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Abstract 24 

Using the National Oceanic and Atmospheric Administration’s Gridpoint Statistical 25 

Interpolation data assimilation system and the National Center for Atmospheric Research’s 26 

Advanced Research Weather Research and Forecasting (WRF-ARW) regional model, the impact 27 

of assimilating advanced technology microwave sounder (ATMS) and cross-track infrared 28 

sounder (CrIS) satellite data on precipitation prediction over the Tibetan Plateau in July 2015 29 

was evaluated. Four experiments were designed: a control experiment and three data assimilation 30 

experiments with different data sets injected: conventional data only, a combination of 31 

conventional and ATMS satellite data, and a combination of conventional and CrIS satellite data. 32 

The results showed that the monthly mean of precipitation is shifted northward in the simulations 33 

and shows an orographic bias described as an overestimation in the upwind of the mountains and 34 

an underestimation in the south of the rainbelt. The rain shadow mainly influenced prediction of 35 

the quantity of precipitation, although the main rainfall pattern was well simulated. For the first 36 

24-hour and last 24-hour accumulated daily precipitation, the model generally overestimated the 37 

amount of precipitation, but it was underestimated in the heavy rainfall periods of 3-5, 13-16, 38 

and 22-25 July. The observed water vapor conveyance from the southeastern Tibetan Plateau was 39 

larger than in the model simulations, which induced inaccuracies in the forecast of heavy rain on 40 

3–5 July. The data assimilation experiments, particularly the ATMS assimilation, were closer to 41 

the observations for the heavy rainfall process than the control. Overall, based on the 42 

experiments in July 2015, the satellite data assimilation improved to some extent the prediction 43 
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of precipitation pattern over the Tibetan Plateau although the simulation of rainbelt without data 44 

assimilation shows the regional shifting. 45 

Key words: Radiance data assimilation, GSI, Tibetan Plateau, Weather forecast accuracy 46 
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1. Introduction 48 

The Tibetan Plateau (TP) is the highest and largest plateau in the world. It is located in the 49 

central Eurasian continent and stands in the middle troposphere, covering an area of 50 

approximately 2.5 million km2. The TP has a variety of topographical features of a large terrain 51 

gradient and its steep mountains are aligned with an east-to-west arrangement. The dramatic 52 

modification caused by the rugged terrain influences the local atmospheric circulation and causes 53 

strong local convection to arise, easily inducing severe weather such as heavy rainfall, 54 

windstorms, hailstorms, and so on (Massacand et al., 1998; Gao et al., 2015). Precipitation is one 55 

of the key variables for understanding the hydrological cycle on the TP and has profound effects 56 

on the regional and global circulation that affect millions of people in the adjacent areas (Ye and 57 

Gao, 1979; Chen et al., 1985; Chambon et al., 2014; Li et al., 2014). Therefore, making accurate 58 

and long-lead weather forecasts at high temporal and spatial resolution for the TP not only has 59 

scientific significance but also addresses the urgent need for disaster prevention. However, due to 60 

the variable weather conditions and complex terrain orography, the TP remains a sparsely 61 

populated region with few conventional observation data sources, and the limited available 62 

meteorological data leads to great uncertainties in the regional weather forecasts. The continuous 63 

development of numerical weather prediction (NWP) models, such as the National Center for 64 

Atmospheric Research (NCAR)’s Advanced Research Weather and Research Forecasting (WRF-65 

ARW) model, offer opportunities to improve regional weather forecasts in data-sparse regions. 66 

NWP models can be initialized with and laterally assimilate observation data, which is beneficial 67 
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for better describing atmospheric conditions, thus keeping model results close to observations 68 

(Maussion et al., 2011). 69 

Satellite radiance data are one of the most important observation data sources and can be 70 

directly assimilated into data assimilation models. Compared with conventional observation data, 71 

geostationary satellite data have continuous spatial and temporal coverage and polar orbiting 72 

satellites circle the earth twice a day to provide global observations of multiple meteorological 73 

variables, such as temperature, pressure, moisture, and so on. Moreover, many studies have 74 

suggested that the assimilation of satellite radiance data can substantially improve weather 75 

forecasts (Eyre, 1992; Derber and Wu, 1998; Xu et al., 2009). For longer-range prediction, 76 

satellite data are even more crucial than conventional observations (Zapotocny et al., 2008). Past 77 

studies have also indicated that the effect of assimilation of both observations and satellite 78 

products was better than only satellite data assimilation (Liu et al., 2013).However, the 79 

performance of satellite radiance assimilation in limited-area modeling systems using variational 80 

DA method is still controversial (Zou et al., 2013; Newman et al., 2015).Schwartz et al. (2012) 81 

was the first to assimilate microwave radiances with the region lacking observation stations 82 

using ensemble Kalman filter (ENKF) and the results showed that assimilating microwave 83 

radiances overall make better forecasts of Typhoon Morakot (2009). The negative influence has 84 

also appeared and it is mainly contributed to various of factors such as the influence of lateral 85 

boundary conditions within the regional domain (Warner et al., 1997) and non-uniform satellite 86 

coverage (Kazumori et al., 2013).  87 
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The advanced technology microwave sounder (ATMS) and cross-track infrared sounder 88 

(CrIS) are two instruments with high resolution onboard the Suomi National Polar-orbiting 89 

Partnership spacecraft a polar-orbiting satellite launched in 2011 with the aim to provide real-90 

time sensor data for critical weather and climate measurements. The ATMS, a cross-track 91 

microwave scanner with 22 channels, combines most of the channels of the preceding advanced 92 

microwave sounding unit (AMSU-A) and microwave humidity sounder (MHS) to provide 93 

sounding profiles of atmospheric moisture and temperature. The CrIS is a Fourier transform 94 

spectrometer with 1305 spectral channels inherited from the high-resolution infrared radiation 95 

sounder (HIRS) to produce temperature, pressure, and moisture profiles. A previous study 96 

assimilated ATMS data in the European Centre for Medium-Range Weather Forecasts system 97 

and the results showed that the instrument had better performance than AMSU-A and MHS in 98 

the longer range over the Northern Hemisphere (Bormann et al., 2013). Nevertheless, satellite 99 

data assimilation into NWP models over the TP presents special challenges, because the limited 100 

model capability for assimilating radiance data over complex terrain with heterogeneous 101 

characteristics is still not clearly recognized. Furthermore, whether the new generation of 102 

satellite observations, such as ATMS and CrIS, can compensate for the shortage of data over the 103 

TP and effectively enhance the accuracy of forecasts remains unknown. 104 

In this paper, we make an assessment of the impact of assimilating ATMS and CrIS radiance 105 

data for East Asia on precipitation prediction over the TP and compare the effects of different 106 

satellite data sets injected. 107 
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2. Data and Models 108 

2.1 Data 109 

2.1.1 Data used for the assimilation 110 

The conventional data which is from the Global Data Assimilation System (GDAS)-111 

prepared BUFR files (gdas1.tCCz.prepbufr.nr) is composed of a global set of surface and upper 112 

air reports operationally collected by the National Centers for Environmental Prediction (NCEP). 113 

It includes radiosondes, surface ship and buoy observations, surface observations over land, pilot 114 

balloon (pibal) winds and aircraft reports from the Global Telecommunications System (GTS), 115 

profiler and US radar derived winds, Special Sensor Microwave Imager (SSM/I) oceanic winds 116 

and atmospheric total column water (TCW) retrievals, and satellite wind data from the National 117 

Environmental Satellite Data and Information Service (NESDIS). The reports can include 118 

pressure, geopotential height, temperature, dew point temperature, wind direction and 119 

speed. (National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. 120 

Department of Commerce. 2008, updated daily. NCEP ADP Global Upper Air and Surface 121 

Weather Observations (PREPBUFR format), May 1997 - Continuing. ) 122 

ATMS and CrIS satellite radiance data are also from the GDAS which is in the BUFR 123 

format. All of this can be downloaded from https://www.ncdc.noaa.gov/data-access/model-124 

data/model-datasets/global-data-assimilation-system-gdas. 125 

 126 

2.1.2 Data used for the evaluation/verification 127 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
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Observational precipitation data from the National Meteorological Information Center (NMIC) 128 

of the China Meteorological Administration (CMA) was used as the truth data for comparison 129 

with the model results. The 0.1° × 0.1° high-resolution gridded hourly China Merged 130 

Precipitation Analysis (CMPA) data gauge, which combines the CMA’s rain gauge hourly data 131 

provided by more than 30,000 automatic weather stations with the National Oceanic and 132 

Atmospheric Administration (NOAA) Climate Prediction Center’s Morphing (CMORPH) 133 

precipitation product (Xie & Xiong, 2011; Pan et al., 2012; Shen et al., 2014), was used for 134 

verification to evaluate the model simulation results. Considering the topographically complex 135 

terrain characterizing the TP, satellite precipitation data with very high spatial resolution is 136 

especially needed. CMORPH product makes use of the precipitation estimates technique that 137 

have been derived from low orbiter satellite microwave observations and geostationary satellite 138 

IR data with spatial propagation features. Several studies (Gao et al., 2013; Guo et al., 2014; 139 

Tong et al., 2014; Zhang et al., 2015) have compared the CMORPH data with satellite 140 

precipitation data sets in the TP area with the conclusion that CMORPH data is one of the most 141 

suitable product to use in studying precipitation over the TP. During the period from May to 142 

October 2004-2009, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation 143 

Analysis real-time research 3B42 version 6 (TMPA) and CMORPH show better performance in 144 

higher correlation and lower RMSE than the Precipitation Estimation from Remotely Sensed 145 

Information using Artificial Neural Network (PERSIANN) and TMPA’s real time version 146 

(TMPART) over the TP(Gao et al., 2013). Of the several merged satellite precipitation products 147 
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(i.e.TMPA, PERSIANN, and the Global Satellite Mapping of Precipitation (GSMaP)), the 148 

CMORPH product with the highest resolution (8 km) can capture the afternoon-to-evening 149 

precipitation pattern (Guo et al.,2014). Tong (2014) has also compared the performance of four 150 

widely-used high resolution satellite precipitation estimates against gauge observations (the 151 

CMA data) over the TP during January 2006-December 2012. It’s worth noticing that TMPA and 152 

CMORPH data had better performance in depicting precipitation timing and amount than the 153 

TMPART and PERSIANN at both the plateau and basin scale. Zhang (2015) has also made a 154 

conclusion that the high resolution CMORPH data can depict finer regional details, such as a less 155 

coherent phase pattern over the TP and better capture the features of the diurnal cycle of summer 156 

precipitation compared with TRMM 3B42. 157 

NCEP Final Analysis (FNL) data was used through dynamic downscaling as observed 158 

moisture to illustrate the transportation of water vapor in East Asia. 159 

 160 

2.1.3  Radiance data quality control  161 

As the quality of the observational data is easily affected by the observation instruments, 162 

station positions, or human factors, carrying out quality control before data application is 163 

necessary (Hubbard and You, 2005). Before data assimilation, a multiple-step quality control 164 

procedure was applied to the satellite radiance data in the GSI system and preprocessed by 165 

NOAA’s Satellite and Information Service (NESDIS). Besides data thinning, it can be 166 

summarized to several quality control (QC) categories in GSI to either toss the questionable 167 
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observations or inflate the low confidence observations. The detailed quality control can be 168 

found in the section 8.3 radiance observation quality control in the Gridpoint Statistical 169 

Interpolation (GSI) Advanced User’s Guide version 3.5 by Developmental Testbed Center (DTC) 170 

(2016).  The observational number of ATMS data ranging from 53042 to 68618 in contrast to the 171 

number of CrIS data ranging from 2694048 to 3454542 are read in DA system. After the data had 172 

passed rigorous quality assessment and quality control processes, the results showed that about 173 

23.2%-26.4%, and 1.3% and 1.6% of “good” observations related to ATMS and CrIS read data 174 

separately were retained after quality control (Fig. 2). This difference can be explained that CrIS 175 

has 1305 channel satellite radiance data, but the number of assimilated channels are significantly 176 

reduced (Table 1),  the selection of redundant channel leads to some part of observation radiance 177 

data comes from the similar altitude and contains large amount of repeated information. 178 

Therefore, larger percentage of CrIS satellite radiance data than ATMS is tossed through QC 179 

steps. Figure 1(b) shows the distribution of the conventional data at 06:00 UTC on 1 July 2015, 180 

where observational data are rare in the TP. Figure 1c and 1d displays the distribution of satellite 181 

data after quality control, where there is almost complete spatial coverage in East Asia including 182 

the TP. 183 

 184 

2.2 Models 185 

2.2.1 WRF-ARW regional model 186 

NCAR’s WRF-ARW regional model associated with the Gridpoint Statistical Interpolation 187 
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(GSI) data assimilation system was used in this study. WRF-ARW is a fully compressible 188 

nonhydrostatic, primitive-equation, mesoscale meteorological model. As shown in Figure 1a, the 189 

model domains are two-way nested with 12 km (580 × 422) and 4 km (817 × 574) horizontal 190 

spacing. There are 51 vertical levels with a model top of 10 hPa. Figure 1 shows that D01 is set 191 

to cover most of East Asia and the subdomain (D02) inside corresponds to the Tibetan Plateau, 192 

which has a mountain–valley structure. 193 

The physical parameterizations chosen for the forecast model in this study followed previous 194 

studies of the area (He et al., 2012; Xu et al., 2012; Zhu et al., 2014). These included the WRF-195 

ARW Single-Moment 6-class (WSM-6) microphysics scheme, the Kain-Fritsh (KF) cumulus 196 

parameterization, the Rapid Radiative Transfer Model (RRTMG) longwave and shortwave 197 

radiation, the Yonsei University scheme (YSU) and the Noah Land Surface Model for the 198 

planetary boundary layer scheme. 199 

The National Centers for Environmental Prediction (NCEP) global forecast system (GFS) 200 

forecast data, which has a horizontal resolution of 0.5° × 0.5° with a 6-hour interval, were used 201 

as the boundary and initial conditions for the control (CTRL) experiment, while the background 202 

fields of data assimilation experiments (DA) take advantages of the forecast product at 06:00 203 

UTC made by CTRL. The GFS data are publicly available from https://www.ncdc.noaa.gov/data-204 

access/model-data/model-datasets/global-forcast-system-gfs. 205 

 206 

2.2.2 The GSI 3D-Var system and Community Radiative Transfer Model 207 
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In this study, we chose to use the GSI 3D-Var system, which is a data assimilation system 208 

that was initially developed as the next-generation analysis system based on the operational 209 

Spectral Statistical Interpolation (SSI) at NCEP (Derber and Wu, 1998).  210 

Instead of the spectral definition of backgrounds errors in the SSI, GSI is constructed in 211 

physical space which the background errors can be represented by a non-homogeneous and 212 

anistropic gridpoint and used for both global and regional forecasts. GSI utilizes recursive filters 213 

and is designed to be a flexible system that is efficient on available parallel computing platforms 214 

(Wu et al., 2002; Purser et al., 2003a, b). The GSI 3D-Var system provides an optimal analysis 215 

through two outer iterative minimization of a prescribed function as follows:  216 

J =
1

2
(xa − xb)

TB−1(xa − xb) +
1

2
(H(x) − Oo)

TO−1(H(x) − Oo)      (1) 217 

Where xa is the analysis state can be calculated by minimizing the penalty function J, xb is 218 

the first guess that comes from GFS product in this article representing background model state, 219 

Oo are the observations including conventional observation, satellite radiance data, radar data, 220 

etc. H(x) is the transformation operator from the analysis variable to the form of the Oo error. By 221 

means of the two sources of priori data: the first guess xb and the observations Oo, the solution 222 

for the penalty function which indicates the posteriori maximum likelihood estimate of the true 223 

atmospheric state can be found. While B and O are the error estimates of xb (covariance matrix 224 

of the background error) and Oo (covariance matrix of the observation error) respectively which 225 

are used to weight the analysis fit to individual observations (Wu et al., 2002). 226 

The development of fast radiative transfer models has allowed for the direct assimilation of 227 
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satellite infrared and microwave radiances in NWP systems (Saunders et al., 1999; Gauthier et 228 

al., 2007; Zou et al., 2011). The Community Radiative Transfer Model (CRTM) developed by the 229 

United States Joint Center for Satellite Data Assimilation (JCSDA) has been incorporated into 230 

the NCEP GSI system to rapidly calculate satellite radiances (Han, 2006; Weng, 2009). After 231 

ATMS and CrIS data are read into the GSI, simulated brightness temperature are calculated via 232 

CRTM 2.1.3 in this study. It is worth noticing that the CrIS scans a 2200km swath width (+/- 50 233 

degrees), with 30 Earth-scene views. Each field consists of 9 fields of view, arrayed as 3x3 array 234 

of 14km diameter spots (nadir spatial resolution). ( https://jointmission.gsfc. nasa.gov/cris.html). 235 

The ATMS scans a 2300km swath width with 96 Earth-scene views. The 1-2 channel of the 236 

spatial resolution of ATMS at nadir is 75km; 3-6 channel is 32km; 17-22 channel is 16km (Dong 237 

et al., 2014). 238 

   239 

3. Method and experimental design 240 

3.1 Method 241 

A basic two-by two contingency table (Table 2) was generated to calculate the Bias Score 242 

(BIAS), Fraction skill Score (FSS), Equitable Threat Score (ETS), Probability of False Detection 243 

(POFD), Probability of Detection (POD), and False Alarm ratio (FAR). 244 

The BIAS (Range: 0~∞, Perfect score: 1), which measures the ratio of the frequency of 245 

forecast events to the frequency of observed events, is defined as: 246 

BIAS =   
Hits+False alarms

Hits+Misses
       (2) 247 

https://jointmission.gsfc.nasa.gov/cris.html
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The FSS (Range: 0~1, Perfect score: 1) introduced by Roberts and Lean (2008) is a 248 

neighborhood verification method. The FSS is defined as: 249 

FSS = 1 −
𝐹𝐵𝑆

𝐹𝐵𝑆𝑟𝑒𝑓
                                                 (3) 250 

Fractions Brier Score (FBS) is presented as 251 

FBS =
1

𝑁
∑ [𝐹𝑜 − 𝐹𝑓]

2𝑁
𝑖=1                                        (4) 252 

Where N is the number of all grid points in the domain. Fo and Ff are the observation and 253 

forecast fractions of the sliding window at each grid point. The sliding window in this study is 254 

100km (25 grid points). The reference Fractions Brier Score (FBSref) represent a largest possible 255 

FBS and is given as： 256 

𝐹𝐵𝑆𝑟𝑒𝑓 =
1

𝑁
[∑ 𝐹𝑜

2𝑁
𝑖=1 + ∑ 𝐹𝑓

2𝑁
𝑖=1 ]                        (5) 257 

The ETS (Range: -1/3~1, Perfect score: 1) computes the fraction of observed events that were 258 

correctly predicted: 259 

ETS =  
Hits−𝑅

Hits+False alarms+Misses−𝑅
      (6) 260 

where R is the random forecast coefficient, given by:  261 

R =  
(Hits+False alarms)(Hits+Misses)

(Hits+False alarms+Misses+Correct rejections)
   (7) 262 

The POFD (Range: 0~1, Perfect score: 0) measures discrimination: 263 

POFD =  
False alarms

False alarms+Correct rejections
      (8) 264 

Similar to the POFD, the POD (Range: 0~1, Perfect score: 1) shows the hits out of total observed 265 

events: 266 

POD =  
Hits

Hits+Misses
          (9) 267 
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The FAR (Range: 0~1, Perfect score: 0) indicates the fraction of the predicted events that did not 268 

occur: 269 

FAR =
False alarms

Hits+False alarms
        (10) 270 

To compare the model simulation data with the observation data, the 4-km model grid was 271 

interpolated to observation data with 0.1o×0.1o degree grid based on linear interpolation method.  272 

 273 

3.2 Experimental design 274 

Four one-month-long experiments were conducted (Fig. 3). The CTRL experiment was 275 

carried out first with an initial time of 00:00 UTC and made 54 h forecasts. The data assimilation 276 

was applied on the D01 region of the output from CTRL at 06:00 UTC. The DA experiments 277 

made use of the assimilated D01 and the D02 from the CTRL at 06:00 UTC as the initial 278 

condition and made a 48 h forecast for each day. Three DA experiments were performed with a 279 

time window of 3 hours: (1) a conventional run (CONV) assimilating the conventional 280 

observation data only; (2) an ATMS radiance run (ATMS) adding the ATMS satellite radiance 281 

data to the CONV; and (3) a CrIS radiance run (CRIS) adding the CrIS satellite radiance data to 282 

the CONV.  283 

The accumulated precipitation integrated from 06 to 30 h and 30 to 54 h are defined as the 284 

first twenty-four-hour accumulated (F24H) precipitation and last twenty-four-hour accumulated 285 

(L24H) precipitation, respectively. 286 

 287 
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4. Results 288 

4.1 Impact of DA on the spatial fields of precipitation forecast 289 

Figure 4 shows the spatial pattern of the monthly mean of 24-hour accumulated precipitation 290 

in July 2015. Monthly mean precipitation exhibits a decreasing south-to-north gradient. The 291 

predicted precipitation in the central and northern parts of the TP, Qaidam Basin (90°-99°E, 35°-292 

39°N), Tarim Basin (75°-90°E, 37°-42°N), and Junggar Basin (80°-90°E, 45°-48°N) was too 293 

small to be measured (Fig. 4a, c). It was found that F24H precipitation ranged from 6.0 to 30.4 294 

mm, while the L24H forecasts ranged from 6.0 to 29.5 mm per month. The rain shadow along 295 

the Himalayas (73°-95°E, 27°-35°N) was found in the spatial distribution of precipitation. Due to 296 

the Figure 4 (a) standing for the F24H, the first day calculated in Figure 4 (a) was during the 297 

period of 06:00 UTC 1st July to 06:00 UTC 2nd July and finally ended in the period of 06:00 298 

UTC 29th July to 06:00 UTC 30th July. Therefore the different values in Figure 4 (a) and (c) can 299 

be explained that the Figure 4 (c) shows the L24H observed monthly mean accumulated 300 

precipitation of which the computing process are different in in two days with Figure 4 (a).  The 301 

CTRL (Fig. 4b, d) mostly simulated the monthly mean rainbelt distributed along the southern 302 

and southwestern margin of the plateau, between the Himalayas in the west and the Hengduan 303 

Mountains (95°-103°E, 24°-32°N) in the east. The difference between the model simulations and 304 

observations (Fig. 5) indicated that the CTRL simulation tends to overestimate precipitation, 305 

especially in the southern and southwestern margin along the rainbelt where the altitude changes 306 

from 500 to 3000 m. The results suggested that the WRF-ARW model has limitations in 307 
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simulating the precipitation in mountainous areas, which is similar to the conclusion of previous 308 

studies (He et al., 2012; Xu et al., 2012). Furthermore, we found that the precipitation is 309 

overestimated (colored red) in the upwind of the mountains along the southwestern margin. In 310 

contrast, the precipitation is underestimated in the south of the rainbelt, leading to a north–south 311 

dipole structure. This pattern results in a northward migration of the rainbelt in the simulations. 312 

The three DA experiments indicated that the assimilation of satellite radiance data can not 313 

calibrate the rain shadow effect and all experiments showed consistently gross overestimation 314 

patterns, varying from 8 to 10 mm about the monthly mean precipitation. The overall bias 315 

statistic in D02 is 0.97 mm (0.86 mm), 0.52 mm (0.70 mm), 1.08 mm (0.97 mm), and 0.98 mm 316 

(0.76 mm) CTRL, CONV, ATMS and CRIS respectively. The values in brackets are referred to 317 

L24h. This may be attributed to the physical package of WRF-ARW having an inadequate 318 

description of snow cover over the plateau surface making the error of margin more prominent 319 

(Marteau et al. 2015). 320 

Figure 6 shows the spatial patterns according to the contingency table (Table 2) and the 321 

scatter plots, in which monthly mean 24 h rainfall over the 6 mm threshold is defined as an 322 

“event”. Rainfall events occur over most of the TP area, including the northern Gangetic Plain 323 

(80°-90°E, 24°-28°N) where the elevation is lower than 3000 m, and can be well predicted with 324 

~8–10% hits (A) and ~76–79% correct rejections (D) in the majority of the region. The false 325 

alarms (B) were spread mainly in the east of the TP, where the Bayan Har (95°E, 35°N) and 326 

Hengduan mountains are located, accounting for ~7–10%, while the misses (C) were distributed 327 
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in the western plain exterior of the TP and accounted for ~5–6%. It’s also evident to see the 328 

dipole pattern in the distribution of the hits and misses similar to the Figure 5. Among the four 329 

linear regression lines (bold grey lines), ATMS looks a little better than the other three 330 

experiments but has more extreme-precipitation event forecasts than the others, followed by the 331 

CTRL and CRIS, while CONV has the lowest simulation precision. The ~84-89% high 332 

percentage of hits and correct rejections events indicates that rainfall events are well predicted. 333 

Furthermore, as the false alarms were primarily located in the east of the TP in contrast to the 334 

misses in the west, this special pattern can help WRF-ARW model reduce model error in the 335 

future which means that WRF-ARW model has promising potential in TP area. 336 

Figure 7 shows the monthly and domain average validation statistics in the TP. The 337 

differences between the four experiments for the F24H forecasts are larger than for the L24H 338 

forecasts. The ETS, FSS, and POD values all decline as the threshold increases; a higher value 339 

for these three skill scores indicates a better performance of the experiments. ATMS showed the 340 

highest FSS (Fig. 7b), ETS (Fig. 7c) and POD (Fig. 7d). CONV performed similar to the CTRL 341 

in ETS and FSS, and CRIS performed the worst. However, according to the BIAS, CONV is 342 

mostly approximately 1, which indicates the best overall relative frequencies compared with the 343 

other experiments. Through the 1–5 mm threshold, CRIS performs the largest overforecast 344 

(BIAS > 1), but it evolves to have a better performance than ATMS and CTRL through the 5–10 345 

mm threshold. FAR and POFD results indicate that CONV performs best (0 is perfect), followed 346 

by ATMS and then CTRL and CRIS. However, POD results manifest that ATMS performs best 347 
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(1 is perfect) and CONV is worst. The different methods of forecast verification may depend on 348 

the purpose of the verification, and the results we evaluated by different methods can explain the 349 

different question we want to answer. Overall, the results reflect that DA has a positive effect on 350 

reproducing the monthly mean precipitation in the TP compared with the CTRL to varying 351 

degrees. 352 

 353 

4.2 Impact of DA on the temporal distribution of precipitation forecast 354 

Another measure of performance is to examine how the daily precipitation is temporally 355 

distributed (Fig. 8). It can be seen in the time series of Figure 8a that there are four observed 356 

heavy rainfall events (3.0 mm/day) during the periods of 3–5, 8-10，13–16 and 22–25 July (Fig. 357 

8a). In general, the F24H amount of precipitation is overestimated in all three DA experiments 358 

by 20%, 40%, and 37% for CONV, ATMS, and CRIS, respectively. In contrast, of the 4 heavy 359 

rainfall periods, 3 events including 3–5, 13–16 and 22–25 July are underestimated (grey 360 

shadings). The L24H forecasts (Fig. 8b) showed a similar pattern, except that there were much 361 

smaller differences among the three DA experiments compared with the F24H forecasts. The 362 

F24H forecasts appear the one-day time lag effect compared with L24H. Because the F24H 363 

forecasts calculate the cumulative precipitation of the first 6-30 hour while the L24H forecasts 364 

represent the 30-54 hour cumulative precipitation forecasts. When all the overestimation events 365 

are considered, the CONV (blue line) experiment captured the accumulated amount of 366 

precipitation much more accurately than the other DA experiments and the ATMS (red line) 367 
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performed the worst. It is usual to define the amount of 25.0 to 49.9 mm and 50 mm daily 368 

precipitation as heavy rain and rainstorm, respectively. However, due to the history data sets of 369 

the TP indicating that the days of precipitation exceeding 50 mm are few (only accounting for 370 

0.3% of rain days) (Wei et al., 2003) and referring to previous studies (Wang et al., 2011; Zhao et 371 

al., 2015), the heavy rainfall threshold was defined as above 20 mm for the 24 h precipitation in 372 

this study. As mentioned above, the 24 h precipitation maxima surpassing 20 mm are spread in 373 

the main precipitation region, showing that the prominent geographical dependence of rainfall 374 

coincides with the threshold of heavy rainfall defined for TP areas. 375 

Although previous studies and our results show an obvious trend of overestimating rainfall 376 

in the TP, there appears to be underestimated during heavy rainfall events (Fig. 8). To determine 377 

the forecast capabilities of the model in the heavy rainfall periods, we focused on one heavy 378 

rainfall period of 3-5 July. 379 

Figure 9 shows the rainfall intensities (bars) calculated for every 3 h amount of 380 

precipitation. The cumulative precipitation (curves) is defined as the precipitation accumulated 381 

for each 3 h  starting at 06:00 UTC during 3–6 July. From the perspective of observations, this 382 

rainfall event can be divided into three periods, of which the 3 July is ahead of the heavy rainfall 383 

with less than 0.45 mm per 3 h, followed by the rainfall around 03:00 UTC on 4 July to 03:00 384 

UTC on 5 July, with the first peak at 21:00 UTC on 4 July of more than 0.65 mm per 3 h. The 385 

third phase started at 03:00 UTC on 5 July and ended at 00:00 UTC on 6 July with a second 386 

rainfall pulse around 21:00 UTC on 5 July exceeding 0.60 mm per 3 h and then weakening. It is 387 



21 
 
 

evident that this rainfall event had a significant diurnal harmonic and the maximum precipitation 388 

always occurred at 18:00–21:00 UTC (00:00–03:00 LST). This diurnal variation was remarkable, 389 

especially when the heavy rainfall occurred, which was equivalent to evening local solar time 390 

(LST). However, the simulated maximum always occurred at 06:00–09:00 UTC (12:00–15:00 391 

LST), earlier than the observations, and can probably be attributed to the limit of complicated 392 

topography. In this case, simulated rainfall intensity was much lower than the observations 393 

during 09:00 UTC on 4 July to 00:00 UTC on 5 July and 12:00 UTC on 5 July to 21:00 UTC on 394 

5 July when the rainfall occurred. That is, the model cannot promptly quantitatively predict the 395 

sudden occurrence of this event. Moreover, the cumulative curves of the model show an 396 

overestimation on 3 and 5 July compared with observations; in particular, the cumulative curves 397 

of the CTRL are far away from the measured values due to an inaccurate initial field. It can be 398 

concluded that the DA experiments data are closer to the observations during the heavy rainfall 399 

period compared with the CTRL experiment. 400 

 401 

4.3 Impact of DA on circulation and water vapor supply 402 

According to the above-mentioned analysis, it is evident that DA improves forecasts during 403 

the heavy rainfall period, but the results are not the same when different data sets are injected. As 404 

is well known, adequate water vapor transport is one of the preconditions for precipitation 405 

formation. In this section, we discuss the water vapor supply in the 3–5 July case study, with the 406 

aim of determining the reason for the different influences exerted by different experimental 407 
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schemes. Figure 10 shows the F24H forecasts of precipitation quantity (shadings) and water 408 

vapor flux (vectors) during 3–5 July. Zonal component of wind velocity (u), meridional 409 

component of wind velocity (v),  specific humidity (q), and covariance, which are needed for 410 

flux computations, are provided at eight standard pressure levels (1000, 925, 850, 700, 600, 500, 411 

400, and 300 hPa). The equation of unit side length, vertically integrated between the surface 412 

level and the top of the atmosphere and averaged in time atmospheric water vapor flux (unit: 413 

kg*m-1*s-1) can be written as: 414 

Q⃗⃗ = Qui + Qvj                                                    (11) 415 

The zonal and meridional component of vapor flux is described by: 416 

 Qu =
1

g
∫ qudp

ps

p
                                             (12),  417 

and                                                          Qv =
1

g
∫ qvdp

ps

p
                                               (13). 418 

 Where ps is the surface pressure and p is the pressure at the "top" of the atmosphere, g is 419 

the gravitational constant ( 9.8 m*s-2 ).  420 

The water vapor flux divergence (D, unit: kg•m-2•s-1) is given by: 421 

D =
∂Qu

a cosφ∂σ
 + 

∂Qv

a∂φ
                                       (14) 422 

where a is the radius of the model earth taken as 6371.2 km, φ is latitude in radians, 423 

and σ is longitude in radians. 424 

According to observations, warm and humid water vapor is transferred from the Bay of 425 

Bengal eastward by the southwest monsoon. The TP blocks the westward transport of humid and 426 

warm air, and this rainfall event start developing in the southeast of the TP on 3 July and then the 427 
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rainbelt runs southeast to southwest and develops along the Himalayas on 4–5 July. Comparing 428 

the observations (Fig. 10a–c) with model results (Fig. 10d–f), the simulated precipitation is 429 

considerably larger than the observed on 3 July before the heavy rainfall occurs, but as time goes 430 

on this condition reverses. For the difference value distribution (Fig. 10g–i) of the CTRL minus 431 

observations, the main water vapor flux divergence differences (shadings) are negative in the 432 

rainy region on 3 July, which indicates that the water vapor convergence is stronger than 433 

observed, inducing the overestimation. However, when the rainfall event occurs on 4–5 July, this 434 

condition is opposite. The water vapor differences (vectors) also suggest that the observed water 435 

vapor conveyance from the southeastern of the TP is larger than the model simulation, which 436 

induces inaccuracies in the forecast of the heavy rain. Therefore, analysis of moisture is useful 437 

for improving the heavy rainfall forecasting skill. 438 

To further discuss the effect of DA on this rainfall event, the differences between the 439 

simulated F24H precipitation and the observed distribution and the FSS skill scores (Fig. 11) 440 

were considered. From the spatial distribution, all the experiments (Fig. 11a, d, g, j) 441 

overestimated the precipitation quantity, especially the CTRL, before the heavy rainfall and the 442 

FSS skill scores all ranged from 0.46 to 0.49 with little differences (bottom left in Fig. 11m). 443 

When the heavy rainfall event occurred on 4 July, the observed rainbelt moved southwest (Fig. 444 

11b, e, h, k), while the simulated rainbelt was motionless, leading to an underestimation in the 445 

southwest. The FSS scores for ATMS, CONV and CTRL ranged from 0.42 to 0.48  (middle in 446 

Fig. 11m), but CRIS only scored 0.36. As the water vapor conveyance directly contributes to the 447 
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westward movement of the rainbelt and the intensity of this precipitation event on 5 July, the 448 

precipitation experiments all underestimated the amount of precipitation, and CRIS performed 449 

particularly badly (Fig. 10c, f, i). However, ATMS had a substantially high FSS scores (0.47) 450 

(right in Fig. 11m), followed by CRIS (0.45) and CONV (0.43) while CTRL only scored 0.35. 451 

This result indicates that DA can indeed improve the heavy rainfall forecast. From the above 452 

analysis of Figure 9 and 11, it is clear that before the heavy rainfall, DA can improve the 453 

simulation of precipitation spatially. As time passes and the heavy rainfall develops, DA, 454 

especially the ATMS assimilation, can enhance model prediction abilities both spatially and 455 

temporally in comparison with the CTRL experiment. 456 

 457 

5. Summary and discussion  458 

In this study, we used diagnostic methods to analyze the impact of DA on the monthly 459 

precipitation distribution over the TP and then focused on one heavy rainfall case study that 460 

occurred from 3 to 5 July 2015. The DA and NWP were performed for July 2015 to make the 461 

weather forecasts. The spatial distribution of monthly mean precipitation showed an evident rain 462 

shadow effect along the Himalayas and that the precipitation decreased northward in the TP. 463 

However, the simulated precipitation belt was shifted northward compared with the observed 464 

rainbelt and showed an orographic bias described as an overestimation in the upwind of the 465 

mountains and an underestimation in the south of the rainbelt. Assimilation of satellite radiance 466 

also can not calibrate the rain shadow effect and all experiments showed consistently gross 467 
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overestimation patterns. Furthermore, it seems that the rain shadow mainly influences prediction 468 

of the quantity of precipitation, but the main rainfall pattern can be well predicted. Comparisons 469 

indicate that the WRF-ARW model has promising potential, in that the false alarms are primarily 470 

predicted in the east of the TP in contrast to the misses in the west. The DA validation statistics 471 

also suggest that DA has a positive effect on monthly mean precipitation prediction in the TP 472 

compared with the CTRL to varying degrees. For the time series of monthly precipitation, F24H 473 

and L24H precipitation chiefly overestimate the amount of precipitation, which is in agreement 474 

with previous studies, but the amount of 24 h precipitation in the three heavy rainfall periods of 475 

3–5, 13–16, and 22–25 July is underestimated. 476 

To further study the underestimations in the heavy rainfall events and the performance of the 477 

WRF-ARW model and GSI DA impact, we selected a case study from 3 to 5 July. It is evident 478 

that this rainfall event had a significant diurnal harmonic and the maximum precipitation always 479 

occurred at 18:00–21:00 UTC (00:00–03:00 LST). This diurnal variation was remarkable, 480 

especially when the heavy rainfall occurred. Although the model can not promptly quantitatively 481 

predict the sudden occurrence of this rainfall event, the DA, especially the ATMS simulation are 482 

closer to the observations for the heavy rainfall event compared with CTRL experiments. Overall, 483 

before the heavy rainfall, DA improved the precipitation prediction spatially. As time passed and 484 

the rainbelt moved and rainfall developed, DA enhanced the model prediction abilities both 485 

spatially and temporally. It should be mentioned that the high altitude and complex topography 486 

of the TP and its blocking effect on moisture transfer coming from Indian Ocean by the 487 
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southwest monsoon obviously influences the rainfall forecast. As precipitation biases indicate 488 

some extent of spatial coherence and temporal recurrence, it is possible to provide an adapted 489 

correction method to enhance the model precipitation prediction capabilities. 490 

It is conspicuous that the ATMS showed better performance than CTRL, CONV, and CRIS 491 

in the case study. Past studies have indicated that the effect of assimilation of both observations 492 

and satellite products is better than assimilation of satellite data only, which may account for the 493 

ATMS performing better than CONV. ATMS also performed better than CRIS. As clouds are 494 

opaque in the infrared wave band of the spectrum and largely transparent in the microwave band, 495 

microwave instruments are thought to perform better than infrared instruments on cloudy and 496 

rainy days, which may explain the better performance of ATMS compared with CRIS. 497 

In this study, we investigated the monthly precipitation distribution and a selected heavy 498 

rainfall case in the TP using the WRF-ARW mesoscale model and the GSI data assimilation 499 

system. Moisture and dynamic conditions were analyzed in the case study; however, thermal 500 

conditions are also one of the direct factors leading to rainfall that need to be investigated in the 501 

future. 502 

Furthermore, although the CrIS were assimilated large amount of satellite radiance pixels, 503 

the general DA effect is relatively worse compared with the other three experiments. CrIS has 504 

1305 spectral channels, some of which are redundant as they include many satellite radiance 505 

observations from similar altitudes and contain much repeated information, which may lead to 506 

the poor DA impact. It should take the priority to select physical sensitivity and the high vertical 507 
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resolution channels. On the other hand, the high altitude and complicated dynamic, thermal 508 

conditions increase the difficulty of selecting channels. Therefore, only by carrying out further 509 

research on bias correction, quality control, and channel selection can satellite radiance data play 510 

an efficient role in TP weather forecasting. 511 

In addition, model resolution and parameterized scheme selection are also key factors 512 

affecting forecast quality. In this study, the parameterized schemes we choose have been applied 513 

in previous studies of the TP. It would be worthwhile to make a comparative analysis of different 514 

parameterized schemes with higher model resolution in the future. Furthermore, it should be 515 

noted that due to the heavy calculation burden, this study made use of 3D-Var as the assimilation 516 

method. Other advanced assimilation techniques, such as 4D-Var, Hybrid, and EnKF, also need 517 

to be tested. 518 
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Table 1. The channels for ATMS and CrIS data that have been selected for the data assimilation 659 

procedure 660 

Sensor Channels 

ATMS  1-14, 16-22 

 

CrIS 

37, 49, 51, 53, 59, 61, 63, 65, 67, 69, 71, 

73, 75, 77, 79, 80, 81, 83, 85, 87, 89, 93, 

95, 96, 99, 101, 102, 104, 106, 107, 116, 

120,123, 124,,125, 126, 130, 132, 133, 

136, 137, 138, 142,143, 144, 145, 147, 

148, 150, 151, 153, 154, 155, 157-168, 

170, 171, 173, 175, 198, 211, 224, 279, 

342, 392, 404, 427, 464, 482, 501, 529 

 661 

Table 2. Rain contingency table used in the verification studies. As a threshold, 6 mm day-1 662 

is chose to separate rain from no-rain events 663 

Forecast 

Observed 

Yes No 

Yes Hits False alarms 

No Misses Correct rejections 

 664 

 665 

 666 

 667 

 668 

 669 

 670 
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Figure captions 671 

Figure 1. (a) Simulation domains and topography. Resolutions are at 12 km and 4 km for the 672 

outer (coarse grid, D01) and inner (nested grid, D02) boxes, respectively. The shading 673 

indicates the terrain elevation (unit: m). (b)–(d) Distribution of (b) conventional data 674 

observations, (c) scan coverage of ATMS data after data assimilation, and (d) scan 675 

coverage of CrIS data after data assimilation at 06:00 UTC on 1 July 2015. 676 

Figure 2. Blue bars indicate the total amount of radiance read in the DA system. Red bars 677 

present the number of kept radiance after first step of quality control. The used 678 

percentage after final quality control is shown as black curves. The right y-axis 679 

indicates the ratio of used amount to read amount. Top panel is for ATMS (a) and 680 

bottom is for CrIS data (b). 681 

Figure 3. Top panel shows the schematic of data assimilation configuration with 3D-Var. Bottom 682 

panel presents the experiments design. CTRL: control experiment without data 683 

assimilation that the initial time is 00:00 UTC from 1 to 31 July; CONV: data 684 

assimilation with conventional data only; ATMS: data assimilation with conventional 685 

and ATMS data; CRIS: data assimilation with conventional and CrIS data. CONV, 686 

ATMS and CRIS experiments all start at 06:00 UTC from 1 to 31 July. 687 

Figure 4. Daily precipitation averaged (unit: mm) for the month of July 2015. (a), (b) are F24H 688 

forecast and (c), (d) are L24H forecast. Black contours are altitude (unit: m). 689 

Figure 5. Difference value distribution of monthly mean precipitation (unit: mm) during July for 690 
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data assimilation minus observation experiments. (a), (e) CTRL minus OBS; (b), (f) 691 

CONV minus OBS; (c), (g) ATMS minus OBS (d),(h) CRIS minus OBS for (a)–(d) 692 

F24Hforecast and (e)–(h) L24Hforecast. Black contours are altitude (unit: m). 693 

Figure 6. Spatial patterns of (a)–(d) the contingency table and (e)–(h) the scatter plots (monthly 694 

mean F24 h rainfall over 6 mm threshold is defined as an “event”). The solid grey line 695 

indicate the regression line of A. Black contours are altitude (unit: m). 696 

Figure 7. Monthly and domain average validation statistics for F24H forecast (a–f) and L24H 697 

forecast (g–l). (a) and (g) are Bias Score; (b) and (h) are Fraction skill Score; (c) and (i) 698 

are Equitable Threat Score; (d) and (j) are Probability of False Detection; (e) and (k) 699 

are Probability of Detection; (f) and (l) are False Alarm ratio. 700 

Figure 8. Time series of daily precipitation distribution for F24H forecast (a) and L24H forecast 701 

(b). The black, grey, blue, red and green lines indicate observation, CTRL, CONV, 702 

ATMS and CRIS, respectively. The unit is mm. The grey shadings indicate the 703 

underestimated events. 704 

Figure 9. Rainfall intensities (bars) calculated for every 3 h amount of precipitation. The 705 

cumulative precipitation (curves) is defined as the precipitation accumulated for each 3 706 

h starting at 06:00 UTC during 3–5 July. The unit is mm. 707 

Figure 10. (a)–(f) 24 h forecasts of precipitation quantity (shadings) and water vapor flux 708 

(vectors) during 3–5 July for (a)–(c) OBS and (d)–(f) CTRL. (g)–(i) Differences in 709 

water vapor flux (vectors) and water vapor divergence (shadings) between CTRL and 710 
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OBS. The unit of precipitation is mm. The units for water vapor flux and divergence is 711 

kg/(m*s) and kg/(m2*s), respectively. 712 

Figure 11. (a)–(l) are differences between the simulated F24H precipitation and the observed 713 

distribution and (m) is the FSS skill scores with 8 mm threshold during 3–5 July. The 714 

unit of differences is mm.715 
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 716 

Figure 1. (a) Simulation domains and topography. Resolutions are at 12 km and 4 km for the outer 717 

(coarse grid, D01) and inner (nested grid, D02) boxes, respectively. The shading indicates the terrain 718 

elevation (unit: m). (b)–(d) Distribution of (b) conventional data observations, (c) scan coverage of 719 

ATMS data after data assimilation, and (d) scan coverage of CrIS data after dta assimilation at 06:00 720 

UTC on 1 July 2015.  721 
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 722 

Figure 2. Blue bars indicate the total amount of radiance read in the DA system. Red bars present the 723 

number of kept radiance after first step of quality control. The used percentage after final quality 724 

control is shown as black curves. The right y-axis indicates the ratio of used amount to read amount. 725 

Top panel is for ATMS (a) and bottom is for CrIS data (b). 726 

 727 
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 728 

Figure 3. Top panel shows the schematic of data assimilation configuration with 3D-Var. Bottom 729 

panel presents the experiments design. CTRL: control experiment without data 730 

assimilation that the initial time is 00:00 UTC from 1 to 31 July; CONV: data assimilation 731 

with conventional data only; ATMS: data assimilation with conventional and ATMS data; 732 

CRIS: data assimilation with conventional and CrIS data. CONV, ATMS and CRIS 733 

experiments all start at 06:00 UTC from 1 to 31 July. 734 
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 735 

Figure 4. Daily precipitation averaged (unit: mm) for the month of July 2015. (a), (b) are F24H forecast and (c), (d) are L24H forecast. Black contours 736 

are altitude (unit: m). 737 
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Figure 5. Difference value distribution of monthly mean precipitation (unit: mm) during July for data assimilation minus observation experiments. (a), 

(e) CTRL minus OBS; (b), (f) CONV minus OBS; (c), (g) ATMS minus OBS  (d),(h) CRIS minus OBS for (a)–(d) F24Hforecast and (e)–(h) 

L24Hforecast. Black contours are altitude (unit: m). 

 738 
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 739 

Figure 6. Spatial patterns of (a)–(d) the contingency table and (e)–(h) the scatter plots (monthly mean 24 h rainfall over 6 mm threshold is defined as 740 

an “event”). A, B, C and D indicate the Hits, False alarms, Misses and Correct rejections in Table 2, respectively. The solid grey lines indicate the 741 

regression line of A. Black contours are altitude (unit: m).742 
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 743 

Figure 7. Monthly and domain average validation statistics for F24H forecast (a–f) and L24H 744 

forecast (g–l). (a) and (g) are Bias Score; (b) and (h) are Fraction skill Score; (c) and (i) are Equitable 745 

Threat Score; (d) and (j) are Probability of False Detection; (e) and (k) are Probability of Detection; 746 

(f) and (l) are False Alarm ratio. 747 
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 748 

Figure 8. Time series of daily precipitation distribution for F24H forecast (a) and L24H forecast (b). 749 

The black, grey, blue, red and green lines indicate observation, CTRL, CONV, ATMS and CRIS, 750 

respectively. The unit is mm. The grey shadings indicate the underestimated events. 751 

 752 
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 753 

Figure 9. Rainfall intensities (bars) calculated for every 3 h amount of precipitation. The cumulative 754 

precipitation (curves) is defined as the precipitation accumulated for each 3 h starting at 06:00 UTC 755 

during 3–5 July. The unit is mm. 756 
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Figure 10. (a)–(f) F24H forecasts of precipitation (shadings) and water vapor flux (vectors) during 3–5 July for (a)–(c) OBS and (d)–(f) CTRL. (g)–(i) 758 

Differences in water vapor flux (vectors) and water vapor divergence (shadings) between CTRL and OBS. The unit of precipitation is mm. The units for 759 

water vapor flux and divergence is kg/(m*s) and kg/(m2*s), respectively. 760 
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 761 

Figure 11. (a)–(l) are differences between the simulated F24H precipitation and the observed 762 

distribution and (m) is the FSS skill scores with 8 mm threshold during 3–5 July. The unit of 763 

differences is mm. 764 


