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Abstract 13 

Water condensed on ambient aerosol particles plays significant roles in atmospheric 14 

environment, atmospheric chemistry and climate. Before now, no instruments were available for 15 

real-time monitoring of ambient aerosol liquid water contents (ALWC). In this paper, a novel 16 

mailto:zcs@pku.edu.cn


 2 

method is proposed to calculate ambient ALWC based on measurements of a three-wavelength 17 

humidified nephelometer system, which measures aerosol light scattering coefficients and 18 

backscattering coefficients at three wavelengths under dry state and different relative humidity 19 

(RH) conditions, providing measurements of light scattering enhancement factor 𝑓(RH). The 20 

proposed ALWC calculation method includes two steps. The first step is the estimation of the dry 21 

state total volume concentration of ambient aerosol particles, 𝑉𝑎(dry), with a machine learning 22 

method called random forest model based on measurements of the “dry” nephelometer. The 23 

estimated 𝑉𝑎(dry) agrees well with the measured one. The second step is the estimation of the 24 

volume growth factor Vg(RH) of ambient aerosol particles due to water uptake, using 𝑓(RH) and 25 

Ångstr�̈�m  exponent. The ALWC is calculated from the estimated 𝑉𝑎(dry)  and Vg(RH) . To 26 

validate the new method, the ambient ALWC calculated from measurements of the humidified 27 

nephelometer system during the Gucheng campaign was compared with ambient ALWC 28 

calculated from ISORROPIA thermodynamic model using aerosol chemistry data. A good 29 

agreement was achieved, with a slope and intercept of 1.14 and -8.6 𝜇𝑚3 𝑐𝑚3⁄ (r2=0.92), 30 

respectively. The advantage of this new method is that the ambient ALWC can be obtained solely 31 

based on measurements of a three-wavelength humidified nephelometer system, facilitating the 32 

real-time monitoring of the ambient ALWC and promoting the study of aerosol liquid water and 33 

its role in atmospheric chemistry, secondary aerosol formation and climate change. 34 

 35 

1. Introduction 36 

Atmospheric aerosol particles play significant roles in atmospheric environment, climate, 37 

human health and the hydrological cycle, and have received much attention in recent decades. One 38 
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of the most important constituents of ambient atmospheric aerosol is liquid water. The content of 39 

condensed water on ambient aerosol particles depends mostly on the aerosol hygroscopicity and 40 

the ambient relative humidity (RH). Results of previous studies demonstrate that liquid water 41 

contributes greatly to the total mass of ambient aerosol particles when the ambient RH is higher 42 

than 60% (Bian et al., 2014). Aerosol liquid water also has large impacts on aerosol optical 43 

properties and aerosol radiative effects (Tao et al., 2014;Kuang et al., 2016). Liquid water 44 

condensed on aerosol particles can also serves as a site for multiphase reactions which perturb 45 

local chemistry and further influence the aging processes of aerosol particles (Martin, 2000). 46 

Recent studies have shown that aerosol liquid water serves as a reactor, which can efficiently 47 

transform sulphur dioxide to sulphate during haze events, aggravating atmospheric environment 48 

in the North China Plain (NCP) (Wang et al., 2016;Cheng et al., 2016). Hence, to gain more insight 49 

into the role of aerosol liquid water in atmospheric chemistry, aerosol aging processes and aerosol 50 

optical properties, the real-time monitoring of ambient aerosol liquid water content (ALWC) is of 51 

crucial importance. 52 

Few techniques are currently available for measuring the ALWC. The humidified tandem 53 

differential mobility analyser systems (HTDMAs) are useful tools and widely used to measure 54 

hygroscopic growth factors of ambient aerosol particles (Rader and McMurry, 1986;Wu et al., 55 

2016;Meier et al., 2009). Hygroscopicity parameters retrieved from measurements of HTDMAs 56 

can be used to calculate the volume of liquid water. Nevertheless, HTDMAs cannot be used to 57 

measure the total aerosol water volume, because they are not capable of measuring the hygroscopic 58 

properties of the entire aerosol population. With size distributions of aerosol particles in their 59 

ambient state and dry state, the aerosol water volume can be estimated. Engelhart et al. (2011) 60 

deployed a Dry-Ambient Aerosol Size Spectrometer to measure the aerosol liquid water content 61 
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and volume growth factor of fine particulate matter. This system provides only aerosol water 62 

content of aerosol particles within certain size range ( particle diameter less than 500 nm for the 63 

setup of Engelhart et al. (2011)). In addition, in conjunction with aerosol thermodynamic 64 

equilibrium models, ALWC can also be estimated with detailed aerosol chemical information. 65 

However, simulations of aerosol hygroscopicity and phase state by using thermodynamic 66 

equilibrium models are still very complicated even under the thermodynamic equilibrium 67 

hypothesis and these models may cause large bias when used for estimating ALWC (Bian et al., 68 

2014).  69 

The idea of using the humidified nephelometer system for the study of aerosol hygroscopicity 70 

has already been proposed very early on(Covert et al., 1972). The instrument measures aerosol 71 

light scattering coefficient ( 𝜎𝑠𝑝 ) under dry state and different RH conditions, providing 72 

information on aerosol light scattering enhancement factor 𝑓(RH) . One advantage of this method 73 

is that it has a fast response time and continuous measurements can be made, facilitating the 74 

monitoring of changes in ambient conditions. Another advantage of this method is that it provides 75 

information on the overall aerosol hygroscopicity of the entire aerosol population (Kuang et al., 76 

2017a). Both measured 𝜎𝑠𝑝  of aerosol particles in dry state and 𝑓(RH)  vary strongly with 77 

parameters of particle number size distribution (PNSD), making it difficult to directly link them 78 

with the dry state aerosol particle volume (𝑉𝑎(dry)) and the volume growth factor Vg(RH) of the 79 

entire aerosol population. So far, the ALWC could not be directly estimated based solely on 80 

measurements of the humidified nephelometer system. Several studies have shown that given the 81 

PNSDs at dry state, an iterative algorithm together with the Mie theory can be used to calculate an 82 

overall aerosol hygroscopic growth factor g(RH) based on measurements of 𝑓(RH) (Zieger et al., 83 

2010;Fierz-Schmidhauser et al., 2010). In such an iterative algorithm, the g(RH) is assumed to be 84 
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independent of the aerosol diameter. Then ALWC at different RH levels can be calculated based 85 

on derived g(RH)  and the measured PNSD. This method not only requires additional 86 

measurements of PNSD, but also may result in significant deviations of the estimated ALWC, 87 

because g(RH) should be a function of aerosol diameter rather than a constant value. Another 88 

method, which directly connects 𝑓(RH)  to Vg(RH)  ( Vg(RH) =  𝑓(RH) 1.5 ), is also used for 89 

predicting ALWC based on measurements of the humidified nephelometer system and mass 90 

concentrations of dry aerosol particles (Guo et al., 2015). This method assumes that the average 91 

scattering efficiency of aerosol particles at dry state and different RH conditions are the same, and 92 

requires additional measurements of PNSD or mass concentrations of dry aerosol particles (Guo 93 

et al., 2015). However, the scattering efficiency of aerosol particles vary with particle diameters, 94 

which will change under ambient conditions due to aerosol hygroscopic growth.  95 

 In this paper, we propose a novel method to calculate the ALWC based only on 96 

measurements of a humidified nephelometer system.  The proposed method includes two steps. 97 

The first step is calculating 𝑉𝑎(dry) based on measurements of the “dry” nephelometer using a 98 

machine learning method called random forest model. With measurements of PNSD and BC, the 99 

six parameters measured by the nephelometer can be simulated using the Mie theory, and the 100 

𝑉𝑎(dry) can also be calculated based on PNSD. Therefore, the random forest model can be trained 101 

with only regional historical datasets of PNSD and BC. In this study, datasets of PNSD and BC 102 

measured from multiple sites are used in the machine learning model to characterize a regional 103 

aerosol and these datasets have covered a wide range of aerosol loadings. The second step is 104 

calculating  Vg(RH) based on the Ångstr�̈�m exponent and 𝑓(RH) measured by the humidified 105 

nephelometer system. In this step, both the influences of the variations in PNSD and aerosol 106 

hygroscopicity are both considered to derive Vg(RH) from measured 𝑓(RH). Finally, based on 107 
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calculated 𝑉𝑎(dry)  and Vg(RH) , ALWCs at different RH points can be estimated. The used 108 

datasets are introduced in Sect.2. Calculation method of 𝑉𝑎(dry) based only on measurements of 109 

the nephelometer, which measures optical properties of aerosols in dry state, is described in 110 

Sect.3.2. The way of deriving  Vg(RH) based on measurements of the humidified nephelometer 111 

system is introduced and discussed in Sect.3.3. The final formula of calculating ambient ALWC 112 

is described in Sect.3.4. The verification of the 𝑉𝑎(dry) predicted by using the machine learning 113 

method is described in Sect.4.1. The validation of ambient ALWC calculated from measurements 114 

of the humidified nephelometer system is presented in Sect.4.2. The contribution of ambient 115 

ALWC to the total ambient aerosol volume is discussed in Sect.4.3.  116 

2.  Instruments and datasets 117 

Datasets from six field campaigns were used in this paper.  The six campaigns were conducted 118 

at four different measurement sites (Wangdu, Gucheng and Xianghe in Hebei province and 119 

Wuqing in Tianjin) of the North China Plain (NCP), the locations of these field campaign sites are 120 

displayed in Fig.S1. Time periods and datasets used from these field campaigns are listed in Table 121 

1. During these field campaigns, aerosol particles with aerodynamic diameters less than 10 μm 122 

were sampled (by passing through an impactor). The PNSDs in dry state, which range from 3nm 123 

to 10μm, were jointly measured by a Twin Differential Mobility Particle Sizer (TDMPS, Leibniz-124 

Institute for Tropospheric Research , Germany; Birmili et al. (1999)) or a scanning mobility 125 

particle size spectrometer (SMPS) and an Aerodynamic Particle Sizer (APS, TSI Inc., Model 3321) 126 

with a temporal resolution of 10 minutes. The mass concentrations of black carbon (BC) were 127 

measured using a Multi-Angle Absorption Photometer (MAAP Model 5012, Thermo, Inc., 128 

Waltham, MA USA) with a temporal resolution of 1 minute during field campaigns of F1 to F5, 129 
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and using an aethalometer (AE33) (Drinovec et al., 2015) during field campaign F6. The aerosol 130 

light scattering coefficients (𝜎𝑠𝑝 ) at three wavelengths (450 nm, 550 nm, and 700 nm) were 131 

measured using a TSI 3563 nephelometer (Anderson and Ogren, 1998) during field campaigns of 132 

F1 to F5, and using an Aurora 3000 nephelometer (Müller et al., 2011) during field campaign F6.  133 

Datasets of PNSD, BC and 𝜎𝑠𝑝  from campaigns F2, F4 and F5 are referred to as D1. 134 

Measurements of PNSD and measurements from the humidified nephelometer system during 135 

campaign F6 (Gucheng campaign) are used to verify the proposed method of calculating the 136 

ambient ALWC. Details about the humidified nephelometer system during Wangdu  and Gucheng 137 

campaigns are introduced in detail in (Kuang et al., 2017a). During the Gucheng campaign, an In 138 

situ Gas and Aerosol Compositions Monitor (IGAC, Fortelice International Co.,Taiwan) was used 139 

for monitoring water-soluble ions (Na+, K+, Ca2+, Mg2+, NH4+, SO42-, NO3-, Cl-) of PM2.5 and their 140 

precursor gases: NH3, HCl, and HNO3. The time resolution of IGAC measurements is one hour. 141 

Ambient air was drawn into the IGAC system through a stainless-steel pipe wrapped with thermal 142 

insulation at a flow rate of 16.7 L/min. The ambient RH and temperature were observed using an 143 

automatic weather station with a time resolution of one minute.  144 

3. Methodology 145 

3.1 Closure calculations 146 

To ensure the datasets of 𝜎𝑠𝑝 and PNSD used are of high quality, a closure study between 147 

measured 𝜎𝑠𝑝 and that calculated based on measured PNSD and BC with Mie theory (Bohren and 148 

Huffman, 2008) is first performed. Measured 𝜎𝑠𝑝  bears uncertainties introduced by  angular 149 

truncation errors and nonideal light source. To achieve consistency between measured and 150 
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modelled 𝜎𝑠𝑝 , modelled 𝜎𝑠𝑝  are calculated according to practical angular situations of the 151 

nephelometer (Anderson et al., 1996). During the  𝜎𝑠𝑝 modelling process, BC was considered to 152 

be half externally and half coreshell mixed with other aerosol components. The mass size 153 

distribution of BC used in Ma et al. (2012), which was also observed in the NCP, was used in this 154 

research to account for the mass distributions of BC at different particle sizes. The applied 155 

refractive index and density of BC were 1.80 − 0.54i and 1.5g 𝑐𝑚−3 (Kuang et al., 2015). The 156 

refractive index of non light-absorbing aerosol components (other than BC) was set to 1.53 −157 

10−7𝑖 (Wex et al., 2002). For  the Mie theory calculation details please refer to Kuang et al. (2015). 158 

The closure results between modelled  𝜎𝑠𝑝 and   𝜎𝑠𝑝 measured by TSI 3563 or Aurora 3000 159 

using datasets observed during six field campaigns (Table 2) are depicted in Fig.1. In general, for 160 

all six field campaigns, modelled 𝜎𝑠𝑝  values correlate very well with measured  𝜎𝑠𝑝  values. 161 

Considering the measured PNSD has an uncertainty of larger than 10% (Wiedensohler et al., 2012), 162 

and the measured  𝜎𝑠𝑝 has an uncertainty of about 9% (Sherman et al., 2015), modelled  𝜎𝑠𝑝 values 163 

agree well with measured  𝜎𝑠𝑝 values in campaigns F1, F4, F5 and F6, with all points lying nearby 164 

the 1:1 line, and most points falling within the 20% relative difference lines.  For the closure results 165 

of field campaign F2, the modelled 𝜎𝑠𝑝 values are systematically lower than measured 𝜎𝑠𝑝 values. 166 

For the closure results of field campaign F3, most points also lie nearby 1:1 line, but points are 167 

relatively more dispersed.  168 

3.2 Calculation of 𝑽𝒂(𝐝𝐫𝐲) based on measurements of the “dry” nephelometer 169 

3.2.1 Theoretical relationship between 𝑽𝒂(𝐝𝐫𝐲) and 𝝈𝒔𝒑 170 
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Previous studies demonstrated that the 𝜎𝑠𝑝  of aerosol particles is roughly proportional to 171 

𝑉𝑎(dry) (Pinnick et al., 1980). Here, the quantitative relationship between 𝑉𝑎(dry) and 𝜎𝑠𝑝  is 172 

analyzed.  173 

The 𝜎𝑠𝑝 and 𝑉𝑎(dry) can be expressed as the following: 174 

𝜎𝑠𝑝 = ∫ 𝜋𝑟2𝑄𝑠𝑐𝑎(𝑚, 𝑟)n(r)dr    (1) 175 

𝑉𝑎(dry) = ∫
4

3
𝜋𝑟3n(r)dr            (2) 176 

where  𝑄𝑠𝑐𝑎(𝑚, 𝑟) is scattering efficiency for a particle with refractive index m and particle radius 177 

r, while n(r) is the aerosol size distribution. As presented in equation (1) and (2), relating 𝑉𝑎(dry) 178 

with  𝜎𝑠𝑝 involves the complex relation between 𝑄𝑠𝑐𝑎(𝑚, 𝑟) and particle diameter, which can be 179 

simulated using the Mie theory. According to the aerosol refractive index at visible spectral range, 180 

aerosol chemical components can be classified into two categories: the light absorbing component 181 

and the almost light non-absorbing components (inorganic salts and acids, and most of the organic 182 

compounds). Near the visible spectral range, the light absorbing component can be referred to as 183 

BC. BC particles are either externally or internally mixed with other aerosol components. In view 184 

of this, 𝑄𝑠𝑐𝑎 at 550 nm, as a function of particle diameter for four types of aerosol particles, is 185 

simulated using Mie theory: almost non-absorbing aerosol particle, BC particle, BC particle core-186 

shell mixed with non-absorbing components with the radius of the inner BC core being 50 nm and 187 

70 nm, respectively. Same with those introduced in Sect.2.2, the refractive indices of BC and light 188 

non-absorbing components used here are 1.80 − 0.54i and 1.53 − 10−7i , respectively.  189 

The simulated results are shown in Fig.2a. Near the visible spectral range, most of the ambient 190 

aerosol components are almost non-absorbing, and their 𝑄𝑠𝑐𝑎 varies more like the blue line shown 191 

in Fig.2a. In that case, aerosol particles have diameters less than about 800 nm and 𝑄𝑠𝑐𝑎 increases 192 
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almost monotonously with particle diameter and can be approximately estimated as a linear 193 

function of diameter. Fig.2b shows the simulated size-resolved accumulative contribution to the 194 

scattering coefficient at 550 nm for all PNSDs measured during the Wangdu campaign. The results 195 

indicate that, for continental aerosol particles without influences of dust, in most cases, all particles 196 

with diameter less than about 800 nm contribute more than 80% to the total 𝜎𝑠𝑝. Therefore, for 197 

equation (1), if we express 𝑄𝑠𝑐𝑎(𝑚, 𝑟) as 𝑄𝑠𝑐𝑎(𝑚, 𝑟) = k ∙ r, then equation (1) can be expressed 198 

as the following: 199 

                                              𝜎𝑠𝑝 = k ∙ ∫ 𝜋𝑟3n(r)dr              (3) 200 

This explains why 𝜎𝑠𝑝(550 𝑛𝑚) is roughly proportional to 𝑉𝑎(dry). However, the value k varies 201 

greatly with particle diameter. The ratio 𝜎𝑠𝑝(550 𝑛𝑚) 𝑉𝑎(dry)⁄  (hereinafter referred to as 𝑅𝑉𝑠𝑝) is 202 

mostly affected by the PNSD, which determines the weight of influence different particle 203 

diameters have on  𝑅𝑉𝑠𝑝. The discrepancy between the blue line and black line shown in Fig.2a 204 

indicates that the fraction of externally mixed BC particles and their sizes has large impact on 𝑅𝑉𝑠𝑝. 205 

The difference between the black line and the red line as well as the difference between the solid 206 

red line and the dashed red line shown in Fig.2a indicate that the way and the amount of BC mixed 207 

with other components also exert significant influences on 𝑅𝑉𝑠𝑝.  In summary, the variation of 208 

𝑅𝑉𝑠𝑝 is mainly determined by variations in PNSD, mass size distribution and the mixing state of 209 

BC. It is difficult to find a simple function describing the relationship between measured 𝜎𝑠𝑝 and  210 

𝑉𝑎(dry). 211 

       Based on PNSD and BC datasets of field campaigns F1 to F6, the relationship between 𝜎𝑠𝑝 at 212 

550 nm and  𝑉𝑎(dry) of PM10 or PM2.5 are simulated using the Mie theory.  The results are shown 213 
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in Fig.3. The results demonstrate that the 𝜎𝑠𝑝 at 550 nm is highly correlated with the 𝑉𝑎(dry) of 214 

PM10 and PM2.5. The square of the correlation coefficient (r2) between 𝜎𝑠𝑝 at 550 nm and 𝑉𝑎(dry) 215 

of PM10 or PM2.5 are 0.94 and 0.99, respectively. A roughly proportional relationship exists 216 

between 𝑉𝑎(dry)  and 𝜎𝑠𝑝(550 𝑛𝑚) , especially for 𝑉𝑎(dry)  of PM2.5. However, both  𝑅𝑉𝑠𝑝  of 217 

PM10 and PM2.5 vary significantly. 𝑅𝑉𝑠𝑝 of PM10 mainly ranges from 2 to 6 𝑐𝑚3 (𝜇𝑚3 ∙ 𝑀𝑚)⁄ , 218 

with an average of 4.2  𝑐𝑚3 (𝜇𝑚3 ∙ 𝑀𝑚)⁄ . 𝑅𝑉𝑠𝑝  of PM2.5 mainly ranges from 3 to 6.5 219 

𝑐𝑚3 (𝜇𝑚3 ∙ 𝑀𝑚)⁄ , with an average of 5.1 𝑐𝑚3 (𝜇𝑚3 ∙ 𝑀𝑚)⁄ . Simulated size-resolved 220 

accumulative contributions to 𝜎𝑠𝑝 at 550 nm for all PNSDs measured during campaigns F1 to F6 221 

and corresponding size-resolved accumulative contributions to 𝑉𝑎(dry) of PM10 are shown in 222 

Fig.S2. The results indicate that particles with diameter larger than 2.5 𝜇𝑚 usually contribute 223 

negligibly to 𝜎𝑠𝑝 at 550 nm but contribute about 20% of the total PM10 volume.  Hence 𝜎𝑠𝑝 at 550 224 

nm is insensitive to changes in particles mass of diameters between 2.5 to 10 𝜇𝑚. This may 225 

partially explain why 𝑉𝑎(dry) of PM2.5 correlates better with 𝜎𝑠𝑝 at 550 nm than 𝑉𝑎(dry) of PM10. 226 

3.2.2 Machine learning 227 

Based on analyses in Sect.3.2.1,  𝑅𝑉𝑠𝑝 varies a lot with PNSD being the most dominant 228 

influencing factor. The “dry” nephelometer provides not only one single 𝜎𝑠𝑝  at 550 nm, it 229 

measures six parameters including 𝜎𝑠𝑝 and back scattering coefficients (𝜎𝑏𝑠𝑝) at three wavelengths 230 

(for TSI 3563: 450 nm, 550 nm, 700 nm). The Ångstr�̈�m exponent calculated from spectral 231 

dependence of 𝜎𝑠𝑝 provides information on the mean predominant aerosol size and is associated 232 

mostly with PNSD. The variation of the hemispheric backscattering fraction (HBF), which is the 233 

ratio between 𝜎𝑏𝑠𝑝 and 𝜎𝑠𝑝, is also essentially related to the PNSD. HBFs at three wavelengths 234 
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(450 nm, 550 nm, 700 nm) and the Ångstr�̈�m  exponents calculated from 𝜎𝑠𝑝  at different 235 

wavelengths (450-550 nm, 550-700 nm, 450-700 nm) for typical non-absorbing aerosol particles 236 

with their diameters ranging from 100 nm to 3 μm are simulated using the Mie theory. The results 237 

are shown in Fig.4a and Fig.4b. HBF values at three different wavelengths and their differences 238 

are more sensitive to changes in PNSD of particle diameters less than about 400 nm.  Ångstr�̈�m 239 

exponents calculated from 𝜎𝑠𝑝  at different wavelengths almost decrease monotonously with 240 

particle diameter when particle diameter is less than about 1 μm, however, they differ distinctly 241 

when particle diameter is larger than 300 nm. These results indicate that HBFs at three wavelengths 242 

and  Ångstr�̈�m exponents calculated from 𝜎𝑠𝑝 at different wavelengths are sensitive to different 243 

diameter ranges of PNSD.  244 

Thus, all six parameters measured by the “dry” nephelometer together can provide valuable 245 

information about variations in 𝑅𝑉𝑠𝑝 . However, no explicit formula exists between these six 246 

parameters and 𝑉𝑎(dry). How to use these six optical parameters is a problem. Machine learning 247 

methods which can handle many input parameters are capable of learning from historical datasets 248 

and then make predictions, and strict relationships among variables are not required. Machine 249 

learning methods are powerful tools for tackling highly nonlinear problems and are widely used 250 

in different areas. In the light of this, predicting  𝑉𝑎(dry) based on six optical parameters measured 251 

by the “dry” nephelometer might be accomplished by using a machine learning method. In this 252 

study, random forest is chosen for this purpose.  253 

Random forest  is a machine learning technique that is widely used for classification and 254 

non-linear regression problems (Breiman, 2001).  For non-linear regression cases, random forest 255 

model consists of an ensemble of binary regression decision tress. Each tree has a randomized 256 
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training scheme, and an average over the whole ensemble of regression tree predictions is used for 257 

final prediction. In this study, the function RandomForestRegressor from the Python Scikit–Learn 258 

machine learning library (http://scikit-learn.org/stable/index.html) is used. This model has several 259 

strengths. First, by averaging over an ensemble of decision trees, there is a significantly lower risk 260 

of overfitting. Second, it involves fewer assumptions about the dependence between inputs and 261 

outputs when compared with traditional parametric regression models. The random forest model 262 

has two parameters: the number of input variables (𝑁𝑖𝑛) and the number of trees grown (𝑁𝑡𝑟𝑒𝑒). In 263 

this study, 𝑁𝑖𝑛  and 𝑁𝑡𝑟𝑒𝑒  are six and eight, respectively. The six input parameters the three 264 

scattering coefficients, three backscattering coefficients. 265 

The quality of input datasets is critical to the prediction accuracy of the machine learning 266 

method. As discussed in Sect.3.1, modeled 𝜎𝑠𝑝 during some field campaigns are not completely 267 

consistent with measured 𝜎𝑠𝑝 , large bias might exist between them due to the measurement 268 

uncertainties of PNSD and 𝜎𝑠𝑝. To avoid that the measurements uncertainties are involved in the 269 

training processes of the random forest model. In this study, both the required datasets of six optical 270 

parameters which corresponding to measurements of TSI 3563 and 𝑉𝑎(dry)  for training the 271 

random forest model are calculated or simulated based on measurements of PNSD and BC from 272 

field campaigns F1 to F4 and F6. Datasets of PNSD and six optical parameters measured by the 273 

nephelometer during campaign F5 are used to verify the prediction ability of the trained random 274 

forest model. The performance of this random forest model on predicting both 𝑉𝑎(dry) of PM10 275 

and PM2.5 are investigated. A schematic diagram of this method is shown in Fig.5.  276 

3.3 Connecting 𝒇(𝐑𝐇) to 𝐕𝐠(𝐑𝐇)  277 

3.3.1 𝛋-K�̈�hler theory 278 

http://scikit-learn.org/stable/index.html
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κ-K�̈�hler theory is used to describe the hygroscopic growth of aerosol particles with different 279 

sizes, and the formula expression of κ-K�̈�hler theory can be written as follows (Petters and 280 

Kreidenweis, 2007): 281 

RH =
𝐷3−𝐷𝑑

3

𝐷3−𝐷𝑑
3(1−𝜅)

∙ exp (
4𝜎𝑠 𝑎⁄ ∙𝑀𝑤𝑎𝑡𝑒𝑟

𝑅∙𝑇∙𝐷𝑝∙𝑔∙𝜌𝑤
)               (4) 282 

where D is the diameter of the droplet, 𝐷𝑑  is the dry diameter, 𝜎𝑠 𝑎⁄  is the surface tension of 283 

solution/air interface, T is the temperature, 𝑀𝑤𝑎𝑡𝑒𝑟  is the molecular weight of water, R is the 284 

universal gas constant, 𝜌𝑤  is the density of water, and 𝜅  is the hygroscopicity parameter. By 285 

combining the Mie theory and the κ-K�̈�hler theory, both 𝑓(RH) and Vg(RH) can be simulated. In 286 

the processes of calculations for modelling  𝑓(RH) and Vg(RH), the treatment of BC is same with 287 

those introduced in Sect.2.2. As aerosol particle grow due to aerosol water uptake, the refractive 288 

index will change. In the Mie calculation, impacts of aerosol liquid water on the refractive index 289 

are considered based on volume mixing rule. The used refractive index of liquid water is 1.33 −290 

10−7𝑖 (Seinfeld and Pandis, 2006).  291 

3.3.2 Parameterization schemes for 𝒇(𝐑𝐇) and Vg(RH) 292 

The 𝑓(RH)  is defined as 𝑓(RH) = 𝜎𝑠𝑝(𝑅𝐻, 550 𝑛𝑚) 𝜎𝑠𝑝(𝑑𝑟𝑦, 550 𝑛𝑚)⁄  where 293 

𝜎𝑠𝑝(𝑅𝐻, 550 𝑛𝑚) and 𝜎𝑠𝑝(𝑑𝑟𝑦, 550 𝑛𝑚) represents 𝜎𝑠𝑝 at wavelength 550 nm under certain RH 294 

and dry conditions. Additionally,  Vg(RH)  is defined as Vg(RH) = 𝑉𝑎(RH)/𝑉𝑎(dry) , where 295 

𝑉𝑎(RH) represents total volume of aerosol particles under certain RH conditions. 296 

A physically based single-parameter representation is proposed by Brock et al. (2016) to 297 

describe 𝑓(RH). The parameterization scheme is written as: 298 



 15 

                                𝑓(RH) = 1 + 𝜅𝑠𝑐𝑎
𝑅𝐻

100−𝑅𝐻
    (5) 299 

where 𝜅𝑠𝑐𝑎 is the parameter which fits 𝑓(RH) best. Here, a brief introduction is given about the 300 

physical understanding of this parameterization scheme. For aerosol particles whose diameters 301 

larger than 100 nm, regardless of the Kelvin effect, the hygroscopic growth factor for a aerosol 302 

particle can be approximately expressed as  g(RH) ≅ (1 + κ
𝑅𝐻

100−𝑅𝐻
)1 3⁄  (Brock et al., 2016). 303 

Enhancement factor in volume can be expressed as the cube of g(RH). Aerosol particles larger 304 

than 100 nm contribute the most to 𝜎𝑠𝑝 and 𝑉𝑎(dry) (as shown in Fig.S2).If a constant κ which 305 

represents the overall aerosol hygroscopicity of ambient aerosol particles, is used as the κ of 306 

different particle sizes, then Vg(RH) can be approximately expressed as Vg(RH) = 1 + κ
𝑅𝐻

100−𝑅𝐻
. 307 

In addition, 𝜎𝑠𝑝 is usually proportional to 𝑉𝑎(dry) which indicates that the relative change in 𝜎𝑠𝑝 308 

due to aerosol water uptake is roughly proportional to relative change in aerosol volume. Therefore, 309 

𝑓(RH) might also be well described by using the formula form of equation (5). Previous studies 310 

have shown that this parameterization scheme can describe 𝑓(RH) well (Brock et al., 2016;Kuang 311 

et al., 2017b). 312 

 During processes of measuring 𝑓(RH), the sample RH in the “dry” nephelometer (𝑅𝐻0) is 313 

not zero. According to equation (5), the measured 𝑓(RH)𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑓(RH)

𝑓(𝑅𝐻0)
 should be fitted using 314 

the following formula: 315 

 𝑓(RH)𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (1 + 𝜅𝑠𝑐𝑎
𝑅𝐻

100−𝑅𝐻
) (1 + 𝜅𝑠𝑐𝑎

𝑅𝐻0

100−𝑅𝐻0
)⁄    (6) 316 

Based on this equation, 𝜅𝑠𝑐𝑎 can be calculated from measured 𝑓(RH) directly. The typical value 317 

of 𝑅𝐻0  measured in the “dry” nephelometer during Wangdu campaign is about 20%. The 318 
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importance of the 𝑅𝐻0  correction changes under different aerosol hygroscopicity and 𝑅𝐻0 319 

conditions. The parameter 𝜅𝑠𝑐𝑎  is fitted with and without consideration of 𝑅𝐻0  for 𝑓(RH) 320 

measurements during Wangdu campaign, and the results are shown in Fig.S3. The results 321 

demonstrate that, overall, the 𝜅𝑠𝑐𝑎 will be underestimated if the influence of 𝑅𝐻0 is not considered, 322 

and the larger the 𝜅𝑠𝑐𝑎, the more that the 𝜅𝑠𝑐𝑎 will  be underestimated.  323 

    In addition, based on discussions about the physical understanding of equation (5), the 324 

Vg(RH) should be well described by the following equation:             325 

                      Vg(RH) = 1 + 𝜅𝑉𝑓
𝑅𝐻

100−𝑅𝐻
    (7) 326 

where 𝜅𝑉𝑓  is the parameter which fits Vg(RH) best. To validate this conclusion, a simulative 327 

experiment is conducted. In the simulative experiment, average PNSD in dry state and mass 328 

concentration of BC during the Haze in China (HaChi) campaign (Kuang et al., 2015) are used. 329 

During HaChi campaign, size-resolved 𝜅 distributions are derived from measured size-segregated 330 

chemical compositions (Liu et al., 2014) and their average is used in this experiment to account 331 

the size dependence of aerosol hygroscopicity. Modelled results of 𝑓(RH) and Vg(RH) are shown 332 

in Fig.7. Results demonstrate that modelled 𝑓(RH) and Vg(RH) can be well parameterized using 333 

the formula form of equation (5) and (7). Fitted values of 𝜅𝑠𝑐𝑎  and 𝜅𝑉𝑓  are 0.227 and 0.285, 334 

respectively. This result indicates that if linkage between 𝜅𝑠𝑐𝑎  and 𝜅𝑉𝑓  is established, 335 

measurements of 𝑓(RH) can be directly related to Vg(RH).  336 

3.3.3 Bridge the gap between 𝒇(𝐑𝐇) and 𝐕𝐠(𝐑𝐇) 337 

Many factors have significant influences on the relationships between 𝑓(RH) and Vg(RH), 338 

such as PNSD, BC mixing state and the size-resolved aerosol hygroscopicity. To gain insights into 339 
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the relationships between 𝜅𝑠𝑐𝑎 and 𝜅𝑉𝑓, a simulative experiment using Mie theory and κ-K�̈�hler 340 

theory is designed. In this experiment, all PNSDs at dry state along with mass concentrations of 341 

BC from D1 are used, characteristics of these PNSDs can be found in Kuang et al. (2017b). As to 342 

size-resolved aerosol hygroscopicity, a number of size-resolved 𝜅 distributions were derived from 343 

measured size-segregated chemical compositions during HaChi campaign (Liu et al., 2014). 344 

Results from other researches also show similar size dependence of aerosol hygroscopicity (Meng 345 

et al., 2014). In view of this, the shape of the average size-resolved 𝜅 distribution during HaChi 346 

campaign (black line shown in Fig.S5) is used in the designed experiment. Other than the shape 347 

of size-resolved 𝜅 distribution, the overall aerosol hygroscopicity which determines the magnitude 348 

of 𝑓(RH) also have large impacts on the relationship between 𝜅𝑠𝑐𝑎 and 𝜅𝑉𝑓. In view of this, ratios 349 

range from 0.05 to 2 with an interval of 0.05 are multiplied with the average size-resolved 𝜅 350 

distribution (the black line shown in Fig.S5) to produce a number of size-resolved 𝜅 distributions 351 

which represent aerosol particles from nearly hydrophobic to highly hygroscopic. During 352 

simulating processes, each PNSD is modelled with all produced size-resolved 𝜅 distributions. In 353 

the following, the ratio 𝜅𝑉𝑓 𝜅𝑠𝑐𝑎⁄  termed as 𝑅𝑉𝑓 is used to indicate the relationship between 𝜅𝑠𝑐𝑎 354 

and 𝜅𝑉𝑓.  355 

In consideration of that values of Ångstr�̈�m  exponent contain information about PNSD 356 

(Kuang et al., 2017b) and values of 𝜅𝑠𝑐𝑎  represent overall hygroscopicity of ambient aerosol 357 

particles, and both the two parameters can be directly calculated from measurements of a three-358 

wavelength humidified nephelometer system (Kuang et al., 2017b). Simulated 𝑅𝑉𝑓  values are 359 

spread into a two-dimensional gridded plot. The first dimension is Ångstr�̈�m exponent with an 360 

interval of 0.02 and the second dimension is 𝜅𝑠𝑐𝑎  with an interval of 0.01. Average 𝑅𝑉𝑓  value 361 
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within each grid is represented by color and shown in Fig.6a. Values of Ångstr�̈�m exponent 362 

corresponding to used PNSDs are calculated from simultaneously measured 𝜎𝑠𝑝 values at 450 nm 363 

and 550 nm from TSI 3563 nephelometer. Results shown in Fig.6a exhibit that both PNSD and 364 

overall aerosol hygroscopicity have significant influences on 𝑅𝑉𝑓. Simulated values of 𝑅𝑉𝑓 range 365 

from 0.8 to 1.7 with an average of 1.2. Overall, 𝑅𝑉𝑓  value is lower when value of Ångstr�̈�m 366 

exponent is larger. The percentile value of standard deviation of 𝑅𝑉𝑓  values within each grid 367 

divided by its average is shown in Fig.6b. In most cases, these percentile values are less than 10% 368 

(about 90%) which demonstrates that 𝑅𝑉𝑓 varies little within each grid shown in Fig.6a. Figure 6 369 

shows the influence of aerosol size and chemistry on 𝑅𝑉𝑓.  For  Ångstr�̈�m exponent less than ~1.1, 370 

𝑅𝑉𝑓  varies strongly with 𝜅𝑠𝑐𝑎 . However, for Ångstr�̈�m exponent values greater than ~1.1, the  371 

𝑅𝑉𝑓 relative standard deviation exhibits a higher variability with the Ångstr�̈�m exponent. Thus, 372 

showing the sensitivity of  𝑅𝑉𝑓 to changes in aerosol size for small particles.  In general, results 373 

shown in Fig.6 imply that results of Fig.6a can serve as a look up table to estimate 𝑅𝑉𝑓 and thereby 374 

𝜅𝑉𝑓, such that these values can be directly predicted from measurements of a three-wavelength 375 

humidified nephelometer system.  376 

For the look up table shown in Fig.6a, a fixed size-resolved 𝜅 distribution is used, which 377 

might not be able to capture variations of 𝑅𝑉𝑓  induced by different types of size-resolved 𝜅 378 

distributions under different PNSD conditions. A simulative experiment is conducted to 379 

investigate the performance of this look up table. In this experiment, the following datasets are 380 

used: PNSDs and mass concentrations of BC from D1 (the number of used PNSD is 11996), and 381 

size-resolved 𝜅 distributions from HaChi campaign (Liu et al., 2014) which are presented in Fig.7a 382 

(the number is 23). Results shown in Fig.7a imply that the shape of size-resolved 𝜅 distribution is 383 
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highly variable yet has no apparent correlation with aerosol loading. During the simulating 384 

processes, for each PNSD, it is used to simulate 𝑅𝑉𝑓 values corresponding to all used size-resolved 385 

𝜅 distributions, therefore, 275908 𝑅𝑉𝑓  values are modelled. Also, modelled values of 𝜅𝑠𝑐𝑎  and 386 

corresponding values of modelled Ångstr�̈�m exponent are together used to estimate 𝑅𝑉𝑓 values 387 

using the look up table shown in Fig.7a. Results of relative differences between estimated and 388 

modelled 𝑅𝑉𝑓 values under different pollution conditions are shown in Fig.7b. Overall, 88% of 389 

points have absolute relative differences less than 15%, and 68% of points have absolute relative 390 

differences less than 10%. This look up table performs better when the air is relatively polluted.  391 

3.4 Calculation of ambient ALWC 392 

According to the equation Vg(RH) = 1 + 𝜅𝑉𝑓
𝑅𝐻

100−𝑅𝐻
, volume concentrations of aerosol 393 

liquid water (ALWC) at different RH points can be expressed as: 394 

 𝐴𝐿𝑊𝐶 = 𝑉𝑎(dry) × (Vg(RH) − 1) = 𝑉𝑎(dry) ∙ 𝜅𝑠𝑐𝑎 ∙ 𝑅𝑉𝑓 ∙
𝑅𝐻

100−𝑅𝐻
. (7) 395 

According to discussions of Sect.3.2, 𝑉𝑎(dry) can be predicted based only on measurements from 396 

the “dry” nephelometer by using a random forest model. The training of the random forest model 397 

requires only regional historical datasets of simultaneously measured PNSD and BC. The 𝜅𝑠𝑐𝑎 is 398 

directly fitted from 𝑓(RH) measurements. The 𝑅𝑉𝑓  can be estimated using the look up table 399 

introduced in Sect.3.3. Thus, based only on measurements from a three-wavelength humidified 400 

nephelometer system, ALWCs of ambient aerosol particles at different RH points can be estimated. 401 

If both measurements from the humidified nephelometer system and ambient RH are available, 402 

ambient ALWC can be calculated. The flowchart of calculating ambient ALWC based on 403 

measurements of the humidified nephelometer system is shown in Fig.8. The used nephelometer 404 
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corresponding to this flowchart should be TSI 3563. If nephelometer of the used humidified 405 

nephelometer system is Aurora 3000, wavelengths in this flowchart will change but other steps are 406 

totally the same.  407 

4. Results and discussions 408 

4.1 Validation of the random forest model for predicting 𝑽𝒂(𝐝𝐫𝐲) based on measurements of 409 

the “dry” nephelometer 410 

    The machine learning method, random forest model, is proposed to predict 𝑉𝑎(dry) based 411 

only on 𝜎𝑠𝑝 and 𝜎𝑏𝑠𝑝 at three wavelengths measured by the “dry” nephelometer. Datasets of PNSD 412 

and BC from field campaigns F1 to F4 and F6 are used to train the random forest model. Datasets 413 

of PNSD and optical parameters measured by the “dry” nephelometer from field campaign F5 are 414 

used to verify the trained random forest model. The schematic diagram of this method is shown in 415 

Fig.5.  The comparison results between calculated and predicted  𝑉𝑎(dry) of PM10 and PM2.5 are 416 

shown in Fig.9. The square of correlation coefficient between predicted and calculated  𝑉𝑎(dry) 417 

of PM10 is 0.96. And almost all points lie between or near 20% relative difference lines. The square 418 

of correlation coefficient between predicted and calculated  𝑉𝑎(dry) of PM2.5 is 0.997. And almost 419 

all points lie between or near 10% relative difference lines. The standard deviations of relative 420 

differences between predicted and calculated  𝑉𝑎(dry) of PM10 and PM2.5 are 10% and 4% , 421 

respectively. These results indicate that 𝑉𝑎(dry) of PM2.5 can be well predicted by using the 422 

machine learning method. While  𝑉𝑎(dry)  of PM10 predicted by using the machine learning 423 

method has a relatively larger bias.   424 

Machine learning methods do not explicitly express relationships between many variables, 425 

however, they learn and implicitly construct complex relationships among variables from 426 
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historical datasets. Many different and comprehensive machine learning methods are developed 427 

for diverse applications and can be directly used as a tool for solving a lot of nonlinear problems 428 

which may not be mathematically well understood. We suggest that using machine learning 429 

method for estimating 𝑉𝑎(dry) based on measurements of the “dry” nephelometer. The way of 430 

estimating 𝑉𝑎(dry) with machine learning method might be applicable for different regions around 431 

the world if used estimators are trained with corresponding regional historical datasets. 432 

4.2 Comparison between ambient ALWC calculated from ISORROPIA and measurements 433 

of the humidified nephelometer system.  434 

So far, widely used tools for prediction of ambient ALWC are thermodynamic models. 435 

ISORROPIA-II thermodynamic model ( http://nenes.eas.gatech.edu/ISORROPIA/index_old.html ) 436 

is a famous one, and is widely used in researches for predicting pH and ALWC of ambient aerosol 437 

particles (Guo et al., 2015;Cheng et al., 2016;Liu et al., 2017;Fountoukis and Nenes, 2007). Water 438 

soluble ions and gaseous precursors are required as inputs of thermodynamic model. During 439 

Gucheng campaign, measurements from both the humidified nephelometer system and IGAC are 440 

available. Thus, the ambient ALWC can be calculated through two independent methods: 441 

thermodynamic model based on IGAC measurements and the method proposed in Sect.3.4 which 442 

is based on measurements of the humidified nephelometer system. In this study, the forward mode 443 

in ISORROPIA-II is used, and water-soluble ions in PM2.5 and gaseous precursors (NH3, HNO3, 444 

HCl) measured by the IGAC instrument along with simultaneously measured RH and T are used 445 

as inputs. The aerosol water associated with organic matter are not considered in the method of 446 

ISORROPIA model, due to the lack of measurements of organic aerosol mass. However, results 447 

from previous studies indicate that organic matter induced particle water only account for about 448 

5% of total ALWC (Liu et al., 2017).  For the ALWC calculated from the humidified nephelometer 449 
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system. The needed 𝑉𝑎(dry) of PM2.5 in equation (7) is calculated from simultaneously measured 450 

PNSD.  451 

The comparison results between ambient ALWC calculated from these two independent 452 

methods are shown in Fig.10a. The square of correlation coefficient between them is 0.92, most 453 

of the points lie within or nearby 30% relative difference lines. The slope is 1.14, and the intercept 454 

is -8.6 𝜇𝑚3 𝑐𝑚3⁄ . When ambient RH is higher than 80%, the ambient ALWCs calculated from 455 

measurements of the humidified nephelometer system are relatively higher than those calculated 456 

based on ISORROPIA-Ⅱ. When ambient RH is lower than 60%, the ambient ALWCs calculated 457 

from measurements of the humidified nephelometer system are relatively lower than those 458 

calculated based on ISORROPIA-Ⅱ. Overall, a good agreement is achieved between ambient 459 

ALWC calculated from measurements of the humidified nephelometer system and ISORROPIA 460 

thermodynamic model.  461 

Guo et al. (2015) conducted the comparison between ambient ALWC calculated from 462 

ISORROPIA model and ambient ALWC calculated from measurements of the humidified 463 

nephelometer system by assuming Vg(RH)=  𝑓(RH)1.5. Thus, the comparison results between 464 

ambient ALWC calculated based on ISORROPIA and ambient ALWC calculated by assuming 465 

Vg(RH)= 𝑓(RH)1.5 are also shown in Fig.10b. The square of correlation coefficient between them 466 

is also 0.92. However, the slope and intercept are 1.7 and -21  𝜇𝑚3 𝑐𝑚3⁄ , respectively. When the 467 

ambient RH is higher than about 80%, calculated ambient ALWC will be significantly 468 

overestimated if assumes that Vg(RH)= 𝑓(RH)1.5. This method assumes that average scattering 469 

efficiency of aerosol particles at dry state and different RH conditions are the same. When ambient 470 

RH is high, the particle diameters changes a lot. As the results shown in Fig.S6, for non-absorbing 471 
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particle, when diameter of aerosol particle in dry state is less than 500 nm, the aerosol scattering 472 

efficiency increase almost monotonously with increasing RH especially when RH is higher than 473 

80%. Therefore, it is not suitable to assume that average scattering efficiency of aerosol particles 474 

at dry state and different RH conditions are the same.  475 

4.3 Volume fractions of ALWC in total ambient aerosol volume 476 

During Wangdu campaign, 𝜅𝑠𝑐𝑎 ranges from 0.05 to 0.3 with an average of 0.19. Estimated 477 

values of 𝑅𝑉𝑓 ranges from 0.86 to 1.47, with an average of 1.15. Estimated values of 𝜅𝑉𝑓 ranges 478 

from 0.05 to 0.35, with an average of 0.22. The calculated volume fractions of water in total 479 

volume of ambient aerosols during Wangdu campaign are shown in Fig.11a. The results indicate 480 

that during Wangdu campaign, when ambient RH is higher than 70%, the 𝜅𝑉𝑓 values are relatively 481 

higher. The volume fractions of water is always higher than 50% when ambient RH is higher than 482 

80%.  483 

During Gucheng campaign, 𝜅𝑠𝑐𝑎 ranges from 0.008 to 0.22 with an average of 0.1, 𝜅𝑉𝑓 ranges 484 

from 0.01 to 0.21 with an average of 0.12. The aerosol hygroscopicity during Gucheng campaign 485 

is much lower than aerosol hygroscopicity during Wangdu campaign. The calculated volume 486 

fractions of water in total volume of ambient aerosols during Gucheng campaign are shown in 487 

Fig.11b. During Gucheng campaign, the maximum volume fraction of water in ambient aerosol is 488 

42% when ambient RH is at 80%.On average, when ambient RH is higher than 90%, the volume 489 

fraction of water in ambient aerosols reaches higher than 50%.  490 

4.4 Discussions about the applicability of the proposed method 491 
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The method proposed in this research is based on datasets of PNSD, 𝜎𝑠𝑝 and size-resolved 𝜅 492 

distribution which are measured on the NCP without influences of dust events and sea salt. 493 

Cautions should be exercised if using the proposed method to estimate the ALWC when the air 494 

mass is significantly influenced by sea salt or dust. The way of estimating 𝑉𝑎(dry) with machine 495 

learning method might be applicable for different regions around the world. However, the used 496 

predictor from machine learning should be trained with corresponding regional historical datasets 497 

of PNSD and BC.  The way of connecting 𝑓(RH) to Vg(RH) might also be applicable for other 498 

continental regions. Still, we suggest that the used look up table is simulated from regional 499 

historical datasets.  500 

Note that the humidified nephelometer usually operates with RH less than 95%. Aerosol 501 

water, however, increase dramatically with increasing RH when RH is greater than 95%. Such 502 

high RH conditions can occur during the haze events. This may limit the usage of the proposed 503 

method when ambient RH is extremely high. As discussed in Sect.3.3, the proposed way of 504 

connecting 𝑓(RH) and Vg(RH) is based on the κ-K�̈�hler theory. If κ does not change with RH, the 505 

proposed method should be applicable when RH is higher than 95%, even the measurements of 506 

humidified nephelometer system are conducted when RH is less than 95%.  Many studies have 507 

done researches about the change of κ with the changing RH (Rastak et al., 2017;Renbaum-Wolff 508 

et al., 2016), their results demonstrate that the  κ changes with increasing RH. However, few 509 

studies have investigated the variation of κ of ambient aerosol particles with changing RH when 510 

RH is less than 100%. Liu et al. (2011) have measured  κ of ambient aerosol particles at different 511 

RHs (90%, 95%, 98.5%) on the NCP. Their results demonstrated that κ at different RHs differ 512 

little for ambient aerosol particles with different diameters. Results of Kuang et al. (2017a) 513 

indicated that κ values retrieved from 𝑓(RH) measurements agree well with κ values at RH of 98% 514 
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of aerosol particles with diameter of 250 nm.  In this respect, the proposed method might be 515 

applicable even when ambient RH is extremely high for ambient aerosol particles on the NCP. 516 

Moreover, for calculating the ambient ALWC, the measured ambient RH is required. If the 517 

ambient RH is higher than 95%, the measured ambient RH with current techniques is highly 518 

uncertain. Given this, cautions should be exercised if the ambient ALWC is calculated when the 519 

ambient RH is higher than 95%.   520 

5. Conclusions 521 

In this paper, a novel method is proposed to calculate ALWC based on measurements of a 522 

three-wavelength humidified nephelometer system. Two critical relationships are required in this 523 

method. One is the relationship between 𝑉𝑎(dry) and measurements of the “dry” nephelometer. 524 

Another one is the relationship between Vg(RH) and 𝑓(RH). The ALWC can be calculated from 525 

the estimated 𝑉𝑎(dry) and Vg(RH).  526 

Previous studies have shown that an approximate proportional relationship exists between 527 

𝑉𝑎(dry) and corresponding 𝜎𝑠𝑝, especially for fine particles (particle diameter less than 1 μm). 528 

However, PNSD and other factors still have significant influences on this proportional relationship. 529 

It is difficult to directly estimate 𝑉𝑎(dry) from measured 𝜎𝑠𝑝 . In this paper, a random forest 530 

predictor from machine learning procedure is used to estimate 𝑉𝑎(dry) based on measurements of 531 

a three-wavelength nephelometer. This random forest predictor is trained based on historical 532 

datasets of PNSD and BC from several field campaigns conducted on the NCP. This method is 533 

then validated using measurements from Wangdu campaign. The square of correlation coefficient 534 

between measured and estimated 𝑉𝑎(dry) of PM10 and PM2.5 are 0.96 and 0.997, respectively.  535 
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The relationship between Vg(RH)  and 𝑓(RH)  is investigated in Sect.3 by conducting a 536 

simulative experiment. It is found that the complicated relationship between Vg(RH) and 𝑓(RH) 537 

can be disentangled by using a look up table, and parameters required in the look up table can be 538 

directly calculated from measurements of a three-wavelength humidified nephelometer system. 539 

Given that the 𝑉𝑎(dry) can be estimated from a three-wavelength “dry” nephelometer, the ambient 540 

ALWC can be estimated from measurements of a three-wavelength humidified nephelometer 541 

system in conjunction with measured ambient RH. We have conducted the comparison between 542 

ambient ALWC calculated from ISORROPIA and ambient ALWC calculated from measurements 543 

of the humidified nephelometer system. The square of correlation coefficient between them is 0.92, 544 

and most of the points lie within or nearby 30% relative difference lines. The slope and intercept 545 

are 1.14 and -8.6 𝜇𝑚3 𝑐𝑚3⁄ , respectively. Overall, a good agreement is achieved between ambient 546 

ALWC calculated from measurements of the humidified nephelometer system and ISORROPIA 547 

thermodynamic model.  548 

Results introduced in this research have bridged the gap between 𝑓(RH) and Vg(RH). The 549 

advantage of using measurements of a humidified nephelometer system to estimate ALWC is that 550 

this technique has a fast response time and can provide continuous measurements of the changing 551 

ambient conditions. The new method proposed in this research will facilitate the real-time 552 

monitoring of the ambient ALWC and further our understanding of roles of ALWC in atmospheric 553 

chemistry, secondary aerosol formation and climate change. 554 
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 693 

 694 

Table 1 Abbreviations 695 

RH          

PM2.5 

PM10 

𝑓(RH)      

ALWC       

𝑉𝑎(dry)     

Vg(RH)     

NCP         

HTDMA   

PNSD      

BC            

g(RH)       

APS          

SMPS       

𝜎𝑠𝑝            

𝜎𝑏𝑠𝑝          

𝜎𝑒𝑥𝑡          

𝑅𝑉𝑠𝑝          

F1 to F6                    

D1                             

relative humidity 

particulate matter with aerodynamic diameter of less than 2.5 μm 

particulate matter with aerodynamic diameter of less than 10 μm 

aerosol light scattering enhancement factor at 550 nm 

aerosol liquid water content: volume concentrations of water in ambient aerosols 

total volume of ambient aerosol particles in dry state 

aerosol volume enhancement factor due to water uptake 

North China Plain 

humidified tandem differential mobility analyser system 

particle number size distribution 

black carbon 

hygroscopic growth factor 

Aerodynamic Particle Sizer 

scanning mobility particle size spectrometer 

aerosol light scattering coefficient 

aerosol back scattering coefficient 

aerosol extinction coefficient 

𝜎𝑠𝑝(550 𝑛𝑚) 𝑉𝑎(dry)⁄  

referred as to five field campaigns listed in Table 2 

PNSD, BC and nephelometer measurements from F2, F4 and F5 

 696 

 697 

 698 
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Table 2. Locations, time periods and used datasets of six field campaigns 699 
Location Wuqing Wuqing Xianghe Xianghe Wangdu Gucheng 

Time period 7 march to 4 

April, 2009 

12 July to 14 

August, 2009 

22 July to 30 

August, 2012 

9 July to 8 

August, 2013 

4 June to 14 July, 

2014 

15 October to 25 

November, 2016 

PNSD TSMPS+APS TSMPS+APS SMPS+APS TSMPS+APS TSMPS+APS SMPS+APS 

BC MAAP MAAP MAAP MAAP MAAP AE33 

𝜎𝑠𝑝 TSI 3563 TSI 3563 TSI 3563 TSI 3563 TSI 3563 Aurora 3000 

𝑓(RH)     Humidified 

nephelometer 

system 

Humidified 

nephelometer system 

Water soluble 

Ions 

     IGAC 

Campaign 

Name  

F1 F2 F3 F4 F5 F6 

 700 

 701 
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 702 

Figure 1. Comparisons between measured and calculated 𝜎𝑠𝑝 (𝑀𝑚−1), solid red lines are 1:1 references lines. 703 
Dashed blue lines are 20% relative difference lines. R2 is square of correlation coefficient between measured 704 
and modelled 𝜎𝑠𝑝. Blue texts at the upper left corners are corresponding field campaigns as listed in Table2.  705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 
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 713 

 714 

 715 

Figure 2. (a) 𝑄𝑠𝑐𝑎 at 550 nm as a function of particle diameter for four types of aerosol particles: almost non-716 
absorbing aerosol particle, BC particle, BC particle core-shell mixed with non-absorbing components and the 717 
radius of inner BC core are 50 nm and 70 nm. The gray line corresponds to the fitted linear line for the case of 718 
non-absorbing particle when particle diameter is less than 750 nm. (b) Simulated size-resolved accumulative 719 
contribution to 𝜎𝑠𝑝 at 550 nm for all PNSDs measured during Wangdu campaign, the color scales (from light 720 
gray to black) represent occurrences. The dashed dotted lines in (b) represents the position of 800 nm and 80% 721 
contribution, respectively.  722 

 723 



 34 

 724 

 725 

Figure 3. (a) and (b): Modelled 𝜎𝑠𝑝  at 550 nm based on PNSD and BC versus 𝑉𝑎(dry)  of PM10 or PM2.5 726 

calculated from measured PNSD. PNSD and BC datasets from six field campaigns listed in Table 2 are used. 727 
The unit of  𝑉𝑎(dry) is 𝜇𝑚3 𝑐𝑚3⁄ , the unit of 𝜎𝑠𝑝 is Mm-1. Colors of scattered points in (a) and (b) represent 728 

corresponding values of Ångstr�̈�m  exponent. 𝑅2  is the square of correlation coefficient. (c) The probability 729 
distribution of the modelled ratio between 𝜎𝑠𝑝 at 550 nm and 𝑉𝑎(dry) of PM10 or PM2.5. 730 
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 731 
Figure 4. (a) Simulated HBF at three wavelengths as a function particle diameter. (b) Simulated Ångstr�̈�m 732 
exponent values as a function a particle diameter.  733 
 734 

 735 

 736 

 737 

 738 

 739 
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 740 

Figure 5. Schematic diagram of training the random forest (RF) model and verifying the performance of trained 741 
RF predictor. The trained datasets of PNSD and BC are from field campaigns F1 to F4 and F6, the test datasets 742 
of PNSD and optical parameters are from campaign F5, 𝜎𝑏𝑠𝑝 is the back scattering coefficient.  743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 
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 751 

Figure 6. (a) Colors represent 𝑅𝑉𝑓 values and the colorbar is shown on the top of this figure, x-axis represents 752 

Ångstr�̈�m exponent and y-axis represents 𝜅𝑠𝑐𝑎. (b) Meanings of x-axis and y-axis are same with them in (a), 753 

however, color represents the percentile value of the standard deviation of 𝑅𝑉𝑓 values within each grid divided 754 

by their average. 755 

 756 

 757 

Figure 7. (a) All  size-resolved 𝜅  distributions which are derived from measured size-segregated chemical 758 

compositions during  HaChi campaign, colors represent corresponding values of average 𝜎𝑠𝑝 at 550 nm (𝑀𝑚−1), 759 

black solid line is the average size-resolved 𝜅 distribution and error bars are standard deviations ; (b) The gray 760 
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colors represent the distribution of relative differences between modelled and estimated 𝑅𝑉𝑓 values, darker grids 761 

have higher frequency, dashed lines with the same color mean that corresponding percentile of points locate 762 

between the two lines. 763 

 764 

 765 

Figure 8.  The flowchart of calculating ambient aerosol liquid water contents based on measurements of a 766 
three-wavelength humidified nephelometer system.  767 
 768 

 769 

Figure 9. The comparison between 𝑉𝑎(dry)  (𝜇𝑚3 𝑐𝑚3⁄ ) of PM10 or PM2.5 calculated from measured PNSD 770 
and 𝑉𝑎(dry) of PM10 or PM2.5 which are predicted based on six optical parameters measured by the “dry” 771 
nephelometer by using the random forest model.. 𝑅2 is the square of correlation coefficient? Solid red line is 772 
the 1:1 line, dashed red lines and dashed blue lines represent 20% and 10% relative difference lines.  773 
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 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

Figure 10. The comparison between ALWC calculated from ISORROPIA thermodynamic model (𝐴𝐿𝑊𝐶𝐼𝑆𝑂𝑅𝑅𝑂𝑃𝐼𝐴) 785 
and ALWC calculated from measurements of the humidified nephelometer system (𝐴𝐿𝑊𝐶𝐻𝑛𝑒𝑝ℎ). The black solid 786 
line is the 1:1 line, the two dashed black lines are 30% relative difference lines. 𝑅2 is the square of correlation 787 
coefficient? Colors of scatter points represent ambient RH. (a) 𝐴𝐿𝑊𝐶𝐻𝑛𝑒𝑝ℎ  is calculated using the method 788 
proposed in this research. (b) 𝐴𝐿𝑊𝐶𝐻𝑛𝑒𝑝ℎ is calculated by assuming Vg(RH)= 𝑓(RH)1.5 (Guo et al., 2015).  789 
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 791 

Figure 11.  Volume fractions of water in total volume of ambient aerosols during Wangdu (WD) and Gucheng 792 
(GC) campaigns. X-axis represents measured ambient RH. Y-axis represents volume fractions of water. Colors 793 
of scatter points represent corresponding 𝜅𝑉𝑓 . Black solid lines in (a) and (b) show the average volume 794 
fractions of water under different ambient RH conditions.  795 
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