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Abstract. Detailed knowledge about the urban NO2 concentration field is a key element for obtaining accurate, individual 

exposure estimates. These are required for improving the understanding of the impact of ambient NO2 on human health and 

for related air quality measures. We developed a compact and robust quantum cascade laser absorption spectrometer 10 

(QCLAS) and deployed it on a tram in the city of Zurich (Switzerland) to perform mobile real-time concentration 

measurements of NO2 by direct absorption spectroscopy at 1600 cm
-1

. Thorough analysis of the obtained NO2 data, for 

instance by comparison with data from fixed air quality monitoring (AQM) sites, revealed the instrument to be highly 

accurate and valuable for collection of data that can be used in statistical models for the calculation of spatio-temporally 

resolved NO2 concentration maps.  The combination of fast mobile measurements with AQM data proved to be very 15 

suitable, but the statistical data analysis also showed that a single mobile instrument is not sufficient in the studied urban 

area, for mainly two reasons: (i) short residence close to sources with large short-term NO2 variations and (ii) limited 

representativeness of the tram tracks for the entire urban environment.  

1 Introduction 

Numerous studies relate the exposure to nitrogen dioxide (NO2) to adverse health effects (e.g. (Adam et al., 2014; Gehring et 20 

al., 2013; WHO, 2013)). Despite this threat to human health, limit values are regularly exceeded in European cities, mainly 

at locations directly impacted by traffic emissions (EEA, 2016). It is, therefore, highly relevant to provide spatially and 

temporally resolved NO2 fields for the assessment of related health effects, for the guidance of efficient air quality measures 

and for urban air quality planning. True exposure of an individual is composed of the encountered pollutant concentration at 

a particular location and time and breathing rate. So far, the individual’s exposure is mostly derived from Land Use 25 

Regression models representing seasonal or annual mean concentrations and the individual’s home (and working) address 

(e.g. (Brauer et al., 2008; Cyrys et al., 2012)). Obviously, these values may be significantly biased depending on the mobility 

pattern of an individual as NO2 concentrations in the urban environment are highly variable in space and time. 

Spatially and temporally highly resolved pollution maps (< 20 m, < 1 hour) based on statistical modelling can enhance the 

accuracy of exposure estimates. However, such statistical models require accurate input data that represent the concentration 30 

levels at a set of different locations in an adequate temporal resolution. Until now, accurate (±1 ppb) and continuous NO2 

measurements are mainly performed at air quality monitoring (AQM) stations equipped with chemiluminescence detectors 

(CLD). Data from such AQM stations (e.g. seven locations in Zurich) do not provide sufficient spatial resolution for detailed 

pollution maps due to the high variability of influencing factors such as the traffic situation and the built environment. 
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One approach to overcome this challenge is the deployment of denser measurement networks. Mueller et al. (Mueller et al., 

2015), for instance, used data from a dense network of passive diffusion samplers in Zurich (Switzerland) as input for 

statistical models. Such passive samplers, however, provide only average values over their exposure periods, which are days 

to weeks, and therefore lack the necessary temporal resolution. The replacement of passive samplers by low-cost 

electrochemical sensors is being investigated but has not yet shown to be feasible for long-term deployment (Mead et al., 5 

2013). 

Mobile measurements are another option for increasing the spatial resolution (Hagemann et al., 2014; Hasenfratz et al., 

2015; Kehl, 2007). They require highly sensitive – typical concentrations range from 5 to 200 pbb – and selective 

measurement devices with temporal resolutions of just a few seconds. With CLDs, NO2 is determined indirectly as the 

difference of consecutively measured NOx and NO, making this technique not fast enough for mobile measurements as their 10 

response time is longer than 1 minute. The indirect measurement approach of the CLD instruments can lead to biased NO2 

measurements when NO and NO2 are temporally highly variable. Furthermore, the conversion of NO2 to NO in a catalytic 

converter can lead to measurement errors as other species such as NH3, HNO3 and HNO2 can be converted, too, and 

therefore lead to NO2 signals that are biased high (NABEL, 2016; Steinbacher et al., 2007). Also electrochemical sensors are 

currently not suited for such applications as their response time with about 60 seconds is too long. Laser spectroscopy, in 15 

contrast to CLD and electrochemical sensors, determines the concentration of NO2 directly and with sampling rates of 1 Hz 

and higher. Previous studies have shown the applicability of laser diodes in the blue spectral region to measuring NO2 by 

various cavity enhanced techniques (Courtillot et al., 2006; Fuchs et al., 2009; Kebabian et al., 2005; Osthoff et al., 2006). 

With higher absorption cross sections than in the visible the mid-infrared region is often chosen for high precision trace gas 

monitoring of NO2. Here, for instance photoacoustic spectroscopy (Pushkarsky et al., 2006), quartz-enhanced photoacoustic 20 

spectroscopy (Patimisco et al., 2014) and direct absorption spectroscopy (McManus et al., 2015) were applied. 

Our method of choice is mid-infrared direct laser absorption spectroscopy at 1600 cm
-1

 where the concentration of NO2 is 

determined directly by measuring the absorption by ro-vibrational transitions of the NO2 molecule. This method is highly 

selective and very sensitive with detection limits of only a few ppt (McManus et al., 2015). Tuzson et al. (Tuzson et al., 

2013), for example, deployed a two laser quantum cascade laser spectrometer (QCLAS) on the high-altitude air monitoring 25 

site Jungfraujoch (3580 m a.s.l., Switzerland) to measure background concentrations of NO and NO2. Additionally, laser 

spectroscopy allows high sampling rates as shown e.g. by Jagerska et al. (Jagerska et al., 2015) for simultaneous NO and 

NO2 measurement in engine exhaust gas with a sampling rate of 10 Hz. Furthermore, compared to other spectroscopic 

techniques, direct absorption spectroscopy relies on a relatively simple optical layout comprised of a light source, a long-

path cell and an infrared detector. 30 

Therefore, our approach to perform accurate, mobile and direct measurements of NO2 is to deploy a compact and robust 

quantum cascade laser (QCLAS) spectrometer on the roof of a tram that is operating as public transport service in the city of 

Zurich. The NO2 concentration is measured by direct absorption spectroscopy at 1600 cm
-1

. In this article, we present our 

newly developed laser spectrometer, analyze the performance of the instrument and quantify the accuracy of the NO2 

measurements. Moreover, NO2 measurements from the single mobile instrument are investigated with respect to its use in 35 

highly resolved statistical models. Our study uses the extensive data set from air quality monitoring facilities in the city of 
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Zurich. The information about instantaneous NO2 concentrations obtained with fixed air quality instruments provides the 

opportunity to validate the tram based measurements as well as the model predictions. 

2 Methods 

2.1 Quantum cascade laser spectrometer 

The portable instrument was specifically built for this campaign. Figure 1 shows a photograph of the QCLAS instrument 5 

without cover and a schematic of the instrument and the optical layout. The whole instrument is built in a 40 × 36 × 15 cm 

waterproof box and mounted on four metal springs which absorb vibrations from the moving tram. The optics are mounted 

on a carbon fiber breadboard which is supported by additional metal springs to further reduce vibrations. The instrument 

weights about 10 kg and is powered by a 12 V connection supplied by the tram. NO2 concentrations are determined by 

measuring the direct absorption signal of a single ro-vibrational transition in the mid-infrared. The main components of the 10 

instrument are a single mode (distributed feedback) DFB QCL (Alpes Lasers), a cylindrical multipass cell (Mangold et al., 

2016) and a thermoelectrically cooled MCT detector (PVI-4TE-6, Vigo Systems). The laser is packaged in a high-heat-load 

(HHL) housing, where a Peltier element is used for temperature control. The QCL is operated at room temperature and emits 

3 mW at 1600 cm
-1

. It is driven in intermittent continuous-wave (iCW) mode (Fischer et al., 2014) with a pulse duration of 

160 μs and a duty cycle of 50 %. In iCW mode the driving current of the QCL is dropped to zero between individual pulses 15 

leading to rapid heating and therefore frequency tuning during each pulse. The pulses are generated by discharging a 

capacitor over the QCL. A frequency tuning of >1 cm
-1

 was achieved (see Figure 1(c)). By shaping the current ramp with 

different RC-elements, close to linear tuning could be achieved. See (Fischer et al., 2014) for details. In this driving mode 

the heat dissipation of the laser is lowered such that a fan is sufficient to cool the laser housing, and thus no additional 

cooling liquid circulation is needed.  20 

The output of the QCL is collimated inside the HHL housing by a f=1.873mm aspheric lens and focused into the multipass 

cell at half way of the first pass with a CaF2 lens (f=150 mm). For frequency calibration a 5.08 cm Ge-etalon can be inserted 

between the laser and the first mirror. The light passes a 12 m optical path within the cylindrical multipass cell (89 

reflections) before it leaves the cell through the same hole and is steered to the infrared detector. The cell is described 

elsewhere in detail (Mangold et al., 2016) and only a brief summary is given here. As a cylindrical cell is always concentric 25 

in tangential direction, we chose the cell to be confocal in sagittal direction which leads to a more stable beam propagation in 

both directions compared to a concentric arrangement. Furthermore, the mirror curvature was chosen to be parabolic in 

sagittal plane for better refocusing properties of the beam. To minimize interference fringes an absorption mask with holes of 

4 mm diameter, where laser reflections are expected, is inserted in the cell. Additionally, the beam is coupled into the cell in 

an off-axis configuration leading to further separation of neighboring reflections on the mirror and thus less interference 30 

fringes. With a diameter of 14.5 cm the cell has a volume of 300 ml. In contrast to alternative multipass-cell concepts, like 

Herriott-cells, the cell is built from a solid ring. Therefore, it is less sensitive to internal misalignment due to shock or 

vibrations. 

In order to obtain narrow, well separated absorption lines, the pressure in the cell is reduced to 100 hPa by continuously 

pumping on it while the air flux is limited to 180 sccm by a 100 μm diameter orifice placed at the gas inlet. We determined 35 
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the flushing time for a complete gas exchange in the cell to be 9.6 s by exponentially fitting the NO2 signal after switching 

from outside air to filtered NO2 free air. 

The detector signal is digitized by a digital oscilloscope (Picoscope 4000 Series, Pico Technology) at 12-bit resolution and 

with 20 MS/s sampling rate. The data acquisition is triggered by a TTL trigger signal generated by the laser driver. After 

acquisition of 1000 spectra at a rate of 2 kHz the data is transferred via a USB 2.0 port to a nano PC (Zero pro, Xi3 5 

corporation) where the spectra are averaged and analyzed by a custom-written LabVIEW program. The NO2 absorption 

spectrum is fitted with pressure, temperature, path length and line strength (HITRAN database (Rothman et al., 2013)) as 

input parameters to determine the NO2 concentration according to Beer-Lambert’s law. Pressure and path length are 

considered constant, while the temperature of the cell is measured with a thermistor and fed back to the fitting program. The 

chosen NO2 absorption feature at 1599.9 cm
-1

 offers a large dynamic range from 0 to several ppm which is largely sufficient 10 

for ambient concentration measurements in cities. 

Since the instrument is exposed to the temperature variations of the outside air without having active temperature control, we 

have to regularly compensate for instrument drifts. This is done on two levels: First, the set-point of the laser temperature is 

adjusted via a feedback loop to lock the laser frequency, and thus the NO2 absorption feature is kept at the same position in 

the measured spectrum. This measure counteracts the instrument drift by regulating the laser temperature. Second, the 15 

instrument repeatedly determines the zero point offset, i.e. the instrument signal at zero NO2,by measuring filtered NO2-free 

air for 2 minutes every 20 minutes. This zero air is obtained by pumping outside air through a filter of 20 ml volume filled 

with Chemisorbant media (Purafil, Inc. USA). 

Via a serial interface, the NO2 concentration data (3 s averages) are transferred to a measurement unit of the “OpenSense” 

network. This unit is installed next to our instrument and described in detail by Hasenfratz et al. (Hasenfratz et al., 2015). 20 

The position of the tram is determined by GPS. NO2 concentrations and GPS positions are transmitted via GSM (Global 

System for Mobile communications) and stored in a database. 
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(a) (b) 

 

 

(c) 

 

 

Figure 1: (a) Photograph of the QCLAS instrument without the cover. (b) Schematic of the instrument and its optical layout. (c) 

Absorption spectrum recorded by the instrument. The red lines show the areas that were fitted to determine concentrations. 

2.2 Mobile NO2 concentration measurements 

The QCLAS instrument was placed on the roof of a tram of the public transport company of the city of Zurich (VBZ) from 5 

21 Sept 2015 to 09 Mar 2016. This tram ran most of the time on the tram services no. 11 and 14 according to the operation 

schedule defined by VBZ (see supplementary materials for a detailed map). Tram services in Zurich operate from 5 a.m. to 1 

a.m. at varying intervals. Consequently, the set of daily measurements (time period, number and location) varies from day to 

day. The cross-city tram services no. 11 and 14 link areas between 400 and 520 m above sea level while elevated residential 

areas in Zurich are up to 640 m a.s.l. The routes of these services include short passages that are free of motorized traffic but 10 

mostly are on regular roads with little to heavy traffic. 
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We analyzed the NO2 data from the period 09 Oct 2015 to 15 Feb 2016. Time periods for which high quality measurements 

are available are depicted in Figure 2. The gap between 27 Dec 2015 and 05 Feb 2016 is due to discarded data of reduced 

quality related to misalignment in the optical system of the instrument. Further, we excluded data when the tram was located 

within the depot area or when the GPS position was not clearly attributable to the correct tram track. Moreover, data were 

omitted when the NO2 spectrum was not clearly identified by the processing algorithm. The water concentration determined 5 

from the measured spectrum was used as an indicator to flag such data. In total 37 % of the measurement days yielded data 

that could be used for statistical modeling. 

  

Figure 2: Time periods when the QCLAS instrument was in operation and NO2 data were transmitted to the database are depicted 

in light gray. Thirty minutes periods when the QCLAS instrument obtained high quality NO2 data and the tram was in regular 10 
operation are depicted in dark gray (total: 1183). Statistical models were developed for these periods. 

2.3 NO2 concentration measurements at fixed sites 

The municipal (Department for Environment and Health Protection (UGZ), City of Zurich) and federal (Federal Office for 

the Environment, FOEN) authorities operate seven air quality monitoring (AQM) stations with CLDs for regulatory purposes 

in the city of Zurich. The set of stations includes background as well as highly polluted locations (see supplementary 15 

materials). It provides a comprehensive overview of the pollution situation encountered in Zurich with respect to the range of 

concentration levels and thus to the intra-urban variability. However, the spatial representation is coarse with respect to the 

generation of spatially highly resolved pollution maps. We had access to the one minute measurements from all sites for the 

time period 1 Jan 2015 to 1 June 2016. Two of the stations, STA and SCH, are located next to the tram tracks at a distance of 

8 and 20 m, respectively. Five stations were operational during the complete campaign period. Operation of station BLU 20 

started on January 1, 2016. Station SWD was closed on February 1, 2016. The reported annual mean NO2 concentrations in 

2015 for the AQM sites were: HEU: 18 μg/m
3
, ZUE: 31 μg/m

3
, STA: 33 μg/m

3
, SCH: 45 μg/m

3
, SWD: 47 μg/m

3
, RGS: 50 

μg/m
3
(OSTLUFT, 2016). 
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2.4 Spatial data 

We employ spatial data for the classification of locations in the city of Zurich with respect to the instantaneous NO2 

concentration. NO2 concentrations encountered in Zurich are moderate compared to other cities. Largest emission sources 

contributing to ambient NO2 concentrations in Zurich are motorized traffic (47% of NOx) and heating systems (28% of NOx) 

(followed by industry (15%), constructions (9%) and others (1%)) (Brunner and Scheller, 2014). There is no heavy industry. 5 

Traffic emissions are by far dominant with respect to the spatial variability measured by our mobile instrument as the release 

points of the emissions from heating systems are usually well above street level. 

We used average daily traffic volumes on particular roads, the digital elevation model, and building footprints and heights as 

spatial input data. The data was provided by the City and the Canton of Zurich and origins from the year 2013 which is well 

representative for the period observed in this study. From this data, we computed spatial variables representing the traffic 10 

intensity (several types), the “sky view factors” and the elevation above sea level following the procedures outlined in detail 

in Mueller et al., 2015 (Mueller et al., 2015) and Mueller et al., 2016 (Mueller et al., 2016). These variables cover the 

municipal area of Zurich in a 10 m grid. 

Traffic intensity at a specific location was computed by summing up the distance travelled by vehicles in the vicinity of this 

location. The summands were weighted based on an exponential decay function which depends on the distance from the 15 

location. Moreover, we multiplied heavy vehicles by a factor of 10 in order to account for the higher emissions compared to 

light vehicles. We used four types of traffic intensities: the first attributes a weight of 1/e to summands at a distance of 30 

meters (DTV030), the second at a distance of 50 meters (DTV050), the third at a distance of 100 meters (DTV100) and the 

fourth at a distance of 400 meters (DTV400). While the versions DTV030 and DTV050 depict the near field traffic intensity, 

versions DTV100 and DTV400 account for the far field traffic intensity. 20 

The variable “sky view factor” (SVF) indicates the fraction of the sky that is visible at a particular location by means of the 

surface area of half of a unit sphere being related to the built environment. 

The variable type elevation (DTM) indicates the altitude above sea level of the measurement locations. 

2.5 Statistical modelling 

Statistical models directly rely on measurements. Accordingly, the distribution and accuracy of the measurements strongly 25 

impact the model results. The QCLAS NO2 instrument installed on top of a tram provides an average NO2 concentration for 

every three seconds. While the tram is moving, numerous different locations in the city are probed. These measurements are 

complemented by those from the fixed AQM sites. The combined data set allows the investigation of two aspects that are 

important for statistical modeling: 

First, we focused on small-scale features of the pollutant field. This subject was addressed by computing models for the 30 

prediction of the NO2 concentration at the locations of the moving tram. Models relying on measurements from AQM sites 

allow quantifying how well pollutant concentrations at different places in the city can be predicted based on the existing 

infrastructure consisting of seven fixed locations. Models based on mobile measurements shed light on the potential of 

denser measurement networks such as mobile ones in cities like Zurich. Second, we analyzed for which parts of Zurich the 

tram measurements provide information about the instantaneous pollutant field. Reference measurements for model 35 
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validation are obtained from the spatially well-distributed AQM sites. Moreover, the application of the same modeling 

approach as used for the tram measurements to data from the AQM sites yields a benchmark for the performance of the 

mobile sensor network. 

As outlined above, the modelling efforts are motivated by the request for accurate pollutant concentration maps. This study 

does not allow the generation of a long-term series of maps but adds knowledge of their generation. 5 

An approach based on regression trees was developed (Breiman et al., 1984) and applied. Our approach relies on spatial 

information and NO2 measurements and the basic assumption that NO2 observations in the urban environment are similar at 

locations with similar spatial features. The main strengths of such a statistical modelling approach are the moderate 

computational time and the fact that information about the impact of instantaneous activities of emission sources and of 

meteorology is implicitly covered by the measurements. 10 

The use of regression trees for the spatio-temporal analysis of the mobile and fixed NO2 observations requires that any 

location in the city is described in terms of multiple spatial features. The chosen spatial features are DTV030, DTV050, 

DTV100, DTV400, DTM and SVF forming the location dependent input variables. The NO2 observations and the input 

variables are linked by the GPS positions. Regression trees are described in detail in (Breiman et al., 1984). The basis of the 

approach is a set of data units referring to an observation y (mobile or fixed NO2 measurement at location Li on time ti) and 15 

related values of the input variables j (i.e. the explanatory variables). The algorithm performs repetitive partitioning of the 

data set by means of the spatial features and the NO2 measurements resulting in M location types, R1, R2, …, RM. 

Figuratively, starting from the undivided data set a tree is grown that consists of splits and leaves (in our context: location 

types). Splitting variables j and split points s are found by aiming at reducing the variance of the NO2 measurements 

referring to a location type by successively solving 20 

min
𝑗,𝑠

[min
𝑐1

∑ (𝑦𝑖 − 𝑐1)
2

𝑥𝑖∈𝑅1(𝑗,𝑠)

+min
𝑐2

∑ (𝑦𝑖 − 𝑐2)
2

𝑥𝑖∈𝑅2(𝑗,𝑠)

] 

The modeled NO2 concentration ci of location type Ri equals the average of the NO2 concentration measurements being part 

of Ri. The final number of location types or leaves depends on the number of successful splits. Splits are only attempted if at 

least 75 observations exist in a location type and the split increases the explained variance by 0.01. A location type Ri must 

contain at least 25 observations. 

A location type Ri is the result of the splits in the domain of the spatial features. Accordingly, it does not represent a 25 

contiguous spatial area in reality but patches distributed in the city. NO2 concentrations can be predicted for any location in 

the city based on the spatial features of these locations and the regression tree. We used the R package “rpart” (Therneau et 

al., 2015) for the computations. 
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3 Results and discussion 

3.1 Instrument performance and stability 

The precision of the instrument was determined using the Allan-variance technique (Werle et al., 1993). Figure 3 shows an 

Allan-deviation plot for measurements of filtered (NO2-free) air in the laboratory. The best precision of 30 ppt is reached 

after 200 s averaging while the 1 s precision is about 300 ppt. To get some insight into the source of the instrument noise, we 5 

performed a dark-noise measurement. In such an experiment the spectral fitting algorithm is applied to the detector output 

while the laser light is blocked. The resulting Allan-deviation for dark-noise is nearly equivalent to the Allan-deviation of the 

zero-air measurement, indicating that the NO2 precision is basically limited by the dark-noise of the detector until the 

minimum is reached. While the Allan-plot for zero-air levels off at about 200 s, due to instrument drifts, the noise of 

concentrations retrieved from dark-noise can be further reduced by longer integration. Such behavior is expected in case of 10 

the white noise limited regime. The Allan-deviation of zero-air measurements shows the excellent stability of the instrument 

as it remains at a low level even after 1000 seconds. Based on these results, the measurement strategy was designed such that 

it applies a drift correction to the concentration measurements by measuring NO2-free air for 2 min after 18 min of 

measuring. This offset-correction is achieved by subtracting the linear interpolation of the mean of the zero-air 

measurements before and after each 18 min measurement period. 15 

 

Figure 3: Determination of the instrument precision and stability:  Time series of zero-air (black) and detector dark-noise (red) 

and the associated Allan-deviation plots. The dark-noise trace is offset by 1.5 ppb from zero for clarity. 
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The instrument accuracy was determined by comparing its retrieved values with data from the chemiluminescence detector 

(CLD, APNA 370, Horiba) of a fixed air quality monitoring site (NABEL, located in Dübendorf, Switzerland). The CLD has 

a limit of detection of 0.1 ppb and at 30 ppb a total uncertainty of 1.25 ppb  (NABEL, 2016). For this comparison, the 

instrument was installed on the roof of the air quality monitoring site next to the gas inlet of the CLD. A correction factor of 

1.2 to the QCLAS data was found by plotting the QCLAS data over the corresponding CLD data. Such a correction to the 5 

normally calibration free QCLAS method was necessary because of loss of NO2 during the sampling and in the long path cell 

and therefore was applied to all concentrations measured with the QCLAS. The contact of NO2 with metal or plastic surfaces 

leads to dissociation. Since the pressure and flow rate in the cell are constant, the fraction of dissociated NO2 can also be 

assumed as constant. Note that formation of NO2 in the sampling line of instruments due to reaction of NO with O3 can lead 

to an overestimation of NO2. The influence of this artefact is small, especially because the measurements have been done 10 

during the cold season at low O3 concentrations. It is, however, for the QCLAS a bit higher than for the reference CLD 

instrument, because the residence time of the air sample is for the CLD somewhat shorter (about 6s). 

The concentration measurements of both instruments after scaling of the QCLAS data are depicted in Figure 4. They yield 

excellent agreement over the full range of concentrations that was encountered during the 48 h period that is displayed 

(17 June 2015 to 19 June 2015). Discrepancies between the two instruments are mostly due to the higher temporal resolution 15 

of the QCLAS. The standard deviation of the QCLAS measurements from the CLD was found to be 0.96 ppb therefore we 

conclude that the instrument accuracy is about 1 ppb with respect to the CLD and that the assumption of a constant relative 

loss of NO2 was correct. 
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Figure 4: Scatter plot of QCLAS concentration measurements (1 minute means) versus CLD measurements (1 minute means). 

Both instruments ran in parallel at the AQM site in Duebendorf, Switzerland, in the period 17 Jun 2015 to 19 Jun 2015. The red 

line is a linear fit to the data with slope 0.99±0.005, intersect 0.08±0.05 and an R2 of 0.97.  

3.1.1 GPS positioning and map matching 5 

The measuring unit on the tram was equipped with a GPS receiver providing a position every three seconds. GPS positions 

were orthogonally projected on the nearest tram track after the route of the tram had been determined. We discarded all the 

positions with corrections exceeding 10 m. 

NO2 measurements and GPS positions were not synchronous. Positions of the NO2 measurements were linearly interpolated 

from the matched GPS positions. Hereby, we added 1.5 seconds to the timestamps of the matched positions. Such a delay is 10 

necessary because at a given time-stamp the GPS provided the present position while the NO2 concentration is the average of 

3 seconds before a time-stamp. 

The NO2 measurements represent 3 s averaged data, which, considering the traveling speed of the tram, cover a given route 

segment instead of representing a fixed point measurement. The length of this segment is the product of the integration time 

of 3 seconds and the speed of the tram. Tram speed associated with the mobile NO2 measurements was smaller than 5 m/s 15 

for 64 % and smaller than 10 m/s for 92 % of the time. 

3.1.2 Characteristics of tram based NO2 measurements 

Operation conditions during the mobile application are significantly more demanding than in the laboratory due to the harsh 

environmental conditions involving large temperature variations, vibrations, changing humidity and precipitation. We 
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analyzed the quality of the data obtained in the mobile application in two ways: First, we quantified the measurement 

uncertainty related to noise and variations of the zero point offset. Second, we compared the tram measurements to 

measurements from a fixed air quality monitoring site (see next section). 

Figure 5 (a) depicts the NO2 zero point offsets determined during the 2 minutes periods when NO2-free air is pumped into 

the measuring cell (the cell is flushed during the first 45 s of the 2 minutes period; 25 measurements (75 s) remain to 5 

determine the zero point offset). NO2 offsets outside the range [-10..10] ppb and NO2 offsets derived in zeroing periods with 

less than 5 measurements or with a standard deviation exceeding 5 ppb were discarded. 88 % of the remaining zero point 

offsets are within ± 5 ppb. The corresponding standard deviation of a single measurement during the zeroing period is in the 

order of 0.5 ppb (Figure 5 (b)). Measurements that are not enveloped by two zeroing periods within a time interval of less 

than 20 minutes cannot accurately be adjusted for the zero point offset and were rejected. 10 

We corrected the NO2 measurements by linearly interpolating the zero point offsets derived in two consecutive zeroing 

periods. An upper limit for the interpolation error was derived by predicting the zero point offset of a 2 minute zeroing 

period by linear interpolation of the two neighboring zero point offsets (40 minutes time span). The resulting standard 

deviation of the difference between predicted and measured zero point offset amounts to 1.5 ppb (Figure 5 (c)). Zero point 

offsets are temporally correlated as the standard deviation of the differences of two consecutive zero point offsets amounts to 15 

2.1 ppb and thus is smaller than 4.3 ppb expected for white noise (2·NO2 ZPO). 

(a) (b) (c) 

   

Figure 5: (a) Histogram of NO2 zero point offsets (ZPO) computed during the calibration periods. Q025, Q050 and Q075 denote 

the 25%, 50% and 75% quantiles, respectively. (b) Histogram of the standard deviations of a single measurement during the zero 

point measurements. (c) Differences between predicted and measured zero point offsets. 

3.2 Intra-urban and temporal variation in NO2 concentration 20 

The measurements of the mobile QCLAS instrument reveal the spatio-temporal variation of the urban pollutant 

concentration field. As an example, Figure 6 shows one day time series of tram measurements (3 seconds and 5 minutes 

averages) and of measurements (5 minute averages) from the fixed monitoring stations SCH and STA. The fixed air quality 

monitoring stations STA and SCH are located at 8 and 20 m distance from the tram tracks, respectively, and are equipped 

with CLDs measuring NO2. The tram passed the fixed sites about every 30 minutes on the selected day. Site SCH is 25 
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impacted by heavier traffic than site STA resulting in higher NO2 concentrations on average. Annual mean concentrations at 

SCH and STA in 2015 were 23.6 ppb and 17.3 ppb. Traffic in the morning and evening rush hours in Zurich is comparable. 

Hence, a large part of the diurnal variation in NO2 concentration is due to meteorology, e.g. the development of the boundary 

layer height during the course of the day. 

The tram carrying the QCLAS instrument regularly passed AQM sites STA and SCH during the measurement campaign. 5 

This provides the opportunity to directly compare the measurements from the tram (3 seconds averages) and the 

measurements from the fixed site (1 minute averages). We plotted single measurements from the mobile instrument that 

were obtained in a 30 m radius around the fixed station STA (a) and SCH (b) over the corresponding 1 min average values 

from these AQM stations in Figure 7. The comparison reveals excellent agreement of measurements from the QCLAS 

instrument to measurements from site STA, whereas the agreement between the tram measurements and the measurements 10 

from station SCH is less pronounced. This can be expected for two reasons: (i) the larger distance, (ii) the location of site 

SCH at a crossroad where traffic flow is controlled by traffic lights and where the short term variability of NO2 is larger. 

From a more general perspective, this is of importance when mobile sensor data is corrected based on data from nearby fixed 

reference sites, as suggested by (Arfire et al., 2015; Saukh et al., 2015). The parameters for data correction as determined 

from such an approach depend on the local concentration variability and the time response of the sensor and the reference 15 

instrument.  Probing different air parcels may concur with concentration differences as it is observed for the data set obtained 

for AQM site SCH. Parameters determined from such a data set could be associated with significant errors depending on the 

temporal stability of the sensor, the applied mathematical sensor model and the term used in the mathematical model for the 

description of the concentration differences. 

Figure 8 depicts the NO2 measurements on the track section from station “Bellevue” to “Bahnhofquai” for the full 20 

measurement campaign (148 runs) with 50 meter resolution. Figure 8 shows the small-scale NO2 variations that are 

measured by the mobile instrument. At sections where the tram is operating on congested roads (between the first and the 

third stop as well as between the fifth and the seventh stop), the average NO2 concentration is higher than at sections with 

very little traffic.Moreover, Figure 8 shows the spatial distribution of the number of measurements taken, which is highest 

close to tram stations where the velocity of the tram is low or zero.  25 

Our statistical models are driven by measurements and are based on the assumption of comparable NO2 concentrations at 

locations that are similar in terms of vicinity to sources (in particular traffic), the built environment and elevation. They 

cannot provide accurate predictions for locations with NO2 concentrations significantly higher or lower than observed. We 

analyzed this subject by a comparison of all the compiled tram measurements and the measurements from each AQM site (5 

minutes averages, respectively). Table 1 shows that NO2 concentrations measured on the tram are in line with concentrations 30 

measured at AQM sites (roadside, urban background) in the city center. They are most similar to the measurements from the 

AQM site STA (RMSE: 7.8 ppb, slope: 1.10, Δ mean=3.2 ppb). Site STA is most representative for the set of location types 

passed by the tram. In contrast, NO2 concentrations at the elevated (200 m above the city center) background site HEU are 

rarely in the range of the tram measurements, demonstrating the limited representativeness of the tram-based data set for the 

entire city. 35 

Table 1: Comparison of NO2 tram measurements and measurements from the AQM sites, aggregated to 5 minutes means. N 

denotes the number of measurements, r is the Pearson correlation coefficient, and slope refers to a regression line through the 
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origin (tram against AQM), Δ mean is the difference between the average concentrations (tram minus AQM) and Q005, Q050 and 

Q095 denote the 5%, 50% and 95% quantiles of the differences tram minus AQM. 

AQM site N RMSE r slope Δ mean Q005 Q050 Q095 

  [ppb]   [ppb] [ppb] [ppb] [ppb] 

BLU 1148 11.6 0.72 1.33 8.0 -4.3 7.1 22.3 

HEU 6608 15.4 0.58 1.65 12.4 0.4 10.9 29.3 

RGS 6611 10.4 0.57 0.86 -3.4 -20.9 -2.4 10.3 

SCH 6220 9.5 0.67 0.88 -2.4 -17.6 -2.0 11.5 

STA 6649 7.8 0.76 1.10 3.2 -7.3 2.7 14.8 

SWD 5470 11.3 0.46 0.85 -3.1 -20.7 -2.8 13.9 

ZUE 6558 9.5 0.72 1.22 5.6 -5.2 4.9 18.5 

 

The temporally highly resolved tram-based measurements provide information about the NO2 concentration distribution 

along the track. We analyzed the distribution of the NO2 tram measurements in 30 minutes modelling periods (Ti) by 5 

computing the 5% and the 95% quantile of the measurements as well as the difference between the 95% and the 5% 

quantiles (Figure 9 (a) and (b)). The difference between the 5% and the 95% quantiles, respectively, and the mean value 

remains rather constant for increasing mean values. This points out that temporal variation (i.e. the mean values of different 

modeling periods) in the tram based NO2 measurements is of comparable magnitude to intra-urban variation (difference 

between the 95% and the 5% quantiles within a modeling period). The difference between the 95% and the 5% quantiles is 10 

below 35 ppb in about 90% of the modelling periods. Short-term variation in NO2 concentration at a specific location is 

mainly caused by changing activities of emission sources in the close vicinity. This is observed at all AQM sites in Zurich 

that are impacted by traffic (Figure 9 (c) and (d)) and can be of similar magnitude than the NO2 variations measured by the 

tram in motion. 
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Figure 6: Example time series of measurements of the tram based QCLAS instrument (single measurements and 5 minutes means) 

as well as of NO2 and O3 measurements from the AQM stations STA and SCH (5 minutes means). The letters "S" and "T" depict 

when the tram passes the terminal stations Seebach and Triemli. 

 5 
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(a) (b) 

  

Figure 7: Comparison of measurements from the QCLAS instrument (single measurements) and measurements (1 minutes mean) 

from the AQM sites STA (a) and SCH (b) when the tram is within a 30 meter radius from the respective AQM site. RMSE is the 

root mean square, r denotes the Pearson correlation coefficient and N is the number of 3 seconds measurements from the tram. 

 

Figure 8: Boxplot of QCLAS measurements taken on all runs (n=148) between station “Bellevue” and station “Bahnhofquai” 5 
during the entire campaign and to 50m track length. The red dots indicate the NO2 concentration means of the boxes, the blue 

rectangles depict the number of measurements referring to particular boxes, the black dots are measurements outside the 

whiskers. Most measurements were taken near tram stops (depicted in gray, black numbers). The tram is directly impacted by 

traffic between the first and the third stop as well as between the fifth and the seventh stop. There is only little traffic between the 

third and the fifth stop. 10 



 

17 

 

(a) (b) 

  

(c) (d) 

  

Figure 9: (a) 5% quantile (Q005Ti; blue dots) and 95% quantile (Q095Ti; red dots) of the NO2 measurements (3 seconds) as well as 

the maximum (black dots) and the mean (black line) in each modelling period Ti (30 minutes duration, approximately 500 

measurements; periods Ti with less than 300 measurements were not used for the plots in (a) and (b)). The intervals are ordered by 

the mean. (b) Distribution of the differences between the 5% and the 95% quantiles of the measurements in the modelling periods 

Ti. (c) Histogram of the differences between the maximum and the minimum 1 minute NO2 measurements from AQM site SCH in 5 
the modelling periods Ti (30 minutes). (d) Same as in (c) for AQM site STA. 
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3.3 Results of statistical modelling 

We applied the procedure described in section 2.5 to selected sets of NO2 measurements obtained by the mobile QCLAS 

instrument and the fixed AQM stations. Independent regression trees are computed for each 30 minutes period. Setting the 

modelling period to 30 minutes is a compromise between the number and spatial distribution of mobile measurements 

forming the input for the regression tree computation and the temporal variation of the NO2 concentration, i.e. changes in 5 

emission source activity and meteorology which may alter the relation between covariate values and NO2 concentration. 

The locations within the municipality of Zurich were described by means of six spatial variables (i.e. explanatory variables). 

Various combinations of these variables were defined, and regression trees relying on these variable selections were 

computed in order to find the best performing model for each particular setting during all modelling periods.   

The number of location types for which representative NO2 concentrations can be determined based on our statistical models 10 

is limited. The number of measurements required for estimating an accurate mean concentration for a location type depends 

on the short-term temporal variability of the NO2 concentration (see Figure 9 (c) and (d) and section 3.3.2). However, the 

number and spatial distribution of the measurements in a modelling period (approximately 500) is given by the tram route 

and cannot be influenced.  Accordingly, the use of too many explanatory variables in our statistical models may lead to an 

over-determined model. Regression trees based on tram measurements have about 6 location types Ri on average.  15 

Models based on a single variable perform best when relying on a traffic related variable. Thus, elevation and sky view 

factors are of secondary importance. Predictions based on a basic model can easily be validated by cross-validation and by 

comparison with measurements from fixed AQM sites. 

3.3.1 Model validation by means of three seconds NO2 measurements from the tram 

Three seconds mean NO2 concentration referring to time and location of the tram were predicted in three versions. In version 20 

VT, the data of the 30 minutes interval were partitioned into six five minutes intervals, denoted as A to F. Three independent 

regression trees were determined based on the tram measurements from BCEF, ACDF and ABDE and model predictions for 

AD, BE and CF were computed, respectively. In version VAQ, regression trees based on the measurements from the fixed air 

quality monitoring sites were computed. In version VSTA, 30 minutes means of the measurements from the fixed site STA 

were taken as predictions for the tram measurements. 25 

The tram measurements as well as the computed predictions were aggregated to 5 minutes averages for being used in the 

statistical analysis. The predictions based on the tram measurements (version VT) are best followed by those based on 

measurements from the fixed sites (version VAQ) and those based on measurements of site STA (version VSTA). The 

difference in performance between VAQ and VSTA is small due to the similarity of NO2 concentration encountered at site STA 

and by the tram-based instrument. The results are summarized in Table 2. 30 
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Table 2: Summary of the comparison of model predictions and measurements from the tram (5 minutes means, respectively). r is 

the Pearson correlation coefficient, slope denotes a regression line through the origin (predictions against observations), N denotes 

the number of 5 minutes values. The variables used in the relevant model are listed in the last column.  

Setting RMSE r Slope N Used variables 

VT 5.6 0.86 0.97 6584 DTV050 

VAQ 7.3 0.78 0.89 6599 DTV030/DTM 

VSTA 7.6 0.79 0.84 6588 - 

3.3.2 Model validation by means of 30 minutes mean NO2 concentrations at fixed AQM stations 

We computed a set of regression trees using different sets of measurements for each 30 minutes modelling period in order to 5 

predict NO2 concentrations at the AQM sites. Version WT is based on tram measurements only, version WAQ is based on the 

measurements from the fixed AQM sites only (excluding the measurements from the target AQM site, respectively), and 

version WT+A is based on the tram measurements and the measurements from the fixed AQM sites (excluding the 

measurements from the target site). We attributed a weight of 20 to the AQM site measurements with respect to the QCLAS 

measurements in version WT+A. Models of version WT rely on the variable DTV100, models of versions WAQ and WA+T rely 10 

on the variable DTV030. Model versions using these variables provide the best overall fit to the measurements of all AQM 

sites. In version WB we simply use the 30 minutes mean NO2 concentration measured by the tram as prediction for the 

concentration at respective AQM sites as benchmark for versions WT, WAQ and WT+A. 

A series of three maps illustrates differences between the versions VAQ, VT and VT+A in terms of the measurement 

distribution and the resulting NO2 concentration field (Figure ). For optimal comparison, all these maps are based solely on 15 

the variable DTV050. Concentrations are shown only for locations with DTV050 values within the DTV050 range covered 

by the measurements as extrapolations based on statistical models are associated with larger uncertainties. Obviously, 

combining the measurements from AQM sites and from the tram yields the data set with the largest spatial coverage. The 

figure shows that the spatial coverage is not optimal, yet, in any version. Considerable potential remains in the optimization 

(i.e. extension) of static or mobile measurement networks. 20 

Figure  depicts a set of indicators for the agreement between model predictions (WT, WAQ, WT+A and WB) and 30 minutes 

mean concentrations measured at the AQM sites. The results show that the classification approach in version WT reveals 

reasonable, bias free predictions for sites that are similar to locations passed by the tram (slope: 0.93-1.18, differences of 

average concentrations Δmean: -1.1-4.8 ppb). The scattering in version WT is not smaller than in version WB but this can partly 

be related to the partitioning of the tram measurement set into m location types Ri by the classification approach.  25 

In our statistical models, the mean of all the measurements in Ri (covering approximately 1/m of 25 minutes with mostly 

m = 6) is taken as the estimate value for the 30 minute mean concentration of location type Ri. We performed the following 

computation in order to analyze the agreement between the mean derived from a limited number of measurements and the 

true 30 minute mean concentration for several locations. For this analysis, measurements from single AQM sites from the 

year 2015 were used. We computed 5 minute means and complementary 25 minute means (6 pairs in 30 minutes, 30 
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respectively). The obtained RMSE values range between 1.5 ppb at HEU (elevated background site) and 7.5 ppb at RGS 

(roadside). Therefore, differences between the mean of a subset of tram measurements referring to a particular location type 

and its 30 minute mean have to be expected if NO2 concentration at this location is highly variable on the short-term.  

The results of model version WAQ are comparable to version WT which points to a good spatial distribution of the monitoring 

stations. The combination of measurements from AQM sites and from the tram (Version WT+A) performs best as this model 5 

version, in contrast to WT, also includes information about the urban background.  

The tram instrument is rarely situated in background locations. Hence, NO2 concentrations are overestimated by WT at AQM 

sites representing these types of locations (BLU, HEU and ZUE). To overcome this limitation, NO2 concentration measured 

by the tram instrument might be considered as resulting from a background concentration plus an increment depending on 

the activity of nearby emission sources. Accordingly, urban background concentrations can also be estimated based on a 10 

baseline instead of the mean of a particular set of measurements. We defined the urban NO2 concentration baseline as the 

20% quantile of the NO2 concentration measurements from the tram instrument in 30 minutes. Comparison of these quantile 

values with the means of the urban background site ZUE results in RMSE, Δmean and slope of 5.1 ppb, 0.5 ppb and 1.00, 

respectively. The baseline approach therefore outperforms version WT for site ZUE. 

(a) (b) (c) 

   

Figure 10: Series of NO2 concentration maps for 17 Dec 2015 18:00-19:00. The models are based on the variable DTV050. 15 
Measurement locations are depicted by green dots, the tram track by a green line. (a) Map based on data from AQM sites (Version 

VAQ). (b) Map based on measurements from the tram based QCLAS instrument (Version VT). (c) Map based on measurements 

from the AQM sites and the QCLAS instrument (Version VT+A). The maps cover a 12 × 12 km area. Light blue lines and areas 

depict rivers and lakes, the thick black line shows the border of the municipal area of Zurich and the gray lines indicate the 

contour lines of elevation (500 to 800 m a.s.l.). 20 
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(a) (b) (c) 

   

Figure 11: Comparison between observed 30 minutes means at AQM sites and model predictions based on the versions WB, WT, 

WA and WT+A. RMSE denotes the root mean square error, Δmean equals 1/N·(∑predictions - ∑observations) and slope refers to a 

best-fitting regression line through the origin (predictions over observations). N is 222 for site BLU, 955 for site SWD and between 

1109 and 1183 for the other sites. 

3.4 Discussion and outlook 5 

The mobile QCLAS instrument provided accurate NO2 measurements of high spatial resolution but with sparse sampling for 

particular location types related to the accessibility of the measurement locations that were limited to the tram tracks (few 

background locations, no elevated locations). In principle, this kind of concentration data set can be improved for statistical 

modelling by the operation of a larger number of instruments. Options are the installation of additional instruments on 

further trams and on other public transport vehicles (e.g. buses connecting residential areas running on roads with very low 10 

traffic) or the operation of instruments at fixed background sites or at highly polluted locations. Due to the number of 

required measurements for location types with highly variable NO2 concentration, the necessity for measurements at 

locations with different pollutant situations and the travel time from one to another location, we suggest that the number of 

required mobile or static QCLAS instruments for comprehensive NO2 measurement in Zurich is not smaller than the current 

number of fixed AQM sites. 15 

The models derived from tram measurements yielded the most accurate predictions for tram measurements. This is related to 

the small spatial distance between measurements and predictions as well as to the dense spatial distribution of the tram 

measurements. The latter corroborates the potential of dense measurement networks, either static or mobile ones, for 

obtaining more detailed information on the instantaneous pollutant field. 

Mobile measurement devices that provide accurate long-term measurements cannot only contribute to map generation but 20 

also to the validation of products derived from pollutant maps. For example, the exposure estimations can be validated based 

on measurements of such instruments.  

With the latest dual-wavelength QCL technology (Jagerska et al., 2014; Süess et al., 2016), the next generation of the 

QCLAS instrument could measure NO and NO2, simultaneously, with the same compact geometry. Such measurements 
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would give valuable insights into urban NOx chemistry. Furthermore, other target species, such as CO, CO2, O3 or CH4, may 

in the near future be included. 

4 Conclusions 

We presented a compact and robust QCLAS spectrometer that operated autonomously on the roof of a tram to measure NO2 

concentrations in Zurich over a period of four months (with an interruption of five weeks). The analysis of the measurements 5 

from periods when the instrument was operated next to a CLD of a fixed AQM site and from mobile operation on a tram 

showed that the accuracy of 3 second values in the field is better than 2 ppb with respect to the CLD that was used for initial 

calibration. Independence from roadside calibration infrastructure as well as from on-board calibration gases is a clear asset 

of the instrument for operation in urban environments with highly variable NO2 concentration fields. 

The QCLAS instrument is highly suited for mobile applications. The statistical modelling showed that the mobile 10 

measurements provided accurate information about the urban NO2 concentration field. However, comprehensive analysis of 

the data from the tram and the AQM sites revealed large spatio-temporal variability in NO2 concentration in the vicinity of 

emission sources. Accordingly, the main shortcomings of the obtained data set with respect to statistical modelling are the 

limited number of observations and the incomplete coverage of different types of locations. Improving the data set would 

require the operation of a larger number of instruments. This would allow the mapping of the entire NO2 concentration field 15 

in a city with high spatio-temporal resolution and, concurrently, the refinement of statistical modelling techniques. 
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