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Abstract 18 

Linear regression techniques are widely used in atmospheric science, but are often 19 

improperly applied due to lack of consideration or inappropriate handling of 20 

measurement uncertainty. In this work, numerical experiments are performed to 21 

evaluate the performance of five linear regression techniques, significantly extending 22 

previous works by Chu and Saylor. The tested are Ordinary Least Square (OLS), 23 

Deming Regression (DR), Orthogonal Distance Regression (ODR), Weighted ODR 24 

(WODR), and York regression (YR). We first introduce a new data generation scheme 25 

that employs the Mersenne Twister (MT) pseudorandom number generator. The 26 

numerical simulations are also improved by: (a) refining the parameterization of non-27 

linear measurement uncertainties, (b) inclusion of a linear measurement uncertainty, (c) 28 

inclusion of WODR for comparison. Results show that DR, WODR and YR produce 29 

an accurate slope, but the intercept by WODR and YR is overestimated and the degree 30 

of bias is more pronounced with a low R2 XY dataset. The importance of a properly 31 

weighting parameter λ in DR is investigated by sensitivity tests, and it is found an 32 

improper λ in DR can leads to a bias in both the slope and intercept estimation. Because 33 

the λ calculation depends on the actual form of the measurement error, it is essential to 34 

determine the exact form of measurement error in the XY data during the measurement 35 

stage. If discrepancy exist between measurement error of data and measurement 36 

uncertainty used for regression, DR, WODR and YR can provide the least biases in 37 

slope and intercept among all tested regression techniques. For these reasons, DR, 38 

WODR and YR are recommended for atmospheric studies when both X and Y data 39 

have measurement errors.  40 

  41 
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1 Introduction 42 

Linear regression is heavily used in atmospheric science to derive the slope and 43 

intercept of XY datasets. Examples of linear regression applications include primary 44 

OC (organic carbon) and EC (elemental carbon) ratio estimation (Turpin and 45 

Huntzicker, 1995), MAE (mass absorption efficiency) estimation from light absorption 46 

and EC mass (Moosmüller et al., 1998), source apportionment of polycyclic aromatic 47 

hydrocarbons using CO and NOx as combustion tracers (Lim et al., 1999), gas-phase 48 

reaction rate determination (Brauers and Finlayson-Pitts, 1997), inter-instrument 49 

comparison (Bauer et al., 2009; Cross et al., 2010; von Bobrutzki et al., 2010; Zieger et 50 

al., 2011; Huang et al., 2014; Zhou et al., 2016), light extinction budget reconstruction 51 

(Malm et al., 1994; Watson, 2002), comparison between modeling and measurement 52 

(Petäjä et al., 2009), emission factor study (Janhäll et al., 2010), retrieval of shortwave 53 

cloud forcing (Cess et al., 1995), calculation of pollutant growth rate (Richter et al., 54 

2005), estimation of ground level PM2.5 from MODIS data (Wang and Christopher, 55 

2003), distinguishing OC origin from biomass burning using K+ as a tracer (Duan et al., 56 

2004) and emission type identification by the EC/CO ratio (Chen et al., 2001).  57 

Ordinary least squares (OLS) regression is the most widely used method due to its 58 

simplicity. In OLS, it is assumed that independent variables are error free. This is the 59 

case for certain applications, such as determining a calibration curve of an instrument 60 

in analytical chemistry. For example, a known amount of analyte (e.g., through 61 

weighing) can be used to calibrate the instrument output response (e.g., voltage). 62 

However, in many other applications, such as inter-instrument comparison, X and Y 63 

(from two instruments) may have comparable degrees of uncertainty. This deviation 64 

from the underlying assumption in OLS would produce biased slope and intercept when 65 

OLS is applied to the dataset.  66 

To overcome the drawback of OLS, a number of error-in-variable regression models 67 

(also known as bivariate fittings (Cantrell, 2008) or total least-squares methods 68 

(Markovsky and Van Huffel, 2007) arise. Deming (1943) proposed an approach by 69 

minimizing sum of squares of X and Y residuals. A closed-form solution of Deming 70 

regression (DR) was provided by York (1966). Method comparison work of various 71 

regression techniques by Cornbleet and Gochman (1979) found significant error in OLS 72 
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slope estimation when the relative standard deviation (RSD) of measurement error in 73 

“X” exceeded 20%, while DR was found to reach a more accurate slope estimation. In 74 

an early application of the EC tracer method, Turpin and Huntzicker (1995) realized 75 

the limitation of OLS since OC and EC have comparable measurement uncertainty, 76 

thus recommended the use of DR  for (OC/EC)pri (primary OC to EC ratio) estimation. 77 

Ayers (2001) conducted a simple numerical experiment and concluded that reduced 78 

major axis regression (RMA) is more suitable for air quality data regression analysis. 79 

Linnet (1999) pointed out that when applying DR for inter-method (or inter-instrument) 80 

comparison, special attention should be paid to the sample size. If the range ratio 81 

(max/min) is relatively small (e.g., less than 2), more samples are needed to obtain 82 

statistically significant results.  83 

In principle, a best-fit regression line should have greater dependence on the more 84 

precise data points rather than the less reliable ones. Chu (2005) performed a 85 

comparison study of OLS and DR specifically focusing on the EC tracer method 86 

application, and found the slope estimated by DR is closer to the correct value than 87 

OLS but may still overestimate the ideal value. Saylor et al. (2006) extended the 88 

comparison work of Chu (2005) by including a regression technique developed by York 89 

et al. (2004). They found that the slope overestimation by DR in the study of Chu (2005) 90 

was due to improper configuration of the weighting parameter, λ. This λ value is the 91 

key to handling the uneven errors between data points for the best-fit line calculation. 92 

This example demonstrates the importance of appropriate weighting in the calculation 93 

of best-bit line for error-in-variable regression model, which is overlooked in many 94 

studies. 95 

 In this study, we extend the work by Saylor et al. (2006) to achieve four objectives. 96 

The first is to propose a new data generation scheme by applying the Mersenne Twister 97 

(MT) pseudorandom number generator for evaluation of linear regression techniques. 98 

In the study of  Chu (2005), data generation is achieved by a varietal sine function, 99 

which has limitations in sample size, sample distribution, and nonadjustable correlation 100 

(R2) between X and Y. In comparison, the MT data generation provides more 101 

flexibility, permitting adjustable sample size, XY correlation and distribution. The 102 

second is to develop a non-linear measurement error parameterization scheme for use 103 

in the regression method. The third is to incorporate linear measurement errors in the 104 
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regression methods. In the work by Chu (2005) and Saylor et al. (2006), the relative 105 

measurement uncertainty (ߛ) is non-linear with concentration, but a constant ߛ 106 

is often applied on atmospheric instruments due to its simplicity. The fourth is to 107 

include weighted orthogonal distance regression (WODR) for comparison. 108 

Abbreviations and symbols used in this study are summarized in Table 1 for quick 109 

lookup. 110 

2 Description of regression techniques compared in this study 111 

Ordinary least squares (OLS) method. OLS only considers the errors in dependent 112 

variables (Y). OLS regression is achieved by minimizing the sum of squares (S) in the 113 

Y residuals: 114 

ܵ ൌ ∑ ሺݕ െ ܻሻଶ

ୀଵ                                                              (1) 115 

where Yi are observed Y data points while yi are regressed Y data points of the 116 

regression line.  117 

Orthogonal distance regression (ODR). ODR minimizes the sum of the squared 118 

orthogonal distances from all data points to the regressed line and considers equal error 119 

variances:  120 

ܵ ൌ ∑ ሾሺݔ െ ܺሻଶ  ሺݕ െ ܻሻଶሿ

ୀଵ                                             (2) 121 

Weighted orthogonal distance regression (WODR). Unlike ODR that considers even 122 

error in X and Y, weightings based on measurement errors in both X and Y are 123 

considered in WODR when minimizing the sum of squared orthogonal distance from 124 

the data points to the regression line (Carroll and Ruppert, 1996):  125 

ܵ ൌ ∑ ሾሺݔ െ ܺሻଶ  ሺݕ െ ܻሻଶ/ߟሿ

ୀଵ                                              (3) 126 

where ߟ is error variance ratio. Implementation of ODR and WODR in Igor was done 127 

by the computer routine ODRPACK95 (Boggs et al., 1989; Zwolak et al., 2007). 128 

Deming regression (DR). Deming (1943) proposed the following function to minimize 129 

both the X and Y residuals, 130 

ܵ ൌ ∑ ሾ߱ሺ ܺሻሺݔ െ ܺሻଶ  ߱ሺ ܻሻሺݕ െ ܻሻଶሿ

ୀଵ                                        (4) 131 

where Xi and Yi are observed data points and xi and yi are regressed data points. 132 

Individual data points are weighted based on errors in Xi and Yi, 133 
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߱ሺ ܺሻ ൌ
ଵ

ఙ
మ ,			߱ሺ ܻሻ ൌ

ଵ

ఙೊ
మ                                                (5) 134 

where ߪ and ߪ are the standard deviation of the error in measurement of Xi and Yi 135 

respectively. The closed form solutions for slope and intercept of DR are shown in 136 

Appendix A. 137 

York regression (YR). The York method (York et al., 2004) introduces the correlation 138 

coefficient of errors in X and Y into the minimization function. 139 

ܵ ൌ ∑ ൣ߱ሺ ܺሻሺݔ െ ܺሻଶ െ ඥ߱ሺݎ2 ܺሻ߱ሺ ܻሻሺݔ െ ܺሻሺݕ െ ܻሻ  ߱ሺ ܻሻሺݕ െ

ୀଵ140 

ܻሻଶ൧
ଵ

ଵିమ
  (6) 141 

where ri is the correlation coefficient between measurement errors in Xi and Yi. The 142 

slope and intercept of YR are calculated iteratively through the formulas in Appendix 143 

A. 144 

3 Data description 145 

Two types of data are used for regression comparison. The first type is synthetic data 146 

generated by computer programs, which can be used in the EC tracer method (Turpin 147 

and Huntzicker, 1995)  to demonstrate the regression application. The true “slope” and 148 

“intercept” are assigned during data generation, allowing quantitative comparison of 149 

the bias of each regression scheme. The second type of data comes from ambient 150 

measurement of light absorption, OC and EC in Guangzhou for demonstration in a real-151 

world application. 152 

3.1 Synthetic XY data generation 153 

In this study, numerical simulations are conducted in Igor Pro (WaveMetrics, Inc. Lake 154 

Oswego, OR, USA) through custom codes. Two types of generation schemes are 155 

employed, one is based on the MT pseudorandom number generator (Matsumoto and 156 

Nishimura, 1998) and the other is based on the sine function described by Chu (2005).  157 

The general form of linear regression on XY data can be written as: 158 

Y ൌ kX  b                                                               (7) 159 
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 Here k is the regressed slope and b is the intercept. The underlying meaning is that, Y 160 

can be decomposed into two parts. One part is correlated with X, and the ratio is defined 161 

by k. The other part of Y is constant and independent of X and regarded as b. 162 

To make the discussion easier to follow, we intentionally avoid discussion using the 163 

abstract general form and instead opt to use a real-world application case in atmospheric 164 

science. Linear regression had been heavily applied on OC and EC data, here we use 165 

OC and EC data as an example to demonstrate the regression application in atmospheric 166 

science. In the EC tracer method, OC (mixture) is Y and EC (tracer) is X. OC can be 167 

decomposed into three components based on their formation pathway: 168 

ܥܱ ൌ ܥܱܲ  ିܥܱܲ   169 (8)                                      ܥܱܵ

Here POCcomb is primary OC from combustion. POCnon-comb is primary OC emitted from 170 

non-combustion activities.  SOC is secondary OC formed during atmospheric aging.  171 

Since POCcomb is co-emitted with EC and well correlated with each other, their 172 

relationship can be parameterized as: 173 

ܥܱܲ ൌ ሺܱܥܧ/ܥሻ ൈ  174 (9)                                              ܥܧ

By carefully selecting an OC and EC subset when SOC is very low (considered as 175 

approximately zero), the combination of Eqs. (8) & (9) become: 176 

ܥܱܲ ൌ ሺܱܥܧ/ܥሻ ൈ ܥܧ   ି                                    (10) 177ܥܱܲ

The regressed slope of POC (Y) against EC (X) represents (OC/EC)pri (k in Eq.(7)). The 178 

regressed intercept become POCnon-comb (b in Eq. (7)). With known (OC/EC)pri and 179 

POCnon-comb, SOC can be estimated by: 180 

ܥܱܵ ൌ ܥܱ െ ሺሺܱܥܧ/ܥሻ ൈ ܥܧ                       (11) 181	ିሻܥܱܲ

The data generation starts from EC (X values). Once EC is generated, POCcomb (the part 182 

of Y that is correlated with X) can be obtained by multiplying EC with a preset constant, 183 

(OC/EC)pri (slope k). Then the other preset constant POCnon-comb is added to POCcomb 184 

and the sum becomes POC (Y values). To simulate the real-world situation, 185 

measurement errors are added on X and Y values. Details of synthesized measurement 186 

error are discussed in the next section. Implementation of data generation by two types 187 

of mathematical schemes are explained in section 3.1.2 and 3.1.3 respectively. 188 
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3.1.1 Parameterization of synthesized measurement uncertainty 189 

Weighting of variables is a crucial input for errors-in-variables linear regression 190 

methods such as DR, YR and WODR. In practice, the weights are usually defined as 191 

the inverse of the measurement error variance (Eq. (5)). When measurement errors are 192 

considered, measured concentrations ( ௦௨ௗ.ܿ݊ܥ ) are simulated by adding 193 

measurement uncertainties (ߝ.) to the true concentrations (ܿ݊ܥ.௧௨): 194 

௦௨ௗ.ܿ݊ܥ ൌ  .                                     (12) 195ߝ	௧௨.ܿ݊ܥ

Here ߝ. is the random error following an even distribution with an average of 0, the 196 

range of which is constrained by: 197 

െߛ ൈ ௧௨.ܿ݊ܥ  .ߝ  ߛ ൈ  ௧௨                              (13) 198.ܿ݊ܥ

The ߛ  is a dimensionless factor that describes the fractional measurement 199 

uncertainties relative to the true concentration (ܿ݊ܥ.௧௨). ߛ could be a function of 200 

௧௨.ܿ݊ܥ  (Thompson, 1988) or a constant. The term ߛ ൈ ௧௨.ܿ݊ܥ  defines the 201 

boundary of random measurement errors.  202 

Two types of measurement error are considered in this study. The first type is  203 

ିߛ . In the data generation scheme of Chu (2005) for the measurement 204 

uncertainties (ߝை and ߝா),  ߛି is  non-linearly related to ܿ݊ܥ.௧௨: 205 

ିߛ  ൌ
ଵ

ඥ.ೝೠ
                                                        (14) 206 

then Eq. (13) for POC and EC become: 207 

െ ଵ

ඥைೝೠ
ൈ 	௧௨ܥܱܲ  ைߝ   ଵ

ඥைೝೠ
ൈ  ௧௨                                    (15) 208ܥܱܲ

െ ଵ

ඥாೝೠ
ൈ 	௧௨ܥܧ  ாߝ   ଵ

ඥாೝೠ
ൈ  ௧௨                                         (16) 209ܥܧ

In Eq. (14), the ߛ decreases as concentration increases, since low concentrations are 210 

usually more challenging to measure. As a result, the ߛି  defined in Eq. 211 

(14) is more realistic than the constant approach, but there are two limitations. First, the 212 

physical meaning of the uncertainty unit is lost. If the unit of OC is µg m-3, then the 213 

unit of ߝை  becomes ඥ݃ߤ	݉ିଷ . Second, the concentration is not normalized by a 214 

consistent relative value, making it sensitive to the X and Y units used. For example, if 215 
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POCtrue=0.9 µg m-3, then  ߝை= ±0.95 µg m-3 and ߛ = 105%, but by changing the 216 

concentration unit to POCtrue=900 ng m-3, then ߝை= ±30 ng m-3 and ߛ = 3%. To 217 

overcome these deficiencies, we propose to modify Eq. (14) to: 218 

ߛ ൌ ට
ை

.ೝೠ
ൈ  219 (17)                                                          ߙ

here LOD (limit of detection) is introduced to generate a dimensionless ߛ. ߙ is a 220 

dimensionless adjustable factor to control the position of  ߛ   curve on the 221 

concentration axis, which is indicated by the value of  ߛ at LOD level. As shown in 222 

Figure 1a, at different values of ߙ (0.5 ,1= ߙ and 0.3), the corresponding ߛ at the 223 

same LOD level would be 100%, 50% and 30% respectively. By changing ߙ , the 224 

location of the ߛ  curve on X axis direction can be set, using the ߛ at LOD as the 225 

reference point. Then Eq. (17) for POC and EC become: 226 

െට
ைುೀ
ைೝೠ

ൈ ைߙ ൈ 	௧௨ܥܱܲ  ைߝ  ට
ைುೀ
ைೝೠ

ൈ ைߙ ൈ  ௧௨                  227ܥܱܲ

(18) 228 

െට
ைಶ
ாೝೠ

ൈ ாߙ ൈ 	௧௨ܥܧ  ாߝ  ට
ைಶ
ாೝೠ

ൈ ாߙ ൈ  ௧௨                          (19) 229ܥܧ

With the modified ߛି parameterization, concentrations of POC and EC are 230 

normalized by a corresponding LOD, which maintains unit consistency between 231 

POCtrue and ߝை and ECtrue and ߝா, and eliminates dependency on the concentration 232 

unit. 233 

Uniform distribution had been used in previous studies (Cox et al., 2003; Chu, 2005; 234 

Saylor et al., 2006) and is adopted in this study to parameterize measurement error. For 235 

a uniform distribution in the interval [a,b], the variance is 
ଵ

ଵଶ
ሺܽ െ ܾሻଶ.  Since ߝை and 236 

 ா follows a uniform distribution in the interval as given by Eqs. (18) and (19), the 237ߝ

weights in DR and YR (inverse of variance) become: 238 

߱ሺ ܺሻ ൌ
ଵ

ఙ
మ ൌ

ଷ

ாೝೠൈைಶൈఈಶమ
                                             (20) 239 

߱ሺ ܻሻ ൌ
ଵ

ఙೊ
మ ൌ

ଷ

ைೝೠൈைುೀൈఈುೀమ
                                             (21) 240 

The parameter ߣ in Deming regression is then determined: 241 
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ߣ ൌ ఠሺሻ

ఠሺሻ
ൌ ைೝೠൈைುೀൈఈುೀమ

ாೝೠൈைಶൈఈಶమ
                                             (22) 242 

Besides the ߛି discussed above, a second type measurement uncertainty 243 

parameterized by a constant proportional factor,  ߛି , is very common in 244 

atmospheric applications:  245 

െߛை௨ ൈ 	௧௨ܥܱܲ  ைߝ  ߛை௨ ൈ  ௧௨                               (23) 246ܥܱܲ

െߛா௨ ൈ 	௧௨ܥܧ  ாߝ  ߛா௨ ൈ  ௧௨                                      (24) 247ܥܧ

where ߛை௨ and ߛா௨ are the relative measurement uncertainties, e.g., for relative 248 

measurement uncertainty of 10%, ߛ=0.1. As a result, the measurement error is 249 

linearly proportional to the concentration. An example comparison of ߛି 250 

and ߛି is shown in Figure 1b. For ߛି, the weights become: 251 

߱ሺ ܺሻ ൌ
ଵ

ఙ
మ ൌ

ଷ

ሺఊಶೠൈாೝೠሻమ
                                             (25) 252 

߱ሺ ܻሻ ൌ
ଵ

ఙೊ
మ ൌ

ଷ

ሺఊುೀೠൈைೝೠሻమ
                                             (26) 253 

and ߣ for Deming regression can be determined: 254 

ߣ ൌ
ఠሺሻ

ఠሺሻ
ൌ

ሺఊುೀೠൈைೝೠሻమ

ሺఊಶೠൈாೝೠሻమ
                                           (27) 255 

3.1.2 XY data generation by Mersenne Twister (MT) generator following 256 

a specific distribution 257 

The Mersenne twister (MT) is a pseudorandom number generator (PRNG) developed 258 

by Matsumoto and Nishimura (1998). MT has been widely adopted by mainstream 259 

numerical analysis software (e.g., Matlab, SPSS, SAS and Igor Pro) as well as popular 260 

programing languages (e.g., R, Python, IDL, C++ and PHP). Data generation using MT 261 

provides a few advantages: (1) Frequency distribution can be easily assigned during the 262 

data generation process, allowing straightforward simulation of the frequency 263 

distribution characteristics (e.g., Gaussian or Log-normal) observed in ambient 264 

measurements; (2) The inputs for data generation are simply the mean and standard 265 

deviation of the data series and can be changed easily by the user; (3) The correlation 266 

(R2) between X and Y can be manipulated easily during the data generation to satisfy 267 



11 

various purposes; (4) Unlike the sine function described by Chu (2005) that has a 268 

sample size limitation of 120, the sample size in MT data generation is highly flexible. 269 

In this section, we will use POC as Y and EC as X as an example to explain the data 270 

generation. Procedure of applying MT to simulate ambient POC and EC data can be 271 

found in our previous study (Wu and Yu, 2016).  Details of the data generation steps 272 

are shown in Figure 2 and described below. The first step is generation of ECtrue by MT. 273 

In our previous study, it was found that ambient POC and EC data follow a lognormal 274 

distribution in various locations of the Pearl River Delta (PRD) region. Therefore, 275 

lognormal distributions are adopted during ECtrue generation. A range of average 276 

concentration and relative standard deviation (RSD) from ambient samples are 277 

considered in formulating the lognormal distribution. The second step is to generate 278 

POCcomb. As shown in Figure 2, POCcomb is generated by multiplying ECtrue with 279 

(OC/EC)pri. Instead of having a Gaussian distribution, (OC/EC)pri in this study is a 280 

single value, which favors direct comparison between the true value of (OC/EC)pri and 281 

(OC/EC)pri estimated from the regression slope. The third step is generation of POCtrue 282 

by adding POCnon-comb onto POCcomb. Instead of having a distribution, POCnon-comb in 283 

this study is a single value, which favors direct comparison between the true value of 284 

POCnon-comb and POCnon-comb estimated from the regression intercept. The fourth step is 285 

to compute ߝை and ߝா. As discussed in section 3.1, two types of measurement errors 286 

are considered for ߝை  and ߝா  calculation: ߛି  and ߛି .  In the 287 

last step, POCmeasured and ECmeasured are calculated following Eq. (12), i.e., applying 288 

measurement errors on POCtrue and ECtrue. Then POCmeasured and ECmeasured can be used 289 

as Y and X respectively to test the performance of various regression techniques. An 290 

Igor Pro based program with graphical user interface (GUI) is developed to facilitate 291 

the MT data generation for OC and EC. A brief introduction is given in the 292 

Supplemental Information. 293 

3.1.3 XY data generation by the sine function of Chu (2005) 294 

Beside MT, the inclusion of the sine function data generation schemes in this study 295 

mainly serves two purposes. First, the sine function scheme had been adopted by two 296 

previous studies (Chu, 2005; Saylor et al., 2006), the inclusion of this scheme can help 297 

to verify whether the codes in Igor for various regression approaches can yield the same 298 
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results from the two previous studies. Second, crosscheck between results from sine 299 

function and MT can provides circumstantial evidence that the MT scheme works as 300 

expected. 301 

 In this section, XY data generation by sine functions is demonstrated using POC as Y 302 

and EC as X. There are four steps in POC and EC data generation as shown by the 303 

flowchart in Figure S1. Details are explained as follows: (1) The first step is to generate 304 

POC and EC (Chu, 2005):  305 

ܥܱܲ ൌ 14  12ሺsinሺ௫
ఛ
ሻ  sinሺݔ െ ߶ሻሻ                                    (28) 306 

௧௨ܥܧ ൌ 3.5  3ሺsinሺ௫
ఛ
ሻ  sinሺݔ െ ߶ሻሻ                                       (29) 307 

Here x is the elapsed hour (x=1,2,3……n; n120), τ is used to adjust the width of each 308 

peak, and ϕ is used to adjust the phase of the sine wave. The constants 14 and 3.5 are 309 

used to lift the sine wave to the positive range of the Y axis. An example of data 310 

generation by the sine functions of Chu (2005) is shown in Figure 3. Dividing Eq. (28) 311 

by Eq. (29) yields a value of 4. In this way the exact relation between POC and EC is 312 

defined clearly as (OC/EC)pri = 4. (2) With POCcomb and ECtrue generated, the second 313 

step is to add POCnon-comb to POCcomb to compute POCtrue. As for POCnon-comb, a single 314 

value is assigned and added to all POC following Eq. (10). Then the goodness of the 315 

regression intercept can be evaluated by comparing the regressed intercept with preset 316 

POCnon-comb. (3) The third step is to compute ߝை  and ߝா , considering both 317 

ିߛ  and ߛି . (4) The last step is to apply measurement errors on 318 

POCtrue and ECtrue following Eq. (12). Then POCmeasured and ECmeasured can be used as 319 

Y and X respectively to evaluate the performance of various regression techniques. 320 

3.2 Ambient measurement of σabs and EC 321 

Sampling was conducted from Feb 2012 to Jan 2013 at the suburban Nancun (NC) site 322 

(23° 0'11.82"N, 113°21'18.04"E), which is situated on the top of the highest peak (141 323 

m ASL) in the Panyu district of Guangzhou. This site is located at the geographic center 324 

of Pearl River Delta region (PRD), making it a good location for representing the 325 

average atmospheric mixing characteristics of city clusters in the PRD region. Light 326 

absorption measurements were performed by a 7-λ Aethalometer (AE-31, Magee 327 
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Scientific Company, Berkeley, CA, USA). EC mass concentrations were measured by 328 

a real time ECOC analyzer (Model RT-4, Sunset Laboratory Inc., Tigard, Oregon, 329 

USA). Both instruments utilized inlets with a 2.5 μm particle diameter cutoff. The algorithm 330 

of Weingartner et al. (2003) was adopted to correct the sampling artifacts (aerosol 331 

loading, filter matrix and scattering effect) (Coen et al., 2010) root in Aethalometer 332 

measurement. A customized computor program with graphical user interface, 333 

Aethalometer data processor (Wu et al., 2017), was developed to perform the data 334 

correction and detailed descriptions can be found in 335 

https://sites.google.com/site/wuchengust. More details of the measurements can be 336 

found in Wu et al. (2017). 337 

4 Comparison study using synthetic data 338 

In the following comparisons, six regression approaches are compared using two data 339 

generation schemes (Chu sine function and MT) separately, as illustrated in Figure 4. 340 

Each data generation scheme considers both ߛି  and ߛି  in 341 

measurement error parameterization. In total, 18 cases are tested with different 342 

combination of data generation schemes, measurement error parameterization schemes, 343 

true slope and intercept settings. For each case, six regression approaches are tested, 344 

including OLS, DR (ߣ ൌ 1), DR (ߣ ൌ ఠሺሻ

ఠሺሻ
), ODR, WODR and YR. In commercial 345 

software (e.g., Origin, SigmaPlot, GraphPad Prism, etc), ߣ in DR is set to 1 by default 346 

if not specified. As indicated by Saylor et al. (2006), the bias observed in the study of 347 

Chu (2005) is likely due to ߣ ൌ 1 in DR. The purpose of including DR (ߣ ൌ 1) in this 348 

study is to examine the potential bias using the default input in many software products. 349 

The six regression approaches are considered to examine the sensitivity of regression 350 

results to various parameters used in data generation. For each case, 5000 runs are 351 

performed to obtain statistically significant results, as recommended by Saylor et al. 352 

(2006). The mean slope and intercept from 5000 runs is compared with the true value 353 

assigned during data generation. If the difference is <5%, the result is considered 354 

unbiased. 355 
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4.1 Comparison results using the data set of Chu (2005)  356 

In this section, the scheme of Chu (2005) is adopted for data generation to obtain a 357 

benchmark of six regression approaches. With different setup of slope, intercept and  358 

  , 6 cases (Case 1 ~ 6) are studied and the results are discussed below.  359ߛ

4.1.1 Results with 360  ࢘ࢇࢋିࢉࢁࢽ 

A comparison of the regression techniques results with ߛି (following Eqs. 361 

(18) & (19)) are summarized in Table 2. ܦܱܮை , ܦܱܮா, ߙை and ߙா are all set to 362 

1 to reproduce the data studied by Chu (2005) and Saylor et al. (2006). Two sets of true 363 

slope and intercept are considered (Case 1: Slope=4, Intercept=0; Case 2: Slope=4, 364 

Intercept=3) to examine if any results are sensitive to the non-zero intercept. The R2 365 

(POC, EC) from 5000 runs for both case 1 and 2 are 0.67±0.03. 366 

As shown in Figure 5, for the zero-intercept case (Case 1), OLS significantly 367 

underestimates the slope (2.95±0.14) while overestimates the intercept (5.84±0.78). 368 

This result indicates that OLS is not suitable for errors-in-variables linear regression, 369 

consistent with similar analysis results from Chu (2005) and Saylor et al. (2006). With 370 

DR, if the λ is properly calculated by weights (ߣ ൌ ఠሺሻ

ఠሺሻ
), unbiased slope (4.01±0.25) 371 

and intercept (-0.04±1.28) are obtained, however, results from DR with λ=1 shows 372 

obvious bias in the slope (4.27±0.27) and intercept (-1.45±1.36). ODR also produces 373 

biased slope (4.27±0.27) and intercept (-1.45±1.36), which are identical to results of 374 

DR when λ=1. With WODR, unbiased slope (3.98±0.22) is observed, but the intercept 375 

is overestimated (1.12±1.02). Results of YR are identical to WODR. For Case 2 376 

(slope=4, intercept=3), slopes from all six regression approaches are consistent with 377 

Case 1 (Table 2). The Case 2 intercepts are equal to the Case 1 intercepts plus 3, 378 

implying that all the regression methods are not sensitive to a non-zero intercept. 379 

For case 3, ܦܱܮை ாܦܱܮ ,0.5= ைߙ ,0.5= ாߙ ,0.5= =0.5 are adopted (Table 2), 380 

leading to an offset to the left of ߛି (blue curve) compared to Case 1 and 2 381 

(black curve) in Figure 1. As a result, for the same concentration of EC and OC in Case 382 

3, the ߛି is smaller than in Case 1 and Case 2 as indicated by higher the R2 383 

(0.95±0.01 for Case 3, Table 2). With a smaller measurement uncertainty, the degree 384 

of bias in Case 3 is smaller than Case 1. For example, OLS slope is less biased in Case 385 
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3 (3.83±0.08) compare to Case 1 (2.94±0.14). Similarly, the slope (4.03±0.09) and 386 

intercept (-0.18±0.44) of DR (λ=1) exhibit a much smaller bias with a smaller 387 

measurement uncertainty, implying that the degree of bias by improperly weighting in 388 

DR, WODR and YR is associated with the degree of measurement uncertainty. A higher 389 

measurement uncertainty results in larger bias in slope and intercept. 390 

An uneven ܦܱܮை  and ܦܱܮா  is tested in Case 4 with  ܦܱܮை  ா=0.5, 391ܦܱܮ ,1=

 ா=0.5, which yield a R2(POC, EC) of 0.78±0.02. The results are similar 392ߙ ,ை=0.5ߙ

to Case 1. For DR (ߣ ൌ ఠሺሻ

ఠሺሻ
) unbiased slope and intercept are obtained. For WODR 393 

and YR, unbiased slopes are reported with a small bias in the intercepts. Large bias 394 

values are observed in both the slopes and intercepts in Case 4 using OLS, DR (ߣ ൌ 1) 395 

and ODR. 396 

4.1.2 Results with 397  ࢘ࢇࢋିࢉࢁࢽ 

Cases 5 and 6 represent the results from using ߛି and are shown in Table 2.  398 

  is set to be 30% to achieve a R2 (POC, EC) of 0.7, a value close to the R2 in studies 399ߛ

of  Chu (2005) and Saylor et al. (2006). In Case 5 (slope=4, intercept=0), unbiased 400 

slopes and intercepts are determined by DR (ߣ ൌ ఠሺሻ

ఠሺሻ
), WODR and YR. OLS 401 

underestimates the slope (3.32 ±0.20) and overestimates intercept (3.77 ±0.90), while 402 

DR (ߣ ൌ 1) and ODR overestimate the slopes (4.75 ±0.30) and underestimates the 403 

intercepts (-4.14 ±1.36). In Case 6 (slope=4, intercept=3), results similar to Case 5 are 404 

obtained. It is worth noting that although the mean intercept (3.05±1.22) of DR (ߣ ൌ405 

ఠሺሻ

ఠሺሻ
), is closest to the true value (intercept=3), the deviations are much larger than for 406 

WODR (2.72±0.74). 407 

4.2 Comparison results using data generated by MT 408 

In this section, MT is adopted for data generation to obtain a benchmark of six 409 

regression approaches. Both ߛି  and ߛି  are considered. With 410 

different configuration of slope, intercept and  ߛ , 12 cases (Case 7 ~ Case 18) are 411 

studied and the results are discussed below.  412 
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 results 413 ࢘ࢇࢋିࢉࢁࢽ 4.2.1

Cases 7 and 8 use data generated by MT and ߛି with results shown in Table 414 

2. In Case 7 (slope=4, intercept=0, ܦܱܮை=1, ܦܱܮா=1, ߙை=1, ߙா=1), unbiased 415 

slope (4.00 ±0.03) and intercept (0.00 ±0.17) is estimated by DR (ߣ ൌ ఠሺሻ

ఠሺሻ
). WODR 416 

and YR yield unbiased slopes (3.96 ±0.03) but overestimate the intercepts (1.21 ±0.13). 417 

DR (ߣ ൌ 1) and ODR report slightly biased slopes (4.17 ±0.04) with biased intercepts 418 

(-0.94 ±0.18). OLS underestimates the slope (3.22 ±0.03) and overestimates the 419 

intercept (4.30 ±0.14). In Case 8 (slope=4, intercept=3,	ܦܱܮை=1, ܦܱܮா=1, ߙை=1, 420 

ߣ) ா=1), DRߙ ൌ ఠሺሻ

ఠሺሻ
) provides unbiased slope (4.00 ±0.03) and intercept (3.00 ±0.18) 421 

estimations. WODR and YR report unbiased slopes (3.97 ±0.03) and overestimate 422 

intercepts (4.11 ±0.13). OLS, DR (ߣ ൌ 1) and ODR report biased slopes and intercepts. 423 

To test the overestimation/underestimation dependency on the true slope, Case 9 424 

(slope=0.5, intercept=0, ܦܱܮை ாܦܱܮ ,1= ைߙ ,1= ாߙ ,1= =1) and case 10 425 

(slope=0.5, intercept=3, ܦܱܮை=1, ܦܱܮா=1, ߙை=1, ߙா=1) are conducted and the 426 

results are shown in Table 2. Unlike the overestimation observed in Case 1~Case 8, DR 427 

ߣ) ൌ 1ሻ and ODR underestimate the slopes (0.46 ±0.01) in Case 9. In case 10, DR (ߣ ൌ428 

1), DR (ߣ ൌ ఠሺሻ

ఠሺሻ
) and ODR report unbiased slopes and intercepts. Case 11 and case 429 

12 test the bias when the true slope is 1 as shown in Table 2. In Case 11 (intercept=0), 430 

all regression approaches except OLS can provide unbiased results. In Case 12, all 431 

regression approaches report unbiased slopes except OLS, but DR (ߣ ൌ ఠሺሻ

ఠሺሻ
) is the 432 

only regression approach that report unbiased intercept. 433 

These results imply that if the true slope is less than 1, the improper weighting (ߣ ൌ 1ሻ 434 

in Deming regression and ODR without weighting tends to underestimate slope. If the 435 

true slope is 1, these two estimators can provide unbiased results. If the true slope is 436 

larger than 1, the improper weighting (ߣ ൌ 1ሻ in Deming regression and ODR without 437 

weighting tends to overestimate slope. 438 
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 results 439 ࢘ࢇࢋିࢉࢁࢽ 4.2.2

Cases 13 and 14 (Table 2) represent the results from using ߛି (30%) and data 440 

generated from MT. For case 13 (slope=4, intercept=0), DR (ߣ ൌ ఠሺሻ

ఠሺሻ
), WODR and 441 

YR provide the best estimation of slopes and intercepts. DR (ߣ ൌ 1 ) and ODR 442 

overestimate slopes (4.53 ±0.05) and underestimate intercepts (-2.94 ±0.24). For case 443 

14 (slope=4, intercept=3), DR (ߣ ൌ ఠሺሻ

ఠሺሻ
), WODR and YR provide an unbiased 444 

estimation of slopes. But DR (ߣ ൌ ఠሺሻ

ఠሺሻ
) is the only regression approaches reports 445 

unbiased intercept (3.08 ±0.23). Cases 15 and 16 are tested to investigate whether the 446 

results are different if the true slope is smaller than 1. As shown in Table 2, the results 447 

are similar to case 13&14 that DR (ߣ ൌ ఠሺሻ

ఠሺሻ
) can provide unbiased slope and intercept 448 

while WODR and YR can provide unbiased slopes but biased intercepts. Cases 17 and 449 

18 are tested to see if the results are the same for a special case when the true slope is 450 

1. As shown in Table 2, the results are similar to case 13&14, implying that these results 451 

are not sensitive to the special case when the true slope is 1. 452 

4.3 The importance of appropriate λ input for Deming regression 453 

As discussed above, inappropriate λ assignment in the Deming regression (e.g., λ=1 by 454 

default for many commercial software) leads to biased slope and intercept. Beside λ =1, 455 

inappropriate λ input due to improper handling of measurement uncertainty can also 456 

result in bias for Deming regression. An example is shown in Figure S2. Data is 457 

generated by MT with following parameters: slope=4, intercept=0, and ߛି 458 

(30%). Figure S2 a&b demonstrates that when an appropriate λ is provided (following 459 

ߣ ,ିߛ ൌ ைమ

ாమ
), unbiased slopes and intercepts are obtained. If an improper λ is 460 

used due to a mismatched measurement uncertainty assumption (ߛି , ߣ ൌ461 

ை

ா
), the slopes are overestimated (Figure S2c, 4.37±0.05) and intercepts are 462 

underestimated (Figure S2d，-2.01±0.24). This result emphasizes the importance of 463 

determining the correct form of measurement uncertainty in ambient samples, since λ 464 

is a crucial parameter in Deming regression.  465 
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In the λ calculation, different representations for POC and EC, including mean, median 466 

and mode, are tested as shown in Figure S3. The results show that when X and Y have 467 

a similar distribution (e.g., both are log-normal), any of mean, median or mode can be 468 

used for the λ calculation. 469 

4.4 Caveats of regressions with unknown X and Y uncertainties  470 

When applying linear regression on real world data, it happens that a priori error in 471 

one of the variables is unknown, or the measurement error described cannot be trusted. 472 

In other words, that would be certain degree of discrepancy between the measurement 473 

error used for linear regression and measurement error embed in the data. It is common 474 

that measurement error cannot be determined due to the lack of duplicated or 475 

collocated measurements and an arbitrarily assumed uncertainty is used. For example, 476 

Flanagan et al. (2006) found that the whole-system uncertainty retrieved by data from 477 

collocated sampler is different from the arbitrarily assumed 5% uncertainty, which is 478 

previously used by the Speciation Trends Network (STN). In addition, the degree of 479 

discrepancy between the actual uncertainty by collocated samples and arbitrarily 480 

assumed uncertainty also varied by different chemical species. To investigate the 481 

impact of such cases on different regression approaches, two tests are conducted. In 482 

Test A, the actual measurement error for X is fixed at 30% while ߛ for Y varied 483 

from 1% to 50%. The assumed measurement error for regression is 10% for both X 484 

and Y. Results of Test A are shown in Figure 6 a&b. For OLS, the slopes are 485 

underestimated (-14 ~ -12%) and intercepts are overestimated (90 ~ 103%). The biases 486 

in OLS slope and intercept are independent of variations in ߛ_. ODR and DR (ߣ ൌ487 

1) yield similar results with overestimated slopes (0 ~ 44%) and underestimated 488 

intercepts (-330 ~ 0%). The degree of bias in slopes and intercepts depends on  ߛ_. 489 

WODR, DR ( ߣ ൌ ఠሺሻ

ఠሺሻ
) and YR performed much better than other regression 490 

approaches in Test A, with a smaller bias in both slopes (-8 ~ 12%) and intercepts -98 491 

~ 55%). 492 

The results of Test B are shown in Figure 6 c&d. which has a fixed ߛ_ of 30% and 493 

 _ varied between 1 ~ 50%. The assumed measurement error for regression is 10% 494ߛ

for both X and Y. OLS underestimates slopes (-29 ~-0.2%) and overestimates 495 
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intercepts (2 ~ 209%) in Test B. In contrast to Test A which slope and intercept biases 496 

are independent of variations in ߛ_, the OLS slope and intercept biases in Test B 497 

exhibit dependency on ߛ_ . The reason behind is because OLS only considers 498 

errors in Y, while X is assumed to be error free. ODR and DR (ߣ ൌ 1) yield similar 499 

results with overestimated slopes (11 ~ 18%) and underestimated intercepts ( -144 ~ -500 

87%). The degree of biases in slopes and intercepts is relatively independent to the 501 

ߣ) _. WODR, DRߛ ൌ ఠሺሻ

ఠሺሻ
) and YR performed much better than other regression 502 

approaches in Test B, with a smaller bias in both slopes (-14 ~ 8%) and intercepts (-503 

59 ~ 106%). 504 

The results from these two tests suggest that, in case of one of the measurement error 505 

described cannot be trusted or a priori error in one of the variables is unknown, WODR, 506 

DR (ߣ ൌ ఠሺሻ

ఠሺሻ
) and YR should be used instead of ODR, DR (ߣ ൌ 1) and OLS. This 507 

conclusion also agrees with section 4.1 and 4.2. The results also suggest that, in general, 508 

the magnitude of bias in slope estimation by these regression approaches are smaller 509 

than those for intercept. In other words, slope is a more reliable quantity compare to 510 

intercept when extracting quantitative information from linear regressions. 511 

5  Regression applications to ambient data 512 

This section demonstrates the application of the 6 regression approaches on a light 513 

absorption coefficient and EC dataset collected in a suburban site in Guangzhou. As 514 

mentioned in the last section, measurement uncertainties are crucial inputs for DR, YR 515 

and WODR. The measurement precision of Aethalometer is 5% (Hansen, 2005) while 516 

EC by RT-ECOC analyzer is 24% (Bauer et al., 2009). These measurement 517 

uncertainties are used in DR, YR and WODR calculation. The data-set contains 6926 518 

data points with a R2 of 0.92.  519 

As shown in Figure 7, Y axis is light absorption at 520 nm (σabs520) and the X axis is 520 

EC mass concentration. The regressed slopes represent the mass absorption efficiency 521 

(MAE) of EC at 520 nm, ranging from 13.66 to 15.94 m2g-1 by the six regression 522 

approaches. OLS yields the lowest slope (13.66 as shown in Figure 7a) among all six 523 

regression approaches, consistent with the results using synthetic data. This implies that 524 

OLS tends to underestimate regression slope when mean Y to X ratio is larger than 1. 525 
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DR ( ߣ ൌ 1 ) and ODR report the same slope (14.88) and intercept (5.54), this 526 

equivalency is also observed for the synthetic data. Similarly, WODR and YR yield 527 

identical slope (14.88) and intercept (5.54), in line with the synthetic data results. The 528 

regressed slope by DR (ߣ ൌ 1) is higher than DR (ߣ ൌ ఠሺሻ

ఠሺሻ
), and this relationship 529 

agrees well with the synthetic data results.  530 

Regression comparison is also performed on hourly OC and EC data. Regression on 531 

OC/EC percentile subset is a widely used empirical approach for primary OC/EC ratio 532 

determination. Figure S4 shows the regression slopes as a function of OC/EC percentile. 533 

OC/EC percentile ranges from 0.5% to 100%, with an interval of 0.5%. As the 534 

percentile increases, SOC contribution in OC increases as well, resulting decreased R2 535 

between OC and EC. The deviations between six regression approaches exhibit a 536 

dependency on R2. When percentile is relatively small (e.g., <10%), the differences 537 

between the six regression approaches are also small due to the high R2 (0.98). The 538 

deviations between the six regression approaches become more pronounced as R2 539 

decreases (e.g., <0.9). The deviations are expected to be even larger when R2 is less 540 

than 0.8. These results emphasize the importance of applying error-in-variables 541 

regression, since ambient XY data more likely has a R2 less than 0.9 in most cases. 542 

As discussed in this section, the ambient data confirm the results obtained in comparing 543 

methods with the synthetic data. The advantage of using the synthetic data for 544 

regression approaches evaluation is that the ideal slope and intercept are known values 545 

during the data generation, so the bias of each regression approach can be quantified.  546 

6 Recommendations and conclusions 547 

This study aims to provide a benchmark of commonly used linear regression algorithms 548 

using a new data generation scheme (MT). Six regression approaches are tested, 549 

including OLS, DR (ߣ ൌ 1), DR (ߣ ൌ ఠሺሻ

ఠሺሻ
), ODR, WODR and YR. The results show 550 

that OLS fails to estimate the correct slope and intercept when both X and Y have 551 

measurement errors. This result is consistent with previous studies. For ambient data 552 

with R2 less than 0.9, error-in-variables regression is needed to minimize the biases in 553 

slope and intercept. If measurement uncertainties in X and Y are determined during the 554 

measurement, measurement uncertainties should be used for regression. With 555 
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appropriate weighting, DR, WODR and YR can provide the best results among all 556 

tested regression techniques. Sensitivity tests also reveal the importance of the 557 

weighting parameter λ in DR. An improper λ could lead to biased slope and intercept. 558 

Since the λ estimation depends on the form of the measurement errors, it is important 559 

to determine the measurement errors during the experimentation stage rather than 560 

making assumptions. If measurement errors are not available from the measurement 561 

and assumptions are made on measurement errors, DR, WODR and YR are still the 562 

best option that can provide the least bias in slope and intercept among all tested 563 

regression techniques. For these reasons, DR, WODR and YR are recommended for 564 

atmospheric studies when both X and Y data have measurement errors. 565 

Application of error-in-variables regression is often overlooked in atmospheric studies, 566 

partly due to the lack of a specified tool for the regression implementation.  To facilitate 567 

the implementation of error-in-variables regression (including DR,WODR and YR), a 568 

computer program (Scatter plot) with graphical user interface (GUI) in Igor Pro 569 

(WaveMetrics, Inc. Lake Oswego, OR, USA) is developed (Figure 8). It packed with 570 

many useful features for data analysis and plotting, including batch plotting, data 571 

masking via GUI, color coding in Z axis, data filtering and grouping by numerical 572 

values and strings. The Scatter plot program and user manual are available from 573 

https://sites.google.com/site/wuchengust and https://doi.org/10.5281/zenodo.832417. 574 

  575 
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Appendix A: Equations of regression techniques 576 

Ordinary Least Square (OLS) calculation steps. 577 

First calculate average of observed Xi and Yi. 578 

തܺ ൌ
∑ 
ಿ
సభ

ே
                                                            (A1) 579 

തܻ ൌ
∑ 
ಿ
సభ

ே
                                                            (A2) 580 

Then calculate Sxx and Syy. 581 

ܵ௫௫ ൌ ∑ ሺ ܺ െ തܺሻଶே
ୀଵ                                                 (A3) 582 

ܵ௬௬ ൌ ∑ ሺ ܻ െ തܻሻଶே
ୀଵ                                                 (A4) 583 

OLS slope and intercept can be obtained from, 584 

݇ ൌ
ݕݕܵ

ݔݔܵ
                                                                 (A6) 585 

ܾ ൌ തܻ െ ݇ തܺ                                                           (A7) 586 

 587 

Deming regression  (DR) calculation steps (York, 1966). 588 

Besides Sxx and Syy as shown above, Sxy can be calculated from, 589 

ܵ௫௬ ൌ ∑ ሺ ܺ െ തܺሻሺ ܻ െ തܻሻே
ୀଵ                                               (A8) 590 

DR slope and intercept can be obtained from, 591 

݇ ൌ
ௌିఒௌೣೣାට൫ௌିఒௌೣೣ൯

మ
ାସఒௌೣ

మ

ଶௌೣ
                                       (A9) 592 

ܾ ൌ തܻ െ ݇ തܺ                                                           (A10) 593 

 594 

York regression (YR) iteration steps (York et al., 2004). 595 

Slope by OLS can be used as the initial k in ܹ calculation. 596 

ܹ ൌ
ఠሺሻఠሺሻ

ఠሺሻାమఠሺሻିଶඥఠሺሻఠሺሻ
                                              (A11) 597 
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ܷ ൌ 	 ܺ െ തܺ ൌ ܺ െ
∑ ௐ
ಿ
సభ

∑ ௐ
ಿ
సభ

                                                  (A12) 598 

ܸ ൌ ܻ െ തܻ ൌ ܻ െ
∑ ௐ
ಿ
సభ

∑ ௐ
ಿ
సభ

                                                    (A13) 599 

Then calculate ߚ. 600 

ߚ ൌ ܹ 


ఠሺሻ
 

ఠሺሻ
െ ሾ݇ ܷ  ܸሿ


ඥఠሺሻఠሺሻ

൨                                   (A14) 601 

Slope and intercept can be obtained from, 602 

݇ ൌ
∑ ௐ

సభ ఉ

∑ ௐ

సభ ఉ

                                                              (A15) 603 

ܾ ൌ തܻ െ ݇ തܺ                                                               (A16) 604 

Since ܹ and ߚ are functions of k, k must be solved iteratively by repeating A11 to 605 

A15. If the difference between the k obtained from A15 and the k used in A11 satisfies 606 

the predefined tolerance (శభି


൏ ݁ିଵହ), the calculation is considered as converged. The 607 

calculation is straightforward and usually converged in 10 iterations. For example, the 608 

iteration count on the data set of Chu (2005) is around 6. 609 
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Table 1. Summary of abbreviations and symbols. 757 

Abbreviation/symbol Definition 

α a dimensionless adjustable factor to control the position of  ߛ  curve on the concentration axis 

b intercept in linear regression 

 , ܷ, ܸ, ܹ intermediates in York regression calculationsߚ

 (%)  fractional measurement uncertainties relative to the true concentrationߛ

DR Deming regression 

 ை   absolute measurement uncertainties of EC and POCߝ , ாߝ

EC elemental carbon 

ECtrue numerically synthesized true EC concentration without measurement uncertainty 

ECmeasured EC with measurement error (ECtrue + ߝா) 

ሺ߱ ߣ ܺሻ to ߱ሺ ܻሻ ratio in Deming regression 

k slope in linear regression 

LOD limit of detection 

MT Mersenne twister pseudorandom number generator 

OC organic carbon 

OC/EC OC to EC ratio 

(OC/EC)pri primary OC/EC ratio 

OCnon-comb OC from non-combustion sources 

ODR orthogonal distance regression 

OLS ordinary least squares regression 

POC primary organic carbon 

POCcomb 
numerically synthesized true POC from combustion sources (well correlated with ECtrue), 

measurement uncertainty not considered 

POCnon-comb 
numerically synthesized true POC from non-combustion sources (independent of ECtrue) without 

considering measurement uncertainty 

POCtrue sum of POCcomb and POCnon-comb without considering measurement uncertainty 

POCmeasured POC with measurement error (POCtrue + ߝை) 

  the standard deviation of the error in measurement of Xi and Yiߪ , ߪ

  correlation coefficient between errors in Xi and Yi in YRݎ

S sum of squared residuals 

SOC secondary organic carbon 

τ parameter in the sine function of Chu (2005) that adjust the width of each peak 

ϕ parameter in the sine function of Chu (2005) that adjust the phase of the curve 

WODR weight orthogonal distance regression 

തܺ,		 തܻ average of Xi and Yi 

YR York regression 

߱ሺ ܺሻ,			߱ሺ ܻሻ inverse of ߪ and ߪ, used as weights in DR calculation. 

 758 
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Table 2. Summary of six regression approaches comparison with 5000 runs for 18 cases. 759 
 760 

Data generation Results by different regression approaches 

Case 
Data 

scheme 
True 
Slope 

True 
Intercept 

R2     
 (X, Y) 

Measurement 
error 

OLS DR   λ=1 DR   ࣅ ൌ
࣓ሺࢄሻ

࣓ሺࢅሻ
 ODR WODR YR 

Slope Intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept 

1 

Chu 

4  0  0.67±0.03   ,ை=1ܦܱܮ
 ா=1ܦܱܮ
ܽை=1, 
ܽா=1. 

2.94±0.14  5.84±0.78  4.27±0.27  ‐1.45±1.36  4.01±0.25  ‐0.04±1.28  4.27±0.27  ‐1.45±1.36  3.98±0.22  1.12±1.02  3.98±0.22  1.12±1.02 

2  4  3  0.67±0.04  2.95±0.15  8.83±0.80  4.32±0.28  1.28±1.43  4.01±0.26  2.94±1.34  4.32±0.28  1.28±1.43  3.99±0.23  3.98±1.05  3.99±0.23  3.98±1.05 

3  4  0  0.95±0.01 

 ,ை=0.5ܦܱܮ
 ா=0.5ܦܱܮ
 ,ை=0.5ߙ
 ா=0.5ߙ

3.83±0.08  0.95±0.40  4.03±0.09  ‐0.18±0.44  4±0.09  0±0.44  4.03±0.09  ‐0.18±0.44  4±0.08  0.12±0.37  4±0.08  0.12±0.37 

4  4  0  0.78±0.02 

 ,ை=1ܦܱܮ
 ா=0.5ܦܱܮ
 ,ை=1ߙ
 ா=1ߙ

3.39±0.15  3.34±0.75  4.3±0.21  ‐1.66±1.06  4±0.19  ‐0.03±0.99  4.3±0.21  ‐1.66±1.06  4±0.17  0.33±0.81  4±0.17  0.33±0.81 

5  4  0  0.69±0.04 
 =30%ߛ

3.32±0.20  3.77±0.90  4.75±0.30  ‐4.14±1.36  4.01±0.25  ‐0.04±1.13  4.75±0.30  ‐4.14±1.36  4±0.18  ‐0.01±0.59  4±0.18  ‐0.01±0.59 

6  4  3  0.66±0.04  3.31±0.22  6.79±1.02  4.95±0.31  ‐2.26±1.48  3.99±0.26  3.05±1.22  4.95±0.31  ‐2.26±1.48  4.01±0.20  2.72±0.74  4.01±0.20  2.72±0.74 

7 

MT 

4  0  0.76±0.01 

 ,ை=1ܦܱܮ
 ா=1ܦܱܮ
ܽை=1, 
ܽா=1 

3.22±0.03  4.3±0.14  4.17±0.04  ‐0.94±0.18  4±0.03  0±0.17  4.17±0.04  ‐0.94±0.18  3.96±0.03  1.21±0.13  3.96±0.03  1.21±0.13 

8  4  3  0.75±0.01  3.22±0.03  7.29±0.14  4.2±0.04  1.88±0.18  4±0.03  3±0.18  4.2±0.04  1.88±0.18  3.97±0.03  4.11±0.13  3.97±0.03  4.11±0.13 

9  0.5  0  0.76±0.01  0.43±0.00  0.36±0.02  0.46±0.01  0.23±0.03  0.5±0.01  0±0.03  0.46±0.01  0.23±0.03  0.5±0.00  0±0.01  0.5±0.00  0±0.01 

10  0.5  3  0.56±0.01  0.43±0.01  3.36±0.03  0.5±0.01  3.02±0.04  0.49±0.01  3.05±0.04  0.5±0.01  3.02±0.04  0.51±0.01  2.73±0.03  0.51±0.01  2.73±0.03 

11  1  0  0.76±0.01  0.87±0.01  0.72±0.05  1±0.01  0±0.06  1±0.01  0±0.06  1±0.01  0±0.06  1±0.01  0±0.02  1±0.01  0±0.02 

12  1  3  0.66±0.01  0.87±0.01  3.72±0.05  1.09±0.01  2.52±0.07  0.99±0.01  3.07±0.06  1.09±0.01  2.52±0.07  1.01±0.01  2.71±0.04  1.01±0.01  2.7±0.04 

13  4  0  0.76±0.01 

  =30%ߛ

3.48±0.04  2.87±0.18  4.53±0.05  ‐2.94±0.24  4±0.05  0±0.22  4.53±0.05  ‐2.94±0.24  4±0.03  0±0.09  4±0.03  0±0.09 

14  4  3  0.73±0.01  3.48±0.04  5.87±0.19  4.67±0.05  ‐0.67±0.26  3.98±0.05  3.08±0.23  4.67±0.05  ‐0.67±0.26  4.02±0.03  2.68±0.11  4.02±0.03  2.68±0.11 

15  0.5  0  0.54±0.01  0.4±0.01  0.55±0.03  0.45±0.01  0.26±0.03  0.5±0.01  0.01±0.03  0.45±0.01  0.26±0.03  0.52±0.01  ‐0.23±0.02  0.52±0.01  ‐0.23±0.02 

16  0.5  3  0.40±0.01  0.4±0.01  3.54±0.04  0.5±0.01  2.98±0.04  0.5±0.01  3±0.04  0.5±0.01  2.98±0.04  0.52±0.01  2.65±0.04  0.52±0.01  2.65±0.04 

17  1  0  0.65±0.01  0.8±0.01  1.07±0.04  1±0.01  0±0.05  1±0.01  0±0.05  1±0.01  0±0.05  1±0.01  0±0.04  1±0.01  0±0.04 

18  1  3  0.59±0.01  0.8±0.01  4.07±0.05  1.07±0.01  2.62±0.07  1±0.01  3±0.06  1.07±0.01  2.62±0.07  1.02±0.01  2.84±0.05  1.02±0.01  2.84±0.05 
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 763 

Figure 1. (a) Example ߛି curves by different α values (Eq. (17)). The X 764 

axis is concentration (normalized by LOD) in log scale and Y axis is ߛ. Black, blue 765 

and green line represent α equal to 1, 0.5 and 0.3 respectively, corresponding to the 766 

 ି at LOD level equals to 100%, 50% and 30% respectively. The red line 767ߛ

represents ߛି of 10%. (b) Example of measurement uncertainty generation of 768 

ିߛ  and ߛି . The blue circles represent ߛି  following 769 

Eq. (17) (ܦܱܮா ൌ 1 , ܽா ൌ 1). The red circles represent ߛି (30%). 770 
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Figure 2. Flowchart of data generation steps using MT.  774 
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 776 

Figure 3. POCcomb and ECtrure data generated by the sine functions of (Chu (2005)). (a) 777 

Time series of the 120 data points for POCcomb and ECtrue. (b) Scatter plot of POCcomb 778 

vs. ECtrue 779 
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 782 

Figure 4. Overview of the comparison study design. 783 
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 785 

Figure 5. Regression results on synthetic data, case 1 (Slope=4, Intercept=0, 786 

 ா=1, ܽை=1, ܽா=1, R2 (POC, EC) =0.67±0.03). The scatter plots 787ܦܱܮ ,ை=1ܦܱܮ

demonstrate regression examples from a single run. The box plots show the distribution 788 

of regressed slopes and intercepts from 5000 runs of six regression approaches. The 789 

dashed line in orange and peachblow represent true slope and intercept respectively. 790 
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  791 

Figure 6.  Slope and intercept biases due to the inconsistency between measurement error of 792 

data and measurement error used in regression. In Test A data generation, ߛ_ is fixed at 793 

30% and ߛ_ varied between 1 ~ 50%. In Test B, ߛ_ varied between 1 ~ 50% and ߛ_ 794 

is fixed at 30%. The assumed measurement error for regression is 10% for both X and Y. (a) 795 

Slopes biases as a function of ߛ_ in Test A. (b) Intercepts biases as a function of ߛ_ in 796 

Test A. (c) Slopes biases as a function of ߛ_ in Test B. (d) Intercepts biases as a function 797 

of ߛ_ in Test B. 798 
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 799 

Figure 7. Regression results using ambient σabs520 and EC data from a suburban site in 800 

Guangzhou, China. 801 
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 802 

Figure 8. The user interface of Scatter Plot Igor program. The program and its operation 803 

manual are available from: https://doi.org/10.5281/zenodo.832417. 804 


