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Abstract. Many passive remote sensing techniques have been developed to retrieve cloud microphysical properties from 

satellite-based sensors, with the most common approaches being the bispectral and polarimetric techniques. These two vastly 

different retrieval techniques have been implemented for a variety of polar-orbiting and geostationary satellite platforms, 15 

providing global climatological datasets. Prior instrument comparison studies have shown that there are systematic 

differences between the droplet size retrieval products (effective radius) of bispectral (e.g. MODIS, Moderate Resolution 

Imaging Spectroradiometer) and polarimetric (e.g. POLDER, Polarization and Directionality of Earth’s Reflectances) 

instruments. However, intercomparisons of airborne bispectral and polarimetric instruments have yielded results that do not 

appear to be systematically biased relative to one another. Diagnosing this discrepancy is complicated, because it is often 20 

difficult for instrument intercomparison studies to isolate differences between retrieval technique sensitivities and specific 

instrumental differences such as calibration, atmospheric correction, etc. In addition to these technical differences the 

polarimetric retrieval is also sensitive to the dispersion of the droplet size distribution (effective variance), which could 

influence the interpretation of the droplet size retrieval. To avoid these instrument-dependent complications, this study 

makes use of a cloud remote sensing retrieval simulator. Created by coupling a large eddy simulation (LES) cloud model 25 

with a 1-D radiative transfer model, the simulator serves as a test bed for understanding differences between bispectral and 

polarimetric retrievals. With the help of this simulator we can not only compare the two techniques to one another (retrieval 

intercomparison), but also validate retrievals directly against the LES cloud properties. Using the satellite retrieval simulator 

we are able to verify that at high spatial resolution (50 m) the bispectral and polarimetric retrievals are highly correlated with 

one another within expected observational uncertainties. The relatively small systematic biases at high spatial resolution can 30 

be attributed to different sensitivity limitations of the two retrievals. In contrast, a systematic difference between the two 

retrievals emerges at coarser resolution. This bias largely stems from differences related to sensitivity of the two retrievals to 
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unresolved inhomogeneities in effective variance and optical thickness. The influence of coarse angular resolution is found 

to increase uncertainty in the polarimetric retrieval, but generally maintains a constant mean value. 

1 Introduction 

The cloud droplet size distribution (DSD) is an important microphysical property of liquid-phase clouds. Given the 

cloud water content, it largely determines the shortwave radiative effects of clouds (Twomey, 1977). It also plays a critical 5 

role in cloud-precipitation processes (Pruppacher and Klett, 1978). As a result, anthropogenic perturbation to the DSD could 

lead to a variety of cloud property changes with significant climate implications (Lohmann et al., 2007).  

Many satellite-based techniques have been developed to retrieve cloud DSD properties from regional to global scales. These 

techniques typically infer DSD properties based on an assumed size distribution shape, characterized by an effective radius 

(re), and an effective variance (ve). One such retrieval method is called the bispectral total reflectance technique, hereafter 10 

referred to as the “bispectral technique,” which simultaneously retrieves cloud optical thickness (τ) and re from a pair of 

cloud reflectances, typically one in the visible to near infrared (VNIR) and the other in the shortwave infrared (SWIR) or 

midwave infared (MWIR) spectral range (Nakajima and King, 1990b). This retrieval technique has been implemented for 

numerous satellite and airborne instruments, such as the Moderate Resolution Imaging Spectro-radiometer (MODIS, (King 

et al., 2003; Platnick et al., 2003; 2017)), the Spinning Enhanced Visible and Infrared Imager (SEVIRI, (Roebeling et al., 15 

2006)), and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS, 

(Rosenfeld et al., 2014)).  

A second, fundamentally different, retrieval technique is the multi-angular polarimetric reflectance technique, 

hereafter referred to as the “polarimetric technique”. This retrieval requires multi-angular observations of the polarized 

reflectance in the cloudbow scattering region. In addition to re, the polarimetric technique can also retrieve ve (Bréon and 20 

Goloub, 1998). Global retrievals using the polarimetric technique were first demonstrated by the Polarization and 

Directionality of Earth Reflectance (POLDER, (Deschamps et al., 1994)) instruments operating from 1996 to 2013 on three 

different satellite platforms. The Aerosol Polarimetry Sensor (APS, (Mishchenko et al., 2007)) would have been the first 

space-borne multi-angular polarimeter from U.S. to provide global aerosol and cloud property retrievals. Unfortunately, it 

was lost as a result of the satellite launch failure in 2011, which suddenly interrupted development of polarimetric-based 25 

remote sensing in the U.S. Recognizing the great potential of polarimetric techniques for aerosol and cloud remote sensing, 

NASA has invested heavily in recent years on the development of airborne polarimeters, such as the Research Scanning 

Polarimeter (RSP, (Cairns et al., 1999)), the Airborne Multi-angle Spectro-Polarimetric Imager (AirMSPI, (Diner et al., 

2013)) and the Airborne Hyper-Angular Rainbow Polarimeter (Air-HARP, (Martins et al., 2017)). Moreover, several space-

borne missions are in development, such as the Multi-Angle Imager for Aerosols (MAIA, (Liu and Diner, 2017)), HARP, the 30 

Plankton, Aerosols, Cloud, ocean Ecosystem mission (PACE) and the Multi-viewing, Multi-channel, Multi-polarization 

imaging mission (3MI, (Marbach et al., 2013)). Each of these missions will have a multi-angular polarimeter on-board. In 
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the foreseeable future, we may expect to have operational global retrievals of cloud droplet size distributions from both 

bispectral and polarimetric methods.  

The bispectral and polarimetric remote sensing techniques are the primary tools we have to obtain DSD 

observations on a global scale. It is therefore essential to identify and explain differences between the two techniques so we 

can better understand their respective advantages and limitations. A satellite retrieval intercomparison of POLDER and 5 

MODIS re retrievals by Bréon and Doutriaux-Boucher (2005) represented one of the first attempts to identify and understand 

the differences between the two techniques. The main finding from this study is that the bispectral-based MODIS retrieval of 

re(2.13µm) (using the 2.13 µm SWIR band) is persistently 2 µm larger than the 150 km scale polarimetric-based POLDER 

retrieval over ocean, despite a close correlation between the two. A variety of factors, from differences in sensitivity to cloud 

vertical profile to influence of cloud horizontal inhomogeneity, have been suggested to explain this difference. However, as 10 

pointed out by the authors, all these factors might contribute to the difference. It is difficult, if not impossible, to untangle 

them in observations and determine their relative importance. In addition, POLDER observations in this study were 

aggregated from the nominal 6 km spatial resolution to a much coarser 150 km resolution to achieve the angular resolution 

needed to resolve the cloud bow. The vast difference in spatial resolution (i.e., 150 km for POLDER and 1 km for MODIS) 

makes the interpretation of the 2 µm re difference between the two retrievals even more difficult.  15 

A more recent study by Alexandrov et al. (2015) is based on observations from the recent sub-orbital Polarimeter 

Definition Experiment (PODEX) in 2013. In that study, the polarimetric re retrievals for marine stratocumulus decks off the 

California coast from the airborne RSP instrument are compared to collocated bispectral retrievals from the Autonomous 

Modular Sensor (AMS). Interestingly, the two retrievals are found to be in close agreement, with a correlation of 0.928 and 

negligible bias of less than a micron. Beyond the clear instrument differences of the Alexandrov et al. (2015) and Bréon and 20 

Doutriaux-Boucher (2005) studies, it is still unclear how well the bispectral and polarimetric retrievals should compare to 

one another and what situations might cause them to differ, raising numerous questions and motivating this study. 

A great challenge facing these observational studies is the intertwining of various instrument and scene dependent 

factors that lead to retrieval differences. For example, the polarimetric and bispectral methods have different sensitivity to 

the cloud vertical profile, and at the same time they are also both affected by cloud horizontal inhomogeneity (Zinner et al., 25 

2010; Zhang et al., 2012; 2016; Miller et al., 2016). It is difficult, if not impossible, to disentangle these factors based on 

observations alone. This study approaches the intercomparison of bispectral and polarimetric retrievals through a different 

route: rather than use observational remote sensing data, synthetic retrievals are generated from large-eddy simulations 

(LES) of clouds. Modeling radiative transfer in an LES scene to obtain total and polarized reflectances opens up the 

possibility of using the LES to perform synthetic bispectral and polarimetric retrievals. This retrieval simulator framework 30 

has proven to be a useful tool in other cloud remote sensing studies (Miller et al., 2016; Zhang et al., 2012). Using this 

idealized simulation at high spatial resolution, we can attempt to parse the effects of unresolved sub-pixel inhomogeneity, 

spatial resolution, and angular resolution on the intercomparison of polarimetric and bispectral retrievals. The scale of the 

LES simulations (~10 km) in this study prevents us from examining resolutions as large as the standard POLDER retrieval 
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(~150 km), but we are able to advance understanding how spatial resolutions from 50 m to 1 km. These scales are suitable 

for airborne instrument comparisons, which certainly fall somewhere in this range. The use of a satellite retrieval simulator 

opens up two unique opportunities for developing and studying cloud microphysical retrievals:  First, it provides the means 

to compare retrievals directly to LES cloud microphysics. Second, it allows us to perform a retrieval technique 

intercomparison that is independent of instrument characteristics and other differences that complicate observational studies. 5 

This study focuses on three particular questions: 

• How well do the bispectral and polarimetric retrievals perform relative to the LES fields used as input to the 

retrievals? 

• How do the bispectral and polarimetric retrieval techniques compare to one another at high spatial resolution? 

• How are the bispectral and polarimetric retrieval techniques sensitive to specific observational conditions (i.e., the 10 

influence of spatial and angular resolution)? 

The rest of the paper is organized as follows: Section 2 provides a brief introduction to the theoretical basis of the two 

retrieval techniques; Section 3 describes the LES-based satellite retrieval simulations used in this study; the comparisons 

between the two techniques based on the LES cases are presented in Section 4; followed by summary and discussion in 

Section 5.  15 

2 Background 

2. Cloud microphysical and optical properties 

In satellite remote sensing DSDs are often described using theoretical distributions that fit well with in situ 

observations, in addition to being mathematically convenient (Deirmendjian, 1964; Tampieri and Tomasi, 1976; Martin et 

al., 1994; Miles et al., 2000). A popular theoretical DSD is the gamma distribution proposed by Hansen and Travis (1974):  20 
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where the independent variable r is the cloud droplet radius, N(r) is the droplet size distribution, N0 is the droplet number 

concentration, and C is a normalization constant. The two distribution parameters are the effective radius (re) and the 

effective variance (ve) of the DSD:  
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where 
rn = rnN (r)dr

0

∞

∫  is the nth moment of the DSD. For the spectral bands relevant to this study, the extinction 

efficiency (Qe) is approximately constant (i.e., Qe(r)~const.=2). Thus, the relationships between re and ve can be conveniently 

reduced to relations between arithmetic moments of the DSD. The DSD plays an important role in defining the bulk optical 

properties of a cloud. The optical property libraries used in this study are based on single-scattering Mie calculations of 

monodisperse droplet optical properties that are averaged with respect to size, according to the gamma DSD (Wiscombe, 5 

1979). In addition, these single-scattering optical properties are averaged with respect to wavelength over an instrument-

specific spectral response function (based on MODIS bands in this study) and solar source functions (Planck blackbody 

function (Planck, 1914)). The single-scattering bulk cloud optical properties are subsequently used to run radiative transfer 

calculations for the creation of the so-called bispectral reflectance look-up-table (LUT). This LUT is made up of pre-

calculated reflectances of plane-parallel and homogeneous (PPH) clouds over a high-resolution grid of combinations of τ, re, 10 

and ve. Here, τ is defined in terms of the DSD: 
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2.2 Bispectral and Polarimetric Retrieval Methods 

The bispectral method retrieves τ and re simultaneously from a pair of observed cloud reflectances, typically using a 15 

combination of VNIR and SWIR/MWIR bands. The VNIR band, with relatively negligible liquid water droplet absorption, 

and the SWIR/MWIR band, where droplets are moderately absorptive, can be used to remotely infer τ and re because of this 

difference in sensitivity to multiple scattering (thickness) and absorption (droplet size). This method is usually implemented 

using a LUT, shown graphically in Figure 1(a), which has a fixed ve. Cloud reflectance in the VNIR band (centered around 

0.865 µm) increases with τ (gray) for a fixed re, while the reflectance in the MWIR band (centered around 3.75 µm) 20 

decreases with re (colored) when τ is fixed. The retrieved properties are obtained by performing a two-dimensional inverse 

interpolation between observed reflectance and the τ-re grid. A notable characteristic of the bispectral LUT is that when the 

optical thickness is low (τ<3), the isolines of the LUT are more densely packed and less orthogonal, which results in reduced 

sensitivity and increased retrieval uncertainty (Werner et al., 2013). The bispectral technique is not particularly sensitive to 

ve, so typically a fixed value is assumed (e.g., ve=0.1 in the operational MODIS retrieval, though it is kept as an error source 25 

in calculating pixel-level uncertainties). While different combinations of bands are used to perform the bispectral retrieval, in 

this study we focus on VNIR reflectances centered on 0.865 µm with the second band is selected from either a 2.13 µm 

centered SWIR band or a 3.75 µm centered MWIR band There are consequences for the re retrieval depending on the 

particular set of bands selected. For example, a strongly absorbing SWIR/MWIR band limits penetration into the cloud and 
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as a result the retrieved re is vertically weighted toward the microphysics prevalent in the uppermost part of the cloud 

(Platnick, 2000).  

For the polarimetric retrieval, the angular pattern of the linearly polarized reflectance1 is the source of sensitivity to 

cloud microphysical properties. Polarized reflectances are dominated by single-scattering because multiple scattering 

induces depolarization. As a result, the single-scattering polarized phase functions (-P12) shown in Figure 1 (b) and (c) are 5 

good approximations to the observed angular pattern of polarized cloud reflectances (Bréon and Goloub, 1998). These phase 

functions demonstrate the sensitivity of the polarimetric retrieval to both re and ve. As re increases in Figure 1(b) the 

supernumerary bow peaks (around a scattering angle of 142°) become narrower and shift toward smaller scattering angles. In 

contrast, as ve increases in Figure 1(c) the supernumerary bow peaks erode in magnitude, eventually smoothing out for broad 

DSDs (ve>0.15). A consequence of this erosion of the supernumerary peaks is that the polarimetric retrieval has less 10 

sensitivity to both re and ve for very broad DSDs. The polarimetric retrieval does not significantly rely on multispectral 

information, although observations in several bands may help provide stronger observational constraints due to the shift in 

the supernumerary bows with changing wavelength (refer to figure 3 of Bréon and Goloub (1998). The dominance of the 

single-scattering contributions to the polarized reflectance leads to cloud retrievals that represent microphysical properties 

with a mean penetration depth of  <τSS>≤0.5 and sensitivity that saturates for optical depths greater than ~3 from the cloud 15 

top. The polarimetric retrieval is often based on a parametric curve fitting retrieval algorithm like the one presented in 

Alexandrov et al. (2012b), although there are other techniques (e.g., the Rainbow Fourier Transform technique of 

Alexandrov et al. (2012a), which can retrieve DSD’s with arbitrary mathematical form.) The parametric technique relies on a 

library of -P12 curves with varying re and ve that are parametrically scaled and adjusted to fit the observed reflectance via a 

nonlinear least squares optimization procedure. This process yields the phase function that best matches the angular pattern 20 

of the observation, thus determining the re(pol) and ve(pol) retrieval. The polarimetric method described above does not 

result in a retrieval of τ; however, it can still be obtained by implementing a simplified variant of the bispectral τ retrieval. 

With simultaneous measurements of the total reflectance in a VNIR band and the re(pol) retrieval, a VNIR-only LUT curve 

can be used to perform a 1-D interpolation of the corresponding bispectral LUT curve for RVNIR(re(pol), τ).  

Both bispectral and polarimetric techniques are susceptible to a variety of retrieval uncertainties. The main 25 

objective of this study is to understand how the retrieval uncertainties influence each technique and whether they can lead to 

deviation between the two techniques in terms of retrieval results. In this study, we focus on five major sources of retrieval 

uncertainty for both techniques:   

1) Cloud vertical profile: In the operational retrievals, both bispectral and polarimetric techniques assume vertically 

homogenous clouds. However, clouds in reality often have significant vertical variability resulting from various processes 30 

(e.g., condensational growth, coalescence, sedimentation, entrainment). Deviation from the assumed profile gives rise to 

many questions. For example, how do we interpret the re and ve retrievals based on the homogenous cloud assumption? To 
                                                             
1 Note that throughout this paper, we will refer to “linearly polarized reflectances” simply as “polarized reflectances” in 
recognition of the negligible contribution of circularly polarized light in the atmosphere (Hansen, 2010). 
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what extent does cloud vertical profile influence the bispectral and polarimetric techniques? Note that Platnick (2000) 

developed a method utilizing the so-called “vertical weighting function” to interpret the re retrieval from the bispectral 

method for clouds with vertically varying re profile. Recently, Alexandrov et al., (2012b) took an approach that focused on 

the vertical weighting of the droplet size distribution to interpret the re and ve retrievals from the polarimetric technique. 

Miller et al. (2016) demonstrated the usefulness of this vertical weighting approach for understanding both bispectral and 5 

polarimetric re retrievals. In Section 4.1, we will apply a vertical weighting function for both techniques on the basis of the 

LES cloud fields, to help understand if cloud vertical structure could lead to significant differences between the two 

techniques.  

2) Sensitivity to observational uncertainty: The uncertainties associated with observations of total and polarized 

reflectances can differ, indicating that uncertainty may also impact bispectral and polarimetric retrievals differently. 10 

Additionally, the two retrievals rely on different number of uncertain observations; a pair of uncertain total reflectances 

(bispectral) as compared to numerous uncertain polarized reflectances (polarimetric). Furthermore the different algorithmic 

approaches, two-dimensional interpolation vs. nonlinear optimal curve fitting introduce additional layers of complexity in 

terms of the impact of uncertainty. The impact of uncertainty on retrieval results for each method are highlighted and 

explored in section 4.2. 15 

3) Reduced sensitivity: It can be clearly seen from Figure 1 (a) that when clouds are optically thin (τ<3), the LUT 

for the bispectral retrieval becomes less orthogonal and the isolines of re become more densely packed. This reduction in 

sensitivity can lead to significant retrieval uncertainties in bispectral techniques for optically thin clouds (τ<3). Similarly, the   

sensitivity of the polarimetric technique to re and ve is reduced when DSD becomes very broad (i.e., ve>0.15), in which case 

the supernumerary bow features are barely distinguishable (Figure 1 (c)). In Section 4.3 we will investigate the impacts of 20 

the reduction of sensitivity on retrieval consistency between the two techniques.  

4) Sub-pixel inhomogeneity: The impact of spatial resolution and unresolved sub-pixel cloud inhomogeneity on 

bispectral retrievals has been well studied (Zhang and Platnick, 2011; Zhang et al., 2012; 2016). An important conclusion 

from these studies is that the so-called plane-parallel homogenous bias (PPHB) can cause the bispectral technique to 

significantly overestimate re. In contrast, the sensitivity of the polarimetric retrieval to unresolved sub-pixel inhomogeneity 25 

and resolution has not been thoroughly studied. In Section 4.4 we will compare the impacts of sub-pixel inhomogeneity on 

bispectral and polarimetric techniques, and investigate whether it can cause deviation between the two techniques.  

5) Angular resolution and sampling for polarimetric technique: In addition to spatial resolution, angular resolution 

and sampling is also important for the polarimetric technique. A coarse angular resolution may not be able to resolve the 

feature of the supernumerary bows. Similarly, if the scattering angles corresponding to the supernumerary bows are not or 30 

only partly sampled, then the polarimetric technique may not have enough information content for retrieval. This issue will 

be discussed in Section 4.5. 
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3 Model and Methodology 

The satellite retrieval simulator implemented in this study is built around an LES model (DHARMA) with bin 

microphysics (Ackerman et al., 2004; Zhang et al., 2012; Miller et al., 2016). The LES provides freely evolving 3-D cloud 

microphysical properties, which are used as reference when comparing to numerically simulated retrievals. The LES in this 

study adopts 25 droplet size bins to represent droplet size distributions (Ackerman et al., 1995). The optical properties of 5 

each size bin are computed by bulk averaging Mie scattering properties over a highly resolved flat sub-bin droplet size 

distribution. The optical properties of each bin are provided as input to radiative transfer simulations based on the size 

distributions of the LES cloud fields. Vector radiative transfer calculations are performed using a polarized doubling-adding 

technique (PDA) to produce 1-D total and polarized reflectances at the horizontal resolution of the LES grid (described 

below) (De Haan et al., 1987). The sole consideration of 1-D retrievals avoids 3-D radiative effects and focuses this study on 10 

retrieval technique differences rather than on radiative processes. A future study will focus on the comparison of 3-D 

retrievals to these 1-D bispectral and polarimetric retrievals. The radiative transfer modeling in this work is performed for 

numerous solar zenith angles (SZA=[20, 40, 60]˚), viewing zenith angles (VZA=[−70 : +70]˚), and a constant relative 

azimuthal angle (ΔΦ = 30°). The VZA resolution results in a scattering angle (Θ) resolution on the order of 0.5°. 

Reflectances in spectral bands (based on MODIS spectral response functions) are centered on 0.865, 2.13, and 3.75 µm 15 

wavelengths. Total reflectances in all bands are used to produce bispectral retrievals, whereas linearly polarized reflectances 

in the 0.865 µm band are used to produce polarimetric retrievals. Subsequently, bispectral and polarimetric retrievals are 

performed on the simulated reflectances to obtain re, ve, and τ retrievals. Bispectral and polarimetric retrievals are performed 

over a subset of observation geometries, with bispectral retrievals performed for VZA=[50, 40, 30, 20, 10, 0, −10]° and all 

SZA. Meanwhile, the polarimetric retrievals are performed for a SZA=20° and a range of VZA=[0:27]° that result in 20 

reflectances spanning scattering angles required to observe the primary and supernumerary bow features (i.e., 

Θ=[135:160]°). Reflectances are also aggregated from the 50 m native LES resolution up to coarser 100, 200, 400, and 800 

m horizontal resolutions to reflect the influence of different remote sensing footprints. The retrievals in this study are also 

performed at all of the footprint resolutions. The bispectral LUT implemented in this study spans microphysical properties 

re=[2:30] µm in steps of 0.5 µm and ve=[0.01:0.11] in steps of 0.01. The τ retrieval in this study is anchored to the 0.865 25 

band optical properties and spans τ=[0.1:100] with 101 logarithmically spaced grid points. Including ve variability in the 

bispectral LUT allows for the comparison of standard MODIS-like retrievals (the ve=0.1 LUT) to retrievals with other ve 

assumptions. The bispectral retrieval is then accomplished by performing a 2-D linear interpolation of the observed 

reflectances and inverting between the reflectance and retrieval space. For the polarimetric retrieval, the polarimetric phase 

function library spans re=[2:40] µm in steps of 0.25 µm and ve=[0.01:0.3] in steps of 0.01. The polarimetric retrieval 30 

implemented in this study is based on the approach of Alexandrov et al. (2012a), fitting the polarized phase functions in their 

eq. (3) to the modeled polarized reflectances of the LES scene. The optimal parametric fit in the −P12 library is determined 

by using a Levenberg-Marquardt nonlinear least squares algorithm. This optimal phase function is then used to identify the 
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corresponding re(pol) and ve(pol) retrieval. As previously stated in section 2.2 the polarimetric retrieval of τ is accomplished 

by using a constrained 1-D version of the bispectral LUT.  

The LES cloud fields are used not only to drive the radiative transfer simulations, but also to help interpret and 

understand the retrieval results. As mentioned in Section 2.2, it is not trivial to interpret the re and ve retrievals based on the 

homogenous cloud assumption when the cloud has significant vertical structure. To address this issue, for each LES column 5 

with detailed vertical profiles of DSD, we derive two reference variables re(VW) and ve(VW) from the vertical weighted 

(VW) integration of the DSD profile. The vertical integration is weighted by a function to account for the penetration depth 

and multiple scattering of radiation in the corresponding wavelength associated with each particular retrieval. Thus, re(VW) 

and ve(VW) should be comparable to the retrieved re and ve from the simulated reflectance (Alexandrov et al., 2012b; Miller 

et al., 2016; Zhang et al., 2017). The method of vertical weighting in this study is described in detail in section 2 of Miller et 10 

al. (2016), however in this study we have modified the vertical weighting function to account for multiple scattering. 

Motivated by the convenience and flexibility of the parametric approach proposed in eq. 4 of Zhang et al. (2017), we 

implement a two-variable parametric vertical weighting function: 

W(τ )= cτ bexp −aτ 1
µ
+
1
µ0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ,      (4) 

where the new parameters a and b are introduced to account for the influence of multiple scattering effects not originally 15 

considered in the vertical weighting function discussed previously in Miller et al. (2016). The parameter a scales the optical 

depth, modelling the enhanced transmission caused by multiple scattering whereas the parameter b produces a peaked 

vertical weighting function associated with the expected penetration depth of the reflected light and c is the normalization 

factor. Each of these parameters is strictly positive, and for a=1 and b=0 we obtain the original single scattering vertical 

weighting used in Miller et al. (2016). For smaller values of a and larger values of b, the vertical weighting function extends 20 

deeper into the cloud, leading to droplet size distribution properties deeper in the cloud contributing more information to the 

vertically weighted value. For the polarimetric retrieval, a=1 and b=0 were selected due to the dominance of single scattering 

in polarized reflectances. In contrast, multiple scattering can significantly impact total reflectances. For total reflectances a 

single value of a and b was selected for each spectral band and observation geometry based on coefficients that fit best to 

numerically calculated vertical weighting functions based on the method presented in eq. 4 of Platnick (2000).2 Generally, 25 

we found that a(3.75 µm) was larger than a(2.13 µm), as would be expected because of stronger absorption in 3.75 µm 

reducing transmission into the cloud. We also found that b was dependent on observation geometry (scattering angle) and 

b(3.75 µm) was less than b(2.13 µm) because multiply scattered light in the 2.13 µm band can penetrate deeper into the 

cloud before scattering back out. In addition to re(VW) and ve(VW), we also derive τLES  for each LES column simply by 

                                                             
2 The radiatively derived vertical weighting of Platnick (2000) implicitly depends on the re(z) profile whereas a fixed 
parameter vertical weighting described here does not. However, the importance of this difference should be less than the 
vertical variability of optical depth or extinction cross section. 
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integrating the extinction coefficient (for λ=0.865 µm) from cloud bottom to cloud top. The re(VW), ve(VW) and τLES  are 

used as references in the retrieval and LES property comparison in section 4.1 to understand the differences between the 

retrievals and the original LES fields. After obtaining the re(VW), ve(VW) and τLES  at the 50 m native LES resolution, they 

are aggregated to 100, 200, 400, and 800 m to help interpret the retrievals at these coarser resolutions. It is important to note 

that there is a subtle difference between directly aggregating re(VW) or ve(VW), and aggregating the DSD (i.e., N(r)) first 5 

and then deriving the corresponding re(VW) and ve(VW). The differences between the two methods are discussed in the 

Appendix. The main conclusion is that, although the two aggregation methods could be different in some hypothetical cases 

with unrealistically large variability in the unresolved microphysics, they are essentially equivalent for practical purposes. In 

this study, we simply aggregate re(VW) and ve(VW) from the native LES resolution of 50 m to obtain average values at 

desired resolution (e.g., 800 m).  10 

Three LES cases are the focus of this study. The first (referred to as “ATEX clean” hereafter) and second (“ATEX 

polluted”) cases are based on an idealized case study from the Atlantic Trade Wind Experiment (ATEX), with different 

aerosol loadings (Stevens et al., 2001). The ATEX cases are representative of a trade wind cumulus regime in which 

scattered cumuli rise into a thin, broken stratocumulus layer. The third case (referred to as “DYCOMS-II” hereafter), 

originally presented in Stevens et al. (2005), is an idealized setup based on clouds observed during the second research flight 15 

(RF02) of the Second Dynamics and Chemistry of Marine Stratocumulus project (DYCOMS-II) (Stevens et al., 2003). This 

case is representative of nocturnal marine stratocumulus under a dry inversion. The DYCOMS-II case has a domain size of 

6.4×6.4×1.5 km (128x128x96 grid points), while each of the ATEX simulations has a domain size of 7.2×7.2×3 km 

(144×144×200 grid points). The horizontal grid spacing of these LES cases is fixed at 50 m, while the vertical grid is 

stretched, with a minimum spacing of 5 m near the surface and the capping temperature inversion to better resolve small-20 

scale turbulence there. Further details of the model setup for the DYCOMS-II case are provided in Ackerman et al. (2009). 

The ATEX cases are updated model runs with increased spatial resolution that are similar to the cases discussed in Fridlind 

and Ackerman (2011). For each LES scene a snapshot of cloud microphysical and optical properties is saved every half hour 

after the first hour of each simulation, resulting in numerous cloud fields. A single time step of each of the cases was selected 

to be the focus of this retrieval study, each occurring ~3 hours into the simulation.  25 

The variability of cloud optical and microphysical properties in each of the LES cases is highlighted in Figure 2 and 

Table 1. Spatial inhomogeneity of both optical and microphysical properties of these scenes is evident, with the ATEX 

polluted and DYCOMS-II cases exhibiting lower spatial inhomogeneity and the ATEX clean case being more broken and 

inhomogeneous. One method for quantifying the optical inhomogeneity of a cloud scene is to use the sub-pixel 

inhomogeneity index, 30 

 

		
Hσ (resolution)=

std Ri(0.865	µm,	50	m)⎡⎣ ⎤⎦
mean Ri(0.865	µm,	50	m)⎡⎣ ⎤⎦

 ,      (4) 
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where the numerator and denominator are the standard deviation and mean of the native LES resolution (50 m) reflectances 

within a coarser resolution pixel. Thus, the value of Hσ is computed for a coarser spatial resolution pixel (800 m in Table 1) 

using the highest-resolution nadir viewing reflectances (50 m). The value of Hσ increases with increasing sub-pixel 

inhomogeneity, making it a useful measure for unresolved cloud variability. In addition to optical inhomogeneity, each of the 

LES scenes also has characteristically different microphysical properties. The average value of re(VW) of each scene varies, 5 

in part because of the initial background CCN in each particular case but also cloud top height variability. In these LES cases 

ve is spatially anti-correlated with τ and organized in a cellular structure — regions with higher τ tend to have smaller ve(VW) 

and regions with lower τ tend to have large ve(VW). 

 

4 Results and Analysis 10 

4.1 Retrieval and LES Property Comparison 

Before comparing the retrieval results from the two techniques to one another, we must first carry out a comparison 

of LES and retrieval properties to assess and understand the differences between the retrieval results and the original LES 

cloud fields at the native 50 m spatial resolution. This is a necessary sanity check that will help understand the accuracy and 

uncertainty of our retrieval routines. More importantly, this study will help to interpret the retrievals based on homogeneous 15 

cloud assumption when the LES cloud fields have naturally inhomogeneous vertical profiles. Note that the retrievals 

compared throughout the following sections are compared for all combinations of viewing and solar geometries indicated in 

the section 3. 

The bispectral retrieval comparison to LES properties in Figure 3 depicts joint histograms of re and τ retrievals 

using both the 2.13 and 3.75 µm bands against the reference values derived from the LES fields, re(VW), ve(VW), and τ LES . 20 

It is important to note that these joint histograms are presented as the logarithmic percent of the population, to emphasize 

deviations from the one-to-one line. Also, the mean regression biases reported throughout this study are stated relative to the 

plotted axes as, µbias=<y−x> and µ|bias|=<|y−x|> (i.e., x and y denoting x and y axes). The two bispectral re retrievals, re(2.13 

µm) and re(3.75 µm), are in agreement with the LES ground-truth (Figure 3(a) and (b)) with good correlations, both 

exceeding 0.95. The biases between these two retrievals and the LES properties differ slightly. Compared to the LES, both re 25 

retrievals have relatively small sub-micron mean biases and the mean absolute biases are also sub-micron. Additionally, it is 

important to note a limitation of this population: none of the LES scenes in this study have a mean cloud top re near 10 µm. 

To examine the two bispectral τ retrievals, τ(2.13 µm) and τ(3.75 µm) in Figure 3(c) and (d), we compare them in terms of 

percent differences, because the regression is so highly correlated (R>0.99). A slight systematic high bias on the order of 2-

5% exists. The origin of this high bias is likely associated with deviations of the droplet size distribution from the assumed 30 

gamma distribution form. The LES size distributions sometimes exhibit longer large-droplet tails than the assumed form. As 

explained earlier in Section 2.2, the bispectral method suffers from a reduction of retrieval sensitivity when clouds are 
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optically thin. Therefore, if we sample only LES columns that are optically thick (τ>3) a substantial improvement in the 

regression correlations of the two re retrievals (Figure 3(e) and (f)) is achieved. While not all retrievals in the τ<3 population 

are biased, but the majority of extreme retrieval bias outliers belong to this thin cloud population. Even after this sub-

selection of the data some outliers still remain. In particular, a small population of both re(2.13 µm) and re(3.75 µm) 

retrievals have biases exceeding re(VW) by as much as 20 µm. The cause of these outliers and some other differences 5 

between the retrievals and LES fields will be discussed in detail in section 4.3. 

The polarimetric retrieval comparison to LES properties in Figure 4 depicts comparisons of the polarimetric 

retrievals, re(pol) ve(pol), and τ(pol). The re(pol) retrieval compares very well to re(VW) (Figure 4(a)), with a regression 

correlation exceeding 0.98, a mean bias of less than 0.1 µm. The quality of this retrieval comparison to LES properties also 

further supports the single scattering definition of re(VW) for the polarimetric retrieval. In contrast, the polarimetric retrieval 10 

of ve(pol) reveals a regression against ve(VW) (Figure 4(c)) that does not perform quite as well. In this case the regression 

correlation is much weaker (R=0.71) with a mean bias of −0.011. While the mean bias is on the order of the ve LUT grid 

spacing, it is clear that the regression correlation is poor because of a systematic low bias for ve(VW) larger than about 0.15. 

It should also be noted that the increased concentration of ve(pol) retrievals at ve=0.3 is a result of the boundaries of the 

retrieval space, ve=[0.01, 0.3]. The upper limit of which is a consequence of the gamma distribution of Hansen and Travis 15 

(1974) becoming monotonic for ve≥0.3. Comparing only the population with ve(VW)≤0.15 (not shown here) results in an 

improved correlation of R=0.81 with negligible mean bias. The ve retrieval quality also depends on the assumption that LES 

droplet size distributions are accurately described using a single-mode gamma distribution. The DSD’s in the LES 

sometimes deviate significantly from this assumption. In the context of the parametric polarimetric retrieval used in this 

study this is difficult to remedy or address. However, a different polarimetric retrieval, the Rainbow Fourier Transform 20 

(RFT) introduced in Alexandrov et al. (2012a) offers the possibility of retrieving an arbitrary droplet size distribution shape. 

The final retrieval product, τ(pol) (Figure 4(e)), indicates that a more accurate a priori re and ve estimate has little impact on 

the retrieval of τ. As explained earlier in Section 2.2, the polarimetric method suffers a reduction of sensitivity when the 

DSD is broad, a finding that is consistent with previous work (Alexandrov et al., 2012b). This explains, for the re(pol) 

retrieval, why limiting the regression population to LES columns with ve(VW)≤0.15 in Figure 4(b) increases the correlation 25 

and decreases the absolute bias. This appears to be an indication of sensitivity to degradation of the supernumerary bow 

features for large ve, features that are necessary for reliable re(pol) and ve(pol)  retrievals.  

For ve(pol) we find that by sampling LES columns that are optically thick (τ>3), there is moderate improvement in 

the correlation and reduced biases (Figure 4(d)). This improvement stems from the correlation between the population of 

optically thin clouds and high ve(VW) (Figure 4(f)) that are found near cloud edges in the LES scenes. It should be noted that 30 

an increased τ does not implicitly lead to better polarimetric retrievals, but here it is observed to be a consequence of 

aforementioned correlated relationship between DSD and optical properties. 
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4.2 Sensitivity to Measurement Uncertainty 

The measurement uncertainties of total and polarized reflectances differ, leading one to expect that bispectral and 

polarimetric retrievals may have different sensitivities to uncertainty. Their relationships to uncertainty are further 

complicated by differences in retrieval approaches; namely interpolating two independent uncertain observations in a LUT 

(bispectral) or curve fitting through numerous observations that are each independently uncertain (polarimetric). Targeted 5 

uncertainties for cloud and aerosol remote sensing are δDOLP=0.5% in degree of linear polarization and δI=3% in total 

reflectance (Knobelspiesse et al., 2012). A simple propagation of uncertainty analysis yields a polarized reflectance 

uncertainty of δQ=2.5% (in the principal plane). Using these uncertainties as a starting point, we can perturb the LES 

reflectances with uncorrelated random noise and perform retrievals that we can then compare to the original unperturbed 

retrievals. Note that while the focus here is on uncorrelated randomly distributed noise, other sources of observational 10 

uncertainty exist and would need to be accounted for in the context of a specific instruments’ uncertainty model. As the 

properties of particular instruments are not the focus of this study, we will focus on this more general uncertainty analysis. 

For the bispectral retrieval, a randomly distributed reflectance perturbation between +/-3% was added to each LES 

reflectance. A histogram of the percent bias of bispectral retrievals of re induced by the addition of the reflectance 

uncertainty is shown in Figure 5(a). The mean and standard deviation of these bias distributions are stated, allowing us to 15 

interpret the results. First, the introduction of uncertainty has very little impact on the mean bias of bispectral re retrievals (on 

the order of 0.1%). Second, the introduction of uncertainty results in a broad distribution of re retrieval biases with standard 

deviations of 5.44% and 4.02% for the 2.13µm and 3.75µm retrievals respectively. Together these two results indicate that 

biases associated with measurement uncertainty will not be systematic, with absolute variability on the order of 1 µm or less 

for droplet sizes below 20 µm (the most prevalent population in this LES study). The impact of observational uncertainty on 20 

all of the τ retrievals is the focus of Figure 5(b). The two bispectral retrievals, τ(2.13µm) and τ(3.75), each have very minimal 

mean biases of 0.1%. However, like the biases for the effective radius retrievals, the distribution of retrieval bias is 

broadened to standard deviations of 8.2% and 5.6% for τ(2.13µm) and τ(3.75) respectively. The polarimetric τ(pol) retrieval 

on the other hand, being methodically quite similar to the bispectral retrievals, exhibits a small systematic low bias of about -

2.43% as shown in Figure 5(b). The origin of this systematic bias is a known characteristic of single-band optical thickness 25 

retrievals, and is clearly demonstrated in figure 1 of Marshak et al.  (2006). The convexity of a single-band LUT curve 

produces low-biased retrievals for symmetrically distributed (or averaged) reflectances. The bias distribution also has a 

smaller variability (3.8%) than the two bispectral retrievals, likely because the uncertainty in the SWIR/MWIR band also 

(weakly) influences the bispectral τ bias distributions. 

The consequences of measurement uncertainty are markedly different for the polarimetric retrieval. This is a result 30 

of the polarimetric retrieval being a search for a similar curve in the phase function library, making the deviations in the 

magnitude of observations in any one angle less important when searching for the optimal curve – and therefore discrete re 

and ve combination. The discretely binned nature of the polarimetric retrieval makes description of bias distributions like the 
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ones in Figure 5 problematic. One way to describe how uncertainty in polarized reflectances influences polarimetric 

retrievals is to describe the population of retrievals that are unchanged, and the population of retrievals that changed. After 

the introduction of random noise 88.1% of the polarimetric re(pol) retrievals were unbiased, with 9.1% biased high by one 

grid point (+0.25 µm) and 2.7% biased low by one grid point (-0.25 µm). All together, these three populations accounted for 

the vast majority (99.9%) of retrieval outcomes. The percent bias of the re(pol) retrieval had a mean of 0.06% and a standard 5 

deviation of 0.78%. These results agree with previous studies, for example the finding of Shang et al. (2015) indicating that 

the POLDER retrieval performed well as long as reflectance uncertainty was less than 10%. It should be noted however that 

the sensitivity to uncertainty is also tied to the number of angular measurements available, and the properties of the droplet 

size distribution. The polarimetric ve(pol) retrievals behaved similarly, with 85.2% of all retrievals being unaffected, 12.7% 

were biased high by one grid point (+0.01) and 1.9% were biased low by one grid point (-0.01). Again, these three 10 

populations account for the vast majority of (99.9%) of retrieval outcomes. The percent bias of the ve pol retrieval had a 

mean of 1.14%, consistent with a 0.01 bias and a standard deviation of 22.6%. The greater tendency toward large biases for 

the effective variance is likely due to smoothing of polarized reflectance curves after the addition of uncertainty. The large 

majority of biases in the polarimetric retrieval of ve are coming from the population of ve near 0.1-0.15 where the 

supernumerary bow peaks are significantly eroded and small shifts in the magnitude of reflectances at angles near these 15 

peaks could easily shift the retrieval to the next grid point. 

Overall, the lack of strong systematic biases associated with uncertainty in the case of either retrieval supports an 

approach of neglecting the measurement uncertainty in further analyses. Of course, this requires acknowledging that biases 

that are below δre=5%, δve=10%, or δτ=7% in either retrieval are probably not as important because they likely are not 

detectable due to observational uncertainty. 20 

 

4.3 Retrieval Comparison at High Resolution 

In practice, most observational studies do not have access to the underlying cloud properties with which to compare, 

so instead different instruments and techniques are often compared to one another. At the native spatial resolution of the LES 

(50 m) a direct intercomparison of polarimetric and bispectral retrieval techniques is possible, providing an opportunity to 25 

diagnose different sources of bias. The joint histograms of re retrievals in Figure 6 compare the two bispectral retrievals, 

re(2.13 µm) and re(3.75 µm), to the polarimetric retrieval, re(pol), for all LES cases and observation geometries4. The 

regressions for the comparison of both re(2.13 µm) (Figure 6(a)) and re(3.75 µm) (panel b) indicate high correlation (R≈0.95) 

and have relatively small mean biases of less than a micron. A couple of notable features are evident in these regressions. (1) 

The sign of the mean bias appears to be sensitive to the SWIR/MWIR band selection due to vertical weighting differences, 30 

                                                             
4 Note that ~1% of pixels in the LES retrieval data correspond to a “failed” bispectral retrieval due to falling outside of the 
LUT space. These pixels are omitted from the intercomparison. Different reasons for bispectral retrieval failure are discussed 
in (Cho et al., 2015). 



15 
 

resulting in re(2.13µm)<re(pol)<re(3.75µm). (2) There are numerous statistical outliers with small re(pol)~5-9 µm but 

broadly distributed re(2.13 µm) or re(3.75 µm). One way to understand these features is to constrain the data set to LES 

columns where both retrieval techniques yield reliable results. As discussed previously, both the bispectral and polarimetric 

retrievals are sensitive to biases for thin clouds (τ<3) and the polarimetric retrieval is sensitive to biases for broad droplet 

size distributions (ve>0.15). Based on these criteria (τ>3 and ve≤0.15), the constrained joint histograms (Figure 6(c) and (d)) 5 

feature much tighter regression relationships (R≈0.99) and reduced mean absolute biases are observed. These filters indicate 

that the poorly correlated population corresponds to situations in which both retrievals are expected to suffer from significant 

biases. The retrieval regression can be further improved if the bispectral retrieval is artificially provided with more complete 

information about the shape of the droplet size distribution. Providing the ve(pol) retrieval as an a priori assumption for the 

bispectral LUT can demonstrate the sensitivity of the bispectral re retrievals to the ve=0.1 assumption. This serves as a test of 10 

how collocated bispectral and polarimetric retrievals might assist one another. To create these new retrieval results we 

created a bispectral retrieval LUT for different values of ve and then selected a different LUT for each pixel depending on the 

ve(pol) retrieval. The new coupled re(2.13 µm) retrievals (Figure 6(e)) are largely unchanged from the ve=0.1 results, 

although a slight increase in the two biases indicates that ve=0.1 was both an appropriate and sufficient assumption for the 

re(2.13 µm) retrieval. In contrast, the re(3.75 µm) retrieval (Figure 6(f)) is shown to benefit from this additional a priori 15 

information. The coupled 3.75 µm result has an increased correlation, an order of magnitude smaller  bias (0.008 µm), and 

an absolute bias that is half as large as the original comparison (0.24 µm). The differences between the two SWIR band 

retrievals can be explained in two ways. Firstly, the vertically weighted DSD of the 2.13 µm SWIR band might result in a 

broader DSD (i.e., a larger ve) compared to the 3.75 µm SWIR band, due simply to deeper penetration into cloud. This could 

provide one explanation for why the re(2.13 µm) retrieval might improve with the ve=0.1 assumption. Alternatively, the 20 

R(2.13 µm) reflectance might simply be less sensitive to the broader DSD shape than the R(3.75 µm) reflectance. Overall, 

these results demonstrate a feature well known to the cloud remote sensing community; the bispectral retrieval of re is not 

particularly sensitive to ve (Nakajima and King, 1990a). Indeed, comparison of the coupled bispectral retrieval of re to the 

polarimetric retrieval of re confirms that the advantage of retrieving ve changes the bispectral retrieval of re by less than a 

micron, so it is appropriate to neglect this level of detail of the DSD for bispectral retrieval purposes. In the context of 25 

measurement uncertainty, as discussed in section 4.2, this effect would be below retrieval uncertainty. Overall, this 

demonstrates that when the two retrievals are compared on equal footing they are very nearly equivalent, with only slight 

differences leading to re(2.13µm)<re(3.75µm)<re(pol) as would be expected based on an increasing droplet size vertical 

profile and vertical weighting. 

The origin of the broadly distributed high-biased bispectral retrievals in the small droplet size regime (re(pol)~5 30 

µm) stems from the ATEX polluted case. A close examination of this case reveals that there are no bispectral retrievals 

below 5 µm, despite approximately 3.5% of the scene being characterized by re(VW)<5µm.6 This feature is a consequence of 

                                                             
6 Additionally, ~1% of the cloudy pixels in this scene exhibit values below 4 µm. 
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the bispectral LUT state space7, which spans a re range of 5-30 µm. In contrast, the polarimetric retrieval space spans 1-30 

µm. The differences between these two LUT spaces is not so much a matter of decision-making, but is more reflective of 

complexities of the bispectral retrieval for small re. To demonstrate this point panels (a) and (c) of Figure 7 depict the cloud 

reflectances from the ATEX polluted case within the respective bispectral LUT. It is obvious that the black isolines for τ and 

re increasingly overlap with the standard LUT space as τ decreases. In this region of the state space, there are multiple 5 

solutions for a single reflectance pair; one solution is representative of a small re (<5 µm, extended LUT), while the other 

indicates a much larger re (≥5 µm, standard LUT). There is also a modest impact on τ, but due to the curvature of the LUT 

this impact is less severe. The overlapping region between the standard and extended LUT is referred to as the “multiple 

solution space” and the amount of LUT overlap is determined by both the observation geometry and the selected spectral 

bands. Depending on the optical thickness, the larger re retrieval may be significantly larger, because the extended LUT 10 

isolines cross numerous larger re isolines in the standard LUT. The associated bispectral retrieval bias, shown in Figure 7(b) 

and (d), highlights the conclusion that for optically thick clouds the bispectral re retrievals exhibits only moderate retrieval 

biases on the order of ±1 µm. However, for very thin clouds (near cloud edge) the retrieval bias can increase significantly. 

For some of these thinner clouds the retrievals also fall within the multiple solution space, so it is possible to attribute the 

very large biases to the presence of ambiguous retrieval results. Furthermore, the multiple solution space also provides an 15 

additional explanation for why the removal of optically thin (τ<3) observations significantly improved the bispectral retrieval 

comparisons. 

In contrast to the intercomparison of re retrievals, the τ retrieval intercomparison in Figure 8 reveals very few 

differences between the bispectral and polarimetric techniques. This is not surprising, because the τ(pol) retrieval is simply 

an implementation of the bispectral technique with additional constraints on re and ve (as discussed in section 2.2). 20 

 

4.4 Sensitivity to Unresolved Spatial Inhomogeneity 

Unresolved spatial inhomogeneity influences the bispectral and polarimetric cloud retrievals in very different ways. 

Even for 100% cloudy pixels these retrievals can exhibit sensitivity to sub-pixel inhomogeneity. This section focuses on the 

ATEX cases because they exhibit a broader distribution of Hσ, allowing us to highlight the impact of spatial inhomogeneity 25 

on retrievals. Spatial resolution and sub-pixel inhomogeneity index (Hσ) are inherently intertwined with one another. This is 

demonstrated in Figure 9, where the broadening and shifting of the distribution of Hσ for increasingly coarsened spatial 

resolutions is clearly demonstrated using data from both the ATEX clean and polluted cases. In light of this relationship 

between resolution and inhomogeneity, the inclusion of data from all spatial resolutions together broadens our sampling of 

different inhomogeneity regimes. To that end, Figure 10 combines all of the coarse spatial resolution data from the two 30 

ATEX cases into a single retrieval bias histogram. For the bispectral retrievals in Figure 10 (a,b) we compare to the 
                                                             
7 Note that the MODIS LUT extends its range down to 4 µm, and in situations with multiple solutions the larger retrieval 
value is selected. 
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polarimetric retrieval,  resulting in histograms that clearly show the two retrievals diverging from one another with 

increasing sub-pixel inhomogeneity, tends to result in larger biases. In contrast, the polarimetric re(pol) retrieval in Figure 10 

(c) does not appear to have a clear systematic bias. The ve(pol) retrieval in Figure 10 (d) tells a more complicated story, the 

median value of the bias is clearly close to zero, but there is a tendency toward low biased retrievals with increasing 

inhomogeneity. It should be noted that the ve(VW) itself increases with increasing Hσ, which is presumably a consequence of 5 

the anticorrelation between τ and ve(VW). This might explain why for large values of Hσ, where the ve(VW)>0.15 population 

is more common, there are more negative biases. 

To further emphasize how unresolved inhomogeneity can influence these two retrieval techniques, we will highlight 

a particularly inhomogeneous pixel from the ATEX clean case at the coarsest resolution (800m). Focusing first on the 

bispectral retrieval using the 2.13 µm SWIR band, the LUT scatterplot in Figure 11(a) reveals that there is significant 10 

variability in the sub-pixel (i.e., 50 m) VNIR reflectances, indicated by a large value of the sub-pixel inhomogeneity index 

(Hσ=0.5637). In contrast to the variability of VNIR reflectances, the microphysical properties are largely homogeneous in 

this 800 m pixel, indicated by the narrow distribution of sub-pixel re(VW)50 m (color of the points). The sub-pixel mean of 

<re(VW)>50 m =19.71 µm agrees well with the mean of both sub-pixel retrievals, <re(2.13 µm)>50 m=18.73 µm and 

<re(pol)>50 m=18.92 µm. This combination of optical inhomogeneity and microphysical homogeneity leads to an average 15 

reflectance (indicated by the black star) for the 800 m pixel that falls significantly below the re=20 µm isoline (i.e., the 

closest isoline to the mean sub-pixel retrievals). Thus, the coarse resolution 800 m reflectance results in an 800 m bispectral 

retrieval with re(2.13 µm)800 m=23.62 µm, which is biased high by ~4 µm. This effect is attributable to the well-documented 

PPH bias induced by the curvature of the bispectral LUT with respect to the optical thickness (Zhang and Platnick, 2011; 

Zhang et al., 2012; 2016). The PPH bias has a stronger influence on the 2.13 µm retrieval compared to the 3.75 µm retrieval 20 

(shown in Figure 11(b)) because the curvature of the LUT-space is more pronounced. 

The polarimetric retrieval has a fundamentally different relationship to the unresolved sub-pixel inhomogeneity. 

This can be demonstrated with the sub-pixel polarized reflectance histogram in Figure 11(b). The reflectances in this figure 

have been binned by scattering angle to create a distribution of polarized reflectances for the 50 m sub-pixels within the 

selected 800 m pixel footprint. Within the plot there are also two curves, shifted in amplitude away from the histogram for 25 

clarity, that display the mean 800 m multi-angular polarized reflectance and corresponding 800 m retrieved polarized phase 

function (with appropriate fitting coefficients). Note that, while this histogram gives a sense of the variability of the 

magnitude and scale of the polarized reflectances, what ultimately matters for the coarse resolution polarimetric retrieval is 

the relative shape of the 800 m averaged polarized reflectance curve. It is evident from this histogram and these curves that 

the mean angular position of the supernumerary bow does not shift, indicating that there is no significant difference between 30 

re(pol)800 m, <re(pol)50 m>, and <re(VW)50 m>. This agrees with previous studies on the impact of unresolved inhomogeneity 

on polarimetric re retrievals (Shang et al., 2015). In contrast, there is clear variability in the amplitude of sub-pixel polarized 

reflectances. This variability owes itself to both optical (τ), and microphysical inhomogeneity (i.e., ve(VW)>0.15) within the 

coarse resolution pixel. For thin clouds (τ<3) the supernumerary bow amplitude is dependent on both τ and ve (Alexandrov et 
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al., 2012b). With ve fixed the polarized reflectance converges towards an asymptotic maximum for optically thick clouds 

(τ≥3), a consequence of increasing depolarization due to multiple scattering. Similarly, for a fixed τ, reflectances 

corresponding to ve(VW)>0.15 also produce decreased polarization in the primary and supernumerary bow features, as 

discussed in section 2. Each of these effects reduces sensitivity to the cloudbow features; and thus unresolved variability in τ 

and ve could influence coarse resolution retrievals. For example, Shang et al. (2015) found that unresolved spatial 5 

inhomogeneity of τ and ve increased retrieval biases in ve(pol), while they were not able to discern a trend in retrieval biases 

in their study. However, in our case study featured in Figure 11(b) we do not see a significant difference between coarse 

(ve(pol)800 m) and fine scale (<ve(pol)50 m>) retrievals, but both retrievals are low-biased relative to the mean LES property 

(<ve(VW)50 m>). This result was surprising, because both fine and coarse resolution retrievals were biased similarly. It 

appears as though coarse resolution retrievals arrive at the same answer as the fine scale retrievals through different 10 

processes. The average of fine scale retrievals (that are systematically biased low) and the retrieval based on the average of 

fine scale reflectances (which are reduced for reasons discussed above) results in a similar retrieval outcome. Unlike the 

bispectral retrieval, where retrievals differ from one another at different resolutions, the polarimetric retrieval seems to 

compare well to itself at both resolutions – even when it might be biased relative to the underlying microphysics of the 

physical scene. To examine this this further we performed polarimetric retrievals on subpopulations of the 50 m polarized 15 

reflectances within this 800 m pixel that omitted either the ve(VW)>0.15 or τ<3 from the population. Removing these thin or 

broad droplet size distributions from the high resolution dataset had little to no impact on either the coarse resolution re(pol) 

or ve(pol) retrieval From these results and the histogram in Figure 10 (d) it appears that the impact of spatial resolution on 

ve(pol) retrievals is largely a consequence of an unresolved anticorrelation between τ and ve rather than a feature directly 

related to spatial resolution.  20 

 

4.4 Sensitivity to Angular Resolution and Sampling 

The polarimetric retrieval requires high-resolution multi-angular data to resolve the supernumerary bow features. 

To test how angular resolution influences polarimetric retrievals we examined coarse spatial resolution (800 m) re(pol) 

retrievals at different angular resolutions. Each angular resolution (i.e., changing angular step size) was also convoluted with 25 

shifting angular sampling (i.e., changing the initial angle). This convolution is necessary in order to account for all possible 

sets of scattering angle observations associated with each resolution. These coarse resolution retrievals were then compared 

to the original high angular resolution retrieval. The results of this experiment (Figure 12(a)) reveal that coarsening angular 

resolution does not systematically bias re(pol) retrievals, although angular resolutions exceeding 3° do result in a marked 

increase in retrieval variability (i.e., a constant mean bias, but increased absolute bias). In contrast, Figure 12(b) demonstrates 30 

that angular resolutions exceeding 3° lead to both high-biased ve(pol) and increased retrieval variability. An explanation for 

the origin of the observed degradation in retrieval accuracy above 3° angular resolution is demonstrated in Figure 13(a). Two 

different polarized phase functions with re=15 µm and ve=[0.03, 0.2] (solid and dashed-dotted, respectively) are sampled at 
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an angular resolution of 3.5° (indicated by the gray vertical lines). This resolution is coarser than the spacing between the 

supernumerary bow features. As a consequence, this particular angular sampling intersects these curves at nearly the same 

amplitudes. This degeneracy yields a relatively low cost function during the best-fit optimization step of the polarimetric 

curve fitting retrieval algorithm, making it possible to obtain an inaccurate solution if this results in a cost-function 

minimum. The lack of observed differences between these two curves results in a lack of ve information, which could be 5 

exacerbated by observational uncertainty. However, under different angular sampling conditions, e.g., shifting the initial 

angle by a few degrees to the right, the supernumerary bow peaks of the low ve curve would be sampled and the similarity 

between the observations of these two curves would vanish. This example highlights an important feature of multi-angular 

polarimetry: observations at poor angular resolutions can suffer from increased biases depending on whether or not 

important angles are sampled. Generalizing this result requires determining the angular spacing of the supernumerary bow 10 

features for other re. Pursuing this, we find that decreasing cloud droplet size widens and dilates supernumerary bow 

features, making it easier to resolve supernumerary bow features at coarse angular resolution. The peak-to-peak distance of 

the supernumerary bow oscillations can be treated as the Nyquist frequency, or in this case Nyquist resolution. In signal 

analysis, a sampling resolution finer than the Nyquist frequency is required to appropriately resolve features of an oscillatory 

signal. The Nyquist angular resolution required for resolving the supernumerary bow oscillations changes with both re and λ 15 

according to the behavior illustrated in Figure 13(b). This analysis indicates that multi-angular observations in a shorter 

wavelength spectral band would require finer angular resolutions. The Nyquist angular resolution for λ=0.865 and re=15 µm 

is 3°, providing an explanation for the increased variability in re(pol) and ve(pol) LES retrievals at angular resolutions coarser 

than the Nyquist limit. 

 20 

5 Summary and Discussion 

The analysis in this study, which features comparisons of fundamentally different passive cloud property retrieval 

techniques, is facilitated by comparisons to LES cloud fields used as input to the retrievals. At the native LES resolution (50 

m) there are promising results for both the bispectral and polarimetric retrievals (with 1-D radiative transfer assumptions). 

For the bispectral retrieval, the LES comparison shows significant biases for retrievals of very thin clouds, as well as only 25 

small differences between the vertically weighted cloud properties in each of the two SWIR/MWIR bands (2.13 and 3.75 

µm). Meanwhile, for the polarimetric retrieval, the comparison demonstrates that the re(pol) retrieval agrees well with the 

vertically weighted in situ properties of each LES scene. However, the ve(pol) retrieval exhibits persistent low biases due to a 

lack of retrieval sensitivity to very broad droplet size distributions (i.e., ve(VW)>0.15). The optical thickness retrievals from 

both methods are effectively the same, with the caveat that the polarimetric technique performs the re(pol) retrieval as an a 30 

priori constraint on the τ retrieval space. Regarding τ, both bispectral and polarimetric retrievals were found to have a small 

systematic high bias on the order of 2-5%.  
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The uncertainty in observed total and polarized reflectances was found to introduce only weak systematic biases in 

bispectral or polarimetric re retrievals (0.1% or less). Similarly, the bispectral τ retrievals were also not systematically biased. 

In contrast, total reflectance uncertainty did produce a slight systematic bias of -2.43% in the polarimetric τ(pol) retrieval that 

can be linked to the convexity of the single-band LUT used to perform the retrieval. This sort of bias, could perhaps be 

accounted for by introducing a Taylor expansion correction similar to the one discussed in Zhang et al. (2016) in the context 5 

of unresolved inhomogeneity. Beyond these systematic biases, we found that the induced uncertainties in the bispectral 

retrievals were δre=5% or δτ=7%. The influence of polarimetric retrieval is likely sensitive the polarimetric LUT grid 

spacing, but here we found uncertainties that were less than the bispectral retrieval of re,  δre(pol)=1 to 4%, and δve(pol)=10 

to 20%. In the context of the rest of our comparison studies, the lack of systematic biases and relatively small uncertainties 

allowed us to discuss retrieval behavior in the absence of uncertainty. 10 

The retrieval intercomparison of polarimetric and bispectral retrievals in this study demonstrates that both techniques 

yield very similar results, especially when the most reliable populations of cloud properties are selected for each method (τ>3 

and ve around 0.1). While the physical principles and measurement requirements are vastly different, both retrieval 

techniques seem to be able to capture similar information about re and τ. These results agree with high-resolution airborne 

observations obtained during the PODEX and ORACLES field campaigns, where RSP and AMS microphysical retrievals 15 

are compared (Alexandrov et al., 2015; Knobelspiesse et al., 2017). These high spatial resolution field campaign 

observations indicate that the two retrieval techniques agree well to within the tolerances also found in the present study. The 

bispectral re retrievals are found to be moderately sensitive to ve in the 3.75 µm band, and less so in the less absorptive and 

more deeply penetrating 2.13 µm band. Coupling the retrieved ve(pol) to the bispectral re(3.75 µm) retrieval led to slight 

improvements in the re(pol) and re(VW) comparison. It should be noted that for MODIS cloud products the bias due to the 20 

ve=0.1 assumption does not substantially impact the re retrieval compared to other sources of bias (i.e., cloud inhomogeneity 

or 3-D radiative effects). In addition, the MODIS Collection 6 cloud product includes uncertainty estimates associated with 

the ve assumption. The intercomparison of the bispectral and polarimetric τ retrievals indicates that the two produce very 

similar results. This was to be expected, as the polarimetric technique also uses a bispectral LUT approach to derive τ. When 

the results from the two methods diverge, the observations tend to be related to the thin cloud regimes. 25 

The presence of a multiple solution space in the bispectral LUTs, where small droplet sizes (re<5) have the same 

reflectance as larger droplets, was shown to induce numerous outliers resulting in a significant high bias in the bispectral 

retrievals for both re and (to a lesser extent) τ. This multiple solution space likewise impacts the MODIS operational 

products, since the bispectral LUTs used in the MODIS collection 6 cloud products include theoretical re solutions as low as 

4 µm. However, for retrievals with multiple LUT solutions the MODIS product only reports the larger re value, leading to a 30 

systematic bias if the observed cloud really includes a population of small droplets. As a consequence, for thin clouds with 

small droplet sizes one can expect the comparison of polarimetric and bispectral retrievals to disagree. This strong high-bias 

for small re retrievals provides a plausible explanation for the large discrepancies observed in the small droplet size regime in 

the intercomparison of MODIS and POLDER retrievals (Bréon and Doutriaux-Boucher, 2005). Absent a solution to this 
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issue, future intercomparisons or combined climatological datasets should be limited to retrievals of re(pol) exceeding 5-7 

µm (depending on the respective bispectral LUT multiple solution space properties). 

At the coarse spatial resolutions of most satellite instruments, cloud inhomogeneity can significantly impact retrievals. 

In the context of this study we find that the influence of unresolved spatial inhomogeneity is a dominant source of bias 

between the polarimetric and bispectral re retrievals. In this study we found that even for 100% cloudy pixels (at a coarse 800 5 

m horizontal resolution) the influence of the PPH bias is significant, with the average re bias exceeding 1 µm in the most 

inhomogeneous LES scene (ATEX clean). Based on these results we still expect that the overall systematic bias observed in 

the MODIS and POLDER intercomparison of moderate droplet size regimes is in large part attributable to the influence of 

this PPH bias (Bréon and Doutriaux-Boucher, 2005). Recently, great effort has been made to account for the influence of the 

PPH bias on bispectral MODIS retrievals. The 2-D Taylor expansion technique implemented by Zhang et al. (2016) offers 10 

the possibility of quantifying (and potentially correcting for) the impact of PPH bias on bispectral retrievals. This approach 

requires high spatial resolution measurements in at least one spectral band to obtain the sub-pixel reflectance variability, 

which is used to determine corrections for the bias of re and τ. In addition to PPH bias, 3-D radiative effects are also 

influenced by spatial resolution. The focus on 1-D radiative transfer in this study leaves questions for future studies 

regarding the influence of these 3-D radiative effects. Future work will need to identify the relative differences between 3-D 15 

radiative effects on total and polarized reflectances and retrievals. 

Sufficient angular resolution is one of the more important requirements of the polarimetric retrieval technique. We find 

that resolving the multi-angular polarized reflectance at a resolution coarser than the Nyquist angular resolution of the 

supernumerary bow results in greater uncertainty (re(pol) and ve(pol)) and biased (ve(pol)) polarimetric retrievals. The 

required angular resolution is dependent both on droplet size and wavelength. Future cloud polarimetric instrumentation 20 

should consider these angular resolution requirements. While we have not explicitly tested the so-called “super-pixel” 

approach implemented for POLDER retrievals, these coarse spatial and angular resolution studies lead to some anticipated 

biases induced by this technique. We would expect such an approach to further bias ve(pol) retrievals low, due to the lack of 

sensitivity to unresolved high-ve populations. In addition, this current study indicates that re(pol) retrieval variance might 

increase, but the mean bias might not increase significantly. However, if there is significant correlation between the 25 

unresolved re and ve populations within an observation footprint, the mean re bias would be expected to suffer. 

Ultimately, the utitlity of any optical property dataset depends on the science questions for which the dataset will be 

used. These questions may focus on the determination of domain-averaged water mass, radiative flux calculations, or 

microphysical process studies on a range of scales. The appropriate retrieval may differ for each of these science questions 

and as a consequence the comparison of the bispectral and polarimetric retrievals discussed here ought to be viewed through 30 

the lens of a particular application.  
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Appendix 

We often treat the droplet size distribution observed by in-situ instruments (on the order of meters) as relatable to 

the inferred size distribution properties obtained by remote sensing retrievals (on the order of kilometers). This mathematical 

analysis addresses how resolution and scale influence the inferred cloud microphysical distribution. The modified gamma-5 

distribution not only suits observations of in-situ cloud droplet size distributions, but it also exhibits several useful 

mathematical relationships: 

r2 = re
2 ve −1( ) 2ve −1( )

r3 = re
3 ve −1( ) 2ve −1( )

r4 = re
4 ve −1( ) 2ve −1( ) ve +1( )

 .      (5) 

 From a retrieval perspective all droplet size distributions are treated as gamma-distributed. There is a potential 

disconnect here, from the perspective of scale analysis, when retrievals at a 50 m spatial resolution (our LES resolution) and 10 

retrievals at 1 km (MODIS retrieval resolution), or even 150 km (POLDER retrieval resolution) each are being treated as 

gamma-distributed. However, not all droplet microphysics information is created equal; the droplet size distributions at 

higher resolution (subscript, i) influence the low-resolution (subscript, lr) droplet size distributions. With high-resolution 

information the different moments of the coarser resolution droplet size distribution should be able to be constructed from 

the high-resolution microphysics. For a distribution made up of the summation of gamma size distributions the moments of 15 

the low-resolution distribution can be expressed by the following relationship, because summation and integration are each 

linear operators: 
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With this mathematical rule in mind, the values of re and ve for the low-resolution droplet size distribution can be obtained by 

substitution into eq. (2) and eq. (3): 20 
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Henceforth, we will refer to the ′re  and 	 ′ve  relationships in eq. (7) and eq. (8) as microphysical “aggregation rules.” It 

should be noted that these rules fundamentally treat the DSD as gamma-distributed at all scales. 

 The microphysical aggregation rules allow for the explanation of some features of the coarse polarimetric retrieval 

experiments displayed in Shang et al., (2015). Referring to the inhomogeneous polarimetric retrieval experiments in table 2 5 

and figure 4 of their paper, we reproduced their results and calculated the corresponding re’ and ve’ in our Table 2, which 

contains the same retrieval examples and corresponding re’ and ve’ results for the cases examined in their study. There is a 

clear difference between the mean re or ve and the polarimetric retrieval results. Using the microphysical aggregation rules 

defined above, we derived that the appropriate distribution properties, re' and ve', are generally in closer agreement with the 

polarimetric retrievals of re(pol). These results offer a possible explanation as to why the polarimetric retrieval does not agree 10 

with the average of the sub-scale microphysics in Shang et al.’s study. A couple of things should be noted here: 1) When 

there is little variability in the unresolved re (e.g., re=[15,20] µm) the mean, retrieval, and the estimated mixture are generally 

all in agreement (e.g., <re>=17.5, re(pol)=18, and re'=18.2 µm). 2) When large variability in the unresolved re (e.g., re=[5,20]) 

is present, both the retrieved and estimated mixture strongly favor the larger droplet effective radius (e.g., re(pol)=19 and 

re'=19.12 µm). 3) Large variability in unresolved re sometimes results in large differences between ve(pol) and ve'. The last 15 

two points are likely a consequence of the resulting coarse resolution (multi-modal) distribution differing significantly from 

the gamma-distribution assumption stated previously. 

 

Applying this analysis to the aggregation of LES scene microphysics will allow for the determination of how 

accurate a spatial mean aggregation reflects the true coarse resolution microphysical parameters. We first assumed that all of 20 

the highest resolution vertically weighted size-distributions can be assumed to be appropriately characterized by a gamma 

distribution with re=re(VW) and ve=ve(VW). We then aggregated these LES microphysical properties at the 50 m native 

resolution to increasingly coarser resolutions (100, 200, 400, and 800 m), using both the mean and the aggregation rules. We 

found that the differences between the two techniques are negligible (Δre~0.01 µm and Δve~0.001) and do not significantly 

vary with final resolution. Apparently, the importance of the aggregation rules in the LES are far less important than what we 25 

had found in the multiple-moment cases tested in Shang, et al. (2015). One clear difference between the these multiple 

moment cases and the LES was that the toy models are reductive bimodal distributions, exhibiting very large sub-scale 

microphysical inhomogeneity in re. This non-physical variability is something that is not commonly observed in the LES or 

in observational studies. To address this, we performed a theoretical examination of how important the aggregation rules are 

for calculating the bias between simple average aggregation and mathematical rule aggregation. In this experiment we 30 



25 
 

established various distributions of unresolved DSD’s with varying re and ve populations. These joint distributions of re and 

ve were used to test how the variance (i.e., the unresolved variability) would influence the average and mathematical rule 

aggregated results. This test confirmed, that large differences between the simple average and mathematical aggregation 

rules requires spatial inhomogeneity of microphysics that much larger than those observed in the LES or typical 

observational studies. Based on these results we recommend that future studies focusing on the effect of unresolved 5 

microphysical inhomogeneity on polarized retrievals should consider more realistic inhomogeneity conditions on both re and 

ve. 
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Table 1: Mean values (µ) and standard deviations (σ, in parenthesis) of various optical (τ and Hσ) and microphysical properties 
(re(VW) and ve(VW)) of the LES scenes examined in this study. Note that vertically weighted properties are listed for the 
polarimetric vertical weighting function and Hσ for nadir viewing 0.865 µm reflectance. Cloudy pixels is defined using a 
threshold of τLES>0.1. 5 

LES Case 
CCN 

Concentration 
[#/cm3] 

Scene 
Cloud 

Fraction 

τ 
[unitless] 

re(VW) 
 [µm] 

ve(VW) 
 [unitless] 

Hσ(800 m)  
 [unitless] 

DYCOMS-II 60 0.998 17.95 
(6.22) 

15.52 
(1.00) 

0.071 
(0.11) 

0.13 
(0.10) 

ATEX Clean 40 0.941 7.90 
(8.02) 

16.93 
(2.62) 

0.16 
(0.12) 

0.42 
(0.17) 

ATEX Poll. 600 0.985 17.48 
(14.71) 

7.29 
(0.91) 

0.13 
(0.068) 

0.24 
(0.13) 
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Table 2: The influence of unresolved microphysical inhomogeneity on polarimetric retrievals is explored in Shang et al. (2015). There 
results are replicated here and compared to the arithmetic mean re (<re>), and the mathematical aggregation results (re’ and ve’) defined in 
eq. (7) and eq. (8). 

Sub-scale  
Size Distribution Mixture 

Arithmetic 
Mean  Polarimetric 

Retrieval Aggregation Rules 

re ve <re>  re(pol) ve(pol) re' ve' 
  [5, 10] [0.01, 0.01] 7.5  8.0 0.10 9.00 0.060 
  [5, 15] [0.01, 0.01] 10.0  14.5 0.01 14.00 0.056 
  [5, 20] [0.01, 0.01] 12.5  19.0 0.01 19.12 0.044 
[10, 15] [0.01, 0.01] 12.5  13.0 0.05 13.46 0.040 
[10, 20] [0.01, 0.01] 15.0  16.5 0.10 18.00 0.060 
[15, 20] [0.01, 0.01] 17.5  18.0 0.01 18.20 0.028 
[5, 10, 15] [0.01, 0.01, 0.01] 10.0  12.0 0.10 12.85 0.069 
[5, 10, 20] [0.01, 0.01, 0.01] 11.7  14.0 0.10 17.38 0.087 
[5, 15, 20] [0.01, 0.01, 0.01] 13.3  17.5 0.02 17.69 0.049 
[10, 15, 20] [0.01, 0.01, 0.01] 15.0  16.0 0.10 17.07 0.055 
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Figure 1: Demonstrations of the microphysical sensitivity of the bispectral and the polarimetric techniques. Panel (a) features the 
bispectral LUT exhibiting sensitivity to re (colored iso-lines), due to absorption in the SWIR/ reflectance. The VNIR reflectances 
provide sensitivity to optical thickness (gray iso-lines). Panels (b) and (c) demonstrate the sensitivity of polarimetric technique to re 
and ve respectively. The supernumerary bow peaks of the polarized phase function (−P12) shift and become narrower with 5 
increasing droplet size (re), whereas the peaks erode in magnitude for broadened droplet size distributions (ve).  
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Figure 2:  The optical and microphysical properties (τ, re, and ve) of the LES cases examined in this study. The panels are arranged 
such that each LES case appears row-wise and the different properties are appear column-wise. Note that the vertically weighting 
functions used for the displayed re(VW) and ve(VW) correspond to single-scattering assumptions. Cloud-free masking in each of 
the images appears in gray. Refer to sections 2 and 3 for discussion and definition of each of these properties. Axes labels have 5 
been removed to enlarge each map, but the spatial dimensions of each scene are roughly 7 x 7 km (refer to section 3 for the specific 
resolutions of each LES case.) 
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Figure 3: Joint histogram regressions of re and τ in all LES cases comparing the bispectral retrievals to the LES cloud 
microphysical properties. Panels (a) and (b) are regressions of the bispectral re(2.13 µm) and re(3.75 µm) retrievals against the 
physical analogue re(VW). Panels (c) and (d) are regressions of the bispectral τ(2.13 µm) and τ(3.75 µm) retrievals against the 
physical τ(LES). Panels (e) and (f) display the regression of the bispectral re(2.13 µm) and re(3.75 µm) retrievals for only optically 5 
thick pixels (τ>3). Note that in each panel the correlation is quantified with a linear correlation coefficient (R) and the black and 
white contours encompass 66% and 95% of the population, respectively. 
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Figure 4: Joint histogram regressions of re, ve, and τ in all LES cases comparing the polarimetric retrievals to the LES cloud 
microphysical properties. Panel (a) depicts the regression of the polarimetric re(pol) retrieval against the physical analogue 
re(VW), while panel (b) is sub-selection of the same regression for low ve. Panel (c) depicts the regression of the polarimetric ve(pol) 
retrieval against the physical analogue ve(VW), while panel (d) is a sub-selection of the same regression for thick clouds (τ>3). 5 
Panel (e) depicts the regression of the polarimetric τ(pol) retrieval against the physical analogue τ(LES), while panel (f) is sub-
selection of the same regression for low ve. Note that in each panel the correlation is quantified with a linear correlation coefficient 
(R) and the black and white contours encompass 66% and 95% of the population, respectively. 
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Figure 5: Histograms of the percent retrieval bias of retrievals based on perturbed reflectances stated relative to unperturbed retrievals. 
Panel (a) displays retrieval biases for the bispectral re retrieval. Panel (b) displays retrieval biases for the bispectral and polarimetric τ 
retrievals. Refer to the text for more information about the polarimetric re and ve retrieval biases.  
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Figure 6: Joint histogram regressions of re retrievals for all LES cases comparing the bispectral and polarimetric techniques. 
Panels (a) and (b) display the unfiltered regressions of re(pol) at 0.865 µm wavelength against the re(2.13 µm) and re(3.75 µm) 
bispectral retrievals. After introducing filters to these regressions to remove thin clouds (τ<3) and broad droplet size distributions 
(ve>0.15) panels (c) and (d) the retrieval intercomparison improves. Panels (e) and (f) each replicate the results from the previous 5 
selection criteria but additionally provide bispectral retrieval in this regression with ve(pol) as an a priori for each retrieval. In 
each panel the quality of the correlation is quantified and a black iso-contour is drawn surrounding 75% data in the histogram. 
Note that in each panel the correlation is quantified with a linear correlation coefficient (R) and the black and white contours 
encompass 66% and 95% of the population, respectively. 
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Figure 7: Panel (a) and (c) depict the standard bispectral LUT (light gray dashed lines) for both SWIR bands with the scattered 
reflectance points for the ATEX polluted LES case plotted overtop. The scatterplot is colored by the bias between the bispectral 
retrieval and the physical reference (re(bispectral)−re(VW)).  Spatial maps of this bias are shown for context in panels (b) and (d). 5 
Note that some points are colored in black to indicate retrieval failure due to falling outside the LUT space. In addition to the 
standard LUT, an extended LUT including droplet sizes from 2-4µm is included (black dashed lines), revealing an overlapping 
region of the two LUT for smaller τ referred to as the “multiple solution space”.  
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Figure 8: Joint histogram regressions of τ retrievals for all LES cases comparing the bispectral and polarimetric techniques. Panel 
(a) and (b) display the τ(2.13 µm) and τ(3.75 µm) retrievals respectively. In each panel the quality of the correlation is quantified 
and the black and white population density iso-contours are drawn surrounding 66% and 95% of the data respectively. 5 
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Figure 9:  Probability distributions of Hσ for the combined ATEX polluted and clean datasets at all coarsened spatial resolution 
(100, 200, 300, 400, 800 m). 
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Figure 10: Joint histograms of retrieval biases (relative to each relevant vertically weighted LES property) with respect to Hσ for 
the combined ATEX clean and polluted datasets at all observation geometries and including all coarsened spatial resolutions (100, 
200, 300, 400, 800 m). The color bar indicates percent occurrence. Panels (a) and (b) depict the difference between the two 
bispectral re retrievals and the polarimetric retrieval, while panels (c) and (d) depict biases for the polarimetric re and ve retrieval 5 
against re(VW). 
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Figure 11: Panels (a) and (c) depict the bispectral LUT’s and 50 m reflectances for the 2.13 and 3.75 µm bispectral retrievals 
respectively for a particularly inhomogeneous 800 m pixel. The scattered points correspond to 50 m reflectances with color 
corresponding to re(VW), while the black star corresponds to the 800 m reflectance pair (the average of the 50 m data). The 5 
polarimetric reflectance distribution histograms in panels (b) and (d) address how the high-resolution (50 m) reflectance 
distribution influences the polarimetric retrieval at coarse resolution (800m). The two curves (plotted with a 0.02 reflectance shift 
for clarity) are the 800 m observed reflectance (black dashed curve) and the 800 m retrieval (red solid curve). All of these figures 
include statistics on the high-resolution averages of physical properties and retrievals along with their coarse resolution 
counterparts for comparison. 10 
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Figure 12: Angular resolution sensitivity experiments examining polarimetric retrievals of re (panel a) and ve (panel b) for all LES 
scenes at the 800 m spatial resolution. The color and size of scattered points denote the angular resolution of each retrieval. The 
gray dashed lines denote the ±1 step in the LUT space of the polarimetric retrieval. 
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Figure 13: Panel (a) features the polarized phase functions re=15 (red) at ve=0.03 (solid) and ve=0.2 (dashed). Grey dashed lines and 
circles indicate a 3.4° observation sampling of the phase functions. The Nyquist resolution is obtained by measuring the peak-to-
peak distance of the supernumerary bow oscillations and dividing that distance in half. The Nyquist resolution changes as a 
function of re and λ as shown in panel b, where the gray vertical line highlights the Nyquist resolutions required for the re=15 case. 5 
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