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--------------------------------------------------------------------------------------------------------------------------- 

 

RC: p1: “Climate data record” is not discussed. It is also not clear until page 2 that the manuscript 

does indeed seek to develop a Essential Climate Variable (although it is unclear without reading 

Hollmann 2013 which of the 13 ECVs CC4CL will contribute to). A discussion of “essential climate 

variable”, “CDR”, and how this work fits in should be better discussed. It should also be discussed 

how it distinguishes itself from existing efforts in this regard (e.g., 

https://www.ncdc.noaa.gov/news/new-cloud-propertiesclimate-data-record). 

AR: We will move p2 lines 97-106 to the very beginning of the introduction, and add some text to 

elaborate how our study fits into ESA CCI and the production of ECVs. We will now also mention 

CDR, but we do not elaborate on it, as it is not an essential part of this paper. We thus refer to Stengel 

et al., 2017, where this concept and resulting data have been published. 

AC: “The European Space Agency has established the ESA Climate Change Initiative program (ESA 

CCI, 2015; Hollmann et al., 2013) in order to advance knowledge of the climate system through the 

generation of satellite based data records utilizing European and non-European assets. The CCI 

project’s primary focus is the production of thirteen Essential Climate Variables (ECVs) covering 

ocean, atmosphere, and land geophysical variables. With these data records, CCI is aiming to fulfil 

highest climate requirements from the Global Climate Observing System (GCOS). This study 

presented here is part of the ESA CCI for clouds (ESA Cloud_cci), which has the objective to develop 

a state-of-the-art open-source community cloud retrieval algorithm which shall be capable of 

processing passive satellite imager data covering several decades. Both in part I and part II of this 

paper, we present the processing framework as developed within ESA Cloud_cci (CC4CL, part I), the 

detailed mechanisms of the optimal estimation retrieval (part II), and provide an initial assessment of 

the strengths and weaknesses of derived cloud parameters (part I). With CC4CL, several decades of 

passive imaging satellite data have been processed and are made available to the user. The resulting 

climate data records (CDR) are presented in Stengel et al., 2017.” 

 

AR: We will amend p2, line 106ff. 

AC: p2, line 106ff: “In order to produce the cloud CDR presented here, we used satellite data from 

MODIS…” 

 

RC: p1, l38: “shielding” is not a radiative transfer term - what is it in this context? Isn’t it the same as 

“forcing”? Why are both terms used? 

AR: We agree that shielding is superfluous, will remove. 

AC: “Clouds considerably influence the global energy budget through direct radiative effects.” 

 

RC: p1, l38: “forcing”: There is a difference between “radiative forcing” and “radiative effect”- which 

are the authors referring to? Probably the latter. 

AR: Agreed, we are referring to radiative effect. 

AC: See comment above. 

https://www.ncdc.noaa.gov/news/new-cloud-propertiesclimate-data-record


 

RC: p1, l49: This sounds like the variables “propagate uncertainties” into the derived cloud properties, 

which would be incorrect. 

AR: Will clarify.  

AC: “Several secondary variables (state of surface and atmosphere, viewing geometry, sensor 

calibration and spectral response uncertainties) further complicate cloud retrievals, and insufficient 

knowledge on their state propagates uncertainties into the derived cloud properties.” 

 

RC: p2,l14: While “auxiliary” instead of “ancillary” data have become almost interchangeable, the 

latter is more correct; “auxiliary” has the connotation of only being a replacement in case the 

“primary data” is not available (compare: auxiliary power, not ancillary). For satellite retrievals, 

ancillary expresses more accurately that data from other sources are ingested within the operational 

algorithm. 

AR: Agreed, will replace auxiliary with ancillary throughout the text. 

 

RC: p2,l25: “. . .not guaranteed to be radiatively consistent with. . .” It is unclear what that means 

(although the reviewer agrees with the statement). Please provide references. Also, does CC4CL 

perform “better” in terms of radiative consistency? 

AR: The effect of COT/CER/CTH on the top-of-atmosphere (TOA) radiances differs between the 

different sensing bands as a function of atmospheric state.  For example if you used just the 11 or 12 

micron measurement to estimate CTH then you must assume something about the COT (usually that it 

is thick) and something about the CER (typically a climatological value).  If the COT assumption is 

incorrect (e.g. cloud is not thick) so that more upward radiance is transmitted through the cloud than 

expected then the cloud top appears too warm and is located (incorrectly) lower in the 

atmosphere.  On the other hand using an all channel fit will identify the cloud as optically thin (from 

the visible and near visible reflectance measurements) and will avoid this error. 

We note that retrieving a specific cloud property from a specific channel is radiatively inconsistent (as 

example above) but it is theoretically possible to do a sequential optimal estimation retrieval.  In this 

case one iterates through the channels improving the estimates of CTH/CER/COT with each step. The 

final result should be the same as an all channel optimal retrieval. This method is not adopted for our 

problem as it would be computationally less efficient. 

 

See also the introduction in part II of this paper for a detailed definition a radiative consistency. We 

will not elaborate much on the issue here, as that already happened in part II. 

AC: “However, the derived microphysical variables are not guaranteed to be radiatively consistent 

with independently derived cloud parameters, as most of the retrieval methods are separated into solar 

and thermal methods even though measurements in these spectral regions are not independent of 

parameters retrieved in the other.” 

 

RC: p2,l39: “sees” into the cloud: A retrieval is not animate. Replace colloquial “see” with more 

appropriate wording. 

AR: Will rephrase. 

AC: “and beyond a penetration depth into the cloud corresponding to > 1 cumulative optical depth.” 

 

RC: p2,l50: CONUS = contiguous US (conterminous is synonymous, but used much less frequently, 

also not by Sun et al., 2015). 

AR: Will rephrase. 

AC: “and contiguous United States” 

 

RC: p2,l55-l57: This is an important statement: Cloud cover is not a good observable for trend 

detection because it depends on its definition (optical thickness threshold and/or reflectance threshold, 

sensor resolution) and instrument performance or calibration drifts. Even the CALIPSO-derived cloud 

information depends on which resolution is considered (because of sensitivity and SNR). A better 



observable would be the optical thickness itself (or better still, the cloud radiative effect). Have the 

authors considered a different primary variable that is more amenable to trend detection than cloud 

cover? In fact, their approach of retrieving “pseudo CALIPSO optical thickness” seems to be going 

exactly in this direction - and in the reviewer’s opinion, this would be the right way to proceed. But 

why then go a step backwards and convert ANNCOD into a binary cloud mask? Why isn’t the 

retrieved ANNCOD not reported directly (in addition to the binary cloud mask outcome)? 

AR: Here, we are referring to cloud cover as one of several other variables that were analysed for 

other retrieval frameworks in separate studies. In this study, we are only presenting a retrieval 

framework and an initial assessment of its data quality. We do not present trend data, but rather refer 

to other studies that assessed quality of other CDRs, including cloud cover but also CTH and CTP. 

The ANNCOD is a temporary retrieval product, from which we derive cloud cover. Cloud cover 

information is used to avoid processing cloud-free pixels and thus to reduce processing time. 

ANNCOD data are contained in ESA Cloud_cci L3U products (see Stengel et al., 2017). 

AC: 

 

RC: Related to the above [and also to material on p6]: Since CC4CL does keep cloud cover as 

primary variable, it should be explained whether the thresholds (table 2) vary (for example, with the 

specific sensor or orbit), or whether they are fixed once and for all, now that they have been optimized 

via the ANN technique. More importantly, do the weights as established during the ANN learning 

process vary? Are they a function of orbit, instrument, illumination, surface, topography. . .? Or else, 

are all of these dependencies incorporated in one single ANN? If so, how are commonly known 

problems with ANN (such as overfitting) avoided here? Using this cloud masking and thresholding 

technique, what is the (minimum) cutoff optical thickness, below which cloud are no longer detected? 

How do optical thickness detection thesholds vary with surface type and sun-sensor geometry? 

AR: The thresholds in table 2 have been quantified through iterative optimisation rather than by the 

ANN technique (p 6, l 68). They are fixed for all sensors and orbits, and thus, as is shown in Table 2, 

only vary as a function of illumination and surface condition. There are no sensor specific thresholds, 

but we apply a simple viewing angle correction on the input satellite data. The ANN weights 

themselves have been trained with NOAA18 data, and we linearly adjusted input data for other 

satellites to better match NOAA18. The text already states which ancillary data have been used when 

training (p 6, l 38 - 42), including surface conditions, and also that several ANNs were produced (p 6, 

l 32 - 34). We are using 3 different ANNs (day, twilight, night), which reduced the overfitting 

problem mentioned by the reviewer. Also, overfitting was minimised by comparison with an 

independent test dataset while training.  

We did not quantify a cutoff optical thickness as asked by the reviewer. Instead, our approach 

involved quantifying those threshold values for which the fit between CC4CL and CALIPSO cloud 

cover is best. 

AC: p6, l 65 ff: “The thresholds themselves vary depending on illumination and surface conditions, 

namely land, sea, and snow/ice cover (Table 2), and were quantified through iterative optimization. 

They are fixed for all sensors and orbits.” 

 

RC: Related to the above [and also to material on p6]: The three elements of the ANN need to be 

described better. How well is the pseudo-CALIOP optical depth itself estimated with the ANN? 

Figure 2 illustrates the performance of the cloud mask after ANNCOD has be converted into a binary 

cloud mask. Since the ANN predicts ANNCOD and not the cloud mask itself, it should be the 

performance of the ANN with respect to ANNCOD that should be demonstrated here. In this context 

again: How is overfitting avoided?  

AR: It was never the intention of creating a COD retrieval that can also be used to extract a cloud 

mask. We aim at creating a binary cloud mask. For a COD retrieval, we would have needed to train 

the full range of CALIPSO COD (approx. 0-15), but we cut off at a COD of 1 (and set all COD > 1 = 

1). We assumed that CALIPSO COD values > 1 are clouds that will always be correctly detected by 

passive sensors. Considering that, we do not think that a comparison of ANNCOD with CALIPSO 

COD makes sense and thus should not be included here. 

How can the non-linearities of radiative transfer be emulated with a single hidden layer? 



AR: We agree that the use of at least one more layer could have improved the retrieval. However, in 

the CC4CL framework we used an IDL based library who does not provide more than 1 hidden layer.  

What is the result for ANNCOD for the training data set as opposed to the test data set? 

AR: The training dataset is only a small part of the collocation dataset. When training, the dataset was 

divided by 90/10 percent into a training dataset and a test dataset, i.e. we trained on 90 percent and 

tested simultaneously on the rest of the data (10 percent). So, the test dataset has only been tested 

while training. To avoid the overtraining, the training has been stopped when both RMSE (train/test) 

started to differ. 

How is the correction for viewing angle done? 

AR: We found that only a part of the whole viewing angle geometry was trained (0-35° out of up to 

70° for AVHRR). We created an averaged ANNCOD with respect to each viewing angle and found a 

cosine-shaped dependency, which we corrected with an empirical cosine function. 

ANNCODcorrected = ANNCOD - ( 1. / 12. * (1. / cos( satellite_zenith_angle * degree_to_radians ) - 1. ) 

) 

How many inputs does the input layer have; what are they?  

AR: This depends on the illumination (day/twilight/night) and the availability of channels. We will 

add the input variables to the text. 

AC: p6 l 37: “For the input layer, input variables are surface temperature, snow/ice cover, and the 

land/sea mask for all three cloud masks. Regarding sensor data, input channels are Ch1, Ch2, Ch5, 

Ch6, and Ch5-Ch6 for the day ANN, Ch4, Ch5, Ch6, Ch5-Ch4, and Ch5-Ch6 for the night ANN, and 

Ch5, Ch6, and Ch5-Ch6 for the twilight ANN.” 

What is the activation function? Are there bias perceptrons?  

AR: Our activation function is the sigmoid function. We did include bias perceptrons. 

What motivates the use of one single hidden layer, and why are there 50 neurons in it?  

AR: Regarding the one hidden layer, see comment above. Will add text an number of neurons. 

AC: p6 l37: “Through incremental testing, we found that 50 neurons was the value for which the 

trade-off between output quality and computing speed was optimal.” 

Is the network re-trained for every new satellite data set, or are the weights fixed?  

AR: The weights are fixed, see p6 l 68 – p7 l 6. We tried to overcome the problem of having different 

shapes of the spectral response functions by applying linear regression coefficients (see Table 3). In a 

later version of the cloud mask, we applied a more sophisticated approach through using multispectral 

observations of IASI and SCIAMACHI. In the version presented here however, the linear regression 

is based on a one month triple collocation between AVHRR NOAA18, AATSR-ENVISAT, and 

MODIS AQUA.  

How exactly were the threshold values from table 2 determined that are applied to ANNCOD to 

translate into cloud mask?  

AR: We determined these thresholds through incremental application of a skill score analysis of the 

ANN cloud mask with CALIPSO for the whole collocation dataset (as a reminder, the training dataset 

is only a small part of the collocation data set). See previous comment, including a text change at p6, l 

65 ff. 

Finally, what is the quality of the thermodynamic phase retrieval, optical thickness and effective 

radius, depending on how close ANNCOD is to the cloud detection threshold? 

AR: We did not quantify this relationship in detail. However, Figure 6 shows retrieval uncertainties of 

CTP, COT, and CER together with cloud mask uncertainty. The patterns do not appear to be clearly 

related. A quantitative analysis, e.g. calculating correlations between relative uncertainties, would 

certainly provide more detailed answers, but was out of this paper’s scope. 

AC: p18 l30: “It would also be worth investigating the relationship between the quality of retrieved 

variables (CTH, COT, CER, cloud phase) and cloud mask uncertainty.” 

 

 

RC: Essentially, the paper claims that a cloud retrieval is attempted if the optical thickness exceeds 

0.4 over snow/ice during day light conditions. This would be a remarkable improvement over existing 

retrievals. MODIS usually does not detect clouds over snow covered areas in the Arctic unless they 

have an optical thickness significantly larger than 0.4 (around 7). CC4CL would be an improvement 

of an order of magnitude, and the question is whether the cloud retrievals would be of practical use, 



especially when applying them to AVHRR instead of MODIS. The reviewer strongly believes that the 

only way to achieve detection thresholds on the order of 0.4 in optical thickness in snow/ice covered 

regions in the Arctic, one would need to use convolutional layers (i.e., use multi-pixel retrieval 

approaches). 

AR: Please note that the ANNCOD is a pseudo optical depth. The threshold value, here 0.4 for 

daytime over snow/ice, is a relative value between 0 and 1. It does not provide any information on the 

absolute optical thickness value, but is rather a normalized optical thickness that attempts to fit 

CALIPSO measurements.  

 

RC: p2,l78-80: “Consistency can be traded for continuity” needs clarification. Perhaps this can be 

done while elaborating on CDR (see comment above). This discussion will contribute to a better 

motivation of this study. 

AR: Agreed, will clarify. See also reviewer #2 comments on the same issue. 

AC: “Consistency in approach can be traded for continuity of results, and multi-platform algorithms 

could exploit additional data when newer sensors become available” 

 

RC: p2,l90: “MODIS provides”: is a partial repetition of material in the left column of the same page. 

AR: Agreed, will delete that sentence, as it is redundant. 

 

RC: p3,l18: “on other” > “over other” 

AR: Will rephrase. 

AC: “improvement over other established” 

 

RC: p3,l20: Which “macrophysical” product do the authors have in mind here? What exactly does 

“radiative inconsistent” mean (supposedly, macroscopical products are inconsistent with 

microphysical products, but this is different from “radiatively inconsistent”; the reader is currently left 

to guess here). How exactly does the CC4CL approach ensure radiative consistency amongst all input 

satellite radiances (and all output products)? Indeed, other approaches have a cloud mask that may be 

independently derived from the microphysics products. Simply stating that CC4CL is “different” in 

this regard does not support the statement that it is more “consistent”. More details are needed to add 

specificity. 

AR: We are referring to macrophysical products such as CTT and CTH. Please see also our related 

answer on radiative inconsistency above, and the detailed description of the issue in part II of this 

paper. 

 

RC: p3,l46: Quantify “very realistic”, or just use “realistic” 

AR: Will rephrase. 

AC: “provides realistic estimates” 

 

RC: p4,l35: Auxiliary > Ancillary 

AR: Agreed. 

AC: “Ancillary” 

 

RC: p4,l38: Neural Network not yet defined at this point. May need the NN section prior to this 

statement. 

AR: Will add a reference to the ANN section here. Most readers probably have at least a vague idea 

what a neural network is. 

AC: “and as input to a neural network cloud mask (see Section 3.1.1)” 

 

RC: p4,l73/l75: “optimal estimation”, “cloud typing scheme”. None of these have been described at 

this point in the manuscript. Sequence needs to be re-shuffled. 

AR: Will add section references here. Again, these references should be sufficient, as the readers will 

have heard these terms before and do not require a detailed definition here to understand the following 

text. 



AC: “The USGS data are used as a land sea mask within the optimal estimation retrieval (Section 

3.3.3), as well as a land cover classificator within the cloud mask and the Pavolonis cloud typing 

scheme (Section 3.3.2).” 

 

RC: p5,l1: “were” > “are” 

AR: Cannot find “were” in that sentence. 

 

RC: p5,l1: Reference and/or data source (link) needed for CALIPSO product 

AR: Cannot find the CALIPSO product in that sentence. Maybe there is a linenumber mismatch? 

 

RC: p5,l68-l72: multiple acronyms need to be introduced prior to first use. 

AR: Most acronyms in that sentence were introduced in the first paragraph on page 2.  

AC: “…Clouds from AVHRR Extended (CLAVR-X) (…) Global Cloud and Aerosol Dataset 

Produced by the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) …” 

 

RC: p5,l79: The outcomes of the study should be at least summarized here. Also, the use of “round 

robin” may not be ideal for an international readership as it is a cultural reference (British/American) 

that may not be commonly known. Consider paraphrasing the technique instead. 

AR: Will rephrase.  

AC: “was chosen from three competing algorithms in a “round-robin” (i.e. each algorithm is tested 

against all other algorithms) analysis. All algorithms have proven their maturity for deriving the 

considered cloud parameters (cloud cover, liquid and ice water path, cloud top height) from AVHRR 

and MODIS data (Stengel et al., 2015).” 

 

RC: p5,l98: Do these channel numbers refer to the CC4CL IDs from table 1? 

AR: Yes, will clarify. 

AC: “The albedo of snow/ice covered pixels is set to globally constant values of 0.958 (Ch1, CC4CL 

ID as in Table 1), 0.868 (Ch2), 0.0364 (Ch3), and 0.0 (Ch4),” 

 

RC: p6: Cloud detection: See multiple comments above (following p2,l55-l57 comment). Also: Are 

there any convolutional layers included in the approach? This would have allowed capitalizing on the 

context of a pixel. 

AR: We did not add any convolutional layers in the ANN. See above comments regarding cloud 

detection and the ANN. 

 

RC: p7,table 3: How was the regression done - based on radiance or irradiance, based on counts? 

Based on brightness temperature (for IR channels)? The offsets seem rather large; what is the 

explanation for significant offsets? 

AR: The regression coefficients were calculated based on reflectance and brightness temperature data. 

The offsets might be a result of imperfect collocation, relative calibration differences, and mainly 

differences in spectral response functions. It is difficult to quantify the contribution of each, but 

spectral response probably explains most of the offset. 

 

RC: p7,l49: VIIRS algorithm is used: What is the purpose of this statement? If it is kept, this needs to 

be elaborated (what does the VIIRS algorithm do differently). Also, there are various other algorithms 

that are improved over the heritage algorithms, which would probably all need to be mentioned here 

(or at least a subset thereof). 

AR: This paragraph is a brief summary of the Pavalonis algorithm performance. Not surprisingly, it 

performs better if more spectral channels are used for cloud typing. The sentence emphasizes the 

generic limitation of using only AVHRR heritage channels, which does not only affect cloud 

detection or optimal estimation, but also cloud typing. We do not think that other algorithms using 

other data than the heritage algorithms need to be elaborated or mentioned here (however, we do so 

elsewhere). It is obvious that they perform better if using more channels, but that is not the point here. 

 



RC: Figure 2: This is just one example where labels are too small, and are too pixelated. Generally 

improve the figure quality and enlarge labels. About the content: It is rather hard to interpret this 

figure. The x-axis is “normalized”. Does that mean that the difference of the ANNCOD-retrieved 

value and the threshold from table 2 is divided by the threshold value itself? Does “x=0” mean that 

the retrieved optical thickness equals the threshold per table 2? Does the “CLEAR” label refer to 

CALIPSO? For x=-0.2, we find an uncertainty of 40%. Does that mean that CC4CL misclassifies 

clear pixels as “cloudy” in 40% of cases? 

AR: As mentioned in the text, the x-axis is normalized, i.e. the difference between ANNCOD and the 

threshold was divided by the threshold. Yes, x=0 means no difference between ANNCOD and the 

threshold. Again, please remember that this is a pseudo optical thickness. CLEAR means that the 

ANN cloud mask defined a pixel as cloud free. It shows that we need different equations to quantify 

uncertainty for clear and cloudy cases. The text also explains how uncertainty is calculated: 100 – 

PEC [%], with PEC = the ratio between all correctly classified pixels and the number of all pixels 

analysed. Also, if x=-0.2, CC4CL misclassifies cloudy pixel as 'clear' in 40% of the cases with respect 

to CALIPSO. The uncertainty defines the misclassification of CC4CL compared to CALIPSO for a 

certain combination of ANNCOD and the threshold used. 

See below Figure 2 with larger labels and annotations. We also increased labels for Figures 3-7 (see 

responses to other reviewers). 

 

 

RC: p8,l70: Why are largest uncertainties found for opaque clouds? Also, figure 10 does not show 

quantitative evidence for this statement - colors are harder to interpret than numbers on a graph. Can 

this somewhat counterintuitive statement be supported by a more succinct graph? 

AR: We are referencing the wrong figures. Will correct. 

AC: “COT uncertainties increase with COT magnitude, and largest uncertainties are found in cases of 

opaque cloud coverage (Figure 4 middle and Figure 6 topright).” 

 

RC: p9,l3-5: :Validation is show for . . . rather than: Unclear. What is the difference between CTH 

and “its” retrieved value? 

AR: CTH is a derived variable, i.e. derived from CTP, which is the retrieved value. Will clarify. 



AC: “The validation is shown for comparisons of CTH (derived from CTP) rather than CTP 

(retrieved) to enable…” 

 

RC: p9,l13: “TOA radiation is the *sum total* of emission and scattering throughout the atmospheric 

column” - please formulate this more accurately: What is a “sum total” of two processes? Also, the 

next paragraph more or less paraphrases Platnick’s vertical weighting function paper where this is 

formulated more accurately, and where the concept of a weighting function is well explained. Please 

cite that paper and use similar terminology here. As for multi-layer clouds, there is a fairly new paper 

by Wind, Platnick et al. (http://journals.ametsoc.org/doi/abs/10.1175/2010JAMC2364.1), but it is 

probably not applicable to this paper here because of the channel selection. 

AR: Will clarify. 

AC: “However, TOA radiation is the product of emission and scattering processes throughout the 

atmospheric column (Platnick, 2000).” 

 

Platnick, S. (2000), Vertical photon transport in cloud remote sensing problems, J. Geophys. Res., 

105(D18), 22919–22935, doi:10.1029/2000JD900333. 

 

RC: p10,l1: How is the CTH adjustment done if the cloud base is not known? Where does cloud base 

(or cloud geometrical thickness) information come from? 

AR: We approximate the observed temperature as emitted from one optical depth into the cloud. 

Assuming the cloud is vertically homogeneous with a constant lapse rate Γ, we can write the 

thickness-corrected CTT as, 

Tcor = BT(λ) + Γ / (σ N), 

where BT is the observed brightness temperature, σ is the cloud particle cross-section, and N is the 

cloud particle number concentration. Using the observations at 11µm and 12µm provides two 

simultaneous equations in Tcor which can be solved, using σ values for a LUT. 

 

RC: p10,l9: Does this statement about sectors refer to figure 9? Please match figures and text, 

otherwise figures become “orphans” that are not tied to the manuscript. 

AR: Will add figure references. 

AC: “CC4CL correctly classifies all pixels as cloud covered, with a few exceptions in sectors 3 and 4 

(Figures 8 and 9).” 

 

RC: p10,l14: Please define what is meant by “surface” in this case. 

AR: Will clarify. 

AC: “In the case of a (semi-)transparent cloud top layer, multiple surfaces (several cloud layers, Earth 

surface) contribute to the observed satellite data.” 

 

RC: p10,l16: insert “a” before “single-layer” 

AR: Agreed. 

AC: “For a single layer, optically thick (COT > 1) cloud,…” 

 

RC: Figure 7: please enlarge labels, as well as histograms; it is hard to compare the retrievals 

quantitatively otherwise. Also: It would really help if histograms were shown separately for snow-

covered areas as opposed to dark surfaces. It is expected that retrieval quality would differ 

significantly depending on the surface conditions. 

AR: We will enlarge labels and histograms. However, we do think it is sufficient to show histograms 

for all surfaces combined to make our point that there are differences between retrievals, which is also 

supported by the statistics.  



 
 

RC: p12,l41: “performance of existing algorithms” What are the “existing algorithms” that CC4CL? 

Has the manuscript shown that these existing algorithms perform less well than CC4CL. 

AR: Will remove the subordinate clause. 

AC: “In general, the quantitative and qualitative agreement between CC4CL and CALIOP CTH is 

impressive.” 

 

RC: p12,l88: “AVHRR” > “for AVHRR” 

AR: Agreed. 

AC: “and AATSR data than for AVHRR” 

 

RC: p12,l89: Should “continually” be replaced with “consistently”? Unclear what this statement 

means. If it were “consistently” it would be more clear, but the word order should be fixed: “The 

CC4CL phase identification does not agree with any of the three CALIOP cloud flags consistently, 

which is reasonable given . . .” 

AR: Agreed, we will rephrase as suggested. 

AC: “The CC4CL phase identification does not agree with any of the three CALIOP cloud flags 

consistently, which is reasonable given . . .” 

 

RC: p13,l19/20: “. . .insensitive to the specific instrument evaluated, such that the merged data set is 

sensible”. What does this statement mean? The paper does not actually present a *merged* data set, 

or was that the actual intent of the paper? It does evaluate collocated overpasses from different 

satellites, but these are not merged in the sense of a CDR. Please remove the statement about 

“merging” data sets unless this was the actual intent of the paper (in which case it would need to be 

modified considerably). 

AR: We will remove the statement about “merging” datasets, which was once foreseen in the project 

but has not been done at the moment this paper was written. 

AC: “In general, the retrieved values are insensitive to the specific instrument evaluated. Absolute…” 

 

RC: p13,l31: “disagree nonetheless”: They disagree despite their channels are fairly close? Can this be 

re-phrased? The whole paragraph is a bit roundabout. There’s a 30-40% difference in reflectance, but 

“their” retrieval values are “much more similar”? Please make this statement more precise. “The 

difference to AVHRR and MODIS is largest for CER” - does this statement refer to AATSR again? 

AR: Will rephrase, as these statements are definitively hard to understand. Yes, the last sentence 

refers to AATSR. 

AC: “Also, even though spectral response differences are largest between MODIS and AVHRR 

(which results in a reflectance difference of up to 30–40 % (Trishchenko et al., 2002)), their retrieval 

values are much more similar. The difference between AATSR and both AVHRR and MODIS is 

largest for CER, so microphysical variables, which are derived from reflectance data only, appear to 

be most affected.” 

 

RC: p13,l39: The t-test needs to be explained in much more detail. What is H0, what is mu1, what is 

mu2? Are we talking about the covariance between two data sets, which is assessed using the t-test 

approach? If so, are the data from the two different data sets (supposedly this is what “mu1” and 



“mu2” refer to) re-gridded to one common grid before comparing them? The premise of this statement 

deserves at least one paragraph, if not half a page. 

AR: This is a very basic t-test, using a well-defined symbology. It is a test for significance of the 

difference between the mean values of two populations (i.e. µ1 = mean of population 1, µ2 = mean of 

population 2). The data were indeed re-gridded to a common grid, which is all explained in section 

2.3. 

AC: “The differences between mean values (µ1 and µ2) are almost always significant (t-Test p-value 

< 0.1, H0: μ1 = μ2).” 

 

RC: p13,l45: “spatiotemporally collocated sensors”: The sensors are not collocated - is that the point 

of the statement? Or is this an explanation why the t-test “fails? What does “non-significant” t-test 

mean? Could the strictness of the comparison be relaxed by gridding the retrievals to a coarser 

common grid before making the inter-comparison? 

AR: The sensors are not collocated, but the data are. And the collocation should minimize differences 

due to observation times and observation area. The significance level is now mentioned in the correction 

above, but can also be found in the caption of Table 6. As said above, the data were re-gridded. 

AC: “…when driven with spatiotemporally collocated satellite data obtained from three different 

sensors.” 

 

RC: p13,l57: “depending on the user’s application” - this needs to be clarified. For which applications 

can they be used interchangeably? Could a combined AVHRR and MODIS cloud data record 

constitute a CDR (would it meet the requirements)? As stated above, the manuscript does not actually 

“merge” data sets in this way, but more specificity would be helpful here. 

AR: We added references to give examples. We do not think that the AVHRR and MODIS cloud data 

record should be seen as one continuous, consistent data record. Rather, AVHRR provides the 

opportunity of long-term data coverage back to 1982, providing data that are at least comparable to 

MODIS. That certainly excludes local analyses, but rather refers to continental to global applications. 

AC: “depending on the user’s application, such as model validation, data assimilation applications, or 

climate studies in general (Liu et al., 2017, Yang et al., 2016).” 

 

Liu, C., R. P. Allan, M. Mayer, P. Hyder, N. G. Loeb, C. D. Roberts, M. Valdivieso, J. M. Edwards, 

and P.-L. Vidale (2017), Evaluation of satellite and reanalysis-based global net surface energy flux 

and uncertainty estimates, J. Geophys. Res. Atmos., 122, 6250–6272, doi:10.1002/2017JD026616. 

Yang, Qinghua, et al. "Brief communication: The challenge and benefit of using sea ice concentration 

satellite data products with uncertainty estimates in summer sea ice data assimilation." The 

Cryosphere, vol. 10, no. 2, 2016, p. 761. 

 

 

RC: p13,l77: “we see that COT uncertainty scales with COT itself”: this is not shown in the 

manuscript. If it is, please refer to a figure or section.  

AR: As mentioned above, it is shown in Figure 4 middle and Figure 6 topright. 

AC: “we see that COT uncertainty scales with COT itself (Figure 4 middle and Figure 6 topright)” 

 

RC: p13,l79-l88: Consider re-writing this section; simplify and use literature references; most of these 

observations have been documented before (large COT uncertainty as reflectance approaches 

asymptotic value; large uncertainties for bright surfaces). 

AR: Will simplify and add references. 

AC: “CC4CL COT values are at times unnaturally large, and the associated uncertainty reflects that. 

Also, it highlights under which conditions the optimal estimator converges to a solution with a 

relatively large divergence from the measurements, which here are associated with optically thick 

clouds or underlying snow/ice cover (see also Kahn et al., 2015, Wang et al., 2011). COT and CER 



uncertainties are clearly largest, and reflect the limited information available with which to retrieve 

these values. For further possible explanations due to assumptions and limitations within the 

methodology applied, please see part II.” 

 

Kahn, B. H., M. M. Schreier, Q. Yue, E. J. Fetzer, F. W. Irion, S. Platnick, C. Wang, S. L. Nasiri, and 

T. S. L'Ecuyer (2015), Pixel-scale assessment and uncertainty analysis of AIRS and MODIS ice cloud 

optical thickness and effective radius, J. Geophys. Res. Atmos., 120, 11,669–11,689, 

doi:10.1002/2015JD023950. 

 

Wang, C., P. Yang, B.A. Baum, S. Platnick, A.K. Heidinger, Y. Hu, and R.E. Holz, 2011: Retrieval of 

Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer 

Model. J. Appl. Meteor. Climatol., 50, 2283–2297, https://doi.org/10.1175/JAMC-D-11-067.1 

 

RC: p15, l11: “otherwise are” > “otherwise they are” 

AR: Will rephrase. 

AC: “otherwise they are” 

 

RC: p15,l15: “may it stem” does not work in English; consider “whether it stems from. . . or” 

AR: Will rephrase. 

AC: “whether it stems from a cloud or the Earth’s surface” 

 

RC: p15,figure 11: The table below the cross section is too small. Also, what happened at lat=61? 

Why do the active imagers pick up a cloud where CALIPSO does not? 

AR: Unfortunately, the table itself cannot be increased due to space limitations and a bug in the 

Python library applied to produce the table. The colours show cloud phase. Cloud type numbers are 

not as important, and we could have removed them as for Figure 15. At latitude 61°, we see that there 

are broken cloud fields in the area, which might have appeared in the sensor’s field of view but not in 

CALIPSO’s. 

 

RC: p16,l8: consider “a conscious decision was made to [deliberately] trade. . .” 

AR: Will rephrase. 

AC: “For ESA Cloud_cci, a conscious decision was made to trade spectral information for time series 

continuity.” 

 

RC: p16,l19: “on a first view” > “at first glance” 

AR: Will rephrase. 

AC: “At first glance, estimates of…” 

 

RC: p18,l59: “synergic” > “synergistic” 

AR: Will rephrase. 

AC: “exploits synergistic capabilities of several EO missions” 

 

RC: p18,l95: “accurate and precise”: These two were not discussed separately. Where was this done? 

If not, please clarify this statement. 

AR: We will remove precise, which stands for a low standard deviation of errors (not shown here). 

The results are accurate due to the relatively low bias. 

AC: “optically thick cloud retrievals are very accurate when compared against CALIOP (bias < 240 

m)” 

 



Anonymous referee #2 

 

RC: referee comment 

AR: author response 

AC: author’s changes in manuscript 

 

 

 

---------------------------------------------------------------------------------------------------------------------------

----------- 

RC: p 2, line 5: I would add cloud forward model assumptions to the list of secondary confounding 

factors 

AR: Will add „cloud forward model assumptions“ to list. 

AC: „Several secondary variables (cloud forward model assumptions, state of surface and atmosphere, 

viewing geometry, sensor calibration and spectral response uncertainties) …“ 

 

RC: p 2, lines 12-14: The CERES-MODIS products (e.g., Minnis et al., 2011a,b, IEEE TGRS) should 

also be included here. 

AR: Will add the CERES-MODIS products. 

AC: „and MODIS Collection 6 (MODIS C6) (Platnick et al., 2017) as well as the CERES-MODIS 

products (Minnis et al., 2011).“  

P. Minnis et al., "CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and 

Aqua MODIS Data—Part I: Algorithms," in IEEE Transactions on Geoscience and Remote Sensing, 

vol. 49, no. 11, pp. 4374-4400, Nov. 2011. 

 

RC: p 2, lines 23-24: The MODIS C6 phase referred to here is the IR phase of Baum et al. (2012), 

which is in fact a quad-spectral algorithm (7.3, 8.5, 11, 12µm channels) using β ratios (the authors’ 

description is more appropriate for the C5 algorithm). This IR phase algorithm is run in conjunction 

with, and is informed by, the cloud top property retrieval algorithm. The authors should be aware, and 

I believe that they are given the reference to Marchant et al. (2016) later in the paper, that this IR 

algorithm does not determine phase for the C6 cloud optical properties retrieval; phase for the optical 

retrieval is determined by the Marchant algorithm that uses the IR phase as one piece of information. 

Results from the IR and cloud optical properties phase algorithms are often at odds, specifically in 

cases where phase is more ambiguous. 

AR: Will correct the text to reflect that the Marchant algorithm is applied. 

AC: “, or a majority vote algorithm that combines four phase tests based on CTT, tri-spectral IR, 1.38 

µm, and spectral CER data (Marchant et al., 2016).” 

 



RC: p 2, line 24: Should probably specify that the additional spectral channels are at shortwave 

infrared (SWIR) wavelengths.  

AR: Will add SWIR here. 

AC: “,… MODIS has several additional spectral channels at shortwave infrared (SWIR) wavelengths 

that provide…” 

RC: p 2, lines 29-30: Indeed, this is an inherent limitation of the spectral information content of 

passive IR channels!  

AR: Will rephrase. 

AC: “these studies show that current retrievals underestimate cloud top pressure for optically thin 

clouds due to the inherent limitation of the spectral information content of passive IR channels.” 

 

RC: p 2, lines 31-35: I assume from the references given that cloud cover refers to cloud fraction or 

related metrics, and not to geophysical retrievals.  

AR: Yes, we are referring to cloud fraction. Will replace cloud cover with cloud fraction. 

AC: “There are numerous studies that evaluate the performance of the aforementioned retrievals for 

cloud fraction with weather (…).  More importantly, these studies emphasize the difficulty of deriving 

reliable cloud fraction trends from AVHRR time series, as the retrievals overestimate the change in 

cloud fraction by as much as an order of magnitude” 

 

RC: p 3, line 5: Is the cloud phase bias positive or negative?  

AR: The cited bias values were reported as absolute numbers. 

AC: “and has an absolute cloud phase bias of lower than + 9 %” 

 

RC: p 3, lines 6-7: See my p 2 comment above regarding MODIS phase algorithms; this statement 

again refers only to the IR phase.  

AR: Will rephrase to refer to Marchant et al., 2016. 

AC: “and the phase detection has been improved for liquid clouds. However, the detection of optically 

thin ice clouds over warm, bright surfaces remains problematic (Marchant et al., 2016).” 

 

RC: p 3, lines 10-11: What is the difference between consistency and continuity? I can surmise that it 

is consistency in approach versus continuity of results, but it is not clear to the general reader.  

AR: The reviewer’s assumption is correct, will clarify. 

AC: “Consistency in approach can be traded for continuity of results, and multi-platform algorithms 

could exploit additional data when newer sensors become available” 

 

RC: p 3, lines 34-35: It’s not initially clear why independent retrievals of COT/CER and 

macrophysical products are inherently radiatively inconsistent. I would guess that it depends on the 



approach, i.e., how (or if) one set of retrievals informs the retrieval of the other. Can the authors better 

explain? 

AR: The effect of COT/CER/CTH on the top-of-atmosphere (TOA) radiances differs between the 

different sensing bands as a function of atmospheric state.  For example if you used just the 11 or 12 

micron measurement to estimate CTH then you must assume something about the COT (usually that it 

is thick) and something about the CER (typically a climatological value).  If the COT assumption is 

incorrect (e.g. cloud is not thick) so that more upward radiance is transmitted through the cloud than 

expected, then the cloud top appears too warm and is located (incorrectly) lower in the 

atmosphere.  On the other hand using an all channel fit, as we did here, will identify the cloud as 

optically thin (from the visible and near visible reflectance measurements) and will avoid this error. 

We note that retrieving a specific cloud property from a specific channel is radiatively inconsistent (as 

example above) but it is generally possible to do a sequential optimal estimation retrieval.  In this case 

one iterates through the channels improving the estimates of CTH/CER/COT with each step. The final 

result should be the same as an all channel optimal retrieval. This method is not adopted for our 

problem as it would be computationally less efficient. 

AC: “but macrophysical products are estimated independently and are thus radiatively inconsistent 

with the former variables. Here, parameters are retrieved simultaneously, providing a retrieval that is 

radiatively consistent over the wavelengths of the observations, given that the instrument’s noise 

characteristics are well known.” 

 

RC: p 4, line 1: Retrieval uncertainty estimates that propagate errors is not a novel feature of CC4CL. 

See, for instance, the MODIS C6 cloud optical properties (Platnick et al., 2017), which provide pixel-

level retrieval uncertainties calculated in a manner that is mathematically consistent with that of 

optimal estimation (although the uncertainties are not part of the solution process).  

AR: Agreed, will clarify. 

AC: “Another key feature of CC4CL is the production of uncertainty estimates of retrieval parameters 

(see also Platnick et al., 2017) through explicit error propagation from input to output data.” 

 

RC: p 4, line 6: Following on my comment above, neither the optimal estimation approach nor the 

uncertainty quantification are novel features of CC4CL. As the authors themselves state on p 2, 

PATMOS-x uses optimal estimation theory, and the MODIS C6 (and C5) cloud optical properties 

provide rigorous pixel-level uncertainties.  

AR: Agreed, will remove novel here. 

AC: “We particularly focus on discussing the key features of the framework: the optimal estimation 

approach in general, …” 

 

RC: p 4, lines 5-13: Regarding statements about consistency of the long-term, multiplatform time 

series, and the potential of the framework for climate studies, I don’t think the authors make a 

convincing case for either in the text that follows. Four case studies hardly constitute a 

“comprehensive and detailed analysis of retrieval results,” and certainly do not provide enough 

evidence of the potential for climate studies. Such statements require detailed analyses of long-term 

and large-scale inter-sensor statistical comparisons, which it appears are actually presented in a 

companion paper in a different journal (Stengel et al., 2017). It’s thus not clear to me why the present 

paper was not instead a part of the Stengel paper, or vice versa. Given that the primary contributions 



are a brief discussion of the ancillary and data sources and a rather limited CTH analysis, I’m not 

convinced that this paper can or should stand on its own.  

AR: This paper’s main purpose is to present a new cloud retrieval framework (CC4CL). It is a two 

part publication that contains a detailed description of the retrieval algorithm in part II. Part I should 

not be seen as a validation paper, but rather contains a section that provides the reader with an 

overview of the functionality of CC4CL, including generic strengths and weaknesses. The goal is to 

inform the reader of potential applications of this data in future research. The four case studies aim to 

illustrate the strengths and weaknesses of CC4CL through detailed, direct (i.e. with very little 

averaging), and collocated comparisons with independent CALIOP data. The Stengel paper, as the 

reviewer correctly mentions, contains a true validation of CC4CL, but to include such an in-depth 

analysis here would have substantially increased the paper’s length. We think that keeping part I 

concise and focused better serves its purpose as an introduction to the functionality and generic 

applicability of CC4CL. For readers who might be interested in a validation of CC4CL after reading 

part I, we refer to the Stengel paper in the text. 

However, we will replace “validated” with “examined”, as the former indeed suggests more than the 

paper intends to provide, and remove “comprehensive”. 

AC: p 4, line 10: “These are initially examined in a detailed analysis of …” 

 

RC: p 4, line 15: Consider using Level-1 instead of L1, which for some readers implies a Lagrange 

point 1 orbit.  

AR: Will clarify here that L1 stands for Level-1. L1 is standard terminology in this field. 

AC: “Level-1 (L1) satellite data” 

 

RC: p 4, lines 21-25: Yes, replacing any AVHRR once its successor becomes available will lessen the 

impacts of orbital drift (and thus sampling times), but drift impacts are likely still to exist. Are these 

accounted for in CC4CL, specifically when constructing long-term multi-sensor time series?  

AR: Orbital drift effects are not accounted for within CC4CL, which is why we write to only reduce 

drift-induced changes, not to eliminate them. 

 

RC: p 4, line 29: Regarding filtering channel 3b data, is this to include or exclude that channel?  

AR: The filter removes noise artefacts from channel 3b data, which are used in the retrieval. 

 

RC: p 5, lines 8-10: It should be NASA Goddard Space Flight Center. 

AR: Will change text. 

AC: “the NASA Goddard Space Flight Center performed” 

 

RC: p 5, lines 21-23: “Self-calibrating” is I think a little misleading. MODIS, for instance, has a 

similar design (onboard black bodies and solar diffuser), yet requires a continual effort to monitor 

instrument stability and identify/correct calibration drifts, typically using fixed ground targets among 

others.  



AR: Will clarify. 

AC: “ATSR is equipped with on-board calibration capabilities, such as two black-body targets for the 

thermal channels and a sun-illuminated opal target for the visible/near-infrared channels.” 

 

RC: p 7, lines 3-4: Has the “gap filling” of the MCD43C1 data been validated? Is the approach similar 

to what is used in the MCD43B3 gap-filled product (Schaaf et al., 2011, “Aqua and Terra MODIS 

albedo and reflectance anisotropy products,” in Land Remote Sensing and Global Environmental 

Change: NASA’s Earth Observing System and the Science of ASTER and MODIS)?  

AR: We did not validate the “gap filling”, for which we applied a very basic approach to meet our 

requirements. The approach applied to gap-fill MCD43B3 data is certainly more sophisticated, but its 

application in our study was out of scope. 

 

RC: p 6-7, Sections 2.2.3-2.2.4: Have the authors verified that there are not any trends in the land 

surface BRDF and emissivity time series during the MODIS era? If there are, wouldn’t the use of the 

climatology derived from all MODIS data introduce a discontinuity in the surface time series? 

AR: We did not perform a trend analysis for these time series. We agree that a trend in the input data 

would indeed add an artefact to our retrieval output. 

AC: p 7 l 14: “Note that the use of a climatology would add a discontinuity in the surface time series if 

there are trends in the surface BRDF and emissivity time series during the MODIS era.” 

 

RC: p 7, lines 6-7: I disagree that the surface is a minor component of the observed signal, specifically 

for optically thinner clouds. Thus not accounting for the spectral response functions can introduce 

biases, particularly in spectral regions such as the near-IR (e.g., AVHRR channel 2, MODIS channel 

2) where reflectance by vegetation can change rapidly.  

AR: Agreed, will clarify. 

AC: “in spectral response functions. Note that this might result in retrieval biases, particularly in 

spectral regions that are sensitive to rapidly changing environmental processes such as vegetation 

growth (near-IR).” 

 

RC: p 7, line 16: Resampled or aggregated?  

AR: Resampling is defined as the technique of manipulating a digital image and transforming it into 

another form. Thus the term is applicable here. As is aggregated. 

 

RC: p 7, line 16-17: I would agree that differences in sensor spatial resolution are reduced when 

averaging radiances/reflectances. However, this is likely not the case when averaging L2 geophysical 

parameters, as is done here, since the retrievals can have significantly different PDFs within a grid box 

due to pixel size differences alone.  

AR: Agreed, will clarify. 

AC: “This resampling is required for an intercomparison of CC4CL Level-2 data on a common grid. 

However, note that differences in sensor spatial resolution can lead to significantly different PDFs 

within a grid box, the effect of which we did not analyse.” 



 

RC: p 9, line 5: How much data was used to train the ANN? Was an observation time difference filter 

applied to the NOAA-18/CALIOP co-location?  

AR: See p 9, line 10-11. Yes, the time difference filter was 15 minutes. 

 

RC: p 9, lines 19-21: If I understand correctly, the reflectances/radiances were adjusted to account for 

spectral response differences? Were the co-located observations filtered for cases in which both 

satellites viewed the scene at the same sun-view angle geometry? Such angle matching is important 

when comparing solar channels where reflectance is strongly angularly dependent. 

AR: Yes, we did account for sun-view angle geometry differences. We filtered all collocations with 

differences in satellite zenith angle > 0.5°, sun zenith angle > 1°, and observation time > 30 mins. 

AC: “We derived appropriate coefficients through linear regression analysis between collocated 

satellite observations for each input channel pair (Table 03), applying a filter on differences in satellite 

zenith angle (> 0.5°), sun zenith angle (> 1°), and observation time (> 30 mins).” 

 

RC: p 10, lines 21-22: My understanding is that the uncertainty obtained from the optimal estimation 

framework can be thought of as the sensitivity of the solution space at the point of the solution to the 

measurement uncertainty (which includes instrument, ancillary, etc., uncertainties).  

AR: That is correct. The statement will be revised. 

AC: “The algorithm estimates the retrieval uncertainty, which quantifies the range of values that are 

feasible considering the uncertainty in the satellite measurements, auxiliary data and ORAC forward 

model.” 

 

RC: p 10, line 25: This statement differs from the statement at the end of Section 3.2 (phase is 

determined first to reduce computation time resulting from retrieving assuming both phases).  

AR: That was the original processing setup, but in the end we decided to process both phases for all 

pixels. That was required in order to swap retrieval output if phase needed to be switched due to 

mismatches with CTT. Will clarify. 

AC: p 8, line 25-27: “The main processor evaluates these inputs twice, assuming different cloud 

phases (e.g. ice and liquid). In theory, ORAC could use the preprocessed cloud mask and phase to 

select an appropriate method to reduce processing time.” 

 

RC: p 11, Section 4.1, Figure 3-5. The observation date/times should be stated here. I see they are 

listed in Section 4.3, but it is better to include them at first reference. Also, a thermodynamic phase 

image would be useful. 

AR: Will add observation date/times here. Will also add the thermodynamic phase image.  

AC: “The sample scene (07/22/2008 20:58 LST) is characterized by various cloud types, and the 

CC4CL cloud mask defines a relatively small fraction as cloud free (Figures 3 to 6). “ 

 



 

Figure 6. Cloud phase retrieval values for study area NA2 with data from AVHRR (left), MODIS 

(middle), and AATSR (right). 

 

RC: p 11, lines 13-14: I’m guessing the peaks at 12 and 35 µm likely correspond to liquid and ice 

phase clouds, respectively.  

AR: Agreed. 

AC: “CER data are somewhat bimodal, having a primary peak at ~12 µm and a secondary peak at ~35 

µm (Figure 07 and Table 06). These peaks probably correspond to liquid and ice phase clouds, 

respectively.” 

 

RC: p 11, line 17: The statement on cloud displacement here contradicts the statement in line 11.  

AR: Although observation time difference is small, and thus cloud displacement, it cannot be 

discarded to contribute to the significance test, in particular to outliers. 

AC: “Significance tests of mean differences and standard deviations of residuals between sensor 

retrievals are sensitive to outliers. Although cloud displacement due to observation time differences is 

probably small, we cannot discard its influence on such outliers.” 

 

RC: p 11, Section 4.1: What about relative radiometric calibration between the different sensors? Even 

minor differences of a couple percent could case large retrieval differences, particularly for COT.  

AR: Agreed, will add a statement at the end of the paragraph. 

AC: p 11, line 20: “Moreover, even modest relative radiometric calibration differences between 

sensors of a couple percent could cause large retrieval differences, particularly for COT.” 

 

RC: p 11, line 22: If median absolute CER uncertainty is 2µm, how does this correspond to a median 

relative uncertainty of 2% (line 24). Figure 10: What wavelengths are used for this RGB?  

AR: The reviewer is correct, these statistics are wrong. Will correct. For the RGB, we used red = Ch4 

solar component, green = Ch2, blue = Ch1. 

AC: “Median absolute uncertainties are CTP = 26.7 hPa, COT = 6.1, CER = 2.0 µm, and cloud mask 

= 13.7 % (Figure 06). The median relative retrieval uncertainty (not shown) is relatively low for CTP 

and CER, but considerably larger for COT (CTP = 4.7 %, COT = 55.0 %, CER = 13.6 %). COT 

uncertainties increase with COT magnitude, and the RGB image (Figure 010, red = Ch4 solar 



component, green = Ch2, blue = Ch1) shows that the largest uncertainties are found in cases of opaque 

cloud coverage and cloud over sea-ice surfaces.” 

 

RC: p 12, Section 4.3: Hard to call this “validation” without using a much larger dataset (e.g., months, 

seasons, years) for statistical analyses.  

AR: Agreed, will rephrase. 

AC: “Comparison with CALIOP” 

 

RC: p 12, line 21: What assumptions are made other than adiabaticity (e.g., extinction profile, etc.)? 

Also, what does adiabaticity mean for an ice phase cloud?  

AR: We assume that the cloud is vertically homogeneous with a constant lapse rate. 

 

RC: p 12, Case Study NA1: Need to include the Figure number in the text.  

AR: Agreed. 

AC: “Study area NA1 is a completely cloud-covered scene over northern Canada containing clear and 

ice-covered land and open ocean surfaces (Figures 08 and 09).” 

 

RC: p 13, lines 25-26: Which existing algorithms were compared to these results?  

AR: Will remove the subordinate clause.  

AC: “In general, the quantitative and qualitative agreement between CC4CL and CALIOP CTH is 

impressive.” 

 

RC: p 14, lines 10-11: Why not show the extensive validation here?  

AR: Will add a reference to the Stengel paper mentioned above. 

AC: “The results shown here are a representative sample from an extensive validation performed 

within the Cloud_cci project (Stengel et al., 2017).” 

 

RC: p 15, lines 6-11: For the optimal estimation retrieval, are the spectral response differences handled 

similar to the ANN cloud mask (i.e., adjustment factors), or are they explicitly included in the forward 

model? What about relative radiometric calibration, could that be playing a role in the large MODIS-

AATSR retrieval differences?  

AR: Spectral response difference are taken into account when producing LUTs applied within CC4CL 

and are thus included in the forward model.  

 

RC: p 15, line 18: Here calibration deficiencies are acknowledged. Relative calibration should be 

explored as a cause of the retrieval differences.  



AR: Although we acknowledge that there are calibration differences, and doubt that sensors give 

precisely the same results, they were found to be consistent over vicarious calibration sites. For 

example, a 3 % offset between AATSR and MODIS has been found for visible channels (Smith and 

Cox, 2013), and a bias of < 0.3 K between MODIS and AVHRR longwave infrared channels (Cao and 

Heidinger, 2002). We think that this difference is not large enough to account for all the retrieval 

differences we see here. Note that the LUTs do take spectral differences into account, with the 

limitation that they have been calculated for an average value and not the full spectral shape, so that 

non-linear effects remain. 

AC: “We did not quantify the contribution of each of these processes to overall retrieval differences 

when using different sensor data. In particular it would be worth investigating the impact of spectral 

response differences, which was outside the scope of this paper and the ESA Cloud_cci project.” 

D. L. Smith and C. V. Cox, "(A)ATSR Solar Channel On-Orbit Radiometric Calibration," in IEEE 

Transactions on Geoscience and Remote Sensing, vol. 51, no. 3, pp. 1370-1382, March 2013. doi: 

10.1109/TGRS.2012.2230333 

Changyong Cao, Andrew K. Heidinger, "Inter-comparison of the longwave infrared channels of 

MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit intersections", Proc. 

SPIE 4814, Earth Observing Systems VII, (24 September 2002); doi: 10.1117/12.451690; 

https://doi.org/10.1117/12.451690 

RC: p 15, lines 29-30: Can the authors provide references for these user applications?  

AR: Will add references. 

AC: “On the one hand, they are useful for several user applications, such as model validation, data 

assimilation applications, or climate studies in general (Liu et al., 2017, Yang et al., 2016).” 

 

Liu, C., R. P. Allan, M. Mayer, P. Hyder, N. G. Loeb, C. D. Roberts, M. Valdivieso, J. M. Edwards, 

and P.-L. Vidale (2017), Evaluation of satellite and reanalysis-based global net surface energy flux and 

uncertainty estimates, J. Geophys. Res. Atmos., 122, 6250–6272, doi:10.1002/2017JD026616. 

Yang, Qinghua, et al. "Brief communication: The challenge and benefit of using sea ice concentration 

satellite data products with uncertainty estimates in summer sea ice data assimilation." The 

Cryosphere, vol. 10, no. 2, 2016, p. 761. 

 

RC: p 16, line 29: “radiatively effective rather than physical cloud top”  

AR: Will correct. 

AC: “Any CTH retrieved from AVHRR (heritage) data is the radiatively effective rather than physical 

cloud top …” 

 

RC: p 17, line 9: The MODIS C6 phase referred to here is that of the cloud optical properties 

algorithm, not the IR phase referred to earlier in the paper.  

AR: The reviewer is correct. Our modifications above already account for that. 

 



RC: p 18, lines 10-12: Perhaps this is worded poorly? I would imagine that real, complex vertical 

cloud structure is in fact a large source of retrieval errors, but the analytical approach to retrieval 

uncertainty used here (and in other retrievals) cannot account for this 

AR: We think that, in the case of optically thick, i.e. opaque, clouds, the vertical cloud structure is not 

a major driver of TOA radiances and thus retrieval uncertainty. TOA radiances are mainly constrained 

by the cloud top layer, and also by lower layers until their influence becomes negligible due to vertical 

extinction.  

AC: “Retrieval uncertainty is estimated using only well-understood error sources (e.g. measurement 

and forward model error), neglecting errors due to model assumptions (e.g. the complex, real vertical 

structure). Such errors can be approximated through validation activities and are not currently believed 

to be significant in most circumstances.” 
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Review of "The Community Cloud retrieval for Climate (CC4CL). Part I: A framework applied to 

multiple satellite imaging sensors", by Sus et al. 

 

RC: The manuscript introduces a valuable approach to establish a common passive cloud retrieval 

applicable to a series of standard polar orbiters in order to create data sets usable for climatological 

studies. This would be an important step for the community and the usability of satellite products 

outside the satellite community. I also understand and acknowledge the need to base such an approach 

on well established methods instead of more experimental approaches as suggested by one of the 

other referees. The general presentation is of good/excellent quality. My two co-referees have 

elaborated on a number of specific technical and scientific details already. I want to focus on a more 

general weakness. 

What exactly is the focus of this manuscript? If I missed important, clear, early statements in the 

existing text, I apologize. If not, the reader needs this guideline. In many places important details can 

not be given and are not explained owed to the shear extent of this project. In most cases the reader is 

then correctly referred to other publications where the methods of CC4CL are introduced. This way 

the purpose of the manuscript at hand becomes more and more unclear while reading through it. First 

impression is that the general method will be explained. But then the core retrieval techniques are 

explained elsewhere (McGarragh). Then a technical explanation of the ANN cloud mask is started, 

but it stays too short to be fully comprehensible. After the introduction of example cases Fig 3-5 and 

cross sections Fig 9-16, I expected an in-depth discussion of reason for differences and a quantitative 

validation (section titles containing "validation") or cross-comparison of all products, but the 

discussion stays very general and mostly describes differences. Proper validation is again shown 

elsewhere (Stengel). 

The limited original content of this manuscript (correct me, if I’m wrong) is not reflected by the title 

and manuscript length (e.g. 8 figures 8-15 with very comparable content and not too surprising 

differences between active and passive sensor, but no quantitative validation). The authors should 

clarify the purpose of this manuscript and shorten parts published elsewhere even stronger. I suggest 

to consider these general points and a revision of the manuscript. 



AR: We appreciate the comments of referee 3 and agree that some clarification is required to explain 

the purpose of the paper. Please note that this has also been pointed out by referee #2, so our answer 

here has been copied from our comments to reviewer #2. 

This paper’s main purpose is to present a new cloud retrieval framework (CC4CL). It is a two part 

publication that contains a detailed description of the retrieval algorithm in part II. Part I should not be 

seen as a validation paper, but rather contains a section that provides the reader with an overview of 

the functionality of CC4CL, including generic strengths and weaknesses. The goal is to inform the 

reader of potential applications of this data in future research. The four case studies aim to illustrate 

the strengths and weaknesses of CC4CL through detailed, direct (i.e. with very little averaging), and 

collocated comparisons with independent CALIOP data. The Stengel paper, as the reviewer correctly 

mentions, contains a true validation of CC4CL, but to include such an in-depth analysis here would 

have substantially increased the paper’s length. We think that keeping part I concise and focused 

better serves its purpose as an introduction to the functionality and generic applicability of CC4CL. 

For readers who might be interested in a validation of CC4CL after reading part I, we refer to the 

Stengel paper in the text. 

However, we will replace “validation” with “examination” or “analysis” throughout the text. The 

reviewer is correct that no true validation study has been carried out here, and we rephrase in order to 

avoid misunderstandings. 

 

Specific major issues: 

RC: p3, line 27: "Moreover, the resulting time series are carefully validated ... (ISCCP, PATMOS-x, 

CM SAF, and MODIS Collection 6), reanalysis and model data (ERAInterim and EC-Earth), ground-

truth synoptic observations, and CALIOP lidar data." 

My understanding was that I would see that in this manuscript: You will only show CALIOP 

comparisons, will you? Could you please clarify. 

AR: Yes, we only compared with CALIOP. We will add a reference here to the Stengel paper, and 

also a reference to our internal product validation report. 

AC: "Moreover, the resulting time series were carefully validated against well-established 

climatologies (ISCCP, PATMOS-x, CM SAF, and MODIS Collection 6), reanalysis and model data 

(ERAInterim and EC-Earth), ground-truth synoptic observations, and CALIOP lidar data (Stengel et. 

Al, 2017, PVIR)." 

 

RC: p8, section 4.3: I think you cannot call this chapter "validation". There is no systematic 

validation, only a few selected case studies, which mainly show the problems and no systematic 

quantitative validation. Four case studies of time height cross sections are shown only to present that 

lidar cth does not have much to do with passive cth? I also expected CER and COT validation 

somewhere. 

AR: We agree with the reviewer and will, as mentioned above, replace “validation” with 

“comparison”. As the reviewer mentions, this comparison shows the generic strengths and 

weaknesses of CC4CL, which certainly relates to the processing of passive imager data. However, the 

reader should appreciate the basic functionality of CC4CL and we find that these local comparisons 

are well suited for that purpose. Please also note that the CALIOP COT information is less reliable 

than CTH, which is why we did not compare with COT. 

AC: “Comparison with CALIOP” 

 

RC: p13, line 15: You mean, proper quantitative validation is shown in another paper ...Stengel et al 

2017 ESSD? The retrieval method was shown in two other papers as well... McGarragh 2017 at JAS 

and AMT. Remind me about the reason for this manuscript? 

AR: Please see our comments above. 



 

Minor issues: 

 

RC: p 2, line 33: AVHRR was not introduced before, was it? 

AR: The reviewer is correct. Will rephrase. 

AC: “Compared to the Advanced Very High Resolution Radiometer (AVHRR), MODIS has 

several…” 

 

RC: p 2, line 53: What is r? 

AR: The Pearson correlation coefficient. 

AC: “(up to a Pearson correlation coefficient r = 0.94)” 

 

RC: p 2, line 65: How can CTP and CTH be underestimated at the same time? Can you please 

comment? 

AR: We agree that the use of the word “underestimates” twice suggests that CLARA-A2 is wrong in 

both cases. However, whereas CALIOP data are considered to be “truth” data, we will now simply 

state that CLARA-A2 has a lower CTP than the other retrievals, which is not an underestimation, just 

a different retrieval outcome. 

AC: “Comparing CLARA-A2 to PATMOS-X, MODIS C6 and ISCCP, global CTP is lower by 4–90 

hPa…” 

 

RC: p 2, line 66: What is a "cloud phase bias ... of 9%"? Cloud phase? Liquid and ice? Or cloud 

cover? 

AR: This refers to the fraction of liquid clouds. 

 

RC: p 2, line 68: Low or high bias? 

AR: We will specify. 

AC: “+ 197 m” 

 

RC: p 2, line 102: It would be nice to say at this early stage what the purpose of this particular 

manuscript is in ESA Cloud_cci? And what other parallel publications contribute? Later on, the reader 

gets the impression that everything relevant is introduced elsewhere. 

AR: We agree that this needs clarification. We copied our answer to reviewer #1, who made a similar 

comment. 

AC: “The European Space Agency has established the ESA Climate Change Initiative program (ESA 

CCI, 2015; Hollmann et al., 2013) in order to advance knowledge of the climate system through the 

generation of satellite based data records utilizing European and non-European assets. The CCI 

project’s primary focus is the production of thirteen Essential Climate Variables (ECVs) covering 

ocean, atmospheric, and land geophysical variables. With these data records CCI is aiming to fulfil 

highest climate requirements from the Global Climate Observing System (GCOS). The study 

presented here is part of the ESA CCI for clouds (ESA Cloud_cci), which has the objective to develop 

a state-of-the-art open-source community cloud retrieval algorithm being capable of processing 

passive satellite imager data for several decades. Both in part I and part II of this paper, we present the 

processing framework as developed within ESA Cloud_cci (CC4CL, part I), the detailed mechanisms 

of the optimal estimation retrieval (part II), and provide an initial assessment of the strengths and 

weaknesses of derived cloud parameters (part I). With CC4CL several decades of passive imaging 

satellite data have been processed and are made available to the user. The resulting climate data 

records (CDR) are presented in Stengel et al., 2017.” 

 

RC: p 6, line 27: If this is the only description of ANNCOD available, you might at least want to cite 

Kox et al . 2014 (AMT, 7, doi:10.5194/amt-7-3233-2014) who introduced the idea and described in 

much more detail. 

AR: Please also our answers to reviewer #1, who asked for a more detailed introduction of ANNCOD, 

which we will provide. Kox et al. developed an approach similar to ours for retrieving Cirrus COT 

and CTH, but we do not think that they introduced our idea for cloud masking. 



 

RC: p6, line 51ff: This is all a slightly vague description, if it isn’t detailed somewhere else. Why do 

you need ... after viewing angle dependency correction ... a whole set of thresholds? ANNCOD 

already gives an answer on the question cloud or no-cloud, doesn’t it? 

AR: That would mean that the ANNCOD perfectly reproduces CALIPSO data, which is not the case. 

The thresholds were necessary to avoid overestimation of cloud cover due to the sensitivity of the 

passive sensors. With the passive sensor we measure reflectance and temperatures, in contrast to 

CALIPSO which is independent of both. Strongly reflecting surfaces and/or difficult illumination 

conditions will create ambiguities. Especially under difficult illumination conditions such as twilight, 

and over ice/snow surfaces we needed to increase the thresholds to avoid overestimation and decrease 

the false alarm rate (knowing that we might miss some clouds). We made a skill analysis with 

CALIOP to find the most suitable thresholds. The viewing angle correction has nothing to do with 

this, but more or less you can see this as a sun-zenith and surface correction of the retrieval. 
 

RC: p7, Figure 2: y-axis. It is PEC not 1-PEC shown, isn’t it? Does the graph show that, at your 

threshold you are only correct by about 50%?? Please discuss. 

AR: The y-axis shows 100 – PEC [%]. The graph shows that the uncertainty increases to about 50 % 

at the threshold. This makes sense, as an ANNCOD value close to its threshold indicates that no clear 

distinction between cloud/no cloud can be made, thus the highest uncertainty. The larger the 

difference between ANNCOD and its threshold, the lower the associated cloud mask uncertainty. 

 

RC: p10, line 10: "consistent". You could also say its all over the place, with different physical 

reasons in any single column. This is not a validation. You even tried to correct cth for cc4cl and still 

have big problems. 

AR: We do find that Figure 9 shows very similar retrieval results of CTH for all three sensors, except 

in sector 2. We are referring here to the agreement amongst sensors, not between sensors and 

CALIOP data. 

 

RC: p11, Figure 7: Please make the labels consistent with the rest of the manuscript: n18->avhrr, 

myd->modis ... 

AR: We will modify labels accordingly. 
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Abstract. We present here the key features of the Community Cloud retrieval for CLimate (CC4CL) processing algorithm. We

focus on the novel features of the framework: the optimal estimation approach in general, explicit uncertainty quantification

through rigorous propagation of all known error sources into the final product, and the consistency of our long-term, multi-

platform time-series provided at various resolutions, from 0.5° to 0.02°.

By describing all key input data and processing steps, we aim to inform the user about important features of this new5

retrieval framework, and its potential applicability to climate studies. We provide an overview of the retrieved and derived

output variables. These are analysed for four, partly very challenging, scenes collocated with CALIOP (Cloud-Aerosol lidar

with Orthogonal Polarization) observations in the high-latitudes and over the Gulf of Guinea/West Africa.

The results show that CC4CL provides very realistic estimates of cloud top height and cover for optically thick clouds but,

where optically thin clouds overlap, returns a height between the two layers. CC4CL is a unique, coherent, multi-instrument10

cloud property retrieval framework applicable to passive sensor data of several EO missions. Through its flexibility, CC4CL

offers the opportunity for combining a variety of historic and current EO missions into one data set, which, compared to single

sensor retrievals, is improved in terms of accuracy and temporal sampling.

1 Introduction

The European Space Agency has established the ESA Climate Change Initiative program (ESA CCI, 2015; Hollmann15

et al., 2013) in order to advance knowledge of the climate system through the generation of satellite based data records

utilizing European and non-European assets. The CCI project’s primary focus is the production of thirteen Essential

Climate Variables (ECVs) covering ocean, atmosphere, and land geophysical variables. With these data records, CCI is

aiming to fulfil highest climate requirements from the Global Climate Observing System (GCOS). This study presented

here is part of the ESA CCI for clouds (ESA Cloud_cci), which has the objective to develop a state-of-the-art open-source20
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community cloud retrieval algorithm which shall be capable of processing passive satellite imager data covering several

decades. Both in part I and part II of this paper, we present the processing framework as developed within ESA Cloud_cci

(CC4CL, part I), the detailed mechanisms of the optimal estimation retrieval (part II), and provide an initial assessment

of the strengths and weaknesses of derived cloud parameters (part I). With CC4CL, several decades of passive imaging

satellite data have been processed and are made available to the user. The resulting climate data records (CDR) are5

presented in Stengel et al. (2017).

Satellite data are an essential source of information for understanding and predicting climate change. They provide global

long-term observations from which geophysical parameters can be derived. These are used for time-series analysis of climate

variables, and also for the assimilation into or validation of climate models (Comiso and Hall, 2014; Yang et al., 2013). A

paramount goal of these efforts is the comprehensive characterization of the global energy and water budgets (Stephens et al.,10

2012).

Clouds considerably influence the global energy budget through [..1 ]direct forcing effects (Kiehl and Trenberth, 1997).

However, clouds are difficult to quantify, having highly variable composition and spatiotemporal distributions, and produce the

largest uncertainty in our understanding of climate change (Norris et al., 2016; IPCC, 2013). Observations from passive imagers

do not sufficiently resolve several important cloud properties, such as vertical structure, sub-pixel heterogeneity, the cloud15

boundary, and the column-integrated ice or liquid water path. Several secondary variables (cloud forward model assumptions,

state of surface and atmosphere, viewing geometry, sensor calibration and spectral response uncertainties) further complicate

cloud retrievals, [..2 ]and insufficient knowledge on their state propagates uncertainties into the derived cloud properties

(Hamann et al., 2014). Nonetheless, passive satellite imagers are the most widely used instruments for cloud retrievals as they

provide long-term, global coverage at acceptable cost for the user.20

There are several satellite-based retrieval frameworks. One of the earliest is the International Cloud Climatology Project

(ISCCP) (Rossow and Schiffer, 1999). ISCCP provides data on cloud products for 1983–2009, and introduced a cloud type

classification based on cloud optical thickness-cloud top pressure (COT-CTP) joint histograms that is still popular even today.

Continuously reprocessed retrieval systems include Pathfinder Atmosphere Extended (PATMOS-x) (Heidinger and Pavolonis,

2009; Heidinger et al., 2012), EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) cLoud, Albedo25

and RAdiation (CLARA-A1) (Karlsson et al., 2013), and MODIS Collection 6 (MODIS C6) (Platnick et al., 2017) as well as

the CERES-MODIS products (Minnis et al., 2011). These retrievals vary in their [..3 ]ancillary data sources, approaches, and

complexity but generally use radiative transfer models and/or derived look-up tables (LUT) to provide a clear-sky reference

and for simulating atmospheric and cloud contributions to top of atmosphere (TOA) radiances. Cloud properties are derived

using decision trees and thresholding (PPS in CLARA-A1), LUT based inversions (MODIS C6), or optimal estimation theory30

(PATMOS-X). COT and CER (cloud effective radius) are usually calculated following Nakajima and King (1990). However, the

derived microphysical variables are not guaranteed to be radiatively consistent with independently derived cloud parameters, as

1removed: shielding and
2removed: propagating
3removed: auxiliary
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most of the retrieval methods are separated into solar and thermal methods even though measurements in these spectral

regions are not independent of parameters retrieved in the other. For cloud masking, the retrieval frameworks apply various

approaches such as Naïve Bayes (PATMOS-X), dynamic thresholding (CLARA-A1), or a [..4 ]majority vote algorithm that

combines four phase tests based on CTT, tri-spectral IR, 1.38 µm, and spectral CER data (Marchant et al., 2016). Finally,

cloud phase or type is determined as a function of a combined convergence/cloud top temperature (CTT)-test (CLARA-A1), the5

Pavolonis et al. (2005) threshold algorithm (PATMOS-X), or a bispectral decision tree considering channels at 8.5 and 11 µm

(MODIS C6). Compared to [..5 ]the Advanced Very High Resolution Radiometer (AVHRR), MODIS has several additional

spectral channels at shortwave infrared (SWIR) wavelengths that provide cloud microphysical information (Platnick et al.,

2017), such that MODIS data provide more information for retrieving cloud products than AVHRR. Still, the MODIS C6 cloud

top retrieval loses sensitivity for optically thinner clouds (COT < 2, Menzel et al. (2010); Christensen et al. (2013)), and [..610

]beyond a penetration depth into the cloud [..7 ]corresponding to > 1 cumulative optical depth (Baum et al., 2012). This

complicates validation against independent measurements such as those derived from lidar, which explicitly observe the cloud

top. Despite some promising results, these studies show that current retrievals underestimate cloud top pressure for optically

thin clouds [..8 ]due to the inherent limitation of the spectral information content of passive IR channels.

There are numerous studies that evaluate the performance of the aforementioned retrievals for cloud [..9 ]fraction with15

weather station data, such as over the Mediterranean (Sanchez-Lorenzo et al., 2017) and [..10 ]contiguous United States (Sun

et al., 2015). The results are variable, but generally show that the inter-annual correlation is highest for PATMOS-X (up to a

Pearson correlation coefficient r = 0.94) and lowest for CLARA-A1 (r = 0.20 – 0.7). More importantly, these studies emphasize

the difficulty of deriving reliable cloud [..11 ]fraction trends from AVHRR time series, as the retrievals overestimate the change

in cloud [..12 ]fraction by as much as an order of magnitude (Sun et al., 2015). There are also several evaluation or validation20

studies for individual retrieval algorithms. Differences between PATMOS-X microphysical retrievals using MODIS data and

the collocated MYD06 product are within retrieval uncertainty (Walther and Heidinger, 2012). CLARA-A2 underestimates

global cloud top height (CTH) by 840 m compared to CALIOP. Comparing CLARA-A2 to PATMOS-X, MODIS C6 and

ISCCP, [..13 ]global CTP is lower by 4–90 hPa and has [..14 ]an absolute cloud phase bias of lower than 9 % (Karlsson et al.,

2016). MODIS C6 CTH bias for low-level boundary layer water clouds is + 197 m compared to CALIOP, and the phase25

detection has been improved for [..15 ]liquid clouds. However, the detection of [..16 ]optically thin ice clouds over warm, bright

4removed: battery of threshold tests (MODIS C6)
5removed: AVHRR
6removed: sees
7removed: to an optical thickness of approximately unity
8removed: even when the full potential of MODIS spectral coverage is used.
9removed: cover

10removed: conterminous
11removed: cover
12removed: cover
13removed: it underestimates global CTP
14removed: a
15removed: optically thin ice
16removed: supercooled water clouds remains problematic (Baum et al., 2012)
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surfaces remains problematic (Marchant et al., 2016). For MODIS C5, global CTH was underestimated relative to CALIOP

by 1.4 km (Holz et al., 2008).

Satellite observations of clouds are available for the last 40 years. However, data need to be carefully processed and analysed

in order to derive a consistent long-term data record from several inter-calibrated satellite platforms. Consistency in approach

can be traded for continuity of results, and multi-platform algorithms could exploit additional data when newer sensors be-5

come available. Modern sensors provide improved spectral coverage and spatial resolutions and, thus, potentially better cloud

retrievals. However, their data records are too short to produce climatologies of at least 30 years, and discontinuities are built

into time series when higher resolution satellite data are input to the processing. Major complications of cloud retrievals in-

clude optically transparent clouds, multi-layer or overlapping clouds, and effective cloud top height determination. The degree

to which these complications can be addressed depends on the nature of the retrieval and the type of input satellite data used.10

MODIS provides a much larger spectral sampling than the six AVHRR heritage channels. MODIS and atmospheric sounders

are clearly superior when detecting cloud height through the application of the “CO2-slicing” technique. However, when con-

sistent climatologies are to be built, time series length and spatiotemporal resolution limit the choice in retrieval type and input

satellite data.

[..17 ]15

In order to produce the cloud CDR presented here, we used satellite data from MODIS Aqua and Terra (2000–2014)

(King et al., 1992), AVHRR on NOAA-7 to NOAA-19 and METOPA (1978–2014) (Jacobowitz et al., 2003), ATSR-2 on ERS-

2 (1995–2003), and AATSR on ENVISAT (2002–2012). Only the AVHRR-equivalent channels from MODIS and AATSR are

used. Hence, the resulting retrieval data are hereafter referred to as the “AVHRR heritage dataset”. Moreover, the resulting

time series [..18 ]were carefully validated against well-established climatologies (ISCCP, PATMOS-x, CM SAF, and MODIS20

Collection 6), reanalysis and model data (ERA-Interim and EC-Earth), ground-truth synoptic observations, and CALIOP lidar

data (Stengel et al., 2017, 2018).

The CC4CL core algorithm was developed in a modular fashion and provides open-source access to support distribution and

development within the scientific community. Particular attention was paid to allow processing of multiple instruments within

a single framework, thus maximising the consistency of cloud products independent of the sensor source. The framework25

accounts for physical consistency amongst all output variables and radiative consistency amongst all input satellite radiances.

This is an improvement [..19 ]over other established retrieval frameworks. These commonly derive COT and CER by adopting

the Nakajima and King (1990) approach, but macrophysical products are estimated independently and are thus radiatively

inconsistent with the former variables. [..20 ]Here, parameters are retrieved simultaneously, providing a retrieval that is

17removed: The European Space Agency has established the ESA Climate Change Initiative program (ESA CCI, 2015; Hollmann et al., 2013) in order to

advance knowledge of the climate system. The project’s primary focus is the production of thirteen Essential Climate Variables (ECVs) for ocean, atmosphere,

and land. The main objective of ESA Cloud_cci is to develop a state-of-the-art open-source community cloud retrieval algorithm which is capable of processing

passive imager data for a number of (non-)European satellites covering several decades. We
18removed: are
19removed: on
20removed: Another novel
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radiatively consistent over the wavelengths of the observations, given that the instrument’s noise characteristics are well

known. Another key feature of CC4CL is the production of uncertainty estimates of retrieval parameters (see also Platnick

et al. (2017)) through explicit error propagation from input to output data. With these criteria in mind, the Optimal Retrieval of

Aerosol and Cloud (ORAC) (Thomas et al., 2009a; Poulsen et al., 2012) was chosen from three competing algorithms [..21 ]in a

“round-robin” (i.e. each algorithm is tested against all other algorithms) analysis. All algorithms have proven their maturity5

for deriving the considered cloud parameters (cloud cover, liquid and ice water path, cloud top height) from AVHRR and

MODIS data (Stengel et al., 2015).

In this study, we present the key features of the CC4CL processing algorithm. We particularly focus on discussing the [..22

]key features of the framework: the optimal estimation approach in general, the explicit uncertainty quantification through

rigorous propagation of all known error sources to the final product, and the consistency of our long-term, multi-platform time-10

series provided at various resolutions, from 0.5° to 0.02°. By describing all key input data and processing steps, we inform

the future user about important features of this new processing framework, and its potential applicability in climate studies.

We provide an overview of the retrieved and derived output variables. These are initially [..23 ]examined in a detailed analysis

of retrieval results that we collocated with CALIOP observations for three scenes in the Arctic and one scene in the Gulf

of Guinea/West Africa. The results show that CC4CL produces mixed-layer estimates for cases where optically thin clouds15

overlap, but provides [..24 ]realistic estimates of cloud top height and cover for optically thick clouds.

2 Data and methods

2.1 Level-1 (L1) satellite data

2.1.1 AVHRR

The Advanced Very High Resolution Radiometer (AVHRR) is a cross-track scanner with a 2900 km swath width, providing20

almost daily global coverage. The sensor is equipped with six spectral channels (Table 01), out of which only five can be

transmitted simultaneously so that either channel 3a or 3b is available. In-flight calibration is performed only for thermal

channels, using a stable blackbody and a space view as references. AVHRR has been mounted on several NOAA platforms as

well as on EUMETSAT’s MetopA/B, all of which are sun-synchronous, polar orbiting satellites. Due to a lack of orbit control

technology for all NOAA AVHRR’s, there is considerable orbit drift in equatorial crossing times (ECT) both for morning (ECT25

< 12:00 LST) and afternoon (ECT > 12:00 Local Solar Time (LST)) satellites. To reduce drift-induced changes in retrieved

cloud properties, any AVHRR is replaced with its corresponding successor once available (= the AVHRR prime record).

Typically, one morning and one afternoon NOAA satellite are in orbit at any time.

21removed: within a “Round Robin” selection process (Stengel et al., 2015).
22removed: novel
23removed: validated in a comprehensive and
24removed: very
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For CC4CL, we use Global Area Coverage (GAC) L1c data on a reduced spatial resolution of 1.1 km × 4 km at nadir (Dev-

asthale et al., 2017). The AVHRR GAC L1c data record, including advanced inter-calibration efforts, was produced for ESA

Cloud_cci and CMSAF (Schulz et al., 2009; Karlsson et al., 2013). CC4CL processed AVHRR data from 08/1981 (NOAA-7)

up to 12/2014 (MetopA + NOAA-19). We applied a filtering technique to channel 3b data, and a database algorithm for splitting

midnight orbits and blacklisting.5

2.1.2 MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is carried by NASA’s Terra and Aqua satellite platforms in a

near sun-synchronous polar orbit at 705 km altitude. Due to orbit control, ECT is a constant 10:30 LST for Terra, and 13:30

LST for Aqua. The Aqua satellite is a member of the “A-Train” constellation, which also includes the CALIOP and CloudSat

satellites. MODIS is a cross-track scanner with a 2330 km swath width, producing a complete near-global coverage in less than10

two days (Xiong et al., 2009).

CC4CL is applied to Collection 6 MOD021km (Terra) and MYD021km (Aqua) L1b input data (NASA LP DAAC, 2015). For

the AVHRR-heritage dataset produced here, the NASA Goddard [..25 ]Space Flight Center performed a spectral subsetting

of the 36 MODIS channels available (see Table 01 for the channels extracted), and data were directly shipped to ECMWF

(European Centre for Medium-Range Weather Forecasts) for archiving. The files are stored in HDF-EOS format at 1km spatial15

resolution, with the 250 m and 500 m channels having been aggregated to 1 km resolution. MODIS L1b data are organized

in granules, each of which contains ~5 minutes of MODIS data or ~203 scan lines. Geolocation information is provided in

separate files for Terra (MOD03) and Aqua (MYD03), containing geodetic latitude and longitude and solar/satellite zenith and

azimuth angles. L1b data are corrected for all known instrumental effects through on-board calibrator data, and are organized

into a viewing swath matching the geolocation file structure (MODIS Characterization Support Team, 2009). With CC4CL, we20

processed data from 02/2000 (Terra) or 08/2002 (Aqua) to 12/2014.

2.1.3 ATSR-2 and AATSR

The second and third generation Along Track Scanning Radiometers (ATSR-2 and Advanced ATSR, Merchant et al. (2012))

were launched on ESA’s polar orbiting satellites ERS-2 and ENVISAT in 04/1995 and 03/2002, respectively. Both platforms

were put into a sun-synchronous orbit at ~780 km altitude, with ECT = 10:30 LST for ERS-2 and ECT = 10:00 for ENVISAT.25

Both ATSRs are identical in their overall configuration except for data transfer bandwidth (Table 01). ATSR is [..26 ]is equipped

with on-bard calibration capabilities, such as two black-body targets for the thermal channels and a sun-illuminated opal target

for the visible/near-infrared channels. ATSR uses a dual-view system: a nadir view, and a forward view scanning the surface

at an angle of 55°. The continuous scanning pattern produces a nadir resolution of approximately 1 km × 1 km with a swath

width of 512 pixels or ~500 km, providing global coverage every six days.30

25removed: space flight centre
26removed: designed to be self-calibrating, with two on-board
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We used no forward view data for cloud retrievals, as the 3-dimensional cloud structure produces parallax effects which are

not accounted for within the current forward model. With CC4CL, we processed ATSR data from launch date until 05/2003

(ERS-2) and 04/2012 (ENVISAT).

2.2 [..27 ]Ancillary data

2.2.1 ERA-Interim5

We use ERA-Interim data as first-guess input for the retrieval of surface temperature, and as input [..28 ]to a neural network

cloud mask (see Section 3.3.1). ERA-Interim is a reanalysis of the global atmosphere, and is available from 1979 until today

(Berrisford et al., 2011; Dee et al., 2011). The atmospheric profile variables are defined at 60 vertical levels. The original

horizontal resolution is defined through a T255 spherical-harmonic representation for the basic dynamical fields, and through a

reduced Gaussian grid with ~79 km spacing for surface fields. We downloaded ERA-Interim data from the ECMWF’s MARS10

archive at a spatial resolution of 0.72°(the default preprocessing grid resolution), and at a higher resolution of 0.1° for the

neural network cloud mask input variables (Table A1). We acquired analysis (i.e. not forecast) data at 6-hourly timesteps. After

download, all files were remapped to the CC4CL preprocessor grid through Climate Data Operators (CDO, 2015). This was

necessary, as ERA-Interim coordinates are defined at the cell boundaries, whereas they are defined at the cell centres within

CC4CL. The reanalysis data are temporally interpolated onto the satellite image’s centre time by linearly weighting the files15

before and after.

ERA-Interim’s land-surface model still needs to be improved in terms of its simulation of soil hydrology and snow cover.

This affects the utilization of satellite data over land surfaces within ERA-Interim, which has negative effects on the repre-

sentation of clouds and precipitation (Berrisford et al., 2011). The confidence in temperature trend estimates, however, has

improved considerably so that ERA-Interim data have been used as an alternative to observational datasets to monitor climate20

change (Willett et al., 2010).

2.2.2 Land use

We downloaded United States Geological Service (USGS) Land Use/Land Cover raster data from the global land cover char-

acteristics database (U.S. Geological Survey, 2016). This was necessary, as early AVHRR data are distributed without masking

information. The USGS data are used as a land sea mask within the optimal estimation retrieval (Section 3.3.3), as well as a25

land cover classificator within the cloud mask and the Pavolonis cloud typing scheme (Section 3.3.2). The dataset is defined

on a regular lat/lon grid with 0.05° resolution. The USGS land cover classification was primarily derived from 1 km AVHRR

Normalized Difference Vegetation Index (NDVI) 10-day composites for April 1992 through March 1993 (U.S. Geological

Survey, 2016).

27removed: Auxiliary
28removed: for the
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2.2.3 Land surface BRDF

MODIS Collection 6 Bidirectional Reflectance Distribution Function (BRDF) data (MCD43C1, Schaaf and Wang (2015)),

providing kernel weights for the Ross-Thick/Li-Sparse-Reciprocal BRDF model, are used within the retrieval scheme to set

surface albedo and bidirectional reflectance distribution conditions. These data are available every 8 days derived from cloud-

cleared 16-day Terra and Aqua measurements, and provided in HDF-EOS format at 0.05° spatial resolution. MCD43C1 data are5

classified as high-quality given sufficient observations, and otherwise a low quality estimate is produced based on climatology

anisotropy models. Validation against albedo measurements made at Baseline Surface Radiation Network (BSRN) sites show

that the black-sky and white-sky albedo computed from the single sensor MCD43A1 high-quality product are well within 5 %

of the measured albedo, while the low-quality product is within 10 % (Lucht, 1998).

We regridded MCD43C1 data to instrument resolution through bilinear interpolation, and filled missing pixels within the10

time series with pixel values of the temporally closest 8-day composite file providing valid data. For the pre-MODIS era, we

produced a BRDF climatology by averaging all data available for a particular 8-day time slot. MCD43C1 kernel weights are

applied to all CC4CL sensors, neglecting differences in spectral response functions[..29 ]. This might result in retrieval biases,

particularly in spectral regions that are sensitive to rapidly changing environmental processes such as vegetation growth

(near-IR). Note that the use of a climatology would add a discontinuity in the surface time series if there are trends in the15

surface BRDF and emissivity time series during the MODIS era.

2.2.4 Land surface emissivity

For land surface emissivity, we used the Cooperative Institute for Meteorological Satellite Studies (CIMSS) global land surface

infrared emissivity database created by the Baseline Fit method (Seemann et al., 2008). These data are derived from the MODIS

operational land surface emissivity product (MOD11), to which the fit method is applied for filling spectral gaps between20

channels. CIMSS emissivity data are available on a monthly basis at ten wavelengths with 0.05° spatial resolution.

As for BRDF, we produced a land surface emissivity climatology for the pre-MODIS era by averaging all data available for

a particular month.

2.3 Collocating CC4CL Level-2 (L2) data and CALIOP

We resampled CC4CL L2 data to a regular latitude/longitude grid at 0.1° × 0.1° resolution. This resampling is required for25

an intercomparison of CC4CL L2 data on a common grid[..30 ]. However, note that differences in sensor spatial resolution

[..31 ]can lead to significantly different PDFs within a grid box, the effect of which we did not analyse. CALIOP’s Level 2

5 km Cloud Layer data were produced by averaging over ∼14 beams with 70 m diameter taken every 335 m within a 5 km

along-track corridor. Thus, CALIOP data have a 70 m across-track × 5 km along-track spatial resolution (see also Holz et al.

(2008)), and the size of the corresponding CC4CL grid box is approximately 11 km (meridional) × 2.9 to 5.6 km (zonal). As30

29removed: as the surface is a relatively minor component of the observed signal
30removed: , as
31removed: are reduced when averaging all values available for each grid box
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a consequence, the CC4CL grid boxes are larger than the reference CALIOP pixels, but are still small enough to resolve some

of the cloud features that CALIOP observes. Note that AVHRR GAC data were produced by averaging 5 neighbouring pixels

across-track, but CALIOP data were averaged along-track.

3 The CC4CL retrieval system

3.1 Heritage5

In the early stages of the Cloud_cci project, a “Round Robin Exercise” evaluated three different algorithms regarding their

applicability for retrieving cloud parameters from satellite data (Stengel et al., 2015), which were 1) the operational processing

system of the CM SAF (2015), 2) the Clouds from AVHRR Extended (CLAVR-X) algorithm used to generate the PATMOS-x

climatology (Heidinger et al., 2013), and 3) the ORAC retrieval which was previously used to produce the [..32 ]Global Cloud

and Aerosol Dataset Produced by the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data set10

(Thomas et al., 2009b; Natural Environment Research Council et al., 2015). All three algorithms were driven with identical

MODIS and AVHRR input data and ERA-Interim meteorological background information for five days in 2008. The results

where analysed with respect to CloudSat, CALIOP and AMSR-E reference data.

Based on the outcomes of that study (Stengel et al., 2015), ORAC was selected to be the cloud retrieval scheme within

CC4CL. Moreover, code modifications were identified and characterized to render ORAC fit for the purpose of ECV produc-15

tion.

3.2 Preprocessing

The CC4CL preprocessor initially defines the dimensions and content of the sensor and preprocessing grids (Figure 01).

The sensor grid has the same extent and resolution as the input orbit or granule. The sensor grid is filled with sensor radiances

and angles, time, and geolocation data (section 2.1), whereas surface BRDF (section 2.2.3), snow/ice coverage (from ERA-20

Interim, section 2.2.1), and surface emissivity (section 2.2.4) are bilinearly interpolated onto that grid. We use BRDF data over

land only. For sea pixels, the Cox and Munk ocean surface reflectance model calculates BRDF coefficients as a function of

ERA-Interim wind speed. These coefficients also contain foam and underlight components (Sayer et al., 2010). The albedo

of snow/ice covered pixels is set to globally constant values of 0.958 (Ch1, CC4CL ID as in Table 01), 0.868 (Ch2), 0.0364

(Ch3), and 0.0 (Ch4), and is area-weighted in the event of fractional sea/ice cover.25

The preprocessing grid is a regular latitude/longitude grid that covers the extent of the sensor grid, but at a coarser resolution

of 0.72°× 0.72°. It is used to store the average of all sensor angle and surface emissivity values falling within a grid box and

spatially interpolated (nearest neighbour) land-use data (section 2.2.2). ERA-Interim variables were transformed before input

to the preprocessing grid as described in section 2.2.1. For profile variables, vertical geopotential coordinates are calculated

from pressure coordinates.30

32removed: GRAPE
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The preprocessor then calls the cloud mask (section 3.3.1) and cloud typing (section 3.3.2) algorithms. Finally, the Radiative

Transfer for TOVS (RTTOV) model is executed on the preprocessing grid data as defined by ERA-Interim surface and profile

variables. RTTOV outputs profiles of cloud transmittance both above and below cloud for the shortwave channels and emis-

sivity for the longwave channels. For details on RTTOV and the forward model, see part II of this paper (McGarragh et al.,

2017c).5

All data are written to NetCDF files. In theory, the main processor would evaluate these inputs twice, assuming different

cloud phases (e.g. ice and liquid). In practice, ORAC uses the preprocessed cloud mask and phase to select an appropriate

method to reduce processing time.

3.3 CC4CL cloud retrieval

3.3.1 Cloud detection10

The CC4CL cloud mask is produced by (1) estimating pseudo CALIOP cloud optical depth (ANNCOD) from L1 measure-

ments with an artificial neural network (ANN), (2) correcting ANNCOD for viewing-angle dependencies, and (3) classifying

ANNCOD into binary cloud mask information by thresholding.

CC4CL applies a set of ANN for cloud masking, one for each of the illumination conditions day (solar zenith angle θ0 <

80◦), night (θ0 ≥ 90◦), and twilight (80≤ θ0 < 90◦). The ANNs are multilayer perceptrons with one input layer, one hidden15

layer with 50 neurons, and one output layer, which produces ANNCOD ranging from 0 to 1. Through incremental testing, we

found that 50 neurons was the value for which the trade-off between output quality and computing speed was optimal.

For the input layer, input variables are surface temperature, snow/ice cover, and the land/sea mask for all three cloud

masks. Regarding sensor data, input channels are Ch1, Ch2, Ch5, Ch6, and Ch5-Ch6 for the day ANN, Ch4, Ch5, Ch6,

Ch5-Ch4, and Ch5-Ch6 for the night ANN, and Ch5, Ch6, and Ch5-Ch6 for the twilight ANN.20

The various ANNs were trained with NOAA-18 AVHRR L1c data, [..33 ]ancillary information (ECMWF land-sea mask,

snow-ice mask, and surface temperature), and cloud optical depth (COD) “truth” data obtained from CALIOP’S 532 nm lidar

product (CAL_LID_L2_05kmCLay-Prov-V3-01). AVHRR Ch3a data were generally excluded. We trained the day ANN with

all remaining AVHRR channels, but also excluded Ch3b to be consistent with those NOAA platforms that switch between

Ch3b transmission at night and Ch3a at day (NOAA-16, NOAA-17, MetopA) For night and twilight conditions, we produced25

ANNs both with and without Ch3b data input. This was necessary to avoid misclassification of very cold clouds and/or land

surfaces due to Ch3b’s very low signal-to-noise ratio. In addition to the days evaluated in the “Round Robin” comparison, we

selected 12 further training days in 2008 that contain collocations between NOAA-18 and CALIOP, represent COD seasonality,

and provide global coverage. Prior to training, all CALIOP COD values > 1 were set to unity. [..34 ]Ancillary data input are

the ERA-Interim skin temperature, a snow/ice mask derived from ERA-Interim snow depth and sea ice concentration, and30

the USGS land/sea mask. Finally, we applied a simple correction algorithm to remove a cosine viewing-angle dependency of

33removed: auxiliary
34removed: Auxiliary
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retrieved ANNCOD. This was necessary, as the maximum viewing angle in the AVHRR training dataset was just 35°. The

binary cloud mask is estimated by classification of ANNCOD data into clear and cloudy through a set of threshold values. The

thresholds themselves vary depending on illumination and surface conditions, namely land, sea, and snow/ice cover (Table 02),

and were quantified [..35 ]through iterative optimization. They are fixed for all sensors and orbits. As the ANN was trained

with AVHRR data only, differences in spectral response functions need to be considered before the ANN can be applied5

to MODIS and AATSR. We derived appropriate coefficients through linear regression analysis between collocated satellite

observations for each input channel pair (Table 03), applying a filter on differences in satellite zenith angle (> 0.5°), sun

zenith angle (> 1°), and observation time (> 30 mins). The resulting coefficients were applied to MODIS and AATSR

satellite data before ANN input.

We estimate cloud mask uncertainty based on the assumption that this uncertainty is inversely proportional to the difference10

between retrieved ANNCOD and the threshold applied. As a first step, we generated a CALIOP cloud mask by application

of a clear/cloudy threshold value of 0.05. The CALIOP cloud mask is then compared with the collocated ANN mask by

quantification of a Percent Correct (PEC) score. PEC estimates the ratio between all correctly classified pixels and the number

of all pixels analysed. Finally, the “truth” uncertainty is defined as 100 − PEC %. We then established the statistical relationship

between this uncertainty and the ANNCOD difference to its threshold. Before application of the approach, we normalised15

differences (ND) to 1. We found a linear correlation between uncertainty and ND for clear cases given by

y = 37.275×ND+49.2, (1)

and a second order polynomial correlation for cloudy cases (Figure 02)

y = 54.133× (ND− 1)2 +1.862. (2)

The equations of these regression fits are used within CC4CL to quantify cloud mask uncertainty as a function of ND.20

3.3.2 Cloud typing

Cloud phase is determined by application of the Pavolonis cloud typing algorithm (Pavolonis et al., 2005). The Pavolonis

algorithm outputs 6 cloud types (Table 04), which we then reclassified into water or ice clouds: liquid = fog/warm liq-

uid/supercooled, ice = opaque ice/cirrus/overlap. For CC4CL, the fog type test was deactivated. The algorithm always uses

the 0.65, 11, and 12 µm channel data. It reads 3.75 µm data whenever available, and 1.65 µm otherwise. These two different25

approaches produce nearly identical results, except for certain thin clouds and cloud edges (Pavolonis et al., 2005). In addition,

we introduced two new cloud types within CC4CL. In response to validation studies, we decided to change the phase of ice

clouds whose retrieved CTT is > 273.16 K, the freezing point of water (new cloud type = SWITCHED_TO_WATER), and of

water clouds whose CTT < 233.16 K, the lower limit of supercooled water (SWITCHED_TO_ICE).

35removed: by trial and error
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The Pavolonis algorithm has weaknesses in detecting cirrus clouds at high latitudes, which are often misclassified as opaque

ice clouds. Performance is considerably better when the VIIRS algorithm is used, which provides additional channels and

threshold tests. However, these cannot be applied to our AVHRR heritage dataset (Pavolonis et al., 2005).

3.3.3 Optimal estimation retrieval of COT, CER and CTP

The optimal estimation retrieval ORAC is a non-linear statistical inversion method based on Bayes’ theorem (Rodgers, 2009).5

A state vector containing all variables to be retrieved is optimized to obtain the best fit between observed TOA radiances and

radiances simulated by a forward model. The retrieval problem is that of finding the minimum value of a cost function. This

function is based on a χ2 distribution, which is a combination of the squared deviations between the measurements and the

forward model and the retrieved state vector and the a priori state vector, each weighted by their associated uncertainties.

The important benefits of ORAC, relative to more traditional retrieval methods, are that cloud parameters are retrieved using10

information in all satellite channels simultaneously, so that the retrieved parameters provide a robust representation of the

short-wave and long-wave radiance effects of the observed cloud. The algorithm estimates the retrieval uncertainty, which [..36

]quantifies the range of values that are feasible considering the uncertainty in the satellite measurements, ancillary data

and ORAC forward model. For a more detailed description of the ORAC algorithm see part II of this publication (McGarragh

et al., 2017c).15

3.4 Post-processing

For each input pixel, the main processor [..37 ]evaluates these inputs twice, assuming different cloud phases (e.g. ice and

liquid[..38 ]). In theory, ORAC could use the preprocessed cloud mask and phase to select an appropriate method to

reduce processing time. The postprocessor will then select the appropriate output variables according to the Pavolonis cloud

phase. As described in section 3.3.2, the postprocessor changes cloud phase in case retrieved CTT does not match the Pavolonis20

phase. Finally, output variables are written to primary and secondary NetCDF files (Table 05).

4 L2 data - [..39 ]initial [..40 ]analysis

We first examine CC4CL cloud properties for one sample scene that extends from approximately 100° W to 170° W and 45° N

to 75° N over North America. We focus on the consistency of retrieval values derived from different sensors (AVHRR, MODIS,

AATSR). This includes pixel-based uncertainties of the key variables (CTP, COT, CER, and cloud mask). We then perform25

36removed: can be thought as a measure of the consistency between the retrieved cloud parameters and the satellite measurements(Poulsen et al., 2012)
37removed: produces retrieval values for both
38removed: clouds.
39removed: analysis and
40removed: validation
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[..41 ]an analysis of retrieved cloud properties, for which CALIPSO data are our reference. This [..42 ]comparison is limited

to three high-latitude scenes for which collocations for all sensors with CALIOP are available.

4.1 CC4CL cloud properties

The sample scene (07/22/2008 20:58 LST) is characterized by various cloud types, and the CC4CL cloud mask defines a rela-

tively small fraction as cloud free ([..43 ]Figures 03 to 06). Visually, similar spatial patterns are observed in the three products.5

The data show that there are more cloud free AVHRR pixels, which is related to the coarser spatial resolution compared to

MODIS and AATSR. The LST difference is ≤ 5 minutes, so there is little cloud displacement between observations.

CTP data are approximately normally distributed for all three sensors. Both COT and CER show positive kurtosis and

skewness, as values close to 0 are common. CER data are somewhat bimodal, having a primary peak at ∼12 µm and a

secondary peak at ∼35 µm (Figure 08 and Table 06). These peaks probably correspond to liquid and ice phase clouds,10

respectively. Mean value differences are not significant between AVHRR and MODIS for CTP, MODIS and AATSR for COT,

and AVHRR and AATSR for CER. The standard deviation of differences between two sensors are always lowest for AVHRR

minus MODIS (Table 06). Significance tests of mean differences and standard deviations of residuals between sensor retrievals

are sensitive to outliers[..44 ]. Although cloud displacement due to observation time differences is probably small, we cannot

discard its influence on such outliers. Even though we found no significant relationship between sensor retrieval residuals and15

observation time difference (not shown), residuals are likely to be smaller and thus possibly insignificant if sensor observation

times were identical. Moreover, even modest relative radiometric calibration differences between sensors of a couple

percent could cause large retrieval differences, particularly for COT.

4.2 Uncertainties

Median absolute uncertainties are CTP = 26.7 hPa, COT = 6.1, CER = 2.0 µm, and cloud mask = 13.7 % (Figure 07). The20

median relative retrieval uncertainty (not shown) is relatively low for [..45 ]CTP and CER, but considerably larger for COT

(CTP = 4.7 %, COT = [..46 ]55.0 %, CER = [..47 ]13.6 %). COT uncertainties increase with COT magnitude, and [..48 ]largest

uncertainties are found in cases of opaque cloud coverage and cloud over sea-ice surfaces (Figure 04 middle and Figure 07

topright). CER results are similar to COT, although relative uncertainties are somewhat lower. Cloud-free areas show increased

cloud mask uncertainties, particularly over sea-ice surface areas. Note that the cloud mask uncertainties have been quantified as25

a function of the normalized difference to the cloud mask threshold, whereas relative retrieval uncertainties (100 × uncertainty

÷ retrieved value) are shown for CTP, COT, and CER.
41removed: a validation
42removed: validation
43removed: Figures 03 to 05
44removed: , and are to some extent influenced by
45removed: all three retrieval variables
46removed: 6.1
47removed: 2.0
48removed: the RGB image (Figure 011) shows that the
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4.3 [..49 ]

4.3 Comparison with CALIOP

We found collocations between CALIOP, AVHRR, MODIS, and AATSR for three study areas in the Arctic at 07/22/2008

19:15 LST (study area North America 1 = NA1, n = 120, Figure 09, RGB channels: red = Ch4 solar component, green =

Ch2, blue = Ch1), 07/22/2008 20:58 LST (NA2, n = 163, Figure 011), and 07/27/2008 08:10 LST (Siberia = SIB, n = 116,5

Figure 013). These are located within 60° to 75° N latitude, and contain vegetated land, snow-covered land, open ocean, and

sea-ice surfaces. For NA1 and SIB, all CALIOP pixels were classified as cloud covered, while for NA2 about half of the pixels

are cloud free.

When including AATSR, collocations are restricted to high latitude areas and by the narrow swath of AATSR. We thus

decided to include another scene without AATSR data in the Gulf of Guinea/West Africa between 7° S and 12° N at 24/10/200910

13:45 LST (Africa = AFR, n = 1181, Figure 015). There, about ten times more pixels are available than in the other scenes and

cloud systems not contained in the Arctic data are observed, such as low-level stratocumulus and deep convection.

We divided all study areas into logical sectors, for each of which a characteristic pattern of cloud coverage and type pre-

dominates. The [..50 ]analysis is shown for comparisons of CTH [..51 ](derived from CTP) rather CTP (retrieved) to enable

a more intuitive visualization and discussion. CTH is derived using the retrieval’s atmospheric profile. An important caveat15

to note is the difference between physical and radiating cloud top. CALIOP uses an active sensor that is (roughly) sensitive

to particle number. It identifies what we call the physical cloud top, denoted by the sharp increase in particle number. The

passive radiometers analysed using CC4CL are (roughly) sensitive to the temperature of the cloud, from which the height is

calculated. However, TOA radiation is [..52 ]product of emission and scattering processes throughout the atmospheric column

[..53 ](Platnick, 2000). As there is no single height contributing, the retrieved CTT is more accurately described as an effective20

radiating pressure, being an average of the cloud’s temperature profile weighted by the probability that a photon from each

level can arrive at the detector. As a rule of thumb, the observed CTT represents the state one optical depth into the cloud. For

the purposes of comparison to CALIOP, CC4CL computes a ‘corrected’ CTH, which adjusts the retrieved CTH to where the

physical cloud top would be expected, assuming an adiabatic profile.

4.3.1 Case studies25

Case study NA1

Study area NA1 is a completely cloud-covered scene over northern Canada containing clear and ice-covered land and open

ocean surfaces (Figures 09 and 010). There are a variety of single and multi-layered clouds. CC4CL correctly classifies all

49removed: Validation with CALIOP
50removed: validation
51removed: rather than the retrievedvalue
52removed: the sum total
53removed: observed
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pixels as cloud covered, with a few exceptions in sectors 3 and [..54 ]4 (Figures 09 and 010). CTH retrievals are consistent

between the three sensors, only differing in sector 2. CTH is generally lower than CALIOP’s top layer height, unless the latter

is optically thick as in sector 4. In the case of a (semi-)transparent cloud top layer, multiple surfaces (several cloud layers,

Earth surface) contribute to the observed satellite data. CC4CL CTH is then located closer to, at, or even below the underlying

cloud layer (sectors 1, 3 and 2, respectively). For a single-layer, optically thick (COT > 1) cloud, CC4CL and CALIOP CTH5

agree very well (sector 4). Under such conditions, the retrieval is very accurate. Cloud phase agreement between CC4CL and

CALIOP is very variable. It is best for optically thick high ice cloud coverage (sector 1), and worst for low water clouds (sector

4).

Case study NA2

Study area NA2 is located entirely over snow/ice free land in Western Canada. CALIOP cloud coverage is 4.5 %, spatially10

broken, and variable in height and phase. Clear-sky pixels are mostly identified by CC4CL (69.3 % correct), and cloudy pixels

are occasionally missed (78.7 % correct). CC4CL retrievals of thin high clouds and false positive cloudy pixels have low CTH

values (sector 1). Small-scale horizontal variability in CALIOP cloud phase is reflected by CC4CL data, which overestimate

the fraction of liquid water clouds in sector 2. CC4CL reproduces CALIOP’s spatial variability in CTH, which it slightly

underestimates by 0.5–1 km in sector 2. In sector 3 CC4CL considerably underestimates CTH by up to 7 km. Most of these15

clouds are optically and geometrically thin.

Case study SIB

Study area SIB crosses the Novaya Zemlya islands north of Siberia and is defined by a mixture of open ocean and partially

snow/ice covered land surfaces. According to both CALIOP and CC4CL, it is completely cloud covered.

In the event of single-layer cloudiness, CC4CL CTH agrees very well with CALIOP (sector 1 and, in particular, sector 3). The20

CTH difference between CC4CL retrievals increases in the presence of overlapping clouds (sector 2). There are optically thin

but vertically thick (∼4 km) clouds in sector 2. For these the retrieved CTH is considerably underestimated by ∼6 km, which is

probably a result of lower layer contributions that “contaminate” the satellite signals. Overall, about 62.3 % of CC4CL pixels

agree with CALIOP phase. Phase mismatch occurs in cases of single layer optically thin clouds (sector 2) and, less frequently,

stratiform cloudiness (sector 3).25

Case study AFR

Study area AFR is located over the Gulf of Guinea and Western Africa, containing open ocean and snow/ice free land

surfaces. As we excluded AATSR data, about 10 times more pixel collocations with CALIOP are available (n = 1181) than for

previous cases. Additionally, measurements contain tropical and coastal cloud systems such as extensive low-level stratiform

cloudiness and continental deep convection (Figure 015).30

54removed: 4.
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In general, the quantitative and qualitative agreement between CC4CL and CALIOP CTH is impressive[..55 ]. CC4CL data

track the spatial pattern of continental CTH very well (sector 3), which increases northwards and shows some small scale

variability beyond 8° N. However, CC4CL underestimates CTH of vertically thick clouds and instead places the cloud top at a

layer’s vertical centre. The height of the stratiform cloud field is almost identical for CC4CL and CALIOP, although CTH of

near-surface stratiform clouds is overestimated below thin high cirrus (sector 1). For the small layer located at 4 km height at ∼5

6.7° S and the thin high cirrus layer around 2° S, MODIS retrieval values differ somewhat from CC4CL AVHRR and CALIOP.

Again, the phase of optically thick clouds is retrieved very well, which however is not the case for the thin ice cirrus clouds.

Generally, CC4CL using the AVHRR heritage channel dataset are almost entirely insensitive to the very high, thin cloud layer

in sector 1 (covering stratiform clouds) and 2 (covering the sea surface). Here, CC4CL is rather driven by contributions from

very low clouds or the sea surface.10

4.3.2 [..56 ]Summary of case studies

The four study areas clearly show that CC4CL retrievals of CTH are very close to CALIOP values for single layer, optically

thick clouds. For significant extents of the regions presented, the CTH is accurate to within 240 m. For multi-layer clouds,

CC4CL estimates are almost exclusively located in between CALIOP’s top and bottom layer estimates. For these cases, the

optimal estimation algorithm processes satellite signals that are likely to contain radiance contributions from multiple cloud15

layers. The OE then optimizes the fit between modelled and observed radiances by placing the cloud lower in the atmospheric

profile, and so the mixed nature of the satellite data leads to an underestimation of CTH. The results shown here are a repre-

sentative sample from an extensive validation performed within the Cloud_cci project [..57 ](Stengel et al., 2017).

There is no clear influence of the underlying land type or topography on retrieval values or the cloud mask. However, the

limited sample size does not allow for generalizations. For site NA2, CALIOP identified cloud-free pixels, 69.3 % of which20

were also detected as cloud-free by CC4CL’s neural network cloud mask, and with few exceptions as low level water clouds

otherwise. In relatively few cases, CC4CL fails to detect clouds seen by CALIOP (% of missed clouds = 9.0 (NA1), 21.3

(NA2), 0.6 (SIB), 3.1 (AFR)). We did not account for fractional cloud coverage, as we set a grid box as cloud covered if any

corresponding CC4CL pixel contains cloud information. As a consequence, there are slightly more cloud covered pixels for

the spatially higher resolved MODIS and AATSR data than for AVHRR.25

The CC4CL phase identification [..58 ]does not agree with any of the three CALIOP cloud flags [..59 ]consistently, which

is [..60 ]reasonable given the differences between active and passive observations. After rounding CC4CL values to the nearest

integer, the percentage of pixels with equal phase is lowest for the top layer at COD > 0 (NA1 = 49.9 %, NA2 = 32.2 %, SIB

= 62.3 %, AFR = 53.0 %), but similar for the mid layer COD > 0.15 (NA1 = 53.1 %, NA2 = 46.5 %, SIB = 66.4 %, AFR =

55removed: , compared to the performance of existing algorithms
56removed: Validation summary
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58removed: agrees continually with none
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94.7 %), and the bottom layer COD > 1 (NA1 = 47.3 %, NA2 = 57.4 %, SIB = 66.3 %, AFR = 91.1 %). These values however

do show that phase determination performs very well if optically thick clouds dominate, as is the case for study area AFR.

When averaged over all layers, phase agreement is largest for site AFR (79.6 %), followed by SIB (65.0 %), and clearly lower

for NA1 (50.1 %) and NA2 (45.4 %).

For ice clouds, the most frequently occurring cloud types are cirrus (ID=6) for CALIOP and overlap (ID=8) or cirrus (ID=7)5

for CC4CL. Water cloud types are more heterogeneous and for CALIOP predominantly low transparent (ID=0), but altostratus

(ID=5) and altocumulus (ID=4) are also frequent. CC4CL water clouds are approximately equally distributed amongst water

(ID=3) and supercooled (ID=4) cloud types.

The scenes investigated and discussed here are just a small subset of the large variety of global cloudiness. We could only find

collocations with AATSR data at high latitudes, where multi-layer cloud coverage is common. Under such difficult conditions,10

the retrieved CTH is a mixture of all radiatively contributing cloud layers. Please refer to Stengel et al. (2017) for a quantitative,

global validation of CC4CL cloud properties.

5 Discussion

5.1 The flexibility of the optimal estimation approach

In general, the retrieved values are insensitive to the specific instrument evaluated[..61 ]. Absolute mean differences are ≤ 21.915

hPa for CTP, ≤ 1.3 for COT, and ≤ 2.1 for CER. These are mostly smaller than the mean retrieval uncertainties themselves.

Moreover, the RGB images show that all major patterns of cloud coverage and structure are resolved by all three sensors.

However, AATSR data show larger deviations than the other sensors (Figure 08). It is unlikely that differences in spectral

response functions are the reason. MODIS and AATSR heritage channels are relatively close in their spectral response but their

retrieval values do differ considerably. Also, even though spectral response differences are largest between MODIS and20

AVHRR [..62 ](which results in a reflectance difference of up to 30–40 [..63 ]% (Trishchenko et al., 2002), [..64 ]their retrieval

values are much more similar. The difference [..65 ]between AATSR and both AVHRR and MODIS is largest for CER, so

microphysical variables, which are derived from reflectance data only, appear to be most affected.”

The differences between mean values (µ1 and µ2) are almost always significant (t-Test p-value < 0.1, H0: µ1 = µ2).

Thus, from a statistical point of view, the samples we analysed for AVHRR, MODIS, and AATSR have been drawn from25

different populations and are thus statistically inconsistent. In other words, the retrieval system should not produce statistically

consistent cloud parameters when driven with spatiotemporally collocated satellite data obtained from three [..66 ]different

sensors. However, differences in cloud conditions at the various observation times and sensor spatial resolution explain part of

61removed: , such that the merged data set is sensible.
62removed: disagree nonetheless more in their spectral response,
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these discrepancies. Moreover, a non-significant t-Test result is possibly too strict a metric for estimating the consistency of

retrieval results. There is a range of confounding processes that affect each individual retrieval estimate, such as observation

times, spectral responses, calibration deficiencies, and a varying number of cloudy pixels to be compared. We did not quantify

the contribution of each of these processes to overall retrieval differences when using different sensor data. In particular

it would be worth investigating the impact of spectral response differences, which was outside the scope of this paper5

and the ESA Cloud_cci project. The case studies clearly show that, under optimal conditions for single layer cloud retrievals,

CC4CL products are consistent with CALIOP and practically insensitive to sensor characteristics.

We suggest that AVHRR and MODIS data can be used interchangeably, depending on the user’s application, such as model

validation, data assimilation applications, or climate studies in general (Liu et al., 2017; Yang et al., 2016). AVHRR data

provide long-term data records from 1982, however at a relatively coarse resolution of 5 km × 3 km. The MODIS data record10

started in 2000, and is thus too short to be considered a climatology. However, L1 data are available at 1 km resolution, and

orbit control is guaranteed. With CC4CL, we also produced 0.05° lat/lon daily composites for Europe (data not shown), which

is close to MODIS’s original resolution in that area. These data provide a more detailed view on cloud features than AVHRR.

In that sense, CC4CL products retrieved from AVHRR and MODIS are complementary. More detailed analysis is required to

assess differences in CC4CL output data when applied to AATSR data.15

5.2 The value of uncertainty quantification

The retrieval uncertainties prove to be a valuable source of information. On the one hand, they are useful for several user

applications, such as model validation, data assimilation applications, or climate studies in general (Liu et al., 2017; Yang

et al., 2016). On the other hand, they allow for diagnosis of potential retrieval shortcomings. For example, we see that COT

uncertainty scales with COT itself and is thus heteroscedastic (see also Poulsen et al. (2012)). CC4CL COT values are at20

times unnaturally large, and the associated uncertainty reflects that. Also, it highlights under which conditions the optimal

estimator converges to a solution with a relatively large divergence from the measurements[..67 ], which here are associated

with optically thick clouds or underlying snow/ice cover (see also Kahn et al. (2015); Wang et al. (2011)). COT and CER

uncertainties are clearly largest, and reflect the limited information available with which to retrieve these values. For further

possible explanations due to assumptions and limitations within the methodology applied, please see part II.25

We applied an independent approach to quantify cloud mask uncertainty. It is valuable information, as a neural network

does not provide output uncertainty. The approach we adopted here is straightforward. When the NN output, which is a pseudo

CALIOP COD, approaches a defined threshold value for cloudiness, the uncertainty increases towards a maximum of 50 %.

This maximum value indicates that a cloud mask value is basically random, as it is equally likely to be cloudy or cloud-free.

With that in mind, the cloud mask uncertainty data are easy to interpret. For example, we see that sea-ice pixels classified as30

cloudy to the North of study area NA2 (Figure 07) show uncertainties of 40 - 50 %. This indicates that the NN is sensitive

to bright ground cover, which may be confused with clouds. We suggest that users of ESA Cloud_cci data should routinely

67removed: . In the cases shown here, large uncertainties
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consult cloud mask uncertainties. If a more conservative cloud mask is required, it can be easily built by setting a maximum

value for an acceptable uncertainty level.

5.3 Strengths and weaknesses

The results clearly show that CC4CL retrieves CTH of single layer, optically thick clouds with high accuracy and precision.

When compared to CALIOP, the mean deviation for these cases is as low as 10–240 m CTH. This is a promising result, and5

shows that the optimal estimation framework is robust and appropriate for retrieving cloud properties from AVHRR heritage

channels.

In the case of multi-layer clouds, CC4CL is not able to retrieve CTH of the top layer if it is optically thin. The estimate is

somewhere between the two cloud pressure values. This is an expected limitation of our framework, and also of other retrieval

algorithms using passive sensor data (Holz et al., 2008; Karlsson and Dybbroe, 2010). Poulsen et al. (2012) found that ORAC10

CTP and CER estimates are robust when the top ice cloud layer is > 5 optical depths, and otherwise they are the weighted

average of several cloud layers. The AVHRR heritage channels do not provide sufficient information on retrieving cloud vertical

structure. In the case of semi-transparent top-layer clouds, the upwelling signal, [..68 ]whether it stems from a cloud or the

Earth’s surface, contributes to the total TOA reflectance or brightness temperature. This mixed satellite measurement is input

to CC4CL, which retrieves cloud parameters assuming a single cloud layer. As brightness temperatures and reflectances of,15

e.g., a cold, semi-transparent, bright top-layer cirrus cloud overlapping a warmer, opaque, and darker low-level water cloud,

are a mix of several contributing surfaces, so will be the final retrieval value. Any CTH retrieved from AVHRR (heritage) data

is the radiatively effective rather than physical cloud top (Karlsson et al., 2013). For CC4CL, we often see that the final CTH

estimate is placed between top and lower levels and is thus an underestimate, which is a common problem amongst retrieval

algorithms using passive sensor data (Watts et al., 2011; Holz et al., 2008; Karlsson et al., 2013).20

Multi-layer cloud property retrievals have been developed (Watts et al., 2011), and we also implemented and tested such

an approach within CC4CL (McGarragh et al., 2017b). However, this method requires MODIS channels beyond the AVHRR

heritage set, and thus will not be applicable to a full AVHRR reprocessing. For ESA Cloud_cci, [..69 ]a conscious decision

was made to [..70 ]trade spectral information for time series continuity. Thus, discontinuities due to changing spectral coverage

within the entire dataset are avoided (Stengel et al., 2017). In addition, we introduced corrected estimates of CTP and the25

derived CTT and CTH to get closer to the physical or geometrical cloud top. The correction is based on a vertical displacement

of CTP along the atmospheric profile based on optical thickness and the cloud’s extinction coefficient, which is a function of

CER (McGarragh et al., 2017a). The correction is only made for ice phase clouds.

[..71 ]At first glance, estimates of cloud phase appear reasonable when compared to CALIOP. However, we find the best

overall agreement of ∼ 65 % for the lower layers (cumulative COD > 0.15 or > 1). This is just slightly better than a random30

guess of cloud phase. Cloud phase is generally difficult to quantify, and estimates of various satellite derived products disagree
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considerably for that variable (Stengel et al., 2015). An evaluation of MODIS Collection 6 cloud phase yielded a total cloud

phase agreement of over 90 % with CALIOP. However, as the study is exclusively based on single-phase cloudy pixels, the

performance of MODIS C6 as applied to multi-phase pixels is still unknown (Marchant et al., 2016). We also find very high

scores for cloud phase determination if restricting the analysis to optically thick, spatially extensive cloud fields such as in

study site AFR. There, cloud phase agrees with lower layer CALIOP estimates by as much as 95 %.5

The key problems for phase determination are vertical stratification and the lack of direct in-situ measurements of cloud

phase. CALIOP observations, and also DARDAR (radar lidar, Ceccaldi et al. (2013)), are currently considered to be the

most advanced estimates of cloud phase, relying on active measurement principles with depolarization and total attenuated

backscatter at multiple wavelengths for additional constraints (Winker et al., 2009; Karlsson and Dybbroe, 2010). However,

this assumption is primarily based on the physical theory underlying their retrievals, rather than on a comprehensive validation10

with independent observations of cloud phase.

Within CC4CL, we apply the Pavolonis algorithm for phase detection (Pavolonis et al., 2005). It was designed using sim-

ulated radiance data for varying phase, and further adjusted after analysis with real satellite data. The algorithm itself is a

decision tree that contains a set of fixed threshold values for input reflectances and brightness temperatures, and was tuned to

AVHRR. Even though we expect differences in phase determination between AVHRR vs. MODIS and AATSR due to vary-15

ing spectral response functions, these were not large for the three study sites. Pavolonis et al. (2005) state that their product

could not be validated due to the lack of direct observations, but rather underwent a consistency check with ground-based,

independent estimates.

The relatively low degree of agreement between CC4CL and CALIOP is not satisfying if CALIOP is considered to be the

truth. However, we refrain from concluding that the CC4CL phase estimate was unrealistic as, to date, no robust, spatially20

resolved in-situ observations are available and our comparisons included multi-layered cloud conditions. It is difficult to de-

termine the representative CALIOP cloud layer when validating a passive sensor retrieval. For single layer, optically thick

clouds, CC4CL can be compared with any layer exceeding a cumulative optical thickness of 0 or 1. If such a cloud layer was

covered by optically and geometrically thin cirrus clouds, the satellite data are still dominated by lower cloud level reflectance

and, in particular, emittance. Consequently, Pavolonis cloud phase is not a top layer estimate in such cases. For study area25

AFR, we also found situations where the NN cloud mask, which was trained with CALIOP data, correctly identifies thin high

cirrus as cloud over ocean but the cloud type algorithm failed to identify its ice phase. One potential improvement would be to

use the NN to provide an estimate of cloud phase. Initial tests indicated that this approach would indeed improve the (global)

agreement with CALIOP, which is to be expected, as the NN is trained with CALIOP data. However, no estimate of cloud type

would be provided. It would also be worth investigating the relationship between the quality of retrieved variables (CTH,30

COT, CER, cloud phase) and cloud mask uncertainty.

CALIOP data are considered to be the current benchmark of cloud detection, vertical structure, and phase (Winker et al.,

2009; Karlsson and Johansson, 2013; Holz et al., 2008), and are – except for the cloud mask – a source of validation with

absolute independence from CC4CL. The main limitation of CALIOP though is its narrow view, so that global coverage is

very limited. Also, the instrument is only able to probe the full geometrical depth of clouds whose total optical thickness is not35

20



larger than about 3–5 (Karlsson and Johansson, 2013). We found no clear relationship between CC4CL CTP uncertainty and the

difference between CC4CL CTP and CALIOP CTP (data not shown). This suggests that the AVHRR heritage channels provide

independent information on cloud vertical structure that is not clearly related to CALIOP’s CTP estimates. Retrieval uncertainty

is [..72 ]estimated using only well-understood error sources (e.g. measurement and forward model error[..73 ]), neglecting

errors due to model assumptions (e.g. the complex, real vertical [..74 ]structure). Such errors can be approximated through5

validation activities and are not currently believed to be significant in most circumstances.

6 Conclusions

We have shown that CC4CL is a robust and flexible framework for producing cloud products from passive satellite sensor

data. Differences between retrieved values for collocated satellite data are smaller than estimated uncertainties for AVHRR,

MODIS, and AATSR. ESA Cloud_cci data provide climatologies (AVHRR) as well as highly resolved snap-shots for selected10

regions (e.g. Europe, MODIS). The complete sensor set of CC4CL data forms a unique, coherent, long-term, multi-instrument

cloud property product that exploits [..75 ]synergistic capabilities of several EO missions. Compared to single sensor retrievals,

CC4CL data are improved in terms of accuracy and spatiotemporal sampling.

CC4CL explicitly estimates retrieval uncertainties according to the principles of error propagation through optimal esti-

mation theory. These uncertainties are a valuable source for model validation, data assimilation, climate studies, or retrieval15

diagnosis. Cloud mask uncertainty is a novel feature that enables the user to assess product quality and to create individualized

cloud masks.

We find that CC4CL is limited by weaknesses that are common to passive sensor cloud product retrievals. In general, an

initial [..76 ]comparison against CALIOP data shows that the CTH of optically thin clouds is underestimated. In the case of

multi-layer clouds, the retrieved CTH is a mixture of all radiatively contributing cloud layers. The AVHRR heritage channels20

do not provide sufficient physical information that would allow for detailed retrievals of cloud vertical structure. Moreover, the

forward cloud model is structurally incomplete, as it assumes a single-plane cloud layer. A multi-layer cloud property retrieval

has been added to CC4CL, but is only applicable to MODIS data.

To account for CTH underestimation, we implemented a correction for CTH that assumes that passive sensor data see beyond

the top into the clouds up to a penetration depth of ∼ 1 optical depth. Corrected cloud top values are stored as separate variables25

within CC4CL output files.

Similarly, we find that the cloud phase estimate is only accurate for optimal retrieval conditions (optically thick top clouds).

In a subsequent reprocessing of the AVHRR data record, we replaced the Pavolonis et al. (2005) algorithm with a neural

network cloud phase estimation with better performance scores.
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Under optimal conditions for single layer cloud retrievals, CC4CL products show little sensitivity to sensor characteristics.

Single layer, optically thick cloud retrievals are very accurate [..77 ]when compared against CALIOP (bias < 240 m), which

emphasizes the maturity and robustness of CC4CL. We thus recommend ESA Cloud_cci data to be used for multi-annual

studies of cloud parameters and more detailed assessments of regional patterns and diurnal variability.
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Figure 01. Schematic of the CC4CL preprocessor.
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Figure 02. Neural network cloud mask uncertainty as derived from observations.

29



Figure 03. CTP retrieval values for study area NA2 with data from AVHRR (left), MODIS (middle), and AATSR (right).

Figure 04. COT retrieval values for study area NA2 with data from AVHRR (left), MODIS (middle), and AATSR (right).

Figure 05. CER retrieval values for study area NA2 with data from AVHRR (left), MODIS (middle), and AATSR (right).
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Figure 06. Cloud phase retrieval values for study area NA2 with data from AVHRR (left), MODIS (middle), and AATSR (right).
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Figure 07. Absolute uncertainties of MODIS AQUA retrieval data for study area NA2 and CTP [hPa], COT, CER [µm], and Cloud mask

[%].
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Figure 08. Density histograms of NOAA18 (N18), MODIS AQUA (MYD), and AATSR (ENV) retrieval data for study area NA2 and (a)

CTP, (b) COT, and (c) CER.
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Figure 09. Study area NA1 (North America 1). Red (Ch1), green (Ch2), blue (Ch4 - Ch5) image derived from NOAA18 data resampled to

0.01°×0.01° resolution. Date of observation is 07/22/2008, 19:15 LST. Orange lines: extent of the collocated MODIS granule, yellow lines:

extent of the collocated AATSR orbit, red line: CALIOP track outside (dashed) and within (solid) study area.

Figure 010. Vertical cross section of study area NA1 (North America 1) along the CALIOP track at 5 km horizontal resolution. Top: CTH for

CC4CL retrievals (coloured points) and CALIOP measurements (vertical bars), and surface elevation and surface type (blue = open water,

green = land, grey = snow/ice). The CALIOP data are shown for those pressure layers where the cumulative top-to-bottom COD exceeds a

threshold value of 0 (top layer), 0.15 (mid layer), and 1 (bottom layer). Bottom: Cloud mask/phase (ice to water = red to blue, cloud free =

white, not determined = grey) and type (see Table 04 for key/value pairs) for all three CALIOP layers and CC4CL retrievals. For CC4CL,

cloud phase was averaged when resampling, and cloud type was assigned to the most frequent class per grid box. Sectors of characteristic

cloud fields are separated by black vertical lines. Number of pixels n = 120
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Figure 011. Study area NA2 (North America 2). As Figure 09, but at 07/22/2008, 20:58 LST.

Figure 012. Study area NA2 (North America 2). As Figure 010, but at 07/22/2008, 20:58 LST (n = 163).
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Figure 013. Study area SIB (Siberia). As Figure 09, but at 07/27/2008, 08:10 LST.

Figure 014. Study area SIB (Siberia). As Figure 010, but at 07/27/2008, 08:10 LST (n = 116).
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Figure 015. Study area AFR (Africa). As Figure 09, but at 10/24/2009, 13:45 LST.

Figure 016. Study area AFR (Africa). As Figure 010, but at 10/24/2009, 13:45 LST. Due to space restrictions, no cloud type values are

shown in table. n = 1181
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Table 01. The CC4CL AVHRR-heritage dataset channel characteristics for AVHRR, AATSR, and MODIS. Instrument noise as applied

within CC4CL is in reflectance for CC4CL channels 1-3, and in brightness temperature [K] for channels 4-6.

CC4CL

ID

sensor

ID

channel width

(µm)

noise

AVHRR 1 1 0.58 – 0.68 0.005

2 2 0.725 – 1.10 0.005

3 3a 1.58 – 1.64 0.005

4 3b 3.55 – 3.93 0.25

5 4 10.50 – 11.50 0.2

6 5 11.5 – 12.5 0.2

MODIS 1 1 0.62 – 0.67 0.01

2 2 0.841 – 0.876 0.01

3 6 1.628 – 1.652 0.01

4 20 3.66 – 3.84 0.2

5 31 10.78 – 11.28 0.2

6 32 11.77 – 12.27 0.2

AATSR 1 1 0.545 – 0.565 0.005

2 2 0.649 – 0.669 0.005

3 4 1.58 – 1.64 0.005

4 5 3.51 – 3.89 0.25

5 6 10.4 – 11.3 0.1

6 7 11.5 – 12.5 0.1
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Table 02. Threshold values applied to ANNCOD data for cloud mask classification.

day night twilight land sea snow/ice threshold

x x 0.2

x x x 0.35

x x 0.1

x x x 0.4

x x 0.3

x x x 0.35

x x 0.2

x x x 0.4

x x 0.3

x x x 0.4

x x 0.35

x x x 0.4
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Table 03. Linear regression coefficients between collocated AVHRR and MODIS/AATSR channels.

CC4CL channel ID sensor regression coefficients

1 MODIS 0.8945 × ch1 + 2.217

AATSR 0.8542 × ch1

2 MODIS 0.8336 × ch2 + 1.749

AATSR 0.7787 × ch2

4 MODIS 0.9944 × ch4 + 1.152

AATSR 1.0626 × ch4 - 15.777

5 MODIS 0.9742 × ch5 + 7.205

AATSR 0.9793 × ch5 + 5.366

6 MODIS 0.9676 × ch6 + 8.408

AATSR 0.9838 × ch6 + 4.255
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Table 04. Cloud type classification for CC4CL and CALIOP.

ID CC4CL ID CALIOP

0 clear 0 low transparent

1 switched to water 1 low opaque

2 fog 2 stratocumulus

3 water 3 low broken cumulus

4 supercooled 4 altocumulus

5 switched to ice 5 altostratus

6 opaque ice 6 cirrus

7 cirrus 7 deep convective

8 overlap 8 n/a
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Table 05. CC4CL primary and secondary output. NN = neural network, SV = state vector, PP = postprocessed, PV = Pavolonis et al. (2005)

algorithm, OE = optimal estimation.

variable name abbrev. unit origin description

primary variables

cloud mask cldmask 1 NN Binary cloud occurrence classification

cloud type cldtype 1 PV Categorical cloud type classification

cloud phase phflag 1 PV cloud phase classification

cloud top pressure ctp hPa SV OE retrieval estimate of cloud top pressure

cloud top pressure unc. ctp_unc hPa SV OE retrieval unc. of cloud top pressure

cloud effective radius cer µm SV OE retrieval estimate of cloud effective radius

cloud effective radius unc. cer_unc µm SV OE retrieval unc. of cloud effective radius

cloud optical thickness cot 1 SV OE retrieval estimate of cloud optical thickness

cloud optical thickness unc. cot_unc 1 SV OE retrieval unc. of cloud optical thickness

surface temperature stemp kelvin SV OE retrieval estimate of surface temperature

surface temperature unc. stemp_unc kelvin SV OE retrieval unc. of surface temperature

secondary variables

cloud mask unc. cldmask_unc 1 PP derived from NN output and threshold distance

cloud top height cth km PP derived from CTP and atmospheric profile

cloud top height unc. cth_unc km PP derived from retrieval unc. of CTP

cloud top temperature ctt kelvin PP derived from CTP and atmospheric profile

cloud top temperature unc. ctt_unc kelvin PP derived from retrieval unc. of CTP

cloud water path cwp g/m2 PP derived from CER and COT (Han et al., 1994)

cloud water path unc. cwp_unc g/m2 PP derived from retrieval unc. of CER and COT

cloud albedo at 0.06 µm cla 1 PP derived from CER and COT based on DISORT (Laszlo et al., 2016)

cloud albedo at 0.06 µm unc. cla_unc 1 PP derived from retrieval unc. of CER and COT

cloud albedo at 0.08 µm cla 1 PP derived from CER and COT based on DISORT (Laszlo et al., 2016)

cloud albedo at 0.08 µm unc. cla_unc 1 PP derived from retrieval unc. of CER and COT

cloud effective emissivity cee 1 PP derived from 10.8 and 12.0 µm data
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Table 06. Statistics of CTP, COT, and CER retrieval values for study area NA2 and AVHRR (first value in each cell), MODIS (second value),

and AATSR (third value). ∆ values are given for AVHRR minus MODIS (first value in each cell), AVHRR minus AATSR (second value),

and MODIS minus AATSR (third value). ∗t-Test p-value > 0.1, indicating that differences in mean values are not significant.

mean median stddev skewness kurtosis

CTP 667.2, 665.0, 645.2 667.8, 668.1, 632.4 147.5, 142.7, 146.2 -0.2, -0.2, 0.1 -0.4, -0.4, -0.8

∆ CTP 2.2∗, 21.9, 19.7 4.2, 22.3, 18.5 63.0, 138.7, 138.9 -0.4, -0.3, -0.3 8.2, 1.0, 0.7

COT 12.3, 13.6, 13.4 7.2, 8.6, 8.8 19.8, 19.7, 17.6 6.6, 5.7, 5.3 60.5, 46.2, 40.8

∆ COT -1.3, -1.2, 0.2∗ -0.6, -1.2, -0.5 16.5, 22.0, 21.3 0.7, 2.4, 1.8 59.6, 41.5, 33.1

CER 21.1, 19.2, 21.3 16.5, 14.4, 18.1 13.0, 12.1, 10.9 1.1, 1.4, 0.6 1.4, 1.2, -0.8

∆ CER 1.9, -0.2∗, -2.1 0.5, -1.0, -1.9 7.0, 11.6, 11.3 0.8, 0.8, 0.5 7.9, 4.4, 2.3
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Table A1. ERA-Interim variables used within CC4CL. Variables marked with * are available at 0.1°spatial resolution, all others default to

0.72°.

variable name abbrev. ID unit

profile variables

Geopotential Z 129 m2 s−2

Temperature T 130 K

Specific humidity Q 133 kg kg−1

Log. surface pressure LNSP 152 Pa

Ozone mass mixing ratio O3 203 kg kg−1

surface and single level variables

Sea-ice cover* CI 31 (0-1)

Snow albedo ASN 32 (0-1)

Sea surface temperature SSTK 34 K

Total column water vapour TCWV 137 kg m−2

Snow depth* SD 141 m of water

equivalent

10 metre U wind component U10M 165 m s−1

10 metre U wind component V10M 166 m s−1

2 metre temperature T2M 167 K

Land/sea mask LSM 172 (0,1)

Skin temperature* SKT 235 K
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Table A2. CC4CL L2 primary output variables. NN = neural network.

variable name abbrev. unit

latitude lat degree

longitude lon degree

solar zenith solzen degree

satellite zenith satzen degree

relative azimuth relaz degree

cloud top pressure ctp hPa

cloud top height cth kilometer

cloud top temperature ctt kelvin

cloud liquid water path cwp g/m2

cloud effective radius cer µm

cloud optical thickness cot 1

NN cloud optical thickness cccot 1

cloud albedo cla 1

cloud effective emissivity cee 1

cloud fraction cc_total 1

NN cloud mask cldmask (0,1)

cloud phase flag phflag 1

Pavolonis cloud type cldtype 1

retrieval convergence flag conv 1

number of retrieval iterations niter 1

a priori cost at solution costja 1

measurement cost at solution costjm 1

quality control flag qcflag 1

land/sea flag lsflag (0,1)

snow/ice mask siflag (0,1)

illumination flag ilflag 1

surface temperature stemp kelvin
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Table A3. CC4CL L2 secondary output variables. NN = neural network.

variable name abbrev. unit

cloud optical thickness a priori cot_ap 1

cloud optical thickness first guess cot_fg 1

cloud effective radius a priori cer_ap µm

cloud effective radius first guess cer_fg µm

cloud top pressure a priori ctp_ap hPa

cloud top pressure first guess ctp_fg hPa

surface temperature a priori stemp_ap kelvin

surface temperature first guess stemp_fg kelvin

albedo in channel no X alb_ch_X 1

reflectance in channel no X ref_ch_X 1

brightness temperature in channel no X bt_ch_X kelvin

firstguess reflectance in channel no X fg_ref_ch_X 1

firstguess brightness temperature in channel no X fg_bt_ch_X kelvin

reflectance residual in channel no X ref_res_ch_X 1

brightness temperature residual in channel no X bt_res_ch_X kelvin

degrees of freedom signal deg_free 1
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