed during 
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calibration, each regression technique has a strength and a weakness: LR can extrapolate to 

higher concentrations, whereas kNN cannot; but LR does not correct for the temperature 

dependence of the signal, whereas kNN can.  

 

To preserve the best feature of each approach, we propose a hybrid regression approach using 5	

both algorithms in a piece-wise fashion. This hybrid approach entails using kNN when the 

measured WE voltage is below some threshold, and LR when it is above the threshold. An 

optimal WE voltage for the Alphasense SO2-B4 sensors, found by minimizing the RMSE for 

various breakpoints, is around 400 mV (~85 ppb). Results from the hybrid regression are shown 

in the rightmost column of Fig. 6. It generally performs better (has a lower RMSE) than either of 10	

the two regression approaches, as it can correct for the nonlinear temperature dependence at low 

concentrations, while performing well across the entire dynamic range, even when calibrated 

under lower-SO2 conditions. The performance of the hybrid approach is slightly worse than the 

kNN approach at low SO2 concentrations, since at the highest temperatures, the WE threshold 

may be crossed due to the temperature effect alone. In these cases, the hybrid approach uses the 15	

linear rather than the nonparametric regression. Nonetheless, the hybrid algorithm offers an 

approach for accurately extrapolating to pollutant levels higher than were covered during the 

calibration period. 

 

3.5 Multiple Site Validation 20	

The performance of the hybrid regressor provides confidence in the ability to calibrate sensors 

via co-location and then deploy them at a different physical location, an essential step in building 

any distributed network of sensors. This was tested directly on two nodes (SO2-04, SO2-13), via 
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calibration by co-location at the Pahala AQ station for a period of 48 hours (results in Table 1) 

followed by relocation to the Hilo AQ station (80km to the northeast, Fig. 1) where they remain 

in operation as of August 2017. The data collected at Hilo (118 days, n=115,343) were then 

evaluated using the hybrid regressor trained using data from Pahala.  

 5	

The results of this evaluation for one of the nodes (SO2-04) are shown in Fig. 7. The calibration 

carried out at Pahala performs well at Hilo (RMSE=8.2 ppb, r2=0.910); the error in predictions at 

lower concentrations (<50 ppb) increases while error in predictions at higher concentrations 

remain consistent. The cause of the poorer performance at low concentrations in calibration is 

most likely attributable to differences in environmental conditions (which are independent 10	

variables in our regression models). As seen in the two probability distribution plots (right side 

of Fig. 7), the calibration data was from a colder and higher-SO2 environment (Pahala) than was 

used in the evaluation (Hilo). Specifically, Pahala did not experience any clean air (SO2 <1 ppb), 

whereas Hilo was most often clean (due to influence from marine air), leading to an imbalance in 

what the model was trained to perform. Nonetheless, the performance of the sensor and the 15	

robustness of its calibration at the new site is encouraging. The other node (SO2-13), calibrated 

in a similar fashion, performed comparably (r2 > 0.880, RMSE < 8.5). To our knowledge, this is 

the first demonstration of an electrochemical sensor being trained in one environment and 

validated in another.  

 20	

3.6 Measuring SO2 at Low(er) Concentrations 

Because of the intensity of the volcanic plume, with SO2 levels regularly reaching 100s (and 

even 1000s) of ppb, the dynamic range of the present measurements are extremely high, with 
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upper-limit concentrations much greater than is typically found for SO2 (and other pollutants) in 

most environments. Assessing sensor performance at lower SO2 concentrations is thus important 

for understanding the potential for sensors and calibration algorithms to be used under a wider 

range of conditions. Sensor performance under lower-SO2 conditions can be evaluated using the 

present dataset by removing all points in which the reference value was greater than some 5	

threshold value (chosen here to be 50 ppb SO2, a reasonable value for cities in India and China 

(Meng et al., 2010; O’Shea et al., 2016)).  

 

Figure 7 shows kNN regression results for node SO2-02 under lower-SO2 conditions only; these 

were generated using the same technique for generating Fig. 5 but with the training and 10	

validation sets limited only to reference SO2 measurements <50 ppb. Sensor performance is 

excellent in this case, with an RMSE of 3.9 ppb and r2 of 0.974; even between 5-20 ppb, relative 

errors are <20%. Across all nine sensors, performance is similar, with a median RMSE of 3.9 (± 

0.8) ppb and a correlation coefficient of 0.977 (± 0.026).  

	15	
The kNN approach works well when trained on lower-concentration data because it can 

sufficiently map the non-linear temperature dependence without needing to determine the 

functional form of the equation. The improved performance (lower RMSE) of this assessment 

compared to that of the full dataset (Fig. 5, Table 1) is a result of removing the highest-SO2 

points, which contribute substantially to absolute error. Overall, this robust sensor calibration at 20	

lower SO2 levels suggests that the sensor calibration approach described here is not limited just 

to the present environment (which is characterized by very high SO2 levels), and instead should 

be valid for a wider range of conditions (e.g., polluted urban areas) as well. 
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3.7 Drift in Sensitivity Over Time 

The rate of drift in sensor sensitivity (change in gain) over time is a crucial parameter in sensor 

characterization, as it determines the interval of calibration, as well as the overall useable 

lifetime of the sensors.  Recent work has shown varying rates of drift, ranging from several days 

(Smith et al., 2017) to many months (Mead et al., 2013; Popoola et al., 2016). We expect to 5	

observe a gradual degradation in sensitivity over time as the electrolyte evaporates; the 

manufacturer (Alphasense Ltd.) quotes a 50% decay over two years. The long duration of the 

data collection period (4.5 months) enables us to determine the SO2 sensor drift in the present 

dataset.  

 10	

To determine the time-dependent change in sensitivity of the electrochemical sensor to its target 

gas, we perform a linear regression of the predicted mixing ratios (using the hybrid regression 

method) against the reference data collected at the AQ station. The hybrid regressor was trained 

using data from weeks 2-3 (10 days total) and then evaluated on all subsequent data. Figure 9 

shows the comparison between the calibrated sensor measurements and reference values of SO2 15	

for each week. The slope is ~1 throughout the first 18 weeks after deployment (weeks 4-21) 

without significant degradation in sensitivity to SO2. The last five weeks of data (shown in light 

blue) should be treated with caution, as the temperature sensor used in the device began to 

behave erratically, including periods where the temperature sensor reported anomalously high 

values (>40oC; all such data points were excluded from this analysis).  Over this four-month 20	

period, there is no evidence for a gradual decay in sensitivity, which would be consistent with the 

evaporation of the electrolyte solution. This indicates that under the present environmental 
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conditions, the SO2 sensor calibration remains stable over a period of at least four months, with 

no need for re-calibration over this time. 

  

4 Implications and Future Work 

In this work, we have laid out a general calibration approach for electrochemical sensors based 5	

on co-location with reference (regulatory-grade) monitors. This work shows that the complex 

temperature dependence of electrochemical sensors can be accounted for using nonparametric 

regression techniques. To overcome the limitations of nonparametric methods, we introduced a 

new hybrid linear/nonparametric regression scheme that provides the benefits of multiple 

regression techniques simultaneously, and allows for the use of electrochemical sensors in 10	

environments for which they have not been previously calibrated against. This hybrid approach 

enables reliable, long-term measurements of SO2 across a dynamic range of 1 ppb to 2 ppm with 

good accuracy (RMSE <7 ppb) and correlation (r2>0.99) with the reference monitor. 

Additionally, we have shown that low-cost electrochemical SO2 sensors can provide acceptable 

results in lower-SO2 environments, extending their utility to other locales, and that they exhibit 15	

little to no sign of sensitivity decay through the first 18 weeks of deployment, suggesting the 

necessary re-calibration interval is on the order of several months (as opposed to weeks or days).   

 

Ideally, calibration by co-location with reference monitors will cover the entire range of 

conditions (e.g., pollutant levels, temperature) expected to be encountered; however, this is not 20	

always possible, especially when using sensors in previously un-measured conditions and 

geographic areas. When deciding how large a training dataset is needed, the key quantity to 

consider is the fraction of total feature space mapped, rather than total number of measurements 
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taken (or time calibrated). In the present study (which uses the Alphasense SO2-B4 sensor on the 

Island of Hawai‘i), this means completely covering the 2-dimensional vector space of SO2 

concentration and temperature; for other electrochemical sensors such as ozone, the feature space 

may also include concentrations of relevant cross-sensitive species such as nitrogen dioxide 

(Mueller et al., 2017; Spinelle et al., 2015). Under conditions in which environmental conditions 5	

(T or RH) change very rapidly, the feature space may include the time derivative of these as well 

(Masson et al., 2015; Pang et al., 2017). 

 

The scope of this work is limited to the measurement of a single pollutant (SO2) by a single make 

of sensor (Alphasense SO2-B4) in a single environment (characterized by a very wide range in 10	

SO2 concentrations, low levels of other pollutants, and relatively little variability in T). It is 

therefore difficult to generalize the specific results of this work to other pollutants, sensors, and 

environments. However, the general approaches discussed here – the use of a hybrid 

linear/nonparametric regression algorithm, the examination of calibrations by limiting the 

environmental conditions of the training set, and the testing of sensors and algorithms by 15	

calibration at one reference site and validation at another – can be applied to any other sensor 

system as well. Such characterization efforts, covering a full range of pollutants (e.g., CO, O3, 

NO, NO2) and environments (with different pollutant levels, temperature/humidity conditions, 

etc.) will improve our understanding of the performance and applicability of low-cost air quality 

sensors for a range of studies in air quality, human health, and atmospheric chemistry.  20	
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Table 1. Summary of calibration results for all sensors deployed in this study.  

  Linear Regressionb k Nearest Neighborsb Hybrid Regressionc 

Node no. N a RMSE r2 RMSE r2 RMSE r2 

SO2-01 44,647 9.9 .990 5.4 .997 6.5 .996 

SO2-02 125,258 9.7 .987 6.3 .995 6.6 .994 

SO2-03 2,505 9.5 .998 9.8 .998 8.1 .999 

SO2-04 5,382 15.8 .989 11.4 .995 10.7 .996 

SO2-05 4,469 13.2 .992 7.4 .998 7.9 .998 

SO2-06 60,686 10.2 .987 5.6 .996 6.6 .995 

SO2-07 5,322 7.1 .997 5.1 .998 5.6 .999 

SO2-10 5,311 13.7 .991 7.1 .997 7.5 .998 

SO2-12 1,955 9.7 .998 8.8 .998 7.0 .999 

Median  9.9 .991 7.1 .997 7.0 .997 

St. Dev.  2.7 .004 2.2 .001 1.4 .002 

 

a 
 total number of 1-minute data points, covering only the period during which the sensor was 

located at the Pahala AQ station for calibration. 5	

b 
 using the methods described in the text (and shown in Fig. 5) for evaluating node SO2-02. 

c 
 See “Practical Calibration Considerations” subsection for details. 
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Figure 1: Map of the Island of Hawai'i (colored by population density), showing the primary 5	

measurement locations (Pahala, Hilo) and two primary sources of SO2 (Halema‘uma‘u, Pu‘u ‘Ō’ō). 

Northeasterly trade winds dominate the local meteorology, sending the volcanic smog (“vog”) plume 

towards Pahala (population ~1,400). During winter months, “Kona winds” can push the plume towards 

Hilo (population ~43,300), northeast of the vents. 
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Figure 2: Diagram showing the primary components of the custom sensor node used in this work. Each 

node includes an Alphasense SO2-B4 electrochemical sensor and a RHT sensor embedded in a flow cell 

with active flow provided by a DC computer fan. Power is provided by a 9W solar panel coupled to a 

4000 mAh battery, and communicates with the remote server via the 3G network. Dimensions are 20 5	

cm(L) x 16 cm (W) x 11 cm (H). 
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Figure 3: Time-series of raw 1-minute reference SO2 and Alphasense SO2-B4 data for a 4-day period at 

the beginning of the field campaign at the Hawaii Department of Health AQ station in Pahala. Top panel: 

T and RH exhibit a strong inverse correlation in this environment. Middle panel: Working electrode 

voltage (𝑉"# , yellow) and reference SO2 mixing ratios (green) correlate strongly. (Data above 500 ppb 5	

were filtered out to enable a simple visual comparison.) Bottom panel: auxiliary voltage (𝑉$#), which 

increases when T is high, and VWE and SO2 diverge.  

 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-296
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 15 August 2017
c© Author(s) 2017. CC BY 4.0 License.



	 35	

 

Figure 4: Box-whisker plots showing results from the initial spot-check of various algorithms - Linear 

Regression (LR), Least Absolute Shrinkage and Selection Operator Regression (LASSO), Ridge 

Regression (RR), Classification and Regression Tree Regression (CART), and k Nearest Neighbors 

Regression (kNN) - to determine their ability to quantify SO2 using three independent variables (VWE, VAE, 5	

and T). Each box represents the inter-quartile range, with the whiskers describing the minimum and 

maximum values.  Each algorithm was run on data that was as-is (“unscaled”, blue boxes), and 

normalized by removing the mean and scaling to unit variance (“scaled”, green boxes). Results shown 

are for a single sensor (SO2-02) covering 145,467 1-minute data points. 

 10	

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-296
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 15 August 2017
c© Author(s) 2017. CC BY 4.0 License.



	 36	

 

Figure 5: Validation results using multivariate linear regression (left) and k Nearest Neighbors 

regression (right). Data are shown as the SO2 measurement by a single sensor (SO2-02) vs. the reference 

measurement from the AQ station, colored by T. Relative error (top panels) is shown as a function of 

observed SO2 concentration (the interquartile range is shown as the shaded region). Data shown are for 5	

the test set only, made up of 30% of data collected over the entire measurement period (January 15th to 

April 25th, 2017, n=125,258). 
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Figure 6: Comparing linear regression, k Nearest Neighbors regression, and hybrid regression on 

various subsets of the training data by splitting on arbitrary SO2 thresholds (row 1: <50 ppb, row 2: 

<150 ppb, row 3:<500 ppb). All models were validated using the entire SO2 and T ranges of the 

previously withheld validation dataset. 5	

 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-296
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 15 August 2017
c© Author(s) 2017. CC BY 4.0 License.



	 38	

 

Figure 7: Hybrid regression results for node SO2-04 when trained using data from the Pahala AQ station 

(2 days) and validated using data from the Hilo AQ station (4 months). Right Panel: Kernel density 

estimates showing the distribution of temperature and SO2 used both in the training (Pahala) and 

validation (Hilo) datasets. The difference in the environmental conditions is likely the cause of the 5	

somewhat decreased performance of the sensor calibration at the new site. 
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Figure 8: Performance of the sensor (node SO2-02) at lower (<50 ppb) levels of SO2, evaluated using the 

kNN regression. Data shown are from the validation dataset and result in an r2 = 0.974 with RMSE = 3.9 

ppb. The top plot shows the relative error as a percentage of concentration where the dark line is the 

median value and the shaded region is the interquartile range. 5	
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Figure 9: Sensitivity decay for a single SO2-B4 sensor (SO2-02) across 18 weeks. After being trained on 

data from weeks 2-3, the sensor was evaluated using the hybrid regression approach for each successive 

week of data and fit using ordinary least-squares regression. Slope indicates whether the model was 

under-predicting (m < 1) or over-predicting (m > 1) SO2 values. A decrease in sensitivity would be seen 5	

as a gradual decline in the slope, which is not seen here.  
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