
Response to Referee Comments: 
 
We thank the two referees for their detailed comments, which have been a great 
help to improve our manuscript. 
 
In addition to our responses to the referee comments, further analysis has changed 
our understanding of how to use plumes in the calibration and led us to a 
substantial revision of Sections 3.2 and 3.3. We noticed that the behavior of the NO, 
NO2 and O3 sensors (see Eqn. 6 and Fig. 4), which we use to calibrate NO sensors’ 
sensitivity, is caused by the cross-sensitivity of the sensors (see Eqn. 1-4) and not 
the chemical conservation equations as we had previously thought (see Reactions 1-
3). An alternative constraint is proposed in the revised manuscript and the reported 
values for accuracy evaluation as well as the figures in Sections 4 and 5 have 
changed slightly. Also, analysis of the recently released NO2-B43F and Ox-B431 
sensors are now included in the manuscript. The basic approach and overall 
message of the paper are unchanged. 
 
 
Referee #1 Comments: (Referee comments in italics) 
 
This article presents work from the deployment of low cost air quality sensors in high 
grid network around San Francisco Bay Area focusing mainly on alternative approach 
for field calibration of the low cost toxic gas sensors (CO, NO, NO2, O3) for some of the 
challenges described previously in literature. With the growing interest in the 
application of low cost sensors in air quality monitoring, the method presented here 
will add to the existing literature in this field. The manuscript is well written and the 
authors adequately describe their approach, validating the method by comparing to 
reference methods for the monitored gas species. I will like the authors to clarify a few 
points and some minor corrections outlined below. C1 AMTD Interactive comment 
Printer-friendly version Discussion paper 
 
1) While most of the subsection in section 3 (Model for Field Calibration) are well 
presented, section 3.2 needs more clarification. What do the authors mean by 
“properly calibrated time derivative” in P6, line 24? Some of the description is not clear 
enough, lines 16-18. 
 
P6, line 24 has been deleted due to the revision mentioned at the beginning of this 
response. We have updated the text to clarify P7, lines 16-18: 

 
“We use sensitivity corrected (see Section 3.1 and 3.2), 1-minute average NO and 
O3 concentrations measured from 12 pm to 3 pm, and select data with a time 
derivative of O3 near zero to insure that the measurements reflect air that has 
achieved steady state.” 

 



2) As a general practice, I will like the authors to include the duration of the data used 
in generation the statistics and for some of the figures as this will allow the reader to 
put the result in context. For instance, Table 3, P21 shows the MAE of O3 without any 
information on the data period, none of these matches the 6.88 ppb MAE present for 
O3 in P9, line 9.  
 
The analysis of the Laney College monitoring site used data from February to April 
2016 as mentioned in P8, line 25-26 (P8, line 26-17 in revised manuscript). MAE 
values in Table 3 are calculated after conducting the multiple linear regressions 
explained in Section 3.1, and MAE in P9, line 9 is calculated after fully calibrating the 
data following the procedure from Sections 3.1 to 3.5, causing the difference in 
reported MAE values. We have added the following text for clarification: 
 

“Here, MAE is calculated after conducting the sensitivity correction explained in 
Section 3.1, but before the offset correction in Section 3.3” 

 
3) Can the authors explain why the O3 data shown in figure 8 appears to have a better 
noise < 11ppb (2σ) quoted for the lab tests? What are the temporal resolutions of the 
data presented in this figure? The reader will benefit if this information is included in 
figure caption or main text.  
 
The O3 data shown in Figure 8 is hourly averaged data, and the noise quoted from 
the laboratory tests is calculated from 10 s resolution data. We have added missing 
information about the resolution and period of the data in the figure captions and 
the main text. 
 
4) The authors need to clarify the VCO, VNO etc. in equations 1-4. Is this the voltage 
difference of the “working” and “auxiliary” electrodes or the just the “working” 
electrode. 
 
We have updated the text: 
 

“Here, CO, NO, NO2, and O3 with the subscript “ambient” refer to the gas mixing 
ratios (ppb) in air; 𝑉𝑉𝐶𝐶𝐶𝐶, 𝑉𝑉𝑁𝑁𝑁𝑁, 𝑉𝑉𝑁𝑁𝑂𝑂2 and 𝑉𝑉𝑂𝑂3 are the signals (mV) measured by each 
sensor, which is the voltage of the auxiliary electrode subtracted from the 
voltage of the working electrode; […]” 

 
Minor Comments: 
 
1) P.2, line 16, there is track change  
 
We have deleted the track change from the text 
 
2) P.3, line 7: the Shusterman et al. reference is missing in the references. 
 



We have added a reference to Shusterman et al. in the References. 
 
3) P.4, lines 10-11: rewrite equations 3 and 4, suggest putting the cross interference 
terms (rNO-NO2 x NO ambient) in bracket. 
 
We have rewritten Equations 3 and 4 as suggested. 
 
4) P.9, line 7, this should read Eqn 5 not 7. 
 
We have updated the numbering of the equations. 
 
5) P14, add scale to figure 1, advise including image of deployed node in figure 2. 
 
We have added scales to Figure 1 and included an image of a deployed node in 
figure 2. 
 
6) I suggest including the temperature plot in figure 8.  
 
We have added a temperature plot to Figure 8. 
 
7) Several figures (Fig. 3, 4, 6 and 8) need to be replotted with legible axis labels. 
 
We have re-plotted all of the Figures in the interest of legibility. 
 
8) A general comment, the authors should make sure numbers in chemical formulae 
are in subscript form. 
 
We have updated the chemical formulae to ensure that numbers are in subscript 
form. 
 
 
Referee #2 Comments: (Referee comments in italics) 
 
This paper describes a novel approach to calibrate inexpensive sensor networks. The 
idea is to use known atmospheric chemistry relationships to constrain correlated 
measurements and derive corrections or calibrations. The paper is well presented and 
clear. The figures illustrate the main points well and support the conclusions of the 
paper. The paper, overall, is well suited to AMT and will make a valuable contribution 
to the growing area of sensor network research. I recommend publication after a few 
minor changes. These issues are listed below. I believe that each of these can be 
addressed without major changes to the paper.  
 
1) My overall impression with this approach is that if you know what the 
measurements should look like you can modify them to match this expectation. The 
case study does a good job of making this point. The manuscript does not address the 



alternative case that might not follow the expected chemical relations. The main 
question that I have after reading this paper is: How well does this approach work 
under less ideal circumstances? For example, the analysis assumes NOx + Ox is 
conserved, which is appropriate for being near a point source. How well does this 
approach work with a sensor that samples multiple sources where NOx + Ox is not 
conserved? Or, if CO/CO2 is different because of a large diesel presence. In other words, 
how useful is this approach in general? The answer to this question is a general point 
that needs to be developed better in the discussion.  
 
The reviewer raises a good question about how effective our calibration approach 
will be under a range of ambient conditions. While we are also interested in that 
question, providing a thorough answer is beyond the capabilities of our existing 
data set. As for the San Francisco Bay Area, hourly traffic data obtained from the 
Caltrans Performance Measurement System (PeMS) shows that diesel trucks 
typically account for < 10% of the total freeway traffic in the BEACO2N domain, with 
relatively little (~3%) intra-domain variation in the diesel truck fraction. Thus, we 
do not expect large variability in the CO/CO2 and NOx/CO2 ratio in our domain. We 
have added the text: 
 

“Since diesel trucks have an order of magnitude higher NOX emission factors 
compared to gasoline vehicles, the percentage of truck traffic near each site 
affects the median emission factors. The median freeway truck ratio varies little 
across the BEACO2N network, however, regions with a larger range of median 
truck ratios will have larger uncertainties or require a calibration approach that 
accounts for this variation.” 
 

Conservation of NOx +Ox is now not used as an assumption due to our revised 
approach to calibrating sensors. 
 
2) Another aspect that should be discussed is the sensitivity of the calibrations to these 
assumptions. How large are these corrections, typically? If the NOx+Ox assumption is 
not correct by some amount, how does this impact your calibration? Likewise for 
CO/CO2.  
 
An example of sensitivities and zero offsets for calibration are shown in Figure 3. 
Our assumptions are directly constraining the concentration values. In other words, 
if there is 10% change in the constraining value, concentration of calibrated data 
will show 10% change. Conservation of NOx +Ox is now not used as an assumption 
due to our revised approach to calibrating sensors. 
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Abstract. The newest generation of air quality sensors is small, low cost, and easy to deploy. These sensors are an attractive 

option for developing dense observation networks in support of regulatory activities and scientific research. They are also of 

interest for use by individuals to characterize their home environment and for citizen science. However, these sensors are 

difficult to interpret. Although some have an approximately linear response to the target analyte, that response may vary with 10 

time, temperature, and/or humidity, and the cross-sensitivity to non-target analytes can be large enough to be confounding. 

Standard approaches to calibration that are sufficient to account for these variations require a quantity of equipment and 

labor that negates the attractiveness of the sensors’ low cost. Here we describe a novel calibration strategy for a set of 

sensors including CO, NO, NO2, and O3 that makes use of multiple co-located sensors, a priori knowledge about the 

chemistry of NO, NO2, and O3, as well as an estimate of mean emission factors for CO and the global background of CO. 15 

The strategy requires one or more well calibrated anchor points within the network domain, but it does not require direct 

calibration of any of the individual low-cost sensors. The procedure nonetheless accounts for temperature and drift, in both 

the sensitivity and zero offset. We demonstrate this calibration on a subset of the sensors comprising BEACO2N, a 

distributed network of approximately 50 sensor “nodes,” each measuring CO2, CO, NO, NO2, O3 and particulate matter at 10 

second time resolution and approximately 2km spacing within the San Francisco Bay Area. 20 

1 Introduction 

In urban environments, air quality has complex spatial and temporal patterns. Diverse emission sources are present with 

large variations in emission rate and source type on scales of hundreds of meters. In addition, dispersion of pollutants into 

the urban environment is affected by the topography of the urban landscape and the associated wind flows, which also vary 

on length scales of ~100 m (Vardoulakis et al., 2003; Lateb et al., 2016). Conventional approaches to air quality monitoring 25 

rely on a limited number of relatively high cost instruments that lack the spatial resolution needed to characterize these 

variations, opting instead to target spatial averages. This averaging hampers our attempts at source attribution and 

understanding of mixing, chemistry, and human exposure in cities where emissions vary on spatial scales that are small 

compared to typical observations or models.  
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One approach to obtaining higher spatial resolution observations is passive sampling, which has been implemented using 

inexpensive sampling devices that can be later analyzed in bulk. Passive samplers do not require electrical power to function 

properly and are collected and analyzed one to two weeks after deployment. Such protocols provide high spatial resolution 

but also have significant drawbacks. Spatial resolution is gained at the expense of temporal resolution, and analysis after 5 

collection of the samplers is time consuming, thus passive sampling has typically been used only in short duration 

experiments (e.g. Krupa & Legge, 2000; Cox, 2003). Furthermore, as a result of boundary layer dynamics, passive sampling 

in urban areas is likely dominated by the high concentrations found at night and relatively insensitive to daytime variability. 

  

Recent developments in low-cost sensors for trace gases and particulate matter, as well as advances in software and 10 

hardware enabling low-cost data communication, have made high-density, high time resolution air quality monitoring 

networks possible. Devices and networks of devices are emerging that are low cost, report at a time resolution of seconds, 

and are capable of long-term deployment, providing potential for improvement over the two major weaknesses of passive 

sampling. Examples include metal oxide sensors used to measure O3, CO, NO2, and total VOCs (e.g. Williams et al., 2013; 

Bart et al., 2014; Piedrahita et al., 2014; Moltchanov et al., 2015; Sadighi et al., 2017), and electrochemical sensors used to 15 

measure CO, NO, NO2, O3, and SO2 (e.g. Mead et al., 2013; Sun et al., 2015; Jiao et al., 2016; Hagan et al., 2017; Jerrett et 

al., 2017; Michael et al., 2017). These different low-cost sensor systems have been evaluated and compared (Borrego et al., 

2016; Papapostolou et al., 2017). While these studies found low-cost trace gas sensors to be successful at qualitatively 

characterizing the variability of air quality in an urban area, challenges related to selectivity and stability remain, hindering 

more quantitative interpretation of the data. 20 

 

The current generation of low-cost sensors is not as easily tied to a gravimetric calibration standard as many of the passive 

samplers. Calibration is known to vary with sensor age, temperature, and in some cases humidity. In addition, many of the 

sensors have responses to gases other than the target analyte (Mead et al., 2013; Spinelle et al., 2015; Cross et al., 2017; 

Michael et al., 2017; Mijling et al., 2017; Spinelle et al., 2017; Zimmerman et al., 2017). One approach to addressing this 25 

challenge is to combine periodic re-calibration and co-location with regulatory reference instruments in the lab or the field 

(Williams et al., 2013; Moltchanov et al., 2015; Jiao et al., 2016; Mijling et al., 2017). Field calibration is preferred as in-lab 

performance is often a poor approximation of sensor behavior under ambient conditions (Piedrahita et al., 2014; Masson et 

al., 2015). However, either method requires considerable time investment by trained personnel, especially as the number of 

sensors increases. The requirement of time- and labor-consuming calibration then offsets the low-cost advantage of the 30 

sensors. 

 

In this paper, we explore an automated, in situ strategy for the calibration of individual sensors embedded in an air quality 

sensor network that includes both low-cost sensors and anchor points of higher grade, well calibrated instrumentation. The 
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BErkeley Atmospheric CO2 Observation Network (BEACO2N) is a low-cost, high-density greenhouse gas (CO2) and air 

quality (CO, NO, NO2, O3, and particulate matter) monitoring network located in San Francisco Bay Area, California (see 

Fig. 1 and Shusterman et al., 2016). As of this writing, BEACO2N consists of approximately 50 sensor “nodes,” deployed 

with approximately 2 km horizontal spacing. Most of the nodes are mounted on the roofs of schools and museums. In 

previous work, we described an approach to CO2 sensing and calibration (Shusterman et al. 2016). Here, we focus on CO, 5 

NO, NO2, and O3.  

 

We begin by describing laboratory experiments and in-field comparisons to co-located reference instruments that give an 

initial characterization of the sensors and provide insight into the effects of temperature, humidity, and cross-sensitivity to 

non-target analytes. Then we describe an in situ calibration procedure that accounts for these variables without requiring co-10 

location with a reference instrument. The calibration procedure is finally verified against regulatory quality measurements 

not used in the procedure itself.  

2 Instrument Description 

Details of the node design and deployment are described in Shusterman et al. (2016). Briefly, each BEACO2N node contains 

a Vaisala CarboCap GMP343 non-dispersive infrared sensor for CO2, a Shinyei PPD42NS nephelometric particulate matter 15 

sensor, and a suite of Alphasense electrochemical sensors: CO-B4, NO-B4, either NO2-B42F or NO2-B43F, and either Ox-

B421 or Ox-B431. All sensors are assembled into compact, weatherproof enclosures as shown in Fig. 2. Two 30 mm fans are 

located on either side of the enclosure to facilitate airflow through the node. A Raspberry Pi microprocessor collects data via 

a serial-to-USB converter for CO2 and an Adafruit Metro Mini microcontroller for all other sensors. Then, data collected 

every 5 or 10 seconds is transmitted to a central server using a direct on-site Ethernet connection or a local Wi-Fi network.  20 

 

The Alphasense B4 electrochemical gas sensing series that we use employs a four-electrode approach. The electrodes are 

embedded in an electrolyte solution separated from the atmosphere by a semi-permeable membrane. The gas of interest 

diffuses through the membrane into the electrolyte where it contacts a “working” electrode, and is either oxidized (in the 

case of NO and CO) or reduced (NO2 and O3). The potential at the working electrode is maintained at a constant value with 25 

respect to a “reference” electrode. Electric charge produced at the working electrode is balanced by the complementary 

redox reaction at a “counter” electrode, generating an electric current. The sensor also contains an “auxiliary” electrode, 

which shares the working electrode’s catalyst structure, but is isolated from the ambient environment, accounting for 

fluctuations in the background current associated with other processes at the electrode and electrolyte. Subtracting the 

auxiliary current from the working current gives a corrected current dependent on the gas concentration.  30 
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The working and auxiliary currents detected by the sensors areis converted to a working and auxiliary voltages using 

amplifiers in the Individual Sensor Boards (ISBs) provided by Alphasense. Over the mixing ratio range of interest, the 

sensors’ responses to the gases of interest are approximately linear. We derive mixing ratios from the observed voltages by 

subtracting an offset and then scaling by a constant (Eqn. 1-4): 

𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑉𝑉𝐶𝐶𝐶𝐶 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝐶𝐶𝑂𝑂) 𝑘𝑘𝐶𝐶𝐶𝐶⁄           (1) 5 

𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑉𝑉𝑁𝑁𝑁𝑁 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁) 𝑘𝑘𝑁𝑁𝑁𝑁⁄          (2) 

𝑁𝑁𝑁𝑁2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑉𝑉𝑁𝑁𝑁𝑁2 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁2) 𝑘𝑘𝑁𝑁𝑁𝑁2⁄ − (𝑟𝑟𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2 × 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)      (3a) 

𝑁𝑁𝑁𝑁2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑉𝑉𝑁𝑁𝑁𝑁2 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁2) 𝑘𝑘𝑁𝑁𝑁𝑁2⁄ + (𝑟𝑟𝑁𝑁𝑁𝑁−𝐶𝐶𝐶𝐶2 × 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)      (3b) 

𝑂𝑂3𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑉𝑉𝑂𝑂3 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑂𝑂3) 𝑘𝑘𝑂𝑂3⁄ − (𝑟𝑟𝑁𝑁𝑁𝑁2−𝑂𝑂3 × 𝑁𝑁𝑁𝑁2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)       (4) 

Here, CO, NO, NO2, and O3 with the subscript “ambient” refer to the gas mixing ratios (ppb) in air; 𝑉𝑉𝐶𝐶𝐶𝐶, 𝑉𝑉𝑁𝑁𝑁𝑁, 𝑉𝑉𝑁𝑁𝑁𝑁2  and 𝑉𝑉𝑂𝑂3  10 

are the signals (mV) measured by each sensor, which is the voltage of the auxiliary electrode subtracted from the voltage of 

the working electrode; 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝐶𝐶𝐶𝐶 , 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 , 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁2 and 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑂𝑂3 indicates the voltage measured in the absence of analyte; and 

𝑘𝑘𝐶𝐶𝐶𝐶, 𝑘𝑘𝑁𝑁𝑁𝑁, 𝑘𝑘𝑁𝑁𝑁𝑁2  and 𝑘𝑘𝑂𝑂3  represent the linear sensitivity factor that converts mV to ppb. Additional terms corresponding to the 

cross-sensitivities of the NO2 and O3 sensors appear in Eqn. 3a, 3b, and 4, where 𝑟𝑟𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2  is the cross-sensitivity of the NO2-

B42F sensor to NO gas, 𝑟𝑟𝑁𝑁𝑁𝑁−𝐶𝐶𝐶𝐶2  is the cross-sensitivity of the NO2-B43F sensor to CO2 gas, and 𝑟𝑟𝑁𝑁𝑁𝑁2−𝑂𝑂3 is the cross-15 

sensitivity of both the O3-B421 and O3-B431 sensors to NO2 gas.  

 

There are a total of 8 sensitivities and zero offsets, as well as 2 cross-sensitivity terms. All of these may also vary with time, 

temperature, and humidity. Thus we need a calibration strategy that constrains 10 parameters in a single instant as well as the 

variation of those 10 parameters in response to the environmental variables and time. We begin by characterizing the sensors 20 

in both laboratory and outdoor environments. 

  

We evaluate BEACO2N in terms of four factors: drift, noise, cross-sensitivity, and temperature dependence. The humidity 

dependence is included in the temperature dependence, as there is no evidence for independent humidity dependence and 

relative humidity exhibits an anti-correlation with temperature in the field. This paper examines the behavior of CO-B4, NO-25 

B4, NO2-B42F, and Ox-B421. The more recently released NO2-B43F and Ox-B431 sensors respond differently; their 

performance will be assessed in a future study. In the laboratory, a range of mixing ratios of target gases were delivered to a 

chamber containing the full suite of four Alphasense B4 sensors: CO, NO, NO2, and O3. Zero air was supplied by a Sabio 

1001 Compressed Zero Air Source and blended with calibration gases using a ThermoScientific 146i Multi-Gas Calibrator. 

 30 
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Noise – Alphasense reports 2σ noise of ±4 ppb, ±15 ppb, ±12 ppb, and ±15 ppb for CO, NO, NO2, and O3, respectively over 

concentrations from 0 ppb to 200 ppb at time resolution of a second. In our laboratory, noise (±2σ) was measured for 

ambient ppb levels with 10-second time resolution and was seen to be ±10 ppb for CO, ±3 ppb for NO, ±6 ppb for NO2 

(NO2-B42F and NO2-B43F), and ±12 ppb for O3 (O3-B421 and O3-B431). 

 5 

Cross-Sensitivity – We measured the cross-sensitivity of all 4 of the trace gas sensors to the non-target gases. The NO2 

sensors (NO2-B42F) and O3 sensors (Ox-B421) were the only ones to exhibit sensitivity to other species. The O3 sensor (O3-

B421 and O3-B431) demonstrated 100% sensitivity to NO2. This sensor is now being marketed by Alphasense as an odd 

oxygen (𝑂𝑂𝑥𝑥 ≡ 𝑂𝑂3 + 𝑁𝑁𝑁𝑁2) sensor. In addition, the NO2-B42F sensor was found to possess a significant NO sensitivity (130%) 

that exceeds the cross-sensitivity specified in the Alphasense documentation (<5%). The NO2-B43F sensor was found to 10 

have 0.002% sensitivity to CO2 gas, which is in the range of the cross-sensitivity specified in the Alphasense documentation 

(<0.1%). However, given that typical ambient CO2 concentrations are four orders of magnitude larger than 

NO2 concentrations, this relatively small cross-sensitivity to CO2 gas manifests as a significant interference in the 

NO2 sensors. These cross-sensitivities are represented in Eqn. 3 and Eqn. 4. 

 15 

Temperature Dependence – Electrochemical sensors are known to have temperature dependent sensitivities and zero offsets. 

Alphasense reports sensitivities and zero offsets for a temperature range between -30 °C and 50 °C. The sensitivities in their 

data sheets vary with temperature by +0.1 to +0.3 %/K (referenced to sensitivity at 20 °C) and the zero offsets are indicated 

to vary little except at high temperatures. We observed similar, but slightly larger variations via in situ comparison to co-

located reference instruments. We observed temperature dependence in the sensitivities of +0.3 to +5 %/K and no variation 20 

in the zero offset of the CO, NO2, and O3 sensors from 10 °C to 24 °C (Fig. 3). However, the zero offset of the NO sensor 

exhibited a strong temperature dependence of 0.34 mV/K.  

 

Drift – Two laboratory calibrations were performed roughly 10 weeks apart and the zero offsets and sensitivities are shown 

in Table 1. Over the 10-week interval, zero drift was equivalent to -15.9 ppb, -2.3 ppb, +15.8 ppb, and -12.7 ppb for CO, 25 

NO, NO2, and O3, respectively. Alphasense reports the stability over time for the zero offset to be < ±100, 0 to 50, 0 to 20, 

and 0 to 20 ppb yr-1 for these sensors, respectively; over this 10 week interval, the observed zero drift was within the range of 

these specifications. However, it is a large fraction of the annual drift specification and further experiments would be 

warranted to test whether the zero measured is stable over a full year within the specified tolerances. The drift in the 

sensitivity (in % of 𝑘𝑘𝑋𝑋) was -15.9%, -17.7%, -20.6%, and -53.2%.  Alphasense reports <10, 0 to -20, -20 to -40, and < -20 to 30 

-40% yr-1 for CO, NO, NO2, and O3 calibration factors, respectively. We find that drift for the CO and O3 sensitivities 

exceeded the manufacturer specifications, but that the NO and NO2 sensitivity drifts were within the specified tolerances. 
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3 Model for Field Calibration 

Here, we propose a model for field calibration that leverages (1) useful cross-sensitivities, (2) chemical conservation 

equations, (3) knowledge of the global and/or regional background of pollutants, and (4) assumptions based on well-known 

characteristics of urban air quality and local emissions. The result is a calibration procedure for the drift and temperature 

dependencies of the 10 calibration parameters that does not require co-location with a reference instrument or prior 5 

laboratory experiments for each sensor. The first constraint we apply is the O3 sensors’ cross-sensitivity to NO2. Laboratory 

measurements indicate that this cross-sensitivity is 100% and we fix it at that value. 

3.1 Regional ozone uniformity to calibrate the NO2 and O3 sensors’ sensitivities  

The NO, NO2, and O3 sensitivity can be derived from observations with higher quality instruments at nearby locations. 

Ozone is a secondary pollutant with small local scale variation, except in the very near field of NO emissions. The Bay Area 10 

Air Quality Management District (BAAQMD) maintains four TECO 49i ozone analyzers within the BEACO2N study area 

(see Fig. 1). We choose the closest site among these four regulatory monitoring sites to provide 𝑂𝑂3𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as a constraint for 

multiple linear regression of Eqn. 5 (derived from Eqn. 2-4). Different BEACO2N nodes are thus referenced to different 

reference instruments. 

𝑂𝑂3𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑂𝑂3
𝑘𝑘𝑂𝑂3

− 𝑉𝑉𝑁𝑁𝑁𝑁2
𝑘𝑘𝑁𝑁𝑁𝑁2

+ 𝑟𝑟𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2
𝑉𝑉𝑁𝑁𝑁𝑁
𝑘𝑘𝑁𝑁𝑁𝑁

− 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜        (5) 15 

Here, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is a combination of the zero offsets of the NO, NO2, and O3 sensors, all of which can be constrained as detailed 

in Sect. 3.2 below. The sensitivity of the O3 and NO2 sensors (𝑘𝑘𝑂𝑂3  and 𝑘𝑘𝑁𝑁𝑁𝑁2), and relationship between the NO-NO2 cross-

sensitivity and the sensitivity of the NO sensor (𝑟𝑟𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2 𝑘𝑘𝑁𝑁𝑁𝑁⁄ ) are obtained by multiple linear regression of Eqn. 5. 

3.2 Use of co-emitted gases in plumes to calibrate the CO and NO sensors’ sensitivity 

The CO and NO sensor cannot be constrained by cross sensitivity to the other gases. Instead, we constrain the sensitivity by 20 

insisting that the median emission factor of CO (or NO) per unit CO2 corresponds to median values reported for the U.S. 

vehicle fleet. We express the emission factor (𝐸𝐸𝐸𝐸𝑋𝑋, 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝−1) of gas X, which is CO or NO, as in Eqn. 8:  

𝐸𝐸𝐸𝐸𝑋𝑋 = ∆𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∆𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 1
𝑘𝑘𝑋𝑋

∆𝑉𝑉𝑋𝑋
∆𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

          (6) 

Our measurements of the concentration of CO2 are described in Shusterman et al. (2016) and values for 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 and 𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑥𝑥  are 

reported in Dallmann et al. (2013; see Table 2). We constrain the sensitivity of the CO and NO sensors in the network such 25 

that the median ΔX/ΔCO2 of the plumes are equal to emission factors characteristic of the average vehicle fleet. The NO 

sensors’ sensitivity is constrained by the emission factor of NOX, estimating the upper limit of NO concentration.  
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Figure 4 shows an example of a measured plume and the derived ΔCO/ΔCO2 ratio. We identify plumes as the local 

maximum found in a 10-minute moving window, starting and ending at the local minima. Each plume is a few minutes in 

duration, representing an emission ratio averaged over several vehicles. Since diesel trucks have an order of magnitude 

higher NOX emission factors compared to gasoline vehicles, the percentage of truck traffic near each site affects the median 

emission factors. The median freeway truck ratio varies little across the BEACO2N network, however, regions with a larger 5 

range of median truck ratios will have larger uncertainties or require a calibration approach that accounts for this variation. 

3.3 Use of chemical conservation equations near emissions to calibrate the NO, NO2 and O3 sensors’ zero offsets 

We are able to constrain the zero offsets of NO, NO2 and O3 sensors by taking advantage of proximity to local emission 

sources and the following chemical conservation equations. 

𝑁𝑁𝑁𝑁 + 𝑂𝑂3  →  𝑁𝑁𝑁𝑁2 + 𝑂𝑂2           (R1) 10 

𝑁𝑁𝑁𝑁2 + ℎ𝑣𝑣 → 𝑁𝑁𝑁𝑁 + 𝑂𝑂            (R2) 

𝑂𝑂 + 𝑂𝑂2 + 𝑀𝑀 →  𝑂𝑂3 + 𝑀𝑀            (R3) 

These three reactions result in a steady-state relationship among the nitrogen oxides (𝑁𝑁𝑁𝑁𝑋𝑋 ≡ 𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁2) and ozone. At 

nighttime, reaction R2 does not occur due to the absence of sunlight. In the absence of emissions, the NO concentration goes 

to zero on nights with sufficient O3. Conversely, near strong emission sources, NO is found in excess of ozone and the O3 15 

concentration goes to zero (see Fig. 5). Using this logic, we identify times between 12 am to 3 am when there is zero NO or 

O3 to define the zero offsets of the NO and O3 sensors, using 1-minute averaged data with plumes excluded (see Sect. 3.3 for 

details of the plume identification procedure).  

 

The NO2 offset can be determined using the pseudo-steady state (PSS) approximation. We estimate the NO2 concentration 20 

through Eqn. 7: 

𝑗𝑗𝑁𝑁𝑁𝑁2[𝑁𝑁𝑁𝑁2] = 𝑘𝑘𝑁𝑁𝑁𝑁−𝑂𝑂3[𝑁𝑁𝑁𝑁][𝑂𝑂3]          (7) 

Here, 𝑗𝑗𝑁𝑁𝑁𝑁2  (in units of s-1) is the photolysis rate constant for reaction R2 and 𝑘𝑘𝑁𝑁𝑁𝑁−𝑂𝑂3  (in units of cm3 molecule-1 s-1) is the 

rate constant for reaction R1. [𝑋𝑋] expresses the concentration of gas 𝑋𝑋  in units of molecules cm-3. We use sensitivity 

corrected (see Section 3.1 and 3.2), 1-minute average NO and O3 concentrations measured from 12 pm to 3 pm, and select 25 

data with a time derivative of O3 near zero to insure that the measurements reflect air that has achieved steady state. The NO2 

concentration at PSS is derived using Eqn. 7 and the NO2 offset is chosen to insure the calculated and observed NO2 are 

equal. NO2 is also produced through the reaction of HO2/RO2 with NO, but this is omitted from the right hand side of Eqn. 7, 

resulting in a lower bound of the true NO2 concentration. Estimated NO2 is therefore low by about 5% in winter and as much 

as 30% in summer. If higher accuracy is needed, the reaction of HO2/RO2 with NO could be considered to reduce this bias. 30 
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3.4 Use of global background to calibrate the CO sensors’ zero offset 

To infer the zero offset of the CO sensor, we follow the procedure outlined in Shusterman et al. (2016) for CO2 sensors. We 

assume the signal measured at a given site is decomposed as in Eqn. 8: 

[𝐶𝐶𝐶𝐶]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = [𝐶𝐶𝐶𝐶]𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + [𝐶𝐶𝐶𝐶]𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜       (8) 

The measurement of the pollutant 𝐶𝐶𝐶𝐶 ([𝐶𝐶𝐶𝐶]𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒) is the sum of regional and local signals ([𝐶𝐶𝐶𝐶]𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and [𝐶𝐶𝐶𝐶]𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 5 

respectively), as well as some offset from the true concentration (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜). Assuming the monthly minimum concentration 

measured at a given site represents [𝐶𝐶𝐶𝐶]𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , this background signal is compared to that measured at a “supersite” of 

reference instruments located within the network domain, allowing the offset to be derived. We also assume that when 

[𝐶𝐶𝐶𝐶]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , as well as [𝐶𝐶𝐶𝐶]𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , is minimum in each day, the concentration measured at a given site has a constant 

deviation from the background signal. This is a reasonable assumption for the BEACO2N domain as the dominant wind 10 

pattern frequently brings unpolluted air from the Pacific Ocean. 

3.5 Temperature dependence and temporal drift 

In order to account for the temperature and time dependence of calibration parameters, we apply the calibration process 

described in Sect. 3.1 through 3.4 for temperature increments of 1oC within a 3-month running window. Then, we are able to 

define a temperature dependent sensitivity and zero offset, which is used to convert the measured voltages to mixing ratios. 15 

In this way, we can also evaluate temporal drift with monthly resolution. The calibration procedure can be repeated for 

shorter time intervals if wider temperature windows are used. 

4 Evaluation with reference observations 

We evaluate the efficacy of our calibration method using a BEACO2N node co-located with reference instruments at the 

Laney College monitoring site maintained by the Bay Area Air Quality Management District (BAAQMD). Here we consider 20 

data collected from February to April 2016, calibrate it according to the procedure described above (following Sect. 3.1 to 

3.5), and compare it against the BAAQMD data. Reference data is collected by a TECO 48i CO analyzer and a TECO 42i 

NOx analyzer. Ozone data from the “Oakland West” location, the closest ozone-monitoring site maintained by BAAQMD, 

was used for multiple linear regression of Eqn. 5. The zero offset for CO was calculated using BAAQMD data from the 

Bodega Bay background site (see Fig. 1; Guha et al., 2016) as local “supersite” data was unavailable during this period. A 25 

background site closer to the network would likely improve our ability to constrain the CO zero offset; a reference 

instrument for that purpose was installed in summer 2017.  

 

In our calibration procedure, the cross-sensitivities and temperature dependence are corrected for better accuracy. Table 3 

shows the reduction in mean absolute error (MAE) that results when cross-sensitivity and temperature dependence issues are 30 
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considered during multiple linear regression of Eqn. 5. Here, MAE is calculated after conducting the sensitivity correction 

explained in Section 3.1, but before the offset correction in Section 3.3. Fully calibrated, hourly averaged BEACO2N sensor 

data is compared to reference data in Fig. 6. For NO, NO2, O3, and CO the mixing ratio measured agrees reasonably well 

with the reference instrument with correlation coefficients of 0.88, 0.61, 0.69, and 0.74 and MAE of 3.63 ppb, 4.12 ppb, 5.04 

ppb, and 54.93 ppb, respectively. The noise (±2σ) in the differences between the calibrated hourly BEACO2N data and 5 

reference data is 9.74 ppb for NO, 9.97 ppb for NO2, 13.04 ppb for O3, and 116.23 ppb for CO. These noise values are 

dominated by the Alphasense noise except in the case of CO, where noise is evenly split between the low-cost 

electrochemical sensors and the reference instruments. 

5 Examples of network performance 

Figure 7 shows a week-long time series of fully calibrated air quality data from four BEACO2N sites in 2017 (see Fig. 1). 10 

BEACO2N nodes capture the short-term variability associated with local emissions, superimposed on the diurnal variation 

caused by mixing and changes in the height of the boundary layer. Large mixing ratios of NO, NO2, and O3 are observed at 

the Hercules and Ohlone sites, likely representing strong NOx emissions from an oil refinery nearby. The spatial variability 

of trace gases observed at these 4 BEACO2N sites provides a more diverse perspective on emissions compared to that 

provided by the one regulatory monitoring site in the vicinity. 15 

 

The emission ratios of CO and NOx were also investigated using the BEACO2N data from sample locations. Figure 8 shows 

ratios observed at the Laney College site. The slope of CO/NOx varies from 4.43 to 12.99 across 5 BEACO2N sites, 

reflecting spatial variations in local sources. Sites near roads with more diesel vehicles, such as Laney College, show lower 

CO/NOx ratios, as expected given diesel vehicles’ higher NOx emissions. The range of observed CO/NOx emission ratios is 20 

similar to the values reported by McDonald et al. (2013). 

6 Conclusion 

Calibration of low-cost sensors is necessary for quantitative analysis. In this paper, we have described a truly low cost, 

routine in-field calibration method and the evaluation of a fully calibrated low-cost, high-density air quality sensor network. 

The Alphasense B4 electrochemical gas sensors are able to detect typical diurnal cycles in gas concentrations as well as 25 

short-term changes corresponding to chemical reactions and local emissions. These capabilities of the sensors are utilized for 

a field calibration protocol that does not require co-location with reference instrumentation, but does require reference 

instruments to be sited within the network domain. The calibrated dataset demonstrates the accuracy required to resolve 

information relevant to urban emission sources, such as CO/NOx emission ratios. Through this work, we can realize the 

promise of low-cost, high-density sensor networks as a viable approach for atmospheric monitoring. 30 
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Figure 1: Map of San Francisco Bay Area showing current BEACO2N node sites (red), BAAQMD reference sites with O3 
measurements (blue), and the BAAQMD Bodega Bay regional greenhouse gas background site (orange). The sites used in this 
analysis are marked in yellow on the detailed panel. 

 5 

 
Figure 2. (a) Current BEACO2N node design and (b) a photo of a node deployed. 
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Figure 3. Representative temperature dependent sensitivities (a) and zero offsets (b) of the Alphasense electrochemical sensors 
calculated by comparing hourly averaged measurements from Laney College BEACO2N node to measurements from a co-located 
reference instrument during February to April 2016. 
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Figure 4. Example of CO plume identification and regression against CO2 to find the CO emission factor using raw, 10-second 
data. The derived CO emission ratio (CO/CO2) for this example is 9.7 ppb ppm-1. 

 
Figure 5. Representative month of 1-minute averaged NO and O3 measurements taken between 12 and 3 am; plumes excluded. 5 
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Figure 6. Time series (top), direct comparison (bottom left), and histogram (bottom right) of hourly averaged (a) NO, (b) NO2, (c) 

O3, (d) CO mixing ratios from a representative week of calibrated BEACO2N and BAAQMD reference data. Black line in bottom 

left plot indicates the 1:1 line.  5 
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Figure 7. Time series of fully calibrated 5-minute averaged BEACO2N data from a representative week at 4 sites deployed in 2017. 
Observations from the Hercules, Ohlone, Washington, and Madera sites are plotted in red, green, orange, and blue, respectively. 
Particulate matter is converted to units of mass concentration according to Holstius et al (2014). 
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Figure 8. CO vs. NOx measured at Laney College between 8 am and 10 am.
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Table 1. Zero offsets and sensitivities of a representative quartet of Alphasense B4 electrochemical sensors derived via comparison 
to delivered reference gases during two separate laboratory calibration separated by an approximately 10-week interlude. 

  May August 

O3 
Zero offset (mV) -34.6417 -42.7629 

Sensitivity (mV/ppb) 0.6404 0.2997 

CO 
Zero offset (mV) 108.9770 89.5812 

Sensitivity (mV/ppb) 1.2192 1.0301 

NO 
Zero offset (mV) -14.2030 -17.7801 

Sensitivity (mV/ppb) 1.5758 1.2972 

NO2 
Zero offset (mV) -13.7159 -6.0649 

Sensitivity (mV/ppb) 0.4842 0.3843 

 

Table 2. Reported emission factors of diesel and gasoline vehicles (Dallmann et al., 2011; Dallmann et al., 2012; Dallmann et al., 
2013). Emissions from medium-duty and heavy-duty diesel trucks, which account for <1% of all vehicles, were removed to give the 5 
value for light-duty gasoline vehicles. 

Vehicle Type CO emission factor (𝑔𝑔 𝑘𝑘𝑘𝑘     𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−1 ) NOX emission factor (𝑔𝑔 𝑘𝑘𝑘𝑘     𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

−1 ) 

Heavy-duty Diesel Trucks   8.0 ± 1.2 28.0 ± 1.5 

Light-duty Gasoline Vehicles 14.3 ± 0.7 1.90 ± 0.08 

99% Gasoline Vehicles, 1% Diesel Trucks 14.2 ± 0.7 2.29 ± 0.12 
 

Table 3. Mean absolute error of comparison between regional O3 and hourly averaged BEACO2N O3 measurements derived from 
multiple linear regression models of increasing complexity between February and April 2016. 

Regression Models 
 

Mean absolute 

error (ppb) 

𝑂𝑂3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑉𝑉𝑂𝑂3
𝑘𝑘𝑂𝑂3

− 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Linearity of observed voltages 

and gas concentration 
14.4063 

𝑂𝑂3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑉𝑉𝑂𝑂3
𝑘𝑘𝑂𝑂3

−
𝑉𝑉𝑁𝑁𝑁𝑁2
𝑘𝑘𝑁𝑁𝑁𝑁2

− 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 O3 sensor’s cross-sensitivity 

correction 
10.6795 

𝑂𝑂3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑉𝑉𝑂𝑂3
𝑘𝑘𝑂𝑂3

−
𝑉𝑉𝑁𝑁𝑁𝑁2
𝑘𝑘𝑁𝑁𝑁𝑁2

+ 𝑟𝑟𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2
𝑉𝑉𝑁𝑁𝑁𝑁
𝑘𝑘𝑁𝑁𝑁𝑁

− 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 NO2 and O3 sensor’s cross-

sensitivity correction 
8.8172 

𝑂𝑂3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑉𝑉𝑂𝑂3
𝑘𝑘𝑂𝑂3

−
𝑉𝑉𝑁𝑁𝑁𝑁2
𝑘𝑘𝑁𝑁𝑁𝑁2

+ 𝑟𝑟𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁2
𝑉𝑉𝑁𝑁𝑁𝑁
𝑘𝑘𝑁𝑁𝑁𝑁

− 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Adding temperature correction 8.1360 
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