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Abstract. The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo 

and surface radiation dataset from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using 

cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. 10 

The sensitivity, including its global variation, has been studied based on collocations of AVHRR and CALIOP 

measurements over a ten-year period (2006-2015). The cloud detection sensitivity has been defined as the minimum cloud 

optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After 

using this value to reduce the CALIOP cloud mask (i.e., clouds with optical thickness below this threshold were interpreted 

as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar 15 

regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of 

detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, 

showing that also a large fraction of optically thick clouds remains undetected here. The study included an in-depth analysis 

of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the 

cloud’s geographical position. Best results were achieved over oceanic surfaces at mid-to-high latitudes where at least 50 % 20 

of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities 

over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 

over the Sahara desert and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum 

values of 4.5 for the parts with the highest altitudes over Greenland and Antarctica. It is suggested to also quantify the 

detection performance of other CDRs in terms of a sensitivity threshold of cloud optical thickness which can be estimated 25 

using active lidar observations. Validation results are also proposed to be used in Cloud Feedback Model Intercomparison 

Project (CFMIP) Observation Simulation Package (COSP) simulators for cloud detection characterisation of various cloud 

CDRs from passive imagery. 

1 Introduction 

Monitoring the global amount, distribution and optical properties of clouds is increasingly important as a result of the 30 

increasing evidence that the parametrization of cloud processes and cloud-aerosol interactions including related climate 

feedbacks, are critical contributors to the uncertainty in climate change analysis and in predictions from climate models 

(Stocker et al., 2013). However, it is encouraging in this respect to note the steadily increasing amount of observations from 

spaceborne passive and active sensors (an excellent overview is available at https://www.wmo-sat.info/oscar/) and the 

prolonged growth of the observational records from the initial satellite sensors launched in the 1970’s. These early satellite 35 

observations, which consist of spectral radiance measurements, can be used to retrieve information about clouds and other 

relevant Earth-Atmosphere parameters. Most importantly they have now evolved into time series of observations with 

lengths approaching four decades, which qualifies them for use as climate data records (CDRs). Examples of CDRs built 
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upon such observations are described by Rossow and Schiffer (1999), Karlsson et al. (2017), Heidinger et al. (2014) and 

Stengel et al. (2017).  40 

 

The advantage of using satellite-based observations for climate analysis is their global coverage. A similar coverage is very 

difficult to achieve with surface-based observations alone because of the sparsity of the surface-based observational network. 

This is particularly true for observations of cloudiness and cloud properties, where large parts of the Earth, especially 

oceanic and polar regions, are still poorly covered. The different observation capabilities and conditions for space-based 45 

sensors and surface-based observations also leads to problems when trying to characterise the accuracy of space-based 

CDRs. Although the quality of observations may be estimated for selected Earth positions or for small regions with dense 

surface networks, it is very difficult to achieve a representative and homogenous view of the accuracy over the entire globe 

using surface observations. The quality of CDRs is especially important as observations used for climate monitoring must be 

very accurate to allow the reliable estimation of potential climate change signals (Ohring et al., 2004), which is a central 50 

aspect in the planning and definition of the global climate observing system (Dowell et al., 2013). For this reason, there is 

also a  need to become more stringent in the description of the uncertainty of CDRs by following international metrological 

norms (Merchant et al., 2017). 

 

One solution for achieving both the global coverage and an improved quality description is to make use of high-quality 55 

reference measurements from space-borne platforms (Dowell et al., 2013). This has already been successfully demonstrated 

by utilizing data delivered by the A-Train satellites, i.e., Afternoon Satellite Constellation or sometimes referred to as the 

Afternoon Train). This is a system of satellites operating in the same orbit configuration and having close to simultaneous 

observation times (Stephens et al., 2002).  The most important satellite in the A-train for the detection of clouds is the 

CALIPSO satellite, which has the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard (Winker et al., 60 

2009). The sensitivity of CALIOP to clouds in the atmosphere is much higher than for other space-based sensors and this 

makes it a natural reference for evaluating the cloud detection efficiency in data records compiled from passive sensor data 

(e.g., as demonstrated by Heidinger et al., 2016).  

 

This paper presents a detailed CALIOP-based evaluation of the cloud detection efficiency and the uncertainty of the 65 

cloudiness information provided by the CLARA-A2 (The CM SAF cloud, albedo and surface radiation dataset from 

AVHRR data - second edition) CDR (Karlsson et al. 2017). This CDR was released in 2017 by the Climate Monitoring 

Satellite Application Facility (CM SAF); a project belonging to the satellite ground segment of the European Organisation 

for the Exploitation of Meteorological Satellites (EUMETSAT, Schulz et al., 2009). The evaluation presented is based on an 

original validation method described by Karlsson and Johansson (2013) which has been extended with several new features. 70 

The method was first updated to use the latest revision of the CALIPSO-CALIOP dataset (Version 4) and results showing 

the impact of this change are presented.  The study then takes advantage of the greatly extended CALIOP observation period 

(here covering almost 10 years) to monitor globally averaged cloud conditions in unprecedented detail. The achieved 

validation results, which cover approximately one third of the CLARA-A2 observation period, can be considered to be the 

best currently available characterisation of the global quality of the CLARA-A2 cloud data record. A specific enhancement 75 

of the original validation method is the estimation of the geographical distribution of cloud detection probability as a 

function of cloud layer optical thickness. Section 2 describes the CLARA-A2 and CALIPSO datasets, Section 3 outlines the 

extended validation method and the compiled validation dataset and is followed by results in Section 4. Section 5 discusses 

the results and Section 6 provides conclusions and proposes potential future applications.  
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2 Data 80 

2.1 The CLARA-A2 climate data record. 

CLARA-A2 is constructed from historic measurements of the Advanced Very High Resolution Radiometer (AVHRR) 

operated onboard polar orbiting NOAA satellites and the Metop polar orbiters operated by EUMETSAT since 2006. 

AVHRR measures radiation in five spectral channels (two visible and three infrared channels) with an original horizontal 

field of view (FOV) size at nadir of 1.1 km. The data used in CLARA-A2 is a resampled version of these measurements at a 85 

reduced resolution of5 km, defined as global area coverage (GAC).  The size is defined in this context as the approximate 

diameter (assuming a circular or elliptic shape) of the FOV and this definition will be used throughout this paper. Only 

resampled GAC data is available (i.e., being archived) globally over the full period since the introduction of the AVHRR 

sensor in space. The resampling of original data into GAC representation means that four out of five original FOVs are 

selected for the first scan line while the next two scan lines are ignored. Radiances for these four selected FOVs are then 90 

averaged and used to represent the GAC FOV consisting of 15 original full resolution FOVs. Thus, only about 25 % of the 

nominal GAC FOV is actually observed (see also visualization in Figure 1 in Section 3.2).    

 

CLARA-A2 improves and extends the first version of the data record released in 2012 (Karlsson et al., 2013) and now 

covers a 34-year time period (1982-2015). Original visible radiances were inter-calibrated and homogenised, using MODIS 95 

(Moderate Resolution Imaging Spectroradiometer) data as a reference, before generating each component of the CLARA-A2 

product portfolio. The inter-calibration was based on the method introduced by Heidinger et al. (2010), which has now been 

updated (MODIS Collection 6) and extended (six years have been added). This updated calibration is described by 

Devasthale et al. (2017). CLARA-A2 features of the following cloud products: cloud mask/cloud amount, cloud top 

temperature/pressure/height, cloud thermodynamic phase, and (for liquid and ice clouds separately) cloud optical thickness, 100 

particle effective radius and cloud water path. These cloud products are available as monthly and daily averages in a 0.25 by 

0.25 degree latitude-longitude grid and also as daily resampled global products (Level 2b) in a 0.05 by 0.05 degree latitude-

longitude grid. The daily resampled products are valid per satellite and orbit node (ascending or descending) while  the daily 

average product is an average of all available daily resampled products and the monthly products are the averages of all the 

daily average products.  Cloud parameter results are also presented as multi-parameter distributions (i.e., joint frequency 105 

histograms of cloud optical thickness, cloud top pressure and cloud phase) for daytime conditions. As well as cloud products 

CLARA-A2 also includes surface radiation budget and surface albedo products and examples of the CLARA-A2 products 

can be found in Karlsson et al. (2017). 

 

In this study, we focus exclusively on the quality of the original AVHRR GAC cloud mask because of its central importance 110 

to the quality of all other CLARA-A2 products. Validation results for other CLARA-A2 products can be found in Karlsson 

et al. (2017) and in CM SAF 1 (2017). The CLARA-A2 cloud mask is generated using an improved and extended version of 

the method first proposed by Dybbroe et al. (2005) which enables reliable processing of the historic AVHRR GAC record. 

These improvements are described in detail in Karlsson et al. (2017) and in CM SAF 2, 2017).   

2.2 The CALIPSO-CALIOP cloud information. 115 

An extensive description of the existing CALIPSO-CALIOP cloud and aerosol datasets can be found in Vaughan et al. 

(2009). In short, the Cloud Layer product from CALIOP (denoted CLAY) used in this study provides information on up to 

10 individual vertically displaced cloud layers. As the detection of a cloud layer requires that all layers above that layer are 

optically thin enough to allow the lidar signal to penetrate down to that particular layer, there can be a bias in the number of 

layers observed if overlaying clouds are optically thick. The CLAY product is provided in three different horizontal 120 
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resolutions (along track): 333 m (“single shot”), 1 km and 5 km. The resolutions coarser than 333 m are constructed through 

averaging over several single shots. This is done to increase the signal to noise ratio to allow detection of thinner clouds than 

could be achieved at the original single shot resolution. Thus, CALIOP products at coarser resolution will be capable of 

detecting more clouds than at finer resolutions and it is preferable that studies of thin Cirrus clouds should be based on 

products in the coarsest resolution 5 km (Vaughan et al., 2009). Note that the nominal single shot FOV size does not 125 

correspond to the true lidar FOV size but rather to the along-track sampling distance. As the true lidar FOV size is only 70 m 

(Winker et al., 2007), less than 5 % of the nominal single shot FOV is actually observed (see also Fig. 1 in Section 3.2).    

 

An estimation of the cloud optical thickness of each layer is also provided but only for a FOV size of 5 km. However these 

values are only reliable for clouds with relatively low optical thickness (below approximately 3), because of signal saturation 130 

in optically thick clouds (Vaughan et al., 2009 and Sassen and Cho, 1992). In this study we have used the optical thickness 

interval 0-5 because the new CALIPSO CLAY dataset version 4.10 provides slightly increased cloud optical thickness 

values compared to previous versions. We interpret this change to represent underestimation in previous values.  Despite this 

change there is still a high degree of uncertainty in values near the upper end of these limits and these may, in reality, include 

some clouds which are optically thicker. 135 

 

The CALIPSO satellite follows the A-Train track in a sun-synchronous orbit with an equator-crossing local time of 01:30. 

This means that observations from the NOAA satellites can be matched to CALIPSO-CALIOP data in near-nadir conditions 

for a full orbit if they are in an orbit with the same or very close to the same equator-crossing time. For all other NOAA 

satellite orbits (and also the Metop satellites), matchups are only possible at high latitudes close to 70 degrees N/S. Since 140 

CALIPSO is operated in a slightly lower and faster orbit than the NOAA/Metop satellites (i.e., orbital period of CALIPSO is 

98.5 minutes while NOAA/Metop period is 102 minutes), close matchups in time are found with  a recurrence of 

approximately 2 days. 

 

In this study, we have used the fourth reprocessed version of the CALIOP CLAY datasets (version 4.10), which was released 145 

in 2016. The main features of this updated version are described at 

 https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/qs/cal_lid_l2_all_v4-10.php.  

 

Regarding the basic CALIOP cloud mask, the most relevant changes affecting this study are 

1. Revised and improved basic cloud-aerosol-discrimination method 150 

2. Removal of mis-classifications of aerosols and dust as clouds at certain locations at high latitudes (as discussed by 

Jin et al., 2014) 

3. Inclusion of information on single shot cloud detection in the 5 km dataset, the implications of which are discussed 

in Section 3.3).  

3 Validation analysis methods and datasets  155 

3.1 Some theoretical considerations about clouds 

Cloudiness is not an absolute well-defined quantity like other cloud properties or most other geophysical parameters. Firstly, 

it depends on the scale of interest, i.e., the areal extent over which cloud cover has to be calculated needs to be specified. 

Secondly, and perhaps more importantly, a definition of what is meant by a cloud is required to allow a subsequent 

quantitative use of the results. For example, how optically thin or thick should a cloud be to be called a cloud? This threshold 160 

is important when studying the cloud impact on components of the radiation budget (Charlson et al., 2007 and Barja and 
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Antuña, 2011). How to define clouds detected in satellite imagery is also related to the scale of individual clouds (Koren et 

al., 2008). The cloud definition aspect is often missing in studies describing various cloud data records. Typically, products 

and validation results are presented without any deeper discussion on for what clouds the results are really valid. A good 

example is found in comparison studies between satellite-derived and manual surface-observed cloudiness (e.g., Sun et al., 165 

2015). Results from such studies are difficult to interpret because of the different observation geometries for the compared 

datasets and the lack of an objective and clear definition of the clouds being observed in either of the two datasets. Because 

of this ambiguity it has often been recommended to use parameters other than cloudiness or cloud cover (as mentioned in 

WMO 1, 2012) to instead describe the effect of clouds (e.g. “cloud albedo”, “effective cloud cover” or “joint histograms of 

cloud top pressure and cloud optical thickness”) in climate analysis and climate model evaluation studies. Nevertheless, the 170 

need to get the geographical distribution of modelled clouds correct is still a crucial requirement (as pointed out in WMO 1, 

2012), particularly when considering that parameters describing the effect of clouds are still critically dependent on how you 

define the underlying cloud or cloud mask. This calls for continued studies of cloud cover from both the observational and 

modelling perspective. We claim here that the access to high-quality reference cloud observations from CALIPSO-CALIOP 

may help us to take a significant step forward regarding the use of a more strict quantitative definition of cloudiness. A 175 

detailed characterization of the clouds we are observing can be made using CALIOP data. Thus, the ability to observe 

similar clouds in data records based on passive imagery can then be assessed, which will augment the usefulness of these 

data records. The following sub-sections outline a new approach which will enhance the value of results from such cloud 

validation studies. 

3.2 Basic CALIOP matching method and matching geometry 180 

The underlying method for matching the two cloud datasets is described in detail by Karlsson and Johansson (2013). 

However, because of the importance for the understanding of method extensions and the achieved results in this study, we 

repeat here the most important aspects: 

 

1. Positions where the orbital tracks cross are identified for the orbits of the two datasets to be collocated. 185 

2. If the time difference of the two observations at the crossing point is within a certain maximum time difference 

Tdiffmax the observations at this position are denoted Simultaneous Nadir Observations (SNOs). Only orbits with 

SNOs satisfying the maximum Tdiffmax criterion are selected for further collocation studies. A Tdiffmax value of 45 

seconds has been used in this study. As a consequence of a slightly shorter orbital period for the CALIPSO satellite, 

collocations could then be made with an approximate two-day repeat cycle. 190 

3. For NOAA satellites flying in an afternoon orbit (which is similar or almost similar to the orbit of CALIPSO), it is 

possible to compare observations also before and after the SNO point since both satellites continue to observe the 

same points on Earth close in time. For example, if using a maximum observation time difference of 3 minutes, 

almost all observations during an entire orbit along the CALIPSO track can be inter-compared. Not all observations 

from the NOAA satellite afternoon orbits will be made in nadir conditions but relatively close to nadir (i.e., within 195 

15 degrees). The current study has used afternoon orbit data with an observation time difference to CALIOP of 3 

minutes to ensure global coverage.  

4. For NOAA and METOP satellites flying in a morning orbit, the orbital tracks will cross almost perpendicularly and 

SNOs will then only occur at high latitudes (near 70 degrees N/S). A consequence of this is that collocations can 

only be made over distances limited by the AVHRR swath width. Furthermore, all individual collocations will then 200 

have varying AVHRR viewing angles along the matched track. Matchups with morning satellite data are not 

included in this study because of the limited geographical coverage. 
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In order to better understand the effects of different sensor sampling conditions and the collocation geometry, Fig. 1 shows 

an idealised representation of CALIOP collocations with AVHRR GAC data for both afternoon and morning orbits. The 205 

figure is idealised in the sense that it shows the perfect collocation, i.e., a collocation where the centre positions of both GAC 

and CALIOP FOVs are perfectly matched. We repeat that the AVHRR GAC sampling means that four out of five original 

FOVs are selected for the first scan line (marked as blue filled circular FOVs in Fig. 1) while the next two scan lines are 

ignored (empty blue boxes in Fig. 1). Radiances for these four selected FOVs are averaged and then used to represent the 

entire GAC FOV consisting of 15 original full resolution FOVs (schematically described as 3x5 blue boxes in Fig. 1). The 5 210 

km CALIOP FOV observation is represented as an array of 15 original 333 m resolution red boxes in Fig. 1. Notice that the 

true FOV of the CALIOP sensor is smaller in size. In Fig. 1 they are represented as red filled circles with 70 m size and 

separated by 333 m distances. The 5 km CALIOP cloud observation is composed through averaging over the 15 original 

measurements but also from averaging over measurements outside of the nominal 5 km distance. This is done to detect 

optically very thin clouds (cirrus clouds) which could not be detected solely from data within the nominal 5 km FOV (as 215 

described by Vaughan et al., 2009).  

 

The different panels for afternoon and morning orbit collocations in Fig. 1 are meant to illustrate how collocation conditions 

change from the along-track collocation mode for afternoon orbits to the across-track collocation mode for morning orbits. 

As a contrast to afternoon satellites, the orbital tracks crosses then almost perpendicularly between CALIPSO and morning 220 

orbit satellites, explaining the shift to a horizontal instead of a vertical orientation of the array of CALIOP measurements in 

Fig. 1. The effects of the limited coverage of true AVHRR observations within the nominal GAC FOV and the different 

orientations of the array of CALIOP FOVs for morning and afternoon satellites can be ignored if cloud elements have scales 

larger than 5 km. However, for cases with smaller scale (sub-pixel) cloud elements or cases with cloud edges within the 

GAC FOV, we can expect differences between AVHRR and CALIOP observations. The implications because of this for the 225 

collocation and validation results will be discussed further in Section 5.   

 

 As explained by Karlsson and Johansson (2013), binary cloud masks for 5 km FOVs from AVHRR and CALIOP are inter-

compared and evaluated using a range of standard validation scores. However, prior to comparison, the content of the 

original 5 km CALIOP FOV observation is adjusted to be consistent with the corresponding cloud mask defined at 1 km 230 

resolution. This check was introduced after noting that global CALIOP-estimated cloudiness for individual orbits was not 

always increasing when switching from the 1 km resolution dataset to the 5 km resolution dataset. Conceptually, cloudiness 

should increase for the 5 km datasets as it is better able to detect also the optically thinnest cloud layers in addition to those 

cloud layers detected at finer resolutions (Vaughan et al., 2009).  However, a non-negligible fraction of cases (~ 3-5 % of all 

investigated cases in a preparatory study) actually showed lower cloud amounts for the 5 km resolution. This inconsistency 235 

comes as a side effect of the actual method used for creating the coarser resolution CALIOP datasets (Vaughan et al., 2009 

and David Winker, CALIPSO Science Team, 2017, pers. comm.). Prior to performing the horizontal averaging of the 

CALIOP scattering signal over several single shots, some single shot views are excluded from the analysis if they contain 

strongly reflecting boundary layer clouds or aerosols. In the vast majority of cases, the number of these removed single shots 

is less than 50 % of all single shot measurements within the 5 km FOV. Considering the official 5 km FOV CALIOP cloud 240 

mask, this procedure would then still justify labelling of the 5 km FOV as cloud free if no other cloud layers are detected. 

However, in some areas the frequency of small-scale convective clouds may be high and for these cases this could lead to 

underestimated cloudiness in the 5 km products. Another important aspect is that strongly reflecting clouds on the sub-pixel 

scale of AVHRR GAC data may still be detectable because of non-linear radiance contributions (with similarities to the “hot 

spot” effect from fires) in the short-wave infrared channel at 3.7 µm (Saunders and Grey, 1985, and Saunders, 1986). Thus, 245 

to not include these clouds in the CALIOP datasets might lead to too low or non-representative validation scores for some of 
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the investigated cases. Karlsson and Johansson (2013) showed that validation scores also improved for AVHRR-based cloud 

products when adding clouds from the 1 km datasets if 3 or more of the 1 km FOVs within the 5 km FOV were cloudy in 

cases when the original 5 km products were deemed cloud-free. For these added clouds from 1 km data, the 5 km cloud 

optical thickness (not estimated in CLAY 1 km data) was set to 5, i.e., at the maximum upper end of realistically estimated 250 

cloud optical thicknesses. This is a justifiable approach as these clouds are by definition strongly reflecting and in most cases 

would lead to effective cloud optical thicknesses close to or above 5.  

 

3.3 Adaptation to CALIPSO version 4 CLAY products 

An important  objective of this study was to verify that the method used by Karlsson and Johansson (2013) would still be 255 

applicable to the new version 4 of the CALIOP CLAY product released in 2016 and to investigate whether the validation 

results changed in any systematic way. Despite the implemented modifications (mentioned at the end of section 2.2), the 

fundamental retrieval method for the CALIOP CLAY product has remained the same. Consequently, the above mentioned 

inconsistencies between fine and coarse resolution CALIOP datasets are likely to remain and would need a similar post-

processing adjustment as for previous version 3 products. However, the new version of the 5 km CALIOP cloud product 260 

(i.e., in this study we have used the standard CLAY product version 4.10) has been expanded to include full information on 

the single shots removed during the averaging process. Thus, the previous use of 1 km data in the method by Karlsson and 

Johansson (2013) could in principle be abandoned and replaced by the direct use of this single shot removal information (the 

latter method to be called “modified method” in the following). Another improvement found in the version 4.10 dataset is 

that the removed single shot FOVs have also been labelled as being either cloudy or filled with thick aerosols. This 265 

separation was not available in version 3 where all removed single shot FOVs were assumed to be cloudy. An inter-

comparison of version 3 and version 4 products is presented in section 4.1. 

 

3.4 Applied validation concept and validation scores 

Compared to the previous study by Karlsson and Johansson (2013) this study has access to CALIOP data for a much longer 270 

validation period; almost 10 years (2006-2015).  This means that it is now possible to calculate the geographical distribution 

of validation results, in addition to global mean conditions. Due to a sufficiently large amount of AVHRR-matched nadir 

looking CALIOP observations it is possible, for the first time, to evaluate the quality of a cloud CDR in a (close to) 

homogeneous way over almost the entire globe with the only exception being close to the poles where CALIOP 

measurements are not available. Consequently, the validation results calculated in this paper are presented as global maps 275 

rather than as tables and figures with global mean values. For the plotting of these global maps the results have been 

rearranged and calculated using a Fibonacci grid with 28878 grid points evenly spread out around the Earth approximately 

75 km apart. The resulting grid has almost equal area and almost equal shape of all grid cells making it preferable to 

traditional latitude-longitude grids which often introduce distortions near the poles. For further details on Fibonacci grids, 

see González (2009) and Swinbank and Purser (2006).  280 

 

We have used the same set of validation scores as those described and defined by Karlsson and Johansson (2013), namely:  

 

- Mean error (bias) of cloud amount (%), describing the systematic error of the mean 

- Bias-corrected Root Mean Square Error (RMS) of cloud amount (%), describing the random error of the mean  285 

- Probability of Detection (0 ≤ POD ≤ 1) for both cloudy and cloud-free conditions relative to all observed cloudy or 

clear cases 
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- False Alarm Rate (0 ≤ FAR) ≤ 1) for both cloudy and cloud-free conditions relative to all predicted cloudy and clear 

cases 

- Hitrate: Frequency (value between 0 and 1) of correct cloudy and clear predictions relative to all cases 290 

- Kuiper’s skill score (-1 ≤ KSS ≤ 1) where value 1 means perfect agreement, value 0 means uncorrelated (random) 

results and value -1 means consistently opposite results (see Karlsson and Johansson for the exact definition). 

 

The results are computed by treating both CLARA-A2 and CALIOP cloud masks as binary values, i.e., each FOV is 

considered as either fully cloudy or cloud free. The Kuiper’s skill score can be used to better identify cases of mis-295 

classifications when one of the categories is dominating. The KSS is sensitive to misclassifications even if they occur in only 

a small minority of the studied cases. The KSS score aims to answer the question of how well the estimation separated 

cloudy events from cloud-free events.  

 

A minimum requirement for describing the accuracy of a parameter is to estimate the mean error or bias (giving the 300 

systematic error) and the variance of the error (giving the random error or dispersion) (Merchant et al. 2017). However, to 

enable the identification of specific problems with cloud identification it is necessary to look at the additional scores 

mentioned above, particularly in cases when one of the two categories (“cloudy” or “clear”) is dominant. This is motivated 

by the fact that any cloud contamination (even if it is just a few cases) can have serious implications for parameter retrievals 

further downstream in the processing. Therefore multiple validation scores are needed to correctly identify all problematic 305 

and critical cases.  

3.5 Extension of the original validation method: enhanced analysis and introduction of cloud layer detection 
probability 

The use of the CALIOP cloud mask for validation of cloud masking methods based on passive imagery is rewarding but also 

challenging. It is known from previous results which used the original CALIOP cloud mask that there is a large difference in 310 

sensitivity between CALIOP (high sensitivity) and passive sensors (moderate to low sensitivity) which leads to the question: 

how can this sensitivity difference be managed to ensure the generation of useful results?  

 

There are two major risks when comparing cloud masks retrieved from passive sensors to the original CALIOP cloud mask:  

 315 

1. The CALIOP dataset will include sub-visible clouds (Martins et al., 2011) which are not possible to detect in 

passive imagery.  

2. In areas where sub-visible clouds exist in abundance, a method may have been ‘overtrained’ or ‘overfitted’ (e.g., if 

trained with CALIOP data by statistical regression methods) to always predict clouds since this gives the best 

overall validation scores. 320 

 

These two problems can be handled by focusing on what happens for clouds that have different vertically integrated optical 

thicknesses as provided by the CALIOP 5 km cloud product. By applying successively reduced CALIOP cloud masks in the 

validation exercise we may exclude the thinnest clouds from the analysis by transforming them into cloud-free FOVs. This 

also means that we can isolate clouds within finite cloud optical thickness intervals (i.e., by subtracting two adjacent 325 

restricted CALIOP cloud masks with different filtered cloud optical thickness) in order to calculate validation results 

exclusively for this sub-set of clouds. If the cloud optical thickness interval is sufficiently small and the number of samples 

within each interval is sufficiently high we may then estimate the method’s efficiency in detecting a cloud (i.e., the cloud 

layer detection probability PODcloudy() where  is the mean optical thickness or depth in the given interval) with this 
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particular cloud optical thickness. We may then expect to see low detection scores for small optical thicknesses with scores  330 

improving as cloud optical thickness values increase. We argue that a special situation occurs when this cloud layer detection 

probability for the first time exceeds 50 % for increasing cloud optical thicknesses. This marks an important performance 

point which could be seen as a minimum performance requirement: at this cloud optical thickness we detect at least 50 % of 

all clouds. In the following we will denote this value of the filtered cloud optical thickness as the method’s cloud detection 

sensitivity.  There should also be a peak in the Hitrate parameter at exactly this point. For small optical thicknesses, scores 335 

would improve if we filter out thin clouds, while for larger optical thicknesses scores start to decrease as too many correctly 

detected clouds are transformed to the cloud-free case. We maintain that the best way to evaluate a cloud masking method is 

to estimate this cloud sensitivity parameter and to re-compute all validation scores after applying optical thickness filtering 

using exactly this value. This describes a method’s optimal performance when using CALIOP cloud masks as the reference. 

The cloud detection sensitivity parameter defines the method’s cloud detection capability in terms of the thinnest cloud that 340 

can confidently be detected. Furthermore, the validation scores computed at this value of the filtered optical thickness then 

define the method’s optimal performance (in terms of the Hitrate) taking into account also false classifications. An important 

complementary parameter in this context is the false alarm rate in the unfiltered case (FARcloudy(=0)) since this parameter 

does not depend on any filtering of optically thin clouds. FARcloudy(=0)can be used to investigate the degree of overtraining 

of a method (according to second bullet above). In the following Section 4, we present results of the cloud detection 345 

sensitivity and a range of validation scores computed at the point of the cloud detection sensitivity (i.e., using a CALIOP 

cloud mask filtered for thin clouds using the cloud detection sensitivity parameter as the optical thickness threshold) Most of 

these results are presented as global maps. 

 

3.6 The final compiled validation dataset 350 

We have matched a total number of 5747 global afternoon orbits of the NOAA-18 and NOAA-19 satellites with 

corresponding CALIPSO-CALIOP data in the time period October 2006 to December 2015. Due to increasing orbital drift of 

the NOAA-18 satellite after 2010 (with resulting deviation from the A-Train orbit and increasing off-nadir viewing angles 

for matchups), the matchup dataset contains a small fraction of observations with higher satellite zenith angles.  The 

observation time difference is limited to 3 minutes and the spatial matchup error was maximised to 2.5 km (as a consequence 355 

of using the nearest neighbouring technique and after assuming negligible geolocation errors). This resulted in more than 23 

million global matchups. The distribution of the matchups is shown in Fig. 2 using a Fibonacci grid resolution of 75 km. 

  

Figure 2 shows a large variation in coverage as a function of latitude with a minimum number of matchups occurring at low 

latitudes and a maximum of matchups for the highest latitudes. Although the likelihood for a valid matchup to occur is the 360 

same everywhere on a particular matched orbit, the pattern of the matchup numbers is explained by the converging orbital 

tracks towards the poles. Furthermore, the large variation with some distinct features (e.g., over the Pacific Ocean) shows 

that it was not possible to extract all theoretically available matching cases (some periods with loss of data exist for both 

CALIOP and AVHRR). Although there is not fully homogeneous global coverage the dataset represents the best possible 

effort in that direction that we can make at present. Even at low latitudes the number of matches generally exceeds 300 for a 365 

grid resolution of 75 km, with only a few exceptions mainly located over the Pacific Ocean. In these locations the 

uncertainty in the results might be expected to be larger than for the rest of the globe. 
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4 Results 

4.1 Results from inter-comparisons of validation results based on CALIPSO-CALIOP version 3 vs version 4 370 

Results from the modified validation method were compared against results from the old method for a test dataset of 80 

NOAA-18 CALIPSO-matched orbits between October and December 2006.  These results are presented in Figs. 3 and 4. 

Figure 3 shows validation results for the two different approaches based exclusively on CALIOP CLAY version 4.10 

products. The visualisation used here, showing the results for two validation scores (Hitrate and Kuipers score, see also 

discussion and definition in section 3.4) is identical to the approach seen in Karlsson and Johansson (2013). Results using the 375 

original CALIOP cloud mask are given by the leftmost value with a filtered cloud optical thickness of 0.0. The curves 

represent validations which use a successively reduced CALIOP cloud mask where clouds optically thinner than the values 

on the x-axis have been transformed from cloudy to clear cases. In this way we can calculate for which CALIOP cloud mask 

(i.e., for which filtered cloud optical thickness) we get the highest scores. Fig. 3 shows slightly improved results for the 

method using the single shot information, although they are practically identical. The slight improvement may be attributed 380 

to the improved cloud-aerosol labelling of removed single shots. Figure 4 shows the overall effect of introducing the new 

matching method and the new version 4 dataset compared to the results achieved using the former version 3 dataset and the 

previous matching method. There is a small increase in the overall results (maximum scores) and a progression of the 

maximum values towards larger optical depths. The improvement in results indicates an improved CALIOP product and the 

shifting of peak score values towards larger filtered cloud optical depths is indicative of more realistic and larger optical 385 

depths in CALIOP version 4.10 data (as confirmed by David Winker, CALIPSO Science Team, 2017, pers. comm.). These 

results are in line with expectations and demonstrate that the modified method is an appropriate basis for further validation 

studies based on the updated CALIOP CLAY dataset.  

  

4.2 Results based on original CALIOP cloud masks compared to results excluding contributions from very thin 390 
clouds  

Figure 5 shows the global distribution of the Hitrate parameter when comparing to the original CALIOP cloud mask. Results 

indicate a fairly good cloud screening capability over mid- to high latitudes (especially over oceans) but degraded results at 

most low latitudes and over the polar regions. The poorest results occur over Greenland and Antarctica. 

Further analysis of results is complicated by the fact that the original CALIOP cloud mask includes all CALIOP-detected 395 

clouds as explained in Section 3.5. In particular, we suspect that the rather poor results in Fig. 5 in the tropical region may be 

significantly influenced by the presence of sub-visible clouds.  

 

By using all available matchups, we can calculate PODcloudy ()for all values of  (Fig. 6) using the method outlined in 

Section 3.5. Calculations have been based on optical thickness intervals of 0.05 in the range 0.0<<0.5, intervals of 0.1 in the 400 

range 0.5<<1.0 and intervals of 1.0 in the range 1.0<<5.0 (results from the latter interval are not shown in Fig. 6.). Figure 

6 shows that the cloud detection sensitivity (i.e., where a probability of 50 % is reached) is 0.225 for the investigated 

AVHRR-based results. Consequently, we will use this value to indicate the optimal Hitrate results, with the global 

distribution of these results presented in Fig. 7. As expected, the results improve considerably for most locations compared 

to Fig. 5, especially over low latitudes. Hitrates above 80 % are now achieved over most regions. The polar regions (at least 405 

the snow- and ice-covered parts) stand out as regions of poor quality with the worst results seen over central Greenland and 

Antarctica. There is also some degradation in the results over some regions at low-to-middle latitudes.  
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The results in Fig. 7 give a much clearer measure of the cloud detection capability of the CLARA-A2 cloud screening 

method than those shown in Fig. 5, because they are now linked to a well-defined description of the involved clouds. We 410 

will apply the same filtering approach to obtain the results shown in the next sub-section.  

4.3 Additional validation scores  

Figure 8 presents results for the systematic (bias) and random errors (bias-corrected RMS) of the CLARA-A2 cloud 

amounts. It is clear that the cloud detection problems over the polar regions, as indicated by the Hitrate parameter in Fig. 7, 

lead to a significant underestimation of cloud amounts, especially over those areas normally covered with snow or ice. 415 

However, this is an overall mean (close to an annual mean) and the underlying results may be seasonally varying. For 

example, cloud detection in the polar summer season is considerably better than during the polar winter (as shown by Fig. 6 

in Karlsson et al., 2017).  The results with least bias are found over mid-to-high latitudes while some overestimation is seen 

over lower latitudes, particularly over oceanic surfaces. RMS values are high in the polar regions and over what can be 

described as oceanic sub-tropical high regions. This agrees well with the corresponding Hitrate results seen in Fig. 6. RMS 420 

values are low over dry desert regions but mostly as a consequence of the general lack of cloudy situations here. 

 

To further investigate areas where there is significant misclassification of cloudy and clear conditions we can study results of 

probability of detection of the cloudy and clear categories in Figure 9. For the cloudy category results are consistent with 

those deduced from previous figures with the exception of the low probabilities of cloud detection over northern Africa and 425 

the Arabian Peninsula. For the clear category we note high values over predominantly dry land portions of the world while 

low values are seen over the tropical region and over oceanic storm track regions at high latitudes. 

 

Results for the Kuipers score are shown in Fig. 10. This score does not show as much regional variability as the Hitrate 

score. Again, we note low score values over the snow-covered polar regions and over some desert regions. The largest 430 

difference to the Hitrate is seen over high-latitude oceanic regions where the Kuipers score show rather modest values while 

Hitrate showed relatively high score values. 

 

Figure 11 show the corresponding false alarm rates for cloudy and clear conditions. We note high false alarm rates for 

cloudy conditions over tropical and sub-tropical regions (with some dominance for oceanic regions) while for clear 435 

conditions the largest false alarm rates are found in the polar regions. 

 

    

4.4 Estimating the global variability of cloud detection limitations 

We have here presented validation results after having ‘removed’ (in the sense of interpreting them as cloud-free cases) all 440 

clouds with smaller optical depths than the cloud detection sensitivity parameter. This leads to a clear improvement in the 

results when compared to the original CALIOP cloud mask (i.e., comparing Figs. 5 and 7). However, the cloud detection 

sensitivity value currently applied is a global average which could contribute to the large geographical variations in the 

results. To investigate how serious this simplification is, we can plot the results of min(POD>50) calculated exclusively for 

every Fibonacci grid point (Fig. 12). To reduce the uncertainty in this calculation due to low number of samples per grid 445 

point as indicated in Fig. 2 for low latitudes, we have increased the radius of the Fibonacci grid from 75 km to 300 km. 

Figure 12 shows a considerable variation in cloud detection sensitivity over the globe. It is clear that the cloud detection 

sensitivity is considerably lower than the global average value of 0.225 over most oceanic areas as well as over tropical land 

areas. On the other hand, values are generally larger than 0.225 over dry and desert-like regions and over high-latitude and 
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polar land areas. For the polar land areas the cloud detection sensitivity frequently exceeds 1 and for some grid points even 450 

reaches values close to 5. These values contrast with the global average value of 0.225, indicating that more representative 

(and most likely higher) validation scores could have been achieved if globally resolved cloud detection sensitivity values 

were used to re-calculate each of the validation scores. However, we have not taken this step here because of the relatively 

low number of samples in some grid points (even at the 300 km scale).   

 455 

We can also visualise the variable cloud detection sensitivity by plotting the same kind of cloud layer probability curves as in 

Fig. 6 for a selection of individual grid points.. Figure 13 shows these curves for the three locations marked in Fig. 12. The 

blue curve in Fig. 13 shows cloud layer detection probabilities for a distant (from land) point in the North Atlantic Ocean. It 

marks a position where cloud detection is clearly most effective compared to the global average. The cloud detection 

sensitivity value is 0.075 at this location demonstrating that even very thin clouds are well detected there. The cloud 460 

detection capability also reaches a maximum value of approximately 95 % by  = 0.5. This is considered to be as high as can 

be reached because of the limitations of the datasets, for instance the remaining and unavoidable AVHRR-CALIOP mis-

location and matching problems (both in time and space). As a contrast, a grid point located in the Sahel region (green curve 

in Fig. 13) shows worse results with a cloud detection sensitivity of 0.375 and maximum cloud detection capability only 

observed at  = 3.5 and higher. However, a more extreme case is the location over central Greenland (red curve in Fig. 13). 465 

The cloud detection sensitivity here is as large as 1.5 and even at a maximum  value of 4.5 we can not come close to 

achieving an optimal cloud detection capability. Thus, over a snow-covered and often extremely cold location we cannot 

even detect all optically thick clouds which is consistent with the low PODcloudy results seen over Greenland and Antarctica 

in Fig. 9, upper panel).   

 470 

The results in Fig. 13 again indicate that the validation matchup dataset slightly undersamples the true conditions for a 

limited number of grid points. This is indicated by the unexpected decrease in POD at some points for increasing  values. 

Theoretically, one would expect a steady increase in POD as a function of .    

5 Discussion 

There are several features of the results depicted in Figs 7-11 which warrant further attention and discussion. One of these is 475 

the reduction in performance observed over areas which are known to be dry and mostly cloud-free. The PODcloudy results in 

Fig. 9 show particularly low values over the Sahara Desert and the Arabian Peninsula.  This indicates that in these particular 

areas, where cloudiness is generally low, CLARA-A2 still has difficulty detecting the few cloudy cases which occur. The 

exact reasons for this have to be investigated further but are likely linked to remaining uncertainties in the surface 

emissivities used over these semi-arid regions and deserts.  480 

 

Another feature to discuss is the overestimation of cloudiness over low and medium latitudes (especially over oceans) seen 

in the Bias plot in Fig. 8. This feature illustrates how it is difficult to find a simple representative way of evaluating results 

while also taking into account the existence of sub-visible clouds. The method applied in Fig. 8 (and in all Figs 7-11) is to 

ignore cloud contributions in the CALIOP dataset for clouds having an optical thickness less than 0.225. But, as already 485 

mentioned in Section 4.4, the latter value is a global mean value and in many places on Earth clouds with smaller optical 

thicknesses are actually detected confidently. This is clearly demonstrated in Fig. 12 where the cloud detection sensitivity 

over oceanic surfaces is noticeably better (smaller) than the global mean of 0.225. This means that by applying the global 

value 0.225 as the filtering threshold of CALIOP-detected clouds, many clouds which were originally correctly detected in 

CLARA-A2 will now be treated as being falsely detected. If a locally representative value of the cloud detection sensitivity 490 
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(as shown in Fig. 12) is used for the CALIOP filtering procedure, this apparent overestimation of clouds would largely 

disappear. However, to confidently apply such localised filtering a larger set of collocated observations is required to remove 

the sensitivity to low numbers of samples in individual grid points. Such a study will be possible in a few more years once an 

even larger matchup dataset has been collected. An extended dataset could also allow a further sub-division of the dataset to 

study the diurnal and seasonal variation of the validation results.  495 

 

A more interesting and general feature is shown in Fig. 9: In areas where cloudiness is low (e.g., over sub-tropical ocean and 

land regions) PODcloudy is low and where cloudiness is high (e.g., over mid-latitude storm tracks and near the equator) 

PODclear is low. This explains to a large extent the fairly low values of the Kuipers’ score over these regions (Fig. 10) leading 

to a slightly different distribution of results in comparison to the Hitrate (Fig. 7). However, we must remember that Hitrate is 500 

dominated by results for the dominating mode (cloudy or clear) while the Kuipers score highlights more clearly the existence 

of misclassifications of the minority mode. Figs 9 and 10 reveal that even if the dominantly cloudy and clear regions are 

generally captured very well the few cases of the opposing mode have a high frequency of misclassifications. This result is 

difficult to understand from the perspective of long-term experience of AVHRR cloud screening, as cloud screening works 

best over dark and warm ocean surfaces in good illumination. So, why are results not better here (e.g., over oceanic sub-505 

tropical high regions)?  We believe that this unexpected behaviour is a consequence of the limitations of both AVHRR GAC 

data and CALIPSO-CALIOP data when it comes to the sampling of the true conditions within the nominal 5 km FOV.  

 

To understand this we have to go back to Fig. 1 displaying the conditions for the matching of AVHRR GAC and CALIOP 

observations and the overall collocation geometry. Sections 2.1 and 3.2, together with Fig. 1, clearly describes how only 510 

about 25 % of the nominal 5 km AVHRR GAC FOV is actually observed by AVHRR and that the corresponding figure for 

CALIOP single shot nominal FOV of size 330 meters is as low as 5 %. Notice that the latter means that CALIOP is only able 

to cover about 0.3 % of the nominal 5 km FOV. This has important consequences for all cases where we have cloud 

elements present which are smaller in size than the nominal 5 km FOV. We can first conclude that only in those cases 

containing cloud elements larger than the nominal 5 km FOV can we be confident that AVHRR and CALIOP observations 515 

will be comparable. For all other cloud situations involving clouds smaller than 5 km or when a cloud edge occurs within the 

GAC FOV, the two data sources will give different results since the sensors will observe different parts of the 5 km FOV. 

The situation is compounded by the fact that the AVHRR scan lines are perpendicular to the CALIPSO track when matching 

the two datasets in the near-nadir mode (Fig. 1, upper panel). This means that the CALIOP sensor consistently probes a 

different part of the nominal 5 km FOV to AVHRR. Theoretically, a maximum of 3 CALIOP single shot measurements (out 520 

of a total of 15) would be able to measure the same spot on Earth as the AVHRR GAC measurement within the FOV size of 

5 km. However, it is clear from Fig. 1 that in a non-negligible fraction of cases, the two sensors will not even observe any 

common part of the nominal GAC FOV. This occurs when the nearest-neighbour matching of GAC and CALIOP FOVs 

places the CALIOP FOV in the rightmost part of the GAC FOV (see Fig. 1, upper panel).  A direct consequence of these 

differences between the actual AVHRR and CALIOP measurements is that, in the case of dominating fractional cloudiness 525 

with cloud size modes below the 5 km scale, the random errors and the false-alarm rates will increase even if the overall bias 

remains small (assuming that the cloud element distribution within the GAC FOV is random over a long time period, i.e., as 

expected for climate data records). This behaviour is exactly what is observed over the oceanic sub-tropical high regions 

(Fig. 8 and Fig. 11, upper panel) and also explains the degraded overall scores in this region (in particular the PODcloudy score 

in Fig. 9) relative to other surrounding regions.  530 

 

These regions of interest also have a reduced total cloud amount in the annual mean (e.g., see Fig. 6 in Karlsson et. al., 

2017), mainly because of the more stable atmospheric conditions here. The prevailing large-scale subsidence (poleward parts 
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of the Hadley cell) in these locations suppresses cloudiness in mid- to high layers and is conducive only to the formation of 

convective and stratiform boundary layer clouds. This boundary layer cloudiness consists mainly of scattered small-scale 535 

cumulus and stratocumulus clouds, i.e., typically the kind of clouds for which we would expect enhanced disagreement  

between the AVHRR and CALIOP datasets as a result of variability wihin the 5 km FOV. It is interesting to note that this 

feature is not exclusive to oceanic areas. In addition some eastern parts of continents show similar results, e.g. easternmost 

part of South America and Africa. This could indicate that scattered cumulus cloudiness is also the dominant mode of 

cloudiness in these locations. Finally, notice also that we can see exactly the same effect for fractional clear areas, e.g. over 540 

northern and southern hemisphere stormtracks at mid- to high latitudes as shown by the large FARclear values in Fig. 11. We 

conclude that, because of the problems with correctly representing cases of both small-scale cloudiness and small-scale holes 

in cloud decks in the two datasets, the validation results could be underestimated (i.e., giving too low scores) over these 

dominantly cloudy or dominantly clear regions of the globe. This reduction of scores would then be largely attributed to mis-

matches due to GAC FOV geolocation errors (which are not zero), matchup errors (explained by the nearest-neighbour 545 

matching of GAC and CALIOP FOVs) and to the different cloud representation in each dataset rather than to real cloud 

detection problems. Thus, examination of the cloud detection capability of a method should also take into account the scales 

of clouds being investigated. A consequence of this is that detailed studies of small-scale convective cloudiness should rather 

be based on original resolution AVHRR and CALIOP observations than on datasets with a coarse resolution data 

representation.  550 

 

Finally, a specific problem with the applicability of the current method is the inability to assess the global quality of products 

from polar satellites in morning orbits (e.g., from the NOAA-17 and Metop satellites) as a consequence of CALIPSO 

following an afternoon orbit. Matchups with CALIPSO-CALIOP are consequently only possible at high latitudes leaving 

low-to-middle latitudes without reference observations for AVHRR products. Previous cloudiness comparisons for morning 555 

satellites at high latitudes (CM SAF 1, 2017) show good agreement with corresponding results from afternoon satellites 

(assuming that diurnal cycle cloud effects are small at high latitudes).  Thus, for cloud amount information (in contrast to 

some other cloud parameters, like cloud effective radius) there is no reason to suspect large differences between morning and 

afternoon results even if morning orbit data is partly using measurements in another spectral band (at 1.6 µm) in the short-

wave infrared spectral region. However, this needs to be confirmed in the future  through the use of reference data from the 560 

Cloud-Aerosol Transport System lidar (CATS, https://cats.gsfc.nasa.gov/) on the International Space Station or by use of 

data from the Earth Cloud Aerosol and Radiation Explorer (EarthCARE) mission 

(http://m.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/EarthCARE/ESA_s_

cloud_aerosol_and_radiation_mission) for new afternoon satellites with two coexisting short-wave infrared channels 

onboard (e.g. NOAA-20).  565 

6. Conclusions 

We have shown that with access to the latest cloud information provided by the high-sensitivity CALIPSO-CALIOP lidar 

(CALIOP Version 4.10 dataset, covering almost a full decade (2006-2015) it is possible to construct a detailed global 

analysis of the cloud detection sensitivity and other skill scores of the cloud screening method used in the AVHRR-based 

CLARA-A2 cloud climate data record. A wide range of validation scores, including those complementary to the essential 570 

scores describing systematic and random errors, have been used to get a very detailed picture of the cloud screening 

efficiency of CLARA-A2. Furthermore, by use of the CALIOP-derived information on cloud optical thickness, it has been 

possible to make a clear definition of which clouds have been observed and thus for which clouds the validation scores are 

valid. We believe this to be crucial to the further quantitative use of the results. The method is not specifically developed or 
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valid exclusively for the CLARA-A2 cloud masking method but is also applicable to any method utilizing CALIOP data as a 575 

reference. Consequently, we propose that this method be used in future inter-comparisons of results from different cloud 

masking methods and cloud CDRs (following the example by Stubenrauch et al., 2013). 

 

It is necessary to specify the clouds being investigated because the CALIOP sensor is capable of detecting clouds which are 

fundamentally “sub-visible” for passive imaging sensors. Therefore, a globally estimated minimum cloud optical thickness 580 

value (denoted “Cloud detection sensitivity”), for which the majority of clouds would be detected, was estimated to be 0.225 

for the CLARA-A2 cloud masking method. This value was used to remove contributions to validation scores from thinner 

clouds than this minimum optical thickness, thus maximising the validation scores. For example, by utilising this definition 

of detectable clouds, resulting cloud amounts were found to be unbiased over most locations of the world except for a major 

underestimation over the polar regions. For the latter, a large part of all clouds still remain undetected during the polar night 585 

and this fraction can be as high as 50 % over the coldest and highest portions of Greenland and Antarctica. Under these 

conditions not even optically thick clouds may be detected due to the very similar thermal characteristics of clouds and Earth 

surfaces. Land-ocean differences were generally small with only results over Greenland and Antarctica standing out as clear 

exceptions. 

 590 

The study revealed some interesting reductions in performance over mainly sub-tropical ocean areas. In these locations 

random errors were elevated indicating a decrease in agreement between AVHRR and CALIOP observations despite 

otherwise very favourable cloud detection conditions (e.g., warm ocean temperatures and good illumination conditions).We 

argue that this is caused by the different sampling conditions within the studied 5 km FOV of the AVHRR and the CALIOP 

sensors, which is particularly evident in cases where small-scale boundary layer cloudiness dominates the cloud situation. 595 

Because of this we suspect that the cloud detection capability over these areas could actually be better than that shown by 

these results.   

 

An important novel feature of this study compared to many previous validation efforts based on CALIPSO-CALIOP data is 

the estimation of the probability of detecting an individual cloud as a function of its vertically integrated optical thickness 600 

and its geographical position on Earth. This was accomplished by isolating finite optical thickness intervals in the CALIOP 

cloud information and calculating validation scores for this subset of data in a coarse global grid. Results show a substantial 

variation compared to the global mean optical thickness value of 0.225 for the thinnest retained cloud in the CALIOP cloud 

mask to give optimal global validation scores. The highest sensitivity to clouds in AVHRR data is generally found over mid-

to-high latitude ocean surfaces. Here, clouds with cloud optical thicknesses as low as 0.075 can be detected efficiently. This 605 

is in comparison to a value of approximately 0.2 over tropical oceans and typically greater than 0.2 over most land surfaces. 

The latter value reaches 0.5 over some dry and desert-like regions (e.g., the Sahara Desert and the Arabian Peninsula) and 

increases towards or beyond 1 over polar regions with a highest value of 4.5 found over Greenland and Antarctica. These 

results indicate that not even optically thick clouds can be confidently identified over Greenland and Antarctica during the 

polar winter. While these are not entirely new findings (e.g., see Karlsson and Dybbroe, 2010), this study has increased the 610 

confidence in the validation results over the polar regions. Consequently, these results could help in optimizing the combined 

use of passive and active cloud observations over the polar areas in specific process and radiation studies (similar to earlier 

work by Kay and Gettelman, 2009, and Kay and L’Ecuyer, 2013).    

 

The presented validation method can be viewed upon as a step towards a more stringent and universal validation method to 615 

be used consistently for cloud climate data records generated from passive imagery (as discussed in Wu et al., 2017). The 

more than decadal long CALIPSO-CALIOP cloud dataset should be used for benchmarking and for evaluation of current 
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CDRs and future revisions of them. The method presented here could be seen as one candidate method. The ability to derive 

globally distributed results makes it easier to define and test global quality requirements for the CDRs. For example, 

requirements could be formulated in terms of minimum global coverage within a certain quality threshold instead of today’s 620 

often overly generalised global requirement which use  one finite value or a value range (WMO 2, 2011).   

 

 

One particular aim of this study was to provide a strict definition of the clouds being validated alongside the main validation 

results. This has been accomplished through the use of the CALIOP-derived cloud mask and the CALIOP-estimated optical 625 

thickness of clouds. As a result these validation results are more quantitatively useful. One obvious application would be to 

incorporate this information about strengths and limitations of cloud detection capabilities into the cloud dataset simulators 

of the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP, Bodas-Salcedo et 

al., 2011). Existing COSP simulators for cloud datasets generated from passive satellite imagery (e.g., ISCCP and MODIS) 

do not explicitly take into account these potential inherent cloud detection problems and instead, they concentrate on 630 

simulating some satellite-specific or retrieval-specific features (e.g., systematic underestimation of cloud top height of thin 

high clouds) leaving it to the user of the simulator to add existing knowledge on cloud detection efficiency in the final 

evaluation process. It would clearly be beneficial if aspects of cloud detection capabilities were to be explicitly accounted for 

in these simulators. A specific CLARA-A2 COSP simulator is therefore under development where the description of such 

quality aspects will be included based on the findings of this validation study.  635 

 

Finally, we repeat our opinion that CALIPSO-CALIOP data is an invaluable asset for the current and future evaluation of 

cloud CDRs based on passive satellite imagery. At the same time, we must express our concern about the current uncertainty 

regarding the long-term planning of possible replacements of both the A-Train satellites and the upcoming EarthCARE 

mission. Without follow-on missions it will be very difficult to assess the critical long-term stability of these CDRs, which in 640 

turn increases the difficulty in assessing the reliability of any climate trends deduced from these CDRs. There is also a need 

to slowly transform CLARA-type data records to AVHRR-heritage data records, i.e., extend the AVHRR results into the 

future using results from similar spectral channels existing on other sensors (e.g., the VIIRS sensor on recently launched and 

future polar NOAA satellites). A continued access to observations from active space-born lidar systems is essential for the 

development of such AVHRR-heritage data records.   645 
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Figure 1: Matchup geometry for perfectly collocated AVHRR GAC and CALIOP FOVs for afternoon satellites (top) 780 
and morning satellites (bottom). The GAC FOV is visualized as a rectangle with sides 3 km and 5 km and with 
individual full resolution AVHRR FOVs represented as 1 km squares. Blue circles indicate actual (more realistic) 
AVHRR measurements being used. Note that only the blue filled AVHRR FOVs are averaged to represent the full 
GAC FOV. Red squares denote 15 original nominal 333 m CALIOP FOVs which represent the CALIOP 5 km FOV 
coverage. The highlighted centre FOV marks the position of the perfect match (i.e., at the center of the GAC FOV). 785 
Note that the red filled circles describe actual CALIOP measurements. See text for a more detailed explanation.     



22 
 

 
 

 

 790 

 

 

 

Figure 2: Total number of CALIPSO-CALIOP matchups with NOAA-18 and NOAA-19 AVHRR observations in the time period 
October 2006 to December 2015. Results are presented in a Fibonacci grid with 75 km resolution. 795 
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Figure 3: CALIOP-based validation scores (Hitrate and Kuipers) as a function of filtered cloud optical thickness (see text for 
explanation) for 80 matched NOAA-18 orbits between October and December 2006. Validation is based on CALIOP version 4.10 805 
CLAY products and show results from two alternative validation methods (single shot or combined 1 km + 5 km, see text for 
explanation). 
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Figure 4: CALIOP-based validation scores (Hitrate and Kuipers) as a function of filtered cloud optical thickness (see text for 815 
explanation) for 80 matched NOAA-18 orbits between October and December 2006. The curves compare results based on 
CALIOP version 4.10 CLAY products computed with the new method based on single shot information (denoted “CALIOP V4 
single shot”) with results based on CALIOP version 3.01 CLAY products computed with the old method based on combined  1 km 
+ 5 km data (denoted “CALIOP V3 1km+5km”). 

 820 
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Figure 5: Global presentation of the CLARA-A2 cloud mask Hitrate parameter with a horizontal Fibonacci grid resolution of 75 
km. Validation results are based on comparisons with the original CALIPSO-CALIOP cloud mask. Same underlying matchup 
dataset as in Fig. 2.  830 
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Figure 6: Global estimation of the probability of detecting a cloud with a certain cloud optical thickness. Calculations are based on 
all available AVHRR-CALIOP matchups over the time period October 2006 to December 2015. 
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Figure 7: Peak Hitrate results for the CLARA-A2 cloud mask achieved after filtering the CALIOP cloud mask with the cloud 
optical thickness value of 0.225. Same underlying matchup dataset as in Fig. 2. Results are presented in a Fibonacci grid with 75 
km resolution. 

 855 

 

  



28 
 

 

 

 860 

 

 

 

Figure 8: Mean Error (Bias) and bias-corrected Root Mean Squared Error (RMS) for the CLARA-A2 cloud amount achieved 
after filtering the CALIOP cloud mask with the cloud optical thickness value of 0.225. Same underlying matchup dataset as in Fig. 865 
2. Results are presented in a Fibonacci grid with 75 km resolution. 
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Figure 9: Probability of detection of cloudy (top) and clear (bottom) conditions for the CLARA-A2 cloud mask achieved after 
filtering the CALIOP cloud mask with the cloud optical thickness value of 0.225.  Same underlying matchup dataset as in Fig. 2. 
Results are presented in a Fibonacci grid with 75 km resolution. 875 
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Figure 10: Kuipers score for the CLARA-A2 cloud mask achieved after filtering the CALIOP cloud mask with the cloud optical 
thickness value of 0.225.  Same underlying matchup dataset as in Fig. 2. Results are presented in a Fibonacci grid with 75 km 885 
resolution. 
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 895 

Figure 11: False alarm rates for cloudy (top) and clear (bottom) predictions for the CLARA-A2 cloud mask achieved after filtering 
the CALIOP cloud mask with the cloud optical thickness value of 0.225.  Same underlying matchup dataset as in Fig. 2. Results 
are presented in a Fibonacci grid with 75 km resolution. 
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Figure 12: Global map of estimated cloud detection sensitivity of the cloud mask of CLARA-A2 (see text for explanation). Results 
are calculated from the same dataset as visualized in Fig. 2 but in a coarser Fibonacci grid resolution of 300 km. Conditions in the 
three marked locations (black stars) are analysed further in Fig. 13. Values below the global mean value of 0.225 are coloured in 910 
blue shades and values above the global mean value are coloured in red shades.  
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Figure 13: Same as Fig. 6 but for the individual grid points marked in Fig. 12. 920 


