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Abstract. Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers

of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with

a range of different temporal resolutions, and a systematic analysis of the effects of temporal averaging on the representa-

tion of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 s5

and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal

variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most

potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k∗ and its increments ∆k∗τ (i.e., nor-

malized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate

that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such10

that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data

management and quality control without appreciably improving the representation of variability. The results do not show any

substantial discrepancies between locations or seasons.

1 Introduction

Both the installed capacity and the number of photovoltaic (PV) power systems are increasing in many regions of the world15

(Solar Power Europe (SPE), 2016). Unlike conventional power plants, PV systems are characterized by non-dispatchable and

highly variable power production on spatiotemporal scales ranging from days to seconds and from hundreds of kilometers to

meters (Perez et al., 2016). This intrinsic PV power variability complicates electrical grid operation and may negatively impact

power quality and grid stability (Stetz et al., 2015). As changes in PV power are primarily determined by cloud-induced changes

in solar irradiance, a comprehensive data-driven characterization of irradiance variability can help mitigate the risks associated20

with the above-mentioned problems. While satellite-derived irradiance data provide large spatial coverage, their spatial and

temporal resolutions are limited, so that high-resolution ground-based irradiance measurements are needed to analyze local

short-term variability (Lohmann et al., 2016).

Previous PV-related studies on variability in ground-based solar radiation observations utilized data with a range of different

temporal resolutions. While early studies focused on hourly to daily timescales (e.g. Liu and Jordan, 1960), later analyses were25
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Table 1. Previous studies of short-term irradiance variability and the temporal resolutions considered.

Temp. res. Example references

300 s Jurado et al. (1995); Skartveit and Olseth (1992)

60 s Suehrcke and McCormick (1988); van Haaren

et al. (2014)

20 s Hoff and Perez (2010); Perez et al. (2011, 2012)

10 s Hoff and Perez (2012); Munkhammar et al.

(2017); Widén (2015)

5 s Woyte et al. (2006, 2007b)

1 s Anvari et al. (2016); Bosch and Kleissl (2013);

Calif et al. (2013); Dyreson et al. (2014); Hinkel-

man (2013); Lave et al. (2012); Lohmann et al.

(2016, 2017); Lorenzo et al. (2015a); Madha-

van et al. (2017); Marcos et al. (2011a, b); Mon-

ger et al. (2016); Perpiñán and Lorenzo (2011);

Schmidt et al. (2016); Tabar et al. (2014)

0.04 s Torres Lobera et al. (2013)

0.01 s Gagné et al. (2016); Yordanov et al. (2013a, b)

often geared towards finer temporal resolutions between 300 s and 0.01 s (Table 1). The irradiance data considered in such

studies were typically collected on the horizontal plane, although PV systems commonly feature tilted modules. With regards

to PV power applications, it is thus important to note that variability in irradiance on an inclined plane has been shown to be

higher than on the horizontal, at least on a daily basis (Perpiñán, 2009; Suri et al., 2007).

There is no consensus as to the proper temporal resolution of irradiance measurements needed to capture all relevant variabil-5

ity. The larger the panel-covered area of a PV system, the less variable in general is its power output compared to a single-point

irradiance measurement (van Haaren et al., 2014), especially on short sub-minute timescales (Marcos et al., 2011a, b). Thus,

high temporal resolutions on the order of seconds and shorter may not be required to monitor large utility-scale PV plants

(Woyte et al., 2013), while minute-averaged data may be too coarsely resolved (van Haaren et al., 2014). When considering

smaller rooftop PV systems and/or partial shading (which can strongly reduce an inverter’s power output as soon as a few10

connected modules are shaded; Belhaouas et al., 2017), previous research has shown that the temporal resolution needed to

capture irradiance variability on all time scales may however be as small as 0.1 s (Torres Lobera et al., 2013; Yordanov et al.,

2013b) or 0.4 s (Gagné et al., 2016).

Those studies which argued the need for sub-second resolutions made this determination based on various different lines of

reasoning, namely by15
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1. using the 2nd temporal derivative of irradiance as a measure for instantaneous variation, defining the daily minimum

(negative) value of this derivative as each day’s strongest instantaneous irradiance variation, and finally calculating a

hypothetical optimal averaging time based on an acceptable error of 10 Wm−2 and an assumed parabolic shape of the

variation for each of a few hundred days in spring and summer (Yordanov et al., 2013b);

2. analyzing the sample standard deviation of irradiance as a function of averaging time measured during 7 hours on a5

single summer’s day (Torres Lobera et al., 2013); and

3. separately studying two variability metrics as functions of averaging time for 7 selected days (Gagné et al., 2016).

In addition to these methodical differences and relatively short datasets, each study was limited to a single geographic area,

namely Southern Norway (Yordanov et al., 2013b), Southern Finland (Torres Lobera et al., 2013), and Eastern Canada (Gagné

et al., 2016).10

In this paper, we combine high-resolution irradiance data originating from six different locations in the Northern Hemi-

sphere in order to systematically assess the biases in representation of temporal irradiance variability resulting from temporally

averaged measurements. The time series feature original temporal resolutions between 0.01 s and 1 s, and four of the sites have

records of at least one full year, enabling seasonal comparisons of short-term averaging effects for the first time. We derive

estimates of clear-sky index (i.e. surface irradiance normalized by its clear-sky value) and its increments (i.e. changes over15

fixed time intervals), and analyze the respective time series’ standard deviations as functions of averaging time scale. In this

analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power

volatility. Details on all datasets and utilized methods are presented in Sec. 2, with the results and discussion following in

Sec. 3, and conclusions in Sec. 4.

2 Material and methods20

2.1 Available irradiance datasets

The global horizontal irradiance data used in this study were collected near

1. Alderville, Ontario, Canada,

2. Varennes, Québec, Canada,

3. Jülich, Germany,25

4. Oldenburg, Germany,

5. Oahu, Hawaii, USA, and

6. Tucson, Arizona, USA,
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Table 2. Details of the available clear-sky index data sets: location names and their respective latitudes and longitudes, the available recording

periods, number of pyranometers Npyr , original temporal resolutions T0, and total durations of mixed-sky conditions available for the

analyses.

Location Lat. [°] Lon. [°] Available period Npyr T0 [s] Mixed skies [h]

Alderville 44.19 -78.10 01/2015 – 03/2017 3 0.01 1113 – 1126

Varennes 45.62 -73.39 10/2015 – 11/2016 2 0.01 581 – 595

Jülich 50.89 6.43 04/2013 – 07/2013 5 0.1 85 – 145

Oldenburg 53.15 8.17 05/2015 – 12/2016 3 0.1 1274 – 1304

Oahu 21.31 -158.08 03/2010 – 11/2011 6 1.0 1628 – 1655

Tucson 32.07 -110.84 04/2014 – 06/2014 5 1.0 83 – 99

using different types of photodiode-based pyranometers with raw temporal resolutions T0 ranging from 0.01 s through 1 s.

Table 2 summarizes the different measurement sites’ coordinates, available recording periods, number of pyranometers Npyr,

original temporal resolutions T0, and the respective total durations of mixed-sky conditions available for the analyses.

The Canadian data from Alderville and Varennes were measured using LI-COR LI-200S pyranometers, with samples being

taken every 0.001 s, and their averages evaluated every 0.01 s. Gagné et al. (2016) provide detailed information about the5

locations, data acquisition units and the local character of irradiance variability in Alderville and Varennes. We use a subset

of three sensors from Alderville providing data from January 2015 through March 2017, and two sensors from Varennes, with

data being available from October 2015 through November 2016. The inter-sensor distances are on the order of 100 m each,

and the two locations are about 400 km apart.

The data set collected near Jülich consists of a five-sensor subset of a larger pyranometer network, which was deployed10

during the HD(CP)2 Observational Prototype Experiment (HOPE; Macke et al., 2017) between 2 April and 24 July 2013, using

as many as 99 EKO ML-020VM sensors. The selected sensors are evenly distributed across the entire domain and separated by

a few kilometers each. Madhavan et al. (2016) detail the HOPE campaign with respect to this pyranometer network and provide

further information about data acquisition and quality control. Several studies have already used 1 s averages derived from the

original 0.1 s irradiance samples to characterize the averages’ spatiotemporal variability (Lohmann et al., 2016; Madhavan15

et al., 2017), and to evaluate sky-imager-based irradiance retrievals (Schmidt et al., 2016). For our present analyses of the

five-sensor subset, we use the original 0.1 s irradiance samples.

In Oldenburg, three EKO ML-01 pyranometers have been continually recording 0.1 s irradiance samples since 28 April 2015

as part of an in-house weather observation system of the university’s Energy Meteorology Group. The sensors are horizontally

mounted on a university building rooftop with inter-sensor distances of about 15 m, and subject to bi-weekly maintenance,20

including verification of the horizontal orientation and cleaning of the glass dome. The quality of the measurements was veri-
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Table 3. Average cloud amount [%] during the day for each season (winter: DJF, spring: MAM, summer: JJA, autumn: SON) extracted

from the Climatic Atlas of Clouds Over Land and Ocean (Eastman et al., 2014) for all six locations in question. Values are grouped by

cloud altitude, with the low level including fog, stratus (St), stratocumulus (Sc), cumulus (Cu), and cumulonimbus (Cb); the middle level

consisting of nimbostratus (Ns), altostratus (As), and altocumulus (Ac); and the high level representing all cirriform clouds combined (Hahn

and Warren, 2007). For the short-term measurement campaigns near Jülich and Tucson, only those data corresponding to the study periods

are quoted. Note that Jülich and Oldenburg are located within the same grid box of the cloud atlas and hence feature identical values.

All low level clouds All middle level clouds All high level clouds

Location DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Alderville 55 42 35 49 37 32 25 31 26 29 26 25

Varennes 42 41 40 53 43 36 32 40 23 27 24 23

Jülich – 49 47 – – 28 27 – – 23 20 –

Oldenburg 59 49 47 52 32 28 27 30 24 23 20 23

Oahu 45 48 45 43 12 11 8 10 11 16 14 17

Tucson – 7 8 – – 8 13 – – 20 13 –

fied for randomly selected periods using additional measurements from a co-located well-established thermopile pyranometer

(Schmidt and Lohmann, 2018). We use data from 1 May 2015 through 31 December 2016 in this paper.

Near Kalaeloa Airport on Oahu, the National Renewable Energy Laboratory (NREL) performed a measurement campaign

using 17 LI-COR LI-200 pyranometers from March 2010 though November 2011, collecting irradiance data every 1 s (Sen-

gupta and Andreas, 2010). These data have previously been used and analyzed in several irradiance variability studies (e.g.5

Anvari et al., 2016; Aryaputera et al., 2015; Hinkelman, 2013; Madanchi et al., 2017; Munkhammar et al., 2017). In the present

paper, we use data from the six-pyranometer subset located on the premises of Kalaeloa Airport, each separated by a few 100 m.

The data we use from Tucson were measured between 5 April and 30 June 2014 with a temporal resolution of 1 s (Lorenzo

et al., 2015b). While the corresponding measurement campaign featured different photodiode-based sensors, we limit ourselves

to a subset of five Apogee SP-212 pyranometers, so that all Tucson data used in this paper originate from the same type of10

sensor. The inter-sensor distances of the subset are on the order of 100 m. Lorenzo et al. (2015a) have previously documented

details of the entire data set, and used it to evaluate solar irradiance forecasts.

For each location, Table 3 provides a basic overview of season- and cloud-elevation-specific cloud climatology based on the

respective average cloud amount during the day from the Climatic Atlas of Clouds Over Land and Ocean (Eastman et al., 2014).

The four mid-latitude locations feature comparable values of cloud amount across seasons and altitude ranges, while Oahu and15

Tucson stand out with appreciably smaller values for low level (Tucson only) and middle level clouds (both). Although the two

locations also systematically exhibit smaller values than the others for high level cloud amount, these differences are not as

pronounced.
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2.2 Data preprocessing

All available irradiance time series feature infrequent drop-out periods, during which the measured irradiance is suddenly

reduced to almost 0 Wm−2 and then resumes a reasonable value after a short while (seconds to minutes). These unreasonably

low readings can be in part associated with times of regular maintenance, during which a sensor’s glass dome is covered with a

piece of cloth. Additionally, they can be caused by e.g. birds, insects, or leaves temporarily occupying the small sensor area. To5

eliminate these drop-out periods from the data, we remove a time window of ±60 s around each irradiance value falling below

a fixed threshold, taken to be 25 Wm−2.

Next, we normalize all irradiance measurements G to their respective clear-sky values Gclear, which we calculate using the

clear-sky model described by Dumortier (1995), to obtain time series of clear-sky index

k∗ =
G

Gclear
. (1)10

While irradiance is subject to astronomically-determined variations and trends, the clear-sky index is convenient for comparing

short-term variability at different locations, and during different times of the day or year. However, k∗ estimates are highly

uncertain for low solar elevation angles (Lave et al., 2012), and we thusly remove all data associated with elevation angles

below 15° at this point.

It is important to note that the clear-sky index is not unambiguously defined, because different clear-sky models can yield15

different values of Gclear and thus k∗. Equation (1) hence introduces model-dependent uncertainties to the time series that

are not present in the original irradiance measurements. In this paper, we use climatological averages of the Linke turbidity

factor (Remund et al., 2003) as input to the clear-sky model. Gclear thus represents a typical, and not necessarily the effective,

clear-sky irradiance on a given day. Consequentially, all locations considered in this study exhibit some periods of suboptimal

model performance, with results for Oahu (Tucson) subjectively tending to fit a little better (worse) than for the other locations20

(not shown). Although variations in k∗ may in part be due to variations in atmospheric composition (such as water vapor

and aerosols) not accounted for by the clear-sky model, cloud-induced variability is by far the dominant source of irradiance

variability on the relatively short timescales considered throughout this paper.

In order to extract mixed sky periods from the clear-sky index time series, we employ a subjective classification scheme based

on dividing all time series into non-overlapping 900 s blocks, and calculating the individual blocks’ clear-sky index standard25

deviations. If the standard deviation of k∗ exceeds a fixed threshold (taken to be 0.18, based on the results of Lohmann et al.,

2016), we classify the corresponding 900 s block as mixed, and retain it for our analyses. Small changes to the value of this

threshold do not substantially change the results.

The resulting ranges of durations of mixed sky conditions are quoted in Table 2, and strongly differ between locations. While

Oahu, Oldenburg, and Alderville each provide a total of well over 1000 h of mixed-sky data, the brief campaigns around Jülich30

and Tucson feature mixed-sky records that are about an order of magnitude shorter. From Varennes, an intermediate number of

more than 500 h of mixed-sky observations are available.
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2.3 Characterizing variability

Using all data classified as mixed-sky conditions from each pyranometer of each location, we compute time series of k∗

averages using a range of different averaging time scales 0.01s< T < 900s. In this calculation, we apply non-overlapping

moving windows of length T to each 900 s block and calculate the mean clear-sky index within each window. If fewer than

95 % of the highest-resolution data within a period T are available, the resulting average is classified as missing. Otherwise5

the missing values in the raw data are simply neglected in the computation. We found this subjective threshold of 95 % to be

a good compromise between minimizing the number of missing data and maintaining the robustness of the mean estimates.

Slight changes of the threshold value do not noticably affect the results. With appreciably higher thresholds, however, a small

number of missing high-resolution data points could cause unreasonably many long-term averages to be missing; while for

considerably lower thresholds, there would be too much variation in the number of data points entering the computation of10

means of nominal averaging time T .

Figure 1 presents two illustrative examples of k∗ time series under mixed sky conditions using temporal averaging scales

across up to six orders of magnitude. The 1000 s period and its 100 s excerpt shown in panels (a,b) are typical examples of high

temporal clear-sky index variability, while the 100 s period and its 10 s excerpt shown in panel (c,d) were specifically selected

as a case featuring an unusually volatile time series with short-term variability on all time scales. In all panels, an evident15

decrease of temporal variability can be observed for increasing averaging periods T , with the most pronounced reductions

starting at the transition from T = 1s to T = 10s. The variance reduction for averaging periods T < 1s is relatively large for

the time series shown in (d).

To characterize clear-sky index variability as a function of averaging time scale, we first compare probability distributions of

k∗ at each of the available sensors at all locations for averaging times T = 1s and T = 100s. For each sensor at each location,20

we then estimate the sample standard deviation

σk
∗
T =

√√√√ 1

NT − 1

NT∑
t=1

(k∗T (t)− k∗T )2 (2)

for averaging periods of 0.01s< T < 900s, where NT is the total number of available data points for averages of length T ,

and k∗T denotes the corresponding arithmetic mean value of k∗. In order to facilitate comparisons between locations, we also

use a normalized clear-sky index standard deviation25

σ̂k
∗
T =

σk
∗
T

σk
∗
T=1 s

(3)

for each time scale and location, using the standard deviation associated with T = 1s as a normalization factor. The decline

of σ̂k
∗
T as a function of T quantifies the reduction of clear-sky index variability for increasing averaging time periods. Finally,

we repeat the calculations of Eqn. 2 and 3 for each season using the longer data from Alderville, Varennes, Oldenburg, and

Oahu. In this seasonal analyses, winter is defined as December through February, spring as March through May, summer as30

June through August, and autumn as September through November. In the normalization factor in Eq. 3, we always use the

full-year standard deviations σk
∗
T=1 s derived without conditioning by season.
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Figure 1. Two representative examples of highly-variable clear-sky index k∗ time series under mixed sky conditions: panels (a,b) show a

typical example of a 1000 s period using six averaging times T , namely (a) T = 1000s, T = 100s, and T = 10s, and (b) T = 10s, T = 1s,

T = 0.1s, and T = 0.01s (note that throughout the analyses of the paper we restrict ourselves to values of T ≤ 900s; we consider up to

T = 1000s here for illustrative purposes); panels (c,d) show an unusual 100 s example with evident variability down to the shortest time scales

with averaging periods (a) T = 100s, T = 10s, and T = 1s, and (b) T = 1s, T = 0.1s, and T = 0.01s. The time series were measured in

Varennes on March 2, 2016, starting at 15:01:35 EDT (a,b), and on September 21, 2016, starting at 15:06:35 EDT (c,d). The gray areas in

the top row indicate the excerpts presented in the bottom row.

The standard deviation of k∗ is independent of the observations’ ordering in time, and thus does not quantify how quickly

the values can change. In order to consider the effect of temporal averaging on the estimates of rates of change, we compute

k∗ increments

∆k∗τ (t) = k∗(t+ τ)− k∗(t) (4)

for different time lags τ on the distinct averaging time scales T = 0.01s, T = 0.1s, T = 1s, T = 10s, and T = 100s. Similar5

to the analyses of k∗ variability, we first explore distributions of ∆k∗τ for T = 100s and T = 1s, using τ = 100s and τ = 1s.

Then we calculate clear-sky index increment standard deviations σ∆k∗τ
T for the same five averaging times and a range of

0.01s< τ < 900s analogous to Eq. 2, and derive their normalized version σ̂∆k∗τ
T using T = 1s (as in Eq. 3). As before, we

finally estimate σ∆k∗τ
T and σ̂∆k∗τ

T conditioned to the four seasons using the year-round observations from Alderville, Varennes,

Oldenburg, and Oahu.10
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3 Results and discussion

3.1 Clear-sky index variability

For the two averaging times T = 1s and T = 100s, Fig. 2 presents the probability density functions of clear-sky index, based

on all available mixed-sky periods from the six locations. The 1 s averages feature pronounced bimodal distributions for all

locations. The two modes are located slightly above k∗ ' 1 (corresponding to times of clear skies), and within a range of5

0.3 . k∗ . 0.5 (corresponding to times of cloud shadow coverage), with modest differences between locations. The probability

minimum between the peaks is less pronounced at Tucson as at other locations. The distinct bimodality of the distributions of

1 s averages is consistent with previous findings of e.g., Jurado et al. (1995), Lohmann et al. (2016), Munkhammar et al. (2017),

Schmidt et al. (2016), Skartveit and Olseth (1992), Suehrcke and McCormick (1988), and Woyte et al. (2007a). This feature is

substantially weaker for the distributions of 100 s averages. Instead, while the high-value peaks are still very pronounced (but10

located at somewhat smaller values compared to the 1 s averages), the low-value peaks are replaced by flat shoulders in the

distribution ranging from k∗ ' 0.4 through k∗ ' 0.9.

We interpret the minor differences in the distinct k∗ values at which the peaks occur as results of imperfect simulations of

clear-sky irradiance, and hence a biased estimation of clear-sky index as per Eq. 1, as well as the fact that each location uses

distinct types of pyranometers with potentially varying calibration performances and possibly marginally tilted orientations.15

The very high values k∗� 1 being frequently recorded at all locations are consistent with short-term cloud enhancement

(see e.g. Schade et al., 2007), while the comparatively high spread and rough structures of Jülich and Tucson (especially

for T = 100s) in panels (c) and (f) are due to sampling variability resulting from the relatively short periods of available

observations (cf. Table 2).

The normalized clear-sky index standard deviation σ̂k
∗
T decays as a function of averaging time T (Fig. 3). The values remain20

close to σ̂k
∗
T ' 1 for values T . 5s, and then begin to rapidly decrease with increasing T . For example, around T ' 50s, the

normalized standard deviation has dropped to 90% . σ̂k
∗
T . 95%, and around T ' 500s, it has become as low as 60% .

σ̂k
∗
T . 67%, depending on the location. For averaging times T < 1s, the normalized standard deviations do not go appreciably

above σ̂k
∗
T ' 1 (the highest value is σ̂k

∗
T = 1.0005 for T = 0.01s; not shown).

In general, the structures of σ̂k
∗
T at the different locations and their corresponding normalization factors σk

∗
T=1 s compare25

well, with relatively small differences in the rate at which variability declines and in the absolute values of σk
∗
T=1 s. No direct

relation is evident between the order in which the normalized standard deviation structures decline, and the order of absolute

standard deviations associated with T = 1s. For example, Oldenburg and Oahu feature almost identical values of σk
∗
T=1 s (0.37

and 0.36, respectively), but correspond to end members in terms of variability decay rates, with Oahu featuring the fastest and

Oldenburg the slowest decline. Likewise, the normalized structures of Oldenburg and Jülich both decline with a similar rate, but30

their values of σk
∗
T=1 s differ by approximately 10 % (0.37 and 0.33, respectively). As discussed above, imperfectly simulated

clear-sky irradiance and possible differences in pyranometer calibration may contribute to the differences in absolute standard

deviations for relatively close locations (like Oldenburg and Jülich). Differences between locations are largely removed by

normalization. Even though the cloud climatologies are different at the different locations (for example, the Oahu data are
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Figure 2. Distributions of clear-sky index k∗ under mixed-sky conditions for two averaging times T = 1s and T = 100s and all six lo-

cations, estimated from histograms using a bin width of 0.05. The spread across multiple single-sensor distributions is indicated using

semi-transparent coloring, while the solid lines are derived by averaging the single-sensor densities in each bin.

strongly influenced by passing trade wind cumulus clouds, while the mid-latitude locations experience a more diverse variety

of different cloud and weather phenomena), the statistical structures are very similar across locations.

Using data from the four locations with measurements in all seasons, Fig. 4 shows σ̂k
∗
T as a function of averaging time

separately for winter, spring, summer, and autumn. The respective durations of available mixed-sky data are additionally

quoted in each panel. In general, the structures are very similar to the ones derived without conditioning by season (cf. Fig. 3),5

with the exception of winter periods in Alderville, Varennes, and Oahu showing a somewhat slower decrease of σ̂k
∗
T compared

to the other seasons. Moreover, σ̂k
∗
T values associated with Alderville’s autumn, as well as with Oldenburg’s winter and spring

are slightly higher than σ̂k
∗
T derived from all data (i.e. σ̂k

∗
T=1 s > 1), while Oldenburg’s summer exhibits lower values (i.e.

σ̂k
∗
T=1 s < 1). No systematic pattern of seasonal variations in σ̂k

∗
T exists among the different locations. These results imply that

the various cloud types prevailing during the different seasons exert relatively little influence on the temporal averaging effects10

of irradiance variability under mixed-sky conditions.
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Figure 3. Structures of normalized clear-sky index standard deviation σ̂k
∗
T as a function of averaging time T under mixed-sky conditions for

all six available locations. The normalization factors σk
∗
T=1 s are quoted for each location. The spread across multiple individual single-sensor

structures is indicated using semi-transparent coloring, while the solid lines are derived by averaging the single-sensor structures for each T .

3.2 Increment variability

For three combinations of averaging time scales and increment time steps (T = 1s and τ = 1s; T = 1s and τ = 100s; T = 100s

and τ = 100s), Fig. 5 shows distributions of clear-sky index increments, using all available mixed-sky periods from the six

locations. At all locations, the resulting distributions exhibit global maxima at ∆k∗τ = 0, with characteristic shapes. For T = 1s

and τ = 1s, the distributions are chevron-shaped, with densities decreasing rapidly for increasing positive and decreasing5

negative increment values. For the same averaging time T = 1s but the larger increment τ = 100s, the distributions have

broad shoulders, with two local maxima around ∆k∗τ ≈±1. Beyond these secondary maxima the tails decrease rapidly. For

the longer averaging time T = 100s and a corresponding increment time step of τ = 100s, the distributions are more rounded

around the distinct central peak. The finding of such non-Gaussian increment distributions is consistent with e.g., Hinkelman

(2013) and Perpiñán and Lorenzo (2011). The systematic changes in the distributions’ shapes for different averaging intervals10

and increment time steps qualitatively agree with reports published by e.g., Anvari et al. (2016), van Haaren et al. (2014), Lave

et al. (2012), and Marcos et al. (2011b).

With respect to the increment distributions of 1 s averages, an increase of the increment time step from τ = 1s to τ = 100s

leads to an increase of high-magnitude increment probabilities by many orders of magnitude. While τ = 1s is too short an

increment time step for strong variations between clear and cloudy states to occur frequently, a time step of τ = 100s frequently15

covers these transitions. Compared to T = 1s, averaging the time series using T = 100s leads to a considerable underestimation
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Figure 4. As in Fig. 3, for structures separately estimated for winter (December, January, February; DJF), spring (March, April, May; MAM),

summer (June, July, August; JJA), and autumn (September, October, November; SON). The respective durations of available mixed-sky data

are quoted in the appropriate color for each season and location. The normalization factors are the location-specific standard deviations σk
∗
T=1 s

derived without conditioning by season (Fig. 3). The spread across individual single-sensor structures is indicated using semi-transparent

coloring, while the solid lines are derived by averaging the single-sensor structures for each T .

of both magnitude (i.e. the distributions are narrower) and probabilities (i.e. the distributions’ shoulders are less pronounced)

of strong 100 s increments.

While the increment distributions are strongly affected by averaging time and increment size, they are remarkably similar at

all locations considered. The relatively small differences between locations (e.g., the exact values of the two secondary maxima

for T = 1s and τ = 100s) may result from imperfections in the clear sky model, as well as sensor calibration and leveling, as5

discussed earlier. The different lengths of the distributions’ tails are directly determined by the record lengths (short at Jülich

and Tucson; longer at the other locations). The estimates of the probability density tails are less robust than estimates within

the core of the distribution, because they are typically based on a comparatively limited number of observations. In Varennes,

for example, only about 100 occurrences of the absolute increment value |∆k∗τ |> 0.6 are registered among the total of more

than 2 · 106 data points for T = τ = 1s.10

Comparing the distributions of clear-sky index for T = 1s (Fig. 2) with those of clear-sky index increments for T = 1s and

τ = 100s (Fig. 5) allows further characterization of transitions from times of clear skies to times of cloud shadow coverage (and

vice versa). From the separation of the two distinct modes of the k∗ distributions, a clear-sky index difference of approximately

0.7 can be inferred between cloud-free and cloud-covered states. However, the secondary peaks of the increment distributions

shown in Fig. 5 indicate transitions of ±1 in the clear-sky index to occur more frequently than changes of ±0.7. This disparity15
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Figure 5. Location-specific distributions of clear-sky index increments ∆k∗τ under mixed-sky conditions for averaging times T = 1s and

T = 100s, and increment time steps τ = 100s and τ = 1s, using a bin width of 0.05. The spread across individual single-sensor distributions

is indicated using semi-transparent coloring for all bins with data from at least two sensors. The averages of the single-sensor densities are

presented as solid or dashed lines for the bins that contain data from every sensor.

is consistent with short-term cloud enhancement: instead of a typical transition going directly from e.g. clear (k∗ ≈ 1) to cloudy

(k∗ ≈ 0.3), cloud enhancement immediately precedes (or follows) cloud cover, so typical transitions occur between a cloud-

enhanced state (k∗� 1) and a cloud-covered state (k∗ ≈ 0.3). Note that the unambiguous identification of cloud enhancement

is not possible using our values of k∗, because of the potential bias and unaccounted for variability included in the clear-sky

index we use (cf. discussion in Sec. 2.2).5

In order to further investigate the effect of increasing averaging times on increment variability, Fig. 6 presents both absolute

and normalized clear-sky index increment standard deviations as a function of increment time step. The structures of σ∆k∗τ
T

(left column) are effectively indistinguishable for T = 0.01s, T = 0.1s, and T = 1s, while structures associated with longer

averaging periods of T = 10s (T = 100s) deviate slightly (notably) from their high-resolution counterparts. Note that because

of differences in the resolution of the data at different locations, shorter averaging timescales can be considered at some stations10
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(e.g. Varennes and Alderville) than at others (e.g. Oahu and Tucson). The display of normalized standard deviation σ̂∆k∗τ
T (Fig. 6,

right column) emphasizes the structures’ differences, especially for small increment time steps. For any given averaging period

T , smaller increment time steps τ are associated with larger deviations of σ̂∆k∗τ
T from unity (smaller increment steps are more

affected by averaging than larger ones). Similarly, for any given τ , shorter averaging times T coincide with values of σ̂∆k∗τ
T

closer to one (for a given increment step, longer averaging intervals have a bigger effect on variability).5

Except for the anomalously low values of Varennes-based σ̂∆k∗τ
T for T = 0.1s and τ . 0.5s in panel (d), which we further

discuss in Sec. 3.3, the structures of both absolute and normalized clear-sky index increment standard deviations resemble each

other well for all locations. Averages associated with T ≤ 1s typically result in normalized increment standard deviations close

to unity (0.95≤ σ̂∆k∗τ
T < 1 for τ < 10s and σ̂∆k∗τ

T ≈ 1 for τ & 10s), while averages of T = 10s and T = 100s systematically

underestimate increment variability for all time steps. This result is a comprehensive quantification of the qualitative features10

seen in the example time series in Fig. 1. Imperfections in pyranometer configuration and clear sky irradiance estimation do not

appreciably influence the normalized structures, and we interpret the minor differences between location-specific increment

standard deviations of 100 s averages as resulting from differences in local cloud conditions. For example, Oahu’s typical trade

wind cumulus clouds can be expected to generate relatively high variability on small time scales, and consequently, Oahu

features smaller values of σ̂∆k∗τ
T for T = 100s than the other locations.15

For those locations with year-round measurements, Fig. 7 displays σ∆k∗τ
T0

and σ̂∆k∗τ
T as functions of step size τ for different

averaging timescales separately for winter, spring, summer, and autumn. The structures resemble those derived without condi-

tioning by season (cf. Fig. 6), with some quantitative differences. For example, wintertime values of σ∆k∗τ
T0

are slightly lower

compared to the results derived from all data for Alderville, Varennes, and Oahu in panels (a, c, g), while σ̂∆k∗τ
T is slightly

higher for Oahu and T = 100s in panel (h). These winter-specific differences in increment variability structures do not differ20

by more than ±10% relative to the other seasons, and we consider them comparatively minor.

3.3 Peculiarity in Varennes data

Both in Fig. 6(d) and in Fig. 7(d), the normalized standard deviations of clear-sky index increments at Varennes indicate a strong

reduction of variability for increment time steps of τ = 0.1s when averaging the original high-resolution data (T0 = 0.01s) with

an averaging time period of T = 0.1s. Except for the winter data in Fig. 7(d), the increment standard deviation is reduced to25

about 90 % of its original value, which is considerably lower than the value associated with T = 1s and τ = 1s. This behavior

matches neither the results obtained from Alderville for the same time scales (cf. Fig. 6(b) and Fig. 7(b)), nor the general

characteristics of the value of σ̂∆k∗τ
T associated with τ = T to decrease with increasing T .

In order to investigate the issue, we separately derive σ̂∆k∗τ
T for each individual 900 s mixed-sky period in Varennes using T =

0.01s and T = 0.1s, as well as τ = 0.1s. The distribution of the resulting set of single-block normalized increment standard30

deviations is shown in panel (a) of Fig. 8. For the majority of mixed-sky blocks in Varennes, the values of normalized standard

deviations are very close to unity and therefore comparable to those at other stations on the scales in question. For example, the

rightmost bin (0.985< σ̂
∆k∗τ
T ≤ 1.0) alone contains 79 % of all data (note the logarithmic scaling). This result implies that the

relatively low value of σ̂∆k∗τ
T computed over all blocks is being influenced strongly by a very small number of peculiar periods.
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An example time series of k∗ and ∆k∗τ associated with a very small value of σ̂∆k∗τ
T = 0.57 is shown in panels (b) and (c)

of Fig. 8. This time series demonstrates that even within such a peculiar block, only a very small number of data points are

responsible for the small block-specific normalized increment standard deviation. While the clear-sky index varies considerably

throughout the block, there are only 4 events for which the averaged time series of T = 0.1s differs evidently from the original

measurements of T = 0.01s. Within a few hundredths of a second, the original k∗ readings drop considerably and immediately5

return to their previous values during these 4 events. Averaging the time series over periods of T = 0.1s removes these events

almost entirely.

A few such very rapid and short-lived changes of considerable magnitude on time scales on the order of the original temporal

resolution (here: T0 = 0.01s), result in a relatively high increment standard deviation for small τ . If each single one of these

changes in the time series consists of a sufficiently small number of data points in a row, an averaging time period T1 of an10

order of magnitude higher than T0 (here: T1 = 0.1s) can cause the short excursions to be averaged out almost completely,

resulting in a much smaller increment standard deviation for small τ compared to the original temporal resolution, and hence

a low value of normalized increment standard deviation for τ ' T1.

We have not established a clear cause of these extremely short reductions in irradiance. The observed short-term peculiarities

are possibly a result of some kind of small objects briefly passing the sensor, for example birds, insects, or leaves. Although15

the same sensor type is used in Alderville and Varennes with the same original temporal resolutions, the Alderville data do

not exhibit these rapid changes in k∗ resulting in particularly high values of σ̂∆k∗τ
T . A reason for this difference may be the

measuring setup and its surroundings: in Varennes, the pyranometers were mounted on tripods and scattered on grassland, with

a considerable number of nearby trees, while in Alderville, the sensors were located within a multi-megawatt PV plant (Gagné

et al., 2016). The absence of small values of σ̂∆k∗τ
T in winter at Varennes (cf. Fig. 7) may also indicate that the peculiar events20

are caused by insects. However, the short record of only 30 h worth of mixed-sky data from Varennes in winter does not suffice

for a conclusive diagnosis of the cause of these intermittent rapid changes.

4 Conclusions

Based on a unique set of irradiance measurements with original temporal resolutions between 0.01 s and 1 s from six locations

in the Northern Hemisphere, we have characterized the effects of temporal averaging on short-term irradiance variability under25

mixed-sky conditions, for the entire year as well as for individual seasons. For this analysis, we have considered probability

distributions of the clear-sky index and its short-term increments on a range of temporal scales between 0.01 s and 900 s, and

studied each particular time series standard deviation as a function of averaging time scale and increment time step. These

quantities were found to be largely independent of season and location for the data considered. The following main results thus

apply to all of the available mixed-sky data we analyzed:30

– Clear-sky index distributions are strongly bimodal on averaging timescales between 0.01 s and 1 s. The peaks are sep-

arated by a clear-sky index difference of approximately 0.7 and respectively represent cloud-covered and cloud-free

states.
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– Clear-sky index increment distributions of 1 s averages and 100 s increment time steps feature secondary peaks around

∆k∗τ ≈±1, indicating that transitions of ±1 in the clear-sky index occur more frequently than changes of ±0.7. We

interpret this result as indicating that transitions going from a cloud-enhanced state (k∗� 1) to a cloud-covered state

(k∗ ≈ 0.3), and vice versa, are more common than transitions directly between clear (k∗ ≈ 1) and cloudy (k∗ ≈ 0.3)

states.5

– For the clear-sky index, an averaging time T . 5s is sufficient to capture all k∗ variability, while averaging times T

beyond about 10 s cause the suppression of small-scale variability to increase rapidly (e.g., one-minute averages only

retain about 90 % of the original k∗ standard deviation).

– For clear-sky index increments, a small averaging time of T = 1s reduces increment standard deviation by approximately

5 % on the same scale of τ = 1s, but effectively retains all variability information for increment time steps τ & 10s.10

Based on these results, we conclude that a temporal averaging time of around T ≈ 1s marks a transition in representing

single-point irradiance variability under mixed-sky conditions. Larger values of T will tend to considerably underestimate

variability, while smaller T will increase the complexity of data management and quality control without appreciably improving

the representation of variability. Previous studies had judged even higher temporal resolutions between 0.1 s and 0.4 s to be

adequate, but the respective results were either based on considerably fewer data (Gagné et al., 2016; Torres Lobera et al.,15

2013), or focused on individual events rather than long-term, climatological variations (Yordanov et al., 2013b). Although

there are short-term periods during which an averaging time of T ≈ 1s does not capture all changes in irradiance from one

second to the next (as illustrated in Fig. 1), such periods occur infrequently based on the records that form the basis of our

results. One specific consequence of our results relates to the Baseline Surface Radiation Network (BSRN; McArthur, 2005;

Ohmura et al., 1998), which currently records solar irradiance in minute averages. Our results strongly indicate the value of20

modifying this strategy towards much higher temporal resolutions.

To carry the present research questions further, analyzing high-resolution irradiance measurements in the plane-of-array

(POA) of existing PV systems (instead of focussing exclusively on global horizontal irradiance) would lead to results with

higher direct applicability to PV power variability (although contrasting different sites will not be straight forward for POA

irradiance). Moreover, the modeling of clear-sky irradiance can be improved by using a more advanced clear-sky model, such25

as the recently validated McClear model (Lefèvre et al., 2013; Eissa et al., 2015; Lefèvre and Wald, 2016). Also, it may

be beneficial to extend the simple increment procedure (cf. Eq. 4) by considering the semi-variogram (Matheron, 1963) and

variogram (Wald, 1989), or by using a wavelet-based approach such as that discussed by Gallego et al. (2013).

Data availability. The data from Alderville and Varennes were kindly provided by Alexandre Gagné at the CanmetENERGY laboratory

in Varennes. Samples of the data are available online (Natural Resources Canada, 2016). The raw 0.1 s irradiance samples from Jülich are30

courtesy of Andreas Macke and Bomidi Lakshmi Madhavan at the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig, Ger-

many. A complete set of corresponding 1 s averages is available online (Standardized Atmospheric Measurement Data, 2017). The data from
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Oahu have been made publicly available by the National Renewable Energy Laboratory (NREL) of the United States of America (Sengupta
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Figure 6. Structures of absolute clear-sky index standard deviation σ∆k∗τ
T (left column), and its normalized counterpart σ̂∆k∗τ

T (right column)

as functions of increment time τ for up to five orders of magnitude of averaging time T = 0.01s, T = 0.1s, T = 1s, T = 10s, and T = 100s

under mixed-sky conditions for all six available locations. The spread across individual single-sensor structures is indicated using semi-

transparent coloring, while the solid lines are derived by averaging the single-sensor structures for each τ . In most cases, the spread is so

small that it is indistinguishable from the multi-sensor average.
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Figure 7. As in Fig. 6, for structures separately estimated for winter (December, January, February; DJF), spring (March, April, May;

MAM), summer (June, July, August; JJA), and autumn (September, October, November; SON). The spread across single-sensor structures is

comparable to that in Fig. 6, but it is not shown here for the sake of facility of inspection.
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Figure 8. (a) The distribution of all Varennes-based single 900-s-block values of normalized clear-sky index increment standard deviation

σ̂
∆k∗τ
T for T = 0.1s and τ = 0.1s, including an indication of the values corresponding to all blocks (as in Fig. 6) and to an example block

featuring a very low σ̂
∆k∗τ
T = 0.57. Note the logarithmic scaling of the vertical axis. (b) Clear-sky index k∗ time series of the 900 s example

block for T = 0.01s and T = 0.1s, measured in Varennes on 2016-06-23, starting at 07:41:40 EDT. (c) The corresponding clear-sky index

increments ∆k∗τ for an increment time step τ = 0.1s, quoting the values of the respective increment standard deviations.
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