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Abstract. This study focuses on the assessment of surface solar radiation (SSR) based on operational Neural Network (NN) 15 

and Multi-Regression Function (MRF) modelling techniques that produce instantaneous (in less than one minute) outputs. 

Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) onboard the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service 

(CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05 degrees, 15 min) that can 

be used for spectrally-integrated irradiance maps, databases and various applications related with energy exploitation. The 20 

real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a 

temporal range varying from 15-min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR 

is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their 

common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range 

-15 to 15% for the NN that produces spectral irradiances (NNS), 5-6% underestimation for the integrated NN and close to 25 

zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges 

from -100 to 40 W/m
2
 and -20 to 20 W/m

2
, for the 15-min and monthly mean Global Horizontal Irradiance (GHI) averages, 

respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), 

and their impact on GHI, was of the order of 10% as compared to the ground-based measurements. The proposed system 

aims to be utilized through studies and real-time applications, which are related with the solar energy production planning 30 

and use. 
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1 Introduction 

Solar energy exploitation is a cornerstone for sustainable development, through efficient energy planning, towards gradual 

independence from fossil fuels. To this direction, the European Union (EU), the Middle East and North Africa (MENA) and 5 

numerous neighbouring regions and countries, have laid out specific technology roadmaps aiming at the integration of low 

carbon energy technologies linked with the deployment of photovoltaic (PV) installations in the energy market (IPCC, 2012; 

NREL, 2016; IRENA, 2016; Jager-Waldau, 2016; REN21, 2017; UN, 2017). In addition, the United Nations (2017) have set 

as main sustainable development goal by 2030, to ensure universal access to affordable, reliable, and modern energy 

services. The International Energy Agency (2007) has estimated that the global primary energy demand will increase by 40-10 

50% from 2003 to 2030. Since energy production, transportation and consumption put considerable pressure on the 

environment, there is serious concern regarding the sustainability of energy consumption. 

Earth observation (EO) based systems and relevant services already play an important role in the solar energy industry, as 

well as in human health related emerging technologies, but there is still significant potential in increasing their efficiency and 

exploitation (Schroedter-Homscheidt et al., 2006; Wald et al., 2011; Lefevre et al., 2014). EO from space is already 15 

triggering services and applications that can deliver benefits throughout all the phases of energy production and supply. 

Their contribution ranges from identifying reservoirs and locations with solar energy potential, to controlling and monitoring 

of the distribution networks across Europe, Africa and Middle East, while providing support to energy policy formulation 

and enforcement (EU, 2011; IEA, 2010). 

The need for improved EO-based surface solar irradiance assessment is increasing as more solar farms are included in 20 

national electricity grids, worldwide (EC, 2013). Solar energy related installations have been increasing their share on the 

total energy demand as defined by the Distribution and Transmission System Operators (DSOs and TSOs, respectively). As 

a result, accurate, real-time and short-term forecasting estimations of the surface solar radiation (SSR) and more specifically 

the global horizontal irradiance (GHI) related with the operation principles of PV installations, are vital. The real time GHI 

estimations are required at local and regional scales, and high temporal frequency (every 5-15 minutes), in order to be used 25 

for near real time decisions, linked with the PV related contribution to the electricity grid. 

Since the launch of EO satellites, such as Meteosat Second Generation (MSG), and Sentinel satellite series, real time image 

processing techniques have been developed (Suárez and Nesmachnow, 2012). The main advantage of these techniques is the 

possibility to monitor numerous meteorological variables in almost real time (Derrien et al., 2005; MeteoFrance, 2013). A 

comprehensive intercomparison of radiation products, codes, algorithms, models and independent data banks has been 30 

performed by many researchers (Oreopoulos et al., 2010; 2012; Ellingson et al., 1991; Ineichen, 2006; Beyer et al., 2009; 

Cahalan, et al., 2005). Solid steps in estimating the surface GHI were taken by Deneke et al. (2008), Schulz et al. (2009), 
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Mueller et al. (2009), Huang et al. (2011) and Qu et al. (2017), who developed GHI retrieval methodologies based on the use 

of discrete pre-calculated look-up tables (LUT), while Dorvlo et al. (2002), Zarzalejo et al. (2005), Lopez et al. (2001) and 

Takenaka et al. (2011) developed solutions based on neural network (NN) models. The validation of most of the above 

mentioned methodologies was performed against radiative transfer model (RTM) simulations and ground-based 

measurements, from various networks around the globe. However, from the validation results it was highlighted that 5 

accuracy was inversely proportional to calculation speed under all sky and terrain conditions. The magnitude of the GHI 

uncertainty due to the effect of aerosols and clouds is significant and has motivated numerous related studies (Federico et al., 

2017; Kosmopoulos et al., 2015; Lara-Fanego et al., 2012; Tegen et al., 1996; Lindfors et al., 2013). Under high aerosol 

loads the SSR can be reduced by 20-50% (Eck et al., 1998; Gleeson et al., 2016; Kosmopoulos et al. 2017), while under 

cloudy conditions the impact was up to 60-90% for overcast conditions and cloud coverage of 8 octas (Aebi, et al., 2017; 10 

Kosmopoulos et al., 2015; Zygmuntowska et al., 2012), highlighting the significant effect of these atmospheric parameters 

(clouds and aerosols) on the GHI calculations and in the performance of PV installations and energy production.  

In the present study, we report on (i) the assessment of the surface solar irradiance calculated in real-time; which is defined 

as the product with a time delay of one minute or less from an actual atmospheric situation, by developing and using two 

NN-based techniques and a multi-regression-function-based technique and (ii) the validation of these techniques against 15 

ground-based measurements from the Baseline Surface Radiation Network (BSRN). Section 2 presents data, methods and 

techniques used. Section 3 describes the validation results including a sensitivity analysis of related atmospheric parameters 

and in Section 4 we present our conclusions on the proposed techniques. 

2 Data and Methodology 

2.1 Data 20 

2.1.1 Ground-based measurements 

The verification of the applied SSR real-time modelling techniques was performed against ground-based measurements from 

nine stations (Table 1) of the Baseline Surface Radiation Network (BSRN) (Hegner et al., 1998) equipped with Kipp and 

Zonen pyranometers (GHI measurements) and a Precision Filter Radiometer (PFR) at Izaña, Spain. BSRN consists of high-

quality ground based measurements of SSR and for the purposes of the comparison we used the dataset from July 2014 to 25 

June 2015. Table 1 presents the location and description of the nine BSRN stations used for the validation of the SSR 

estimations calculated with the modelling techniques. The temporal resolution of the ground-based measurements is 1 

minute, so in order to match the 15-min resolution of the MSG cloud data (and hence the SSR outputs) we used 15-min 

averages of all the BSRN and PFR measurements used. The selected BSRN stations represent a variety of different climates, 

altitudes and aerosol sources in the field of view of MSG and thus provide an opportunity to study the models performance 30 

under various atmospheric conditions. 
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2.1.2 Real-time cloud observations 

The most important input to our real-time modelling techniques, were the satellite cloud data products from the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. We obtained the 

cloud type (CT), the cloud phase (CP) and the cloud optical thickness (COT) products, as to efficiently quantify the effect of 

clouds on SSR. COT depends on the moisture density as well as the vertical thickness of the cloud. The cloud reflectance at 5 

channel at 0.6 μm in the visible part of the electromagnetic spectrum is directly related with COT (Roebeling et al., 2006). 

MSG geostationary satellite, because of its orbit height (36,000 km above the equator) allows the continuous monitoring of 

the area over Europe, Africa and partly South America at high temporal and spatial resolution (15 minutes and 0.05
o
, 

respectively). The operational MSG-SEVIRI data were acquired by the EUMETCast station operated by the Institute for 

Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The cloud 10 

properties are extracted operationally and in real-time using the Satellite Application Facility for Nowcasting Weather 

Conditions software (SAFNWC) installed in-house. CT and CP are standard output products of the SAFNWC computational 

procedure, while COT is a tailor-made product and as a result its extraction required an additional intervention in the process 

chain. The cloud product identification is described in Derrien and Gléau (2005) and MeteoFrance technical report (2013). In 

the current implementation, cloud products are provided operationally for the entire Earth disk view area of MSG. We 15 

extracted products at specific pixels corresponding to locations of the BSRN stations, that were used as inputs to the SSR 

modeling techniques. 

2.1.3 Aerosol forecasts 

For the real-time assessment of the SSR we additionally incorporated as basic input parameter the aerosol 1 day forecast data 

from the Copernicus Atmospheric Monitoring Service (CAMS). These forecasts are based on the Monitoring Atmospheric 20 

Composition and Climate (MACC) reanalysis tools, and include validated modelling of aerosol and satellite data 

assimilation (Eskes et al., 2015). They are able to provide operationally accurate data of aerosol optical depth (AOD) at 550 

nm, at 1 hour time steps and 0.4
o
 spatial resolution. The estimation of the aerosol sources is extracted from the Emission 

Database for Global Atmospheric Research (EDGAR) and the Speciated Particulate Emission Wizard (SPEW), while the 

reliability of the product is supported by continuous assimilation into the model of the MODIS AOD data, applying a bias 25 

correction from multiple data sources (Dee and Uppala, 2009). For the purposes of our SSR estimations, the CAMS AOD 

forecasts with the MSG COT data described above, constitute the most important input parameters, together with solar 

elevation, for the SSR retrieval modelling tools. 

2.2 Methodology  

In this section we present the SSR real-time modelling techniques, the methodology used for developing operational 30 

products and the validation statistics against ground-based measurements. The techniques are the Multi-Regression 
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Functions (MRF), the Neural Network that produces spectral irradiances (NNS) and which is presented in detail in Taylor et 

al. (2015), and a variant version of the NN that produces integrated irradiances. All three techniques have been optimized 

based on LUTs that are described in the section 2.2.1 and produce instantaneous (with less than one minute delay from the 

time that the MSG image is produced) SSR. The number of outputs depends on the region under study and can be of the 

order of 10
6
 simulations, simultaneously. In this study we used as operational inputs the CAMS AOD and the MSG COT, in 5 

conjunction with the solar elevation angle, as they are the major attenuators of the GHI. Since the comparison of real-time 

modelling techniques with ground-based measurements are performed from southern Africa to northern Europe, the 

verification will be focused on GHI. Utilization of the Direct Normal Irradiance (DNI) by Concentrated Solar Power (CSP) 

plant installations is limited at places with high amounts of DNI (Green et al., 2015) and hence CSPs are de facto outside 

energy planning for the majority of the countries represented by the nine BSRN stations and the MSG view. Large scale, 10 

high temporal and spatial resolution EO-based assessment of the SSR seems to be an emerging market prospect (ITA, 2016). 

The potential application fields of the methodology proposed in this study include the production planning support on large 

scale solar farm projects and the efficient control of the electricity balancing and distribution (in support to the TSOs and 

DSOs), by incorporating the produced energy of the solar farms into the electricity grid. At the same time, SSR in different 

spectral regions highlight spectrally-weighted outputs like the UV-index (linked with skin cancer, eye cataract, DNA damage 15 

etc), the Vitamin D efficiency (related with pregnancy) and a number of agricultural and oceanographical related processes 

(plant photosynthesis, crop production, phytoplankton growth etc). As a result, the developed real-time modelling techniques 

are able to assist Public Authorities in energy planning policies, support the work of various scientific communities dealing 

with health protection, energy production and consumption and solar energy exploitation, and finally are able to enable the 

solar industry to better plan clean energies, its transmission and distribution, which in turn will boost the relative contribution 20 

to national portfolios. Figure 1 illustrates the procedural flows of the three developed real-time modelling techniques for 

operational use. Starting with the MSG cloud flags (0=clear sky and 1, 2, 3=cloudy sky in terms of water, ice and mixed 

clouds, respectively), we identify the clear-sky and cloudy-sky pixels. For the cloudy pixels we incorporate the optical 

properties (COT) and types of clouds (CT), while for clear sky pixels we take into account the aerosols effect (AOD) and the 

total ozone column (TOC), which was derived using Ozone Monitoring Instrument (OMI) retrievals (Wandji-Nyamsi et al., 25 

2015). Then, for all sky conditions we generate the input files to the real-time techniques and, depending on their special 

characteristics, we produce spectral or spectrally weighted products (see following sub-sections) at high spectral, spatial and 

temporal resolution (1 nm, 0.05
o
, 15 min). The actual outputs can be SSR time series, local and regional maps or Earth disk 

view maps (Fig. 2). 

The performance of the real-time techniques was evaluated by comparing the GHI outputs with (i) the initial RTM 30 

simulation LUTs, (ii) the BSRN ground-based measurements and with respect to the aerosol and cloud effects. The 

evaluation was based on the bias and mean bias error (MBE), the root mean square error (RMSE) and their relative 

components (rMBE and rRMSE, respectively): 
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The residuals (estimation errors), εi=xe-x0, are calculated as the difference between the estimated values by the real-time 

techniques (xe) and the measured values (x0) by BSRN, where N is the total number of data. MBE measures the overall bias 

and detects the model's overestimation (MBE>0) or underestimation (MBE<0). RMSE quantifies the spread in the 

distribution of errors. Concerning the rMBE and rRMSE error measures, the normalization is done with respect to the mean 

ground measurement irradiance in the considered station and period. In addition, for the various tests performed in this study 5 

we calculated the slope, the correlation coefficient (r), the coefficient of determination (r
2
) the percentage difference (%), the 

mean absolute difference and the standard deviation. 

2.2.1 Radiative Transfer Model 

All modelling techniques presented in this paper for the real-time assessment of the SSR, are based on LUTs, calculated with 

the radiative transfer model (RTM) libRadtran (Mayer and Kylling, 2005; Emde et al., 2016). These LUTs are described in 10 

detail in Taylor et al. (2015) and consist of more than 2.5 million RTM simulations with atmospheric inputs and 1 nm 

spectral resolution GHI outputs. The interoperable exchange of similar GHI databases is studied by Ménard et al. (2015) 

highlighting the usefulness and necessity of such LUT-based approaches (Lefevre et al., 2014). Under clear-sky conditions 

the simulated by libRadtran input parameters were the solar zenith angle (SZA), the AOD, the Ångstrom exponent (AE), the 

single scattering albedo (SSA), TOC and the columnar water vapour (WV), while under cloudy conditions except from SZA 15 

and TOC, we also used the optical thicknesses of water and ice clouds (WCOT and ICOT, respectively) as inputs. The AOD 

is not used for cloudy conditions when COT>1, as the effects of aerosols are much weaker compared to thick clouds. For the 

model versus BSRN station comparison, in order to take into account the station altitude, an altitude correction on the solar 

energy output of the different model simulations has been applied based on RTM (Libradtran) calculations. The outputs are 

high resolution spectral irradiances (1 nm) covering the wavelength region between 285 and 2700 nm. In brief, we used the 20 

SDISORT radiative transfer solver (Dahlback and Stamnes, 1991) with pseudospherical approximation to produce valid 

outputs from 0 to 90
o 
SZA; the simulations were calculated using a band parameterization method based on the correlated K-

approximation (Kato et al., 1999), while the aerosol and cloud determination was performed based on the default aerosol 

model described by Shettle (1989) and typical cases for the height of water and ice clouds, the effective radius (Reff) and the 

liquid water path (Hess et al., 1998). All the technical and structural information about the RTM simulations, the input 25 

parameters and the construction of the LUTs is presented in Taylor et al. (2015). Table 2 presents the slope and the 

correlation coefficient between the RTM simulations of GHI and the BSRN ground-based measurements for the whole 

datasets and period. The overall accuracy in terms of slope ranges from 0.866 (CAB) to almost 1 (0.999 at TOR), while the r 

values range between 0.93 and 0.97. 

2.2.2 Multi-Regression Function 30 
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The multi-regression function (MRF) technique was developed as an analytical methodology using the RTM outputs, with 

the aim to provide results as close as possible to the initial (training set) RTM outputs. The advantage in the use of these 

functions is that they can be executed very rapidly and can be used for real-time SSR determination. In order to achieve that, 

analytical functions for the SSR should be constructed. In general, SSR is a function of SZA, COT, AOD, AE, SSA, WV and 

TOC. For AE and SSA we used monthly climatological values in order to bridge the gap between the operational input 5 

availability and the SSR accuracy. However, a preliminary investigation has been performed for the sensitivity of GHI to 

WV column and TOC. We compared integrated spectral GHI over the entire spectrum for different TOC values and we 

found a mean difference of only 0.5% for TOC ranging between 300 and 400 DU. For WV columns ranging between 0.5 and 

2 cm we found a mean difference of 3.2%, although for SZA<15
o
 this difference was higher, up to 5%. So, we chose to 

neglect these variables in the first place and use TOC=350 DU and WV=0.5 cm for further calculations, considering the 10 

differences mentioned above as a scale of error introduced by this approach. 

Then, we constructed different polynomial functions according to Gasca and Sauer (2000) for cloudy and clear-sky 

conditions, to be applied into the scheme presented in Fig. 1. For cloudy cases the irradiance is expressed as f_cloud(SZA, 

COT) and for clear-sky cases as f_clear(SZA, AOD). We tested different orders of two-variable polynomials to conclude on 

the best regression (multi-regression analysis) and we found that the estimates closest to the RTM results were achieved 15 

using 5
th

 and 4
th

 polynomials (Sauer and Xu, 1995), as follows: 

 

                          
             

       
       

         
       

       
       

  

      
          

       
       

        
         

          
       

             

 

where x is SZA and y is AOD and COT accordingly (clear or cloudy sky pixels). Table 3 presents the analytical values of pxx 

for the purposes of this study (GHI) under clear and cloudy sky conditions. By this approach RTM simulations of SSR are 20 

derived in computational times that can be applied in any real-time application.  

2.2.3 Neural Network 

As presented in Taylor et al. (2015), the LUT approach, despite its large size, still provides estimates at discrete input values. 

The interpolation techniques to correct the input-output parameter intervals are computationally more costly than a 

continuous function-approximating model, or a NN model, which is more preferable for producing real-time outputs (Hornik 25 

et al., 1989). Indicatively, using a test set of 1,000 RTM simulations from the developed LUT, we applied an interpolating 

function to adjacent/nearest-value and was found that each interpolation calculation required a time in excess (in total ≈ 21 

hours) of each single run of RTM used to generate the LUT in the first place (≈ 12 hours for 1,000 RTM simulation outputs 

with spectral resolution of 1 nm in the range 285-2700 nm), while for the same test set, the NN needed almost 0.144 seconds 

to generate the 1,000 output spectra. Takenaka et al. (2011) have pointed out that the inclusion of many parameters (we 30 

incorporated 6 for the clear and 4 for the cloudy sky simulations) and small step sizes (we produced more than 2.5 million 
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RTM simulations in total) can dramatically increase the LUT volume, while Sauer and Xu (1995) and Gasca and Sauer 

(2000) noted that the multidimensional nature of the dataset requires interpolation/extrapolation procedures that impact 

strongly on calculation speed. Hence, based on the developed LUT, we trained two sets of NNs, each one consisting of a 

clear-sky and a cloudy-sky specific NN. For multivariate input-output data, feed-forward NN having a minimum of one layer 

of ''hidden'' neurons whose activation functions are nonlinear hyperbolic tangent functions or other general nonlinear 5 

sigmoidal functions, has been shown in the literature to be a universal function approximator (Cybenko, 1989; Hornik et al., 

1989). The input-output vectors used in this study were connected via two network layers - the first containing hidden 

neurons with Tanh activation functions and the second containing output neurons with linear activation functions. The exact 

mathematical equation relating the NN outputs to the NN inputs for this type of NN is given in the following matrix equation 

described analytically in Taylor et al. (2014): 10 

 

                                        

 

The multiplication of the matrix IW
1,1

 and the vector X is a dot product equivalent to the summation of all input connections 

to each neuron in the hidden layer. This equation is the continuous and nonlinear functional approximation that relates the 

output vector to the input vector. This NN approach, its training procedure and all the technical details are described 15 

analytically in Taylor et al. (2015). 

In the first NN set, we produced instantaneous SSR spectra of the order of 1 million in less than 1 minute, using as 

operational inputs the CAMS AOD one-day forecasts, the MSG COT and real-time calculations of SZA. The output 

resolution is high in terms of spectral (1nm), spatial (0.05
o
 degrees) and temporal (15 min) components (Taylor et al., 2015), 

and, operational speaking, this spectral-based NN (NNS) can incorporate additional inputs as described in Section 2.2.1. 20 

Similar studies on the temporal variability of SSR by means of spectral representations and the wavelengths absorption 

parameterization applied to satellite channels and spectral bands were performed by Gasteiger et al. (2014) and Belgulescu et 

al. (2016). For the purposes of this study we used monthly climatological values for the rest of the input parameters. More 

specific: TOC from OMI (2007-2016), WV from the Medium Resolution Imaging Spectrometer (MERIS) onboard ESA's 

Environmental Satellite (ENVISAT), and AE and SSA from the AeroCom database (Kinne et al., 2006). The second NN set, 25 

was trained using integrated SSR over the whole wavelength range using the LUT's spectral data. The SSR results of this 

technique (called hereafter NN) are more accurate in terms of GHI, DNI and Diffuse Horizontal Irradiance (DHI), as it will 

be discussed in the following section. On the other hand, spectrally-weighted products like the UV-index, the 

Photosynthetically Active Radiation (PAR) or the Vitamin D effective dose (VDED), cannot be produced with this approach, 

as only the NNS is able to produce the spectral irradiance needed for such applications. 30 

Since the proposed modelling techniques (MRF, NN and NNS) operate in real-time, the potential applicability for short-term 

forecasting purposes for the next few hours is feasible. To this direction, the CAMS AOD is already an operational forecast 

input (Benedetti et al., 2009) with accurate predictions every 1 hour even under high aerosol load conditions (Kosmopoulos 
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et al., 2017). On the other hand, the MSG COT short-term forecasting requires the employment of a cloud motion vector 

analysis (e.g. Hammer et al., 1999) in high spatial and temporal resolution (5 x 5 km and 15 minutes, which is the 

MSG/SEVIRI resolution), in order to predict the impact of clouds on SSR for the next 2-3 hours, while under cloudless 

conditions the SZA and AOD are the main solar irradiance attenuators, and hence are available as input information to the 

models. 5 

3 Results 

3.1 Performance of real-time techniques 

3.1.1 Comparison with RTM 

This section initially summarizes the performance of all the real-time modelling techniques against the RTM simulations for 

all BSRN stations. Figure 3 presents the percentage difference between the RTM simulations and the MRF, NN and NNS 10 

techniques. All data presented here are GHI model outputs with a 15 minute temporal resolution. The box-plots represent the 

inter-quartile range between the 25 and 75 percentiles with the in-box line to show the median and the upper and lower 

whiskers to represent the maximum and minimum error values that are within 1.5 times the inter-quartile range of the box 

edges. The largest differences for all techniques occur for LER and TOR stations followed by CAB, indicating higher 

introduced uncertainties over highest latitudes, as observed on the MSG Earth view edges. However, differences for MRF 15 

are much smaller for these three stations. For all stations MRF shows differences around zero, showing a quite efficient 

representation of the LUT-based RTM simulations. For the altitude correction (described in section 2.2.1) we included a 

4.2% per km at 20
o
 SZA up to 12% per km at 80

o
 corrections (Fig. 4), based on libRadtran model sensitivity analysis. 

The NN and NNS approaches showed a systematic underestimation; for the NN of  ~8%, while the NNS had comparatively 

the worst performance with differences in the range -15 to 80% (LER station - for the inter-quartile ranges). The median 20 

differences for NNS range from -15 to 15%, for NN are ~5-6% and for MRF are less than 1%. It is obvious that spectral 

output methods (NNS) provide more detailed information (e.g. for specialized studies on spectral impacts on the yield of 

different PV technologies) (Dirnberger et al., 2015; Ishii et al., 2013), but they are more uncertain than the NN and MRF that 

produce integrated SSR. 

3.1.2 Verification with BSRN 25 

The model accuracy was verified against nine BRSN stations. We calculated the regression of the mean GHI between the 

ground measurements and the model outputs, shown in Fig. 5. We also show the intra-model regression compared to the 

initial RTM simulations (Fig. 5 left), in order to assess the NN and NNS included interpolations of the LUT outputs and the 

MRF performance. We found that the MRF technique presents identical values with the RTM, for all ground stations and 

under all climatological conditions. The NN and NNS show a quite good agreement too in terms of absolute values, as under 30 
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all conditions, mean GHIs are less than 5% different from the BSRN measurements. In Fig. 5 (right) we confirmed the 

similarity of MRF with RTM and in some cases with the NN models, indicating the overall efficiency of all interpolation and 

multi-function techniques used. A slightly better performance was observed for higher mean GHIs proving the usefulness 

under high solar energy potential conditions. 

Figure 6 shows the accuracy of MRF, being the most reliable technique as presented in Fig. 3, with respect to the ground-5 

based measurements, for various temporal integrations, starting from the (actual derived) 15-min to hourly, daily and 

monthly averages. The uncertainty range of the MRF simulations given as mean inter-quartile GHI differences is highest 

(from -100 to 40 W/m
2
, depending on the station) for the 15-min resolution. It is reduced for hourly and daily averages (-70 

to 40 W/m
2
 and -40 to 30 W/m

2
, respectively), and is minimized for the monthly averages (-20 to 20 W/m

2
). In particular, 

IZA and TAM showed the highest differences for all temporal retrievals, while LER and TOR presented minimum 10 

differences down to ±20 W/m
2
 for the inter-quartile range of the 15-min averages. The median values are within 10 W/m

2
 for 

the 15-min and hourly resolutions, while the corresponding minimum and maximum error values (represented in Fig. 6 as 

the upper and lower whiskers) extends from -200 to 100 W/m
2
 for the aforementioned resolutions and are reduced to ±60 

W/m
2
 and ±40 W/m

2
 for the daily and monthly averages, respectively. These results are comparable with similar model 

verification approaches and studies (Riihela et al., 2015; Muller et al., 2015; Thomas et al., 2016; Eissa et al., 2015a; 2015b). 15 

Indicatively, Muller et al. (2015) and Riihela et al. (2015) discussed the CM-SAF SARAH (Solar surfAce RAdiation 

Heliosat) data record, which are post processed data. They calculated a mean monthly error for GHI of 5.5 W/m
2
 and a mean 

daily error of 12.1 W/m
2
, with additional uncertainties in terms of spatial representativeness and measurements quality of 

about ±12 W/m
2
, while they did not provide relevant information about the hourly or even higher time resolution. The 

overall accuracy of all models was evaluated also with respect to seasonality. In Fig. 7 we present the seasonal rRMSE 20 

values of the GHI estimations produced by the MRF, NN and NNS models as compared to the BSRN 15-min intervals 

measurements. The rRMSE for MRF, ranges from 5 to 48% for GOB and TOR stations respectively, for NN the range is 

increasing to 6-60% and for NNS the corresponding range is 7-87%. We need to highlight that the aforementioned large 

differences correspond to significantly low absolute GHI values indicating the impact under cloudy conditions mainly in the 

winter season, at stations with high mean cloudiness (LER, TOR, CAM and CAB). In the summer, results are better for all 25 

stations and for all models (5-29%), while GOB, IZA and TAM stations showed the lowest rRMSE values (5-12% in 

summer and 12-17% in winter), linked with their lower cloudiness. Eissa et al. (2015a; 2015b) validated the HelioClim-3 

database and the McClear model in Egypt and in the United Arab Emirates, and they found RMSE of 68.4-151.7 and 22-47 

W/m
2
, respectively (we found a range of 58.2-70.8 W/m

2
). Thomas et al. (2016) validated the latest version of HelioClim-3 

(v5) against BSRN and found rRMSE of 14.1-37.2% for the 15-min averages, which are directly comparable to our 15-min 30 

results (12-35.7%). In particular, for the LER, TOR, CAB, CAM, CAR and TAM stations they found rRMSE of 37.2, 33, 

29.4, 25.9, 16.3 and 15.8%, while looking to our MRF performance evaluation results we observe 35.7, 35.6, 29.9, 30.3, 20.2 

and 12.2% for the same stations. This indicates that the use of the suggested real-time modelling techniques enables the 

production of instantaneous, high resolution and quite accurate (as compared to the post-processed databases) GHI outputs 
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that can be used for solar energy related applications and studies. A detailed presentation of results for all metrics and 

stations can be found in Table 4. 

3.2 Sensitivity Analysis 

3.2.1 Cloud effect 

The cloud effect via the radiative transfer of solar radiation in the atmosphere, represents the greatest source of uncertainty in 5 

the simulation of SSR, while several models do not have the capability to deal with clouds coexisting with a radiatively 

active atmosphere (Cahalan et al., 2005). Small changes in cloudiness and its optical properties can impact on GHI. The 

magnitude of the cloud effects on the model to BSRN comparison can be seen in Fig. 8. Under clear-sky conditions (Fig. 8 

left plot), the regression of the 15-min modeled GHI values, in terms of coefficient of determination (r
2
), show very good 

agreement when compared with the BSRN measurements for both MRF (0.952) and NN-based (0.924) techniques. We 10 

plotted the RTM simulations as well in order to depict the corresponding regression (0.958). The distinct scatter shown under 

all-sky conditions (Fig. 8, right) with the cloud cases linked with an underestimation of the modeled GHI in comparison to 

the BSRN values, while the corresponding r
2
 decreased to 0.887 and 0.867 for the MRF and NN techniques respectively (the 

RTM was almost identical the MRF, i.e., r
2
=0.889). This effect has to do with the MSG COT uncertainties and hence 

introduces errors to the outputs of the SSR techniques (Derrien and Le Gléau, 2005; Pfeifroth et al., 2016). In addition, 15 

comparison principles of a (point) station GHI measurements with a 0.05
o
 MSG cloud “picture” are responsible for part of 

the observed deviations. As an example, for instants that the MSG 0.05
o
 grid is partly cloudy, the BSRN GHI measurements 

could fluctuate more than 100%, depending on whether the sun is visible or if clouds attenuate the direct component of the 

solar irradiance. As a result, in the case of partly covered 0.05
o
 pixel and in the absence of clouds between the BSRN 

instrument and the sun, BSRN measured GHI would be much higher than the modeled one. Of course the opposite situation 20 

is feasible as well causing consequently an overestimation of the modeled GHI (Koren et al., 2007). 

Figure 9 illustrates the mean percentage difference and standard deviation of the 15-min GHI produced by the MRF and the 

measured values by the BSRN stations (only instances with cloudy conditions were used for all stations) as a function of 

COT. For COT< 2, the MRF technique results higher GHI values than those actually measured, of 1-12%, while as the COT 

values get higher, the MRF underestimates the measurements by up to -60% for COT around 35. We note that under such 25 

high COT values the mean radiation values are much lower than 50 W/m
2
. The standard deviation reaches its highest value 

of 43 W/m
2
 for COT 14-16 while its lower value of 32 W/m

2
 is found for COT 2.6. 

3.2.2 Aerosol effect 

In addition to the clouds, aerosols play an important role in the solar radiation transfer in the atmosphere. Especially in 

places with high solar energy potential, where cloud-free conditions prevail during the largest part of the year, significant 30 

aerosol sources could exist (Gkikas et al., 2012). The aerosols effect is closely related to the aerosol optical properties and 
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mostly AOD and as a consequence, the uncertainty in the model AOD input could result to significant errors in the 

assessment of SSR (Oumbe et al., 2015; Kosmopoulos et al., 2017). For the purposes of this study we used the Global 

Atmosphere Watch (GAW-PFR) station of IZA, which is an internationally recognized test bed for aerosol remote sensing 

instruments (Cuevas et al., 2016), to quantify the AOD difference between the operational input from CAMS and a PFR 

instrument, under high altitude conditions (Garcia et al., 2013). In Fig. 10 we present the yearly frequency distribution of the 5 

differences between CAMS and PFR values for cloudless sky conditions. The majority of the AOD differences are lower 

than 0.2 with the maximum frequency encountered at zero AOD differences, indicating the overall good accuracy of CAMS-

derived one-day forecasts of AOD. The mean absolute difference was found equal to 0.1075±0.1038 (1 sigma). This shows 

an overestimation of 0.1 for CAMS that could be lead to MRF GHI small underestimation of 2% compared with BSRN 

measured GHI. Finally, in Fig. 11 a scatterplot of the CAMS-PFR differences in AOD is shown as a function of absolute 10 

differences in GHI derived between the MRF technique and the IZA measurements. The GHI differences are spread around 

zero independently of the AOD difference showing the negligible dependence of such small AOD differences to the GHI 

model calculations. 

4. Summary and conclusions 

This study proposed state-of-the-art modelling techniques (NNS, NN, MRF) for the real-time estimation of SSR, which have 15 

been validated against ground-based BSRN measurements. The determination and understanding of the input parameter 

effects on radiative transfer, revealed that the accuracy of simulations depends on the quality and resolution of the 

atmospheric inputs to the models (mostly COT and AOD), while increasing the calculation speed and including spectral GHI 

information, decreases the model accuracy. 

We firstly described the developed modelling techniques which are based on large LUTs for clear-sky and cloudy 20 

conditions. Verification of these models was performed for the GHI against ground-measurements at nine stations, with 

variable geographical, atmospheric and altitudinal conditions. The comparison showed a dependence on seasonal variability, 

with summer rRMSE values below 30% for all models, under all conditions, and revealed largest errors for the NNS 

technique because of the spectral special characteristics, as well as for LER and TOR stations. The NN presented a slight 

underestimation of 8% against its training RTM simulations, while against BSRN stations succeeded MBE and RMSE 25 

values lower than 30 and 80 W/m
2
 respectively for the annual period, indicating relatively good agreement under various 

conditions. The technique with the most accurate results, almost identical to the RTM simulations, was the MRF. Under 

different temporal scales the mean GHI differences in terms of 25
th

 to 75
th

 inter-quartiles, compared to the nine stations, were 

found to range from -100 to 40 W/m
2
 for the 15-min intervals and -70 to 40 W/m

2
 for the hourly means, to -40 to 30 and -20 

to 20 W/m
2
 for the daily and monthly averages and almost 10 W/m

2
 for the median of difference of each station. 30 

The results presented here show the potential use of such techniques for solar energy related applications and electricity grid 

supporting services (IRENA, 2015). Comparison of the proposed real-time models with existing databases (SARAH, etc), 
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which in most cases are post processed data using past data series, showed similar results. Finally, we tested the impact of 

cloud and aerosol inputs to the models in order to reveal the AOD forecast accuracy of CAMS, which turned out to be ~0.1 

in absolute terms as compared to ground-based sun-photometric measurements in Izaña. The CAMS AOD performance has 

been tested as well under high aerosol loads (Kosmopoulos et al., 2017) in different regions (Eastern Mediterranean), 

showing similar results as compared with MODIS. However, its accuracy should be checked in case of application of the 5 

methodology to different regions (e.g. Middle East). The MSG COT is related with MRF underestimation of the order of 

60% under highly cloudy conditions (COT>30) and negligible GHI levels (<50 W/m
2
). As a result, the presented real-time 

models based on the synergy of satellite products, RTM and NN or MRF techniques, are a promising tool to be used within 

the solar energy related community. Improvements on satellite based model inputs from latest and future satellite missions 

(e.g. Sentinel missions) could be implemented in the future in the existing system in order to improve spatial and temporal 10 

resolution and GHI accuracy. 
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Nomenclature & abbreviations 

AE Angstrom Exponent 

AOD Aerosol Optical Depth 

BSRN Baseline Surface Radiation Network 

CAMS Copernicus Atmosphere Monitoring Service 

CM SAF Satellite Application Facility on Climate Monitoring 
COT Cloud Optical Thickness 

CP Cloud Phase 

CSP Concentrated Solar Power 

CT Cloud Type 

DHI Diffuse Horizontal Irradiance 

DNI Direct Normal Irradiance 

DU Dopson Unit 

EDGAR Emission Database for Global Atmospheric Research 

ENVISAT Environmental Satellite 
EO Earth Observation 

ESA European Space Agency 
EU European Union 

GAW Global Atmosphere Watch 

GHI Global Horizontal Irradiance 

ICOT Ice Cloud Optical Thickness 

libRadtran Library for Radiative transfer 
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LUT Look Up Table 

MACC Monitoring Atmospheric Compsition and Climate 

MBE Mean Bias Error 

MENA Middle East and North Africa countries 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 
MRF Multi-Regression Function 

MSG Meteosat Second Generation 

NN Neural Network 

NNS Neural Network Spectral 

OMI Ozone Monitoring Instrument 

PAR Photosynthetically Active Radiation 

PFR Precision Filter Radiometer 

PV Photovoltaics 

rMBE relative Mean Bias Error  

RMSE Root Mean Square Error 

rRMSE Relative Root Mean Square Error 

RTM Radiative Transfer Model 

SAFNWC Satellite Application Facilities for NoWCasting 

SARAH Solar surfAce RAdiation Heliosat 
SEVIRI Spinning Enhanced Visible and InfRared Imager 

SPEW Speciated Particulate Emission Wizard 

SSA Single Scattering Albedo 

SSR Surface Solar Radiation 

SZA Solar Zenith Angle 

TOC Total Ozone Column 

UV Ultraviolet 

VDED Vitamin D Effective Dose 

WCOT Water Cloud Optical Thickness 

WV Water Vapour 
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Table 1: Coordinates (degrees) and height (meters above sea level) of the BSRN stations used for the validation 
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Station Country C ode Latitude (oN) Longitude (oE) Height (m.a.s.l.) 

Gobabeb Namib Desert, Namibia GOB -23.5614 15.0420 407 

Izaña Tenerife, Spain IZA 28.3094 -16.4993 2373 

Tamanrasset Algeria TAM 22.7903 5.5292 1385 

Cabauw Netherlands CAB 51.9711 4.9267 0 

Camborne United Kingdom CAM 50.2167 -5.3167 88 

Carpentras France CAR 44.0830 5.0590 100 

Cener Spain CNR 42.8160 -1.6010 471 

Lerwick United Kingdom LER 60.1389 -1.1847 80 

Toravere Estonia TOR 58.2540 26.4620 70 
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Figure 1: Flowchart illustration of the modelling techniques scheme. The initial pixel classification followed by the clear or cloudy sky 

inputs to the real-time solver result the spectral (NNS) and integrated (MRF and NN) SSR-related outputs. 
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Figure 2: An example of the output maps based on the real-time SSR techniques. Here is the GHI for the 15 April 2015 at 12:00 UTC 

together with the BSRN station locations. 
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Table 2: RTM simulated GHI at 15-min time intervals as compared to the BSRN ground-based measurements in terms of correlation 

coefficient (r) and slope. 
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 GOB IZA TAM CAB CAM CAR CNR LER TOR 

slope 0.876 0.923 0.888 0.866 0.907 0.960 0.961 0.897 0.999 

r 0.943 0.941 0.942 0.931 0.938 0.939 0.946 0.932 0.969 



24 

 

 

 

 

 

 5 

 

 

 

Table 3: Values of parameters used for the polynomial function (3) of the MRF technique for GHI calculations under clear sky and cloudy 

sky conditions. 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 GHIcloudy GHIclear 

P00 -1.049 -0.002704 

P10 -0.0287 -0.0944 

P01 9.69 0.02856 

P20 0.004734 -1.75-10-16 

P11 -0.4306 0.2201 

P02 -38.08 -0.09251 

P30 -0.0002324 1.115*10-16 

P21 0.008734 4.06*10-16 

P12 0.9871 -0.2182 

P03 70.37 0.1163 

P40 3.59*10-6 -4.5*10-16 

P31 4.72*10-5 4.78-10-16 

P22 -0.01637 0.08 

P13 0.9141 -0.0498 

P04 -60.49 -0.0132 

P41 -2.9*10-6 -1.2*10-6 

P32 0.0001225 0.001984 

P23 0.005585 0.00439 

P14 0.3199 0.391 

P05 19.58 0.0041 
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Figure 3: Percentage difference (%) of the real-time modelling techniques as compared to the RTM simulations for all ground stations. 10 
The box charts highlight the more precise estimation approach of the MRF technique as compared to the NN-based techniques. 
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Figure 4: The altitude correction of GHI for various SZAs as a function of the SSR ratio (SSR at height h as to SSR at sea level). 
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Figure 5: The mean GHI in W/m2 of the real-time modelling techniques as compared to the RTM simulations for all ground stations (left), 

and the mean GHI of all models as compared to the BSRN measurements (right). 
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Figure 6: Mean GHI differences in W/m2 derived by MRF as compared to the BSRN stations for each time horizon. The boxes represent 

the 25th and 75th percentiles, while the in-box lines represent the median of the difference of each station. The upper and lower whiskers 

represent the minimum and maximum error values. 
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Figure 7: Seasonal relative RMSE values of the GHI estimations produced by the real time techniques as compared to the BSRN 

measurements. 5 
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Table 4: GHI evaluation results as a function of season and real-time techniques for all stations. The model MBE and RMSE statistical 5 
scores are shown in absolute units (W/m2) and as relative magnitude (percentages in brackets). 
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Station Season MBE RMSE MBE RMSE MBE RMSE 

  MRF NN NNS 

GOB 

Winter 

Spring 

Summer 

Autumn 

Annual period 

-20.6   (-3.2) 

-5.8   (-1.1) 

1.4   (0.3) 

-6.9   (-1-1) 

-16.0   (-2.7) 

103.5   (15.9) 

55.7   (10.2) 

21.9   (4.5) 

76.0   (12.2) 

70.8   (12.0) 

-16.8   (-2.6) 

-1.9   (-0.3) 

4.0   (0.8) 

-3.4   (-0.5) 

-9.1   (-1.5) 

99.7   (15.3) 

56.1   (10.3) 

25.9   (5.3) 

74.9   (12.1) 

69.6   (11.8) 

-23.4   (-3.6) 

-11.6   (-2.1) 

-2.3   (-0.5) 

-11.8   (-1.9) 

-24.5   (-4.2) 

107.8   (16.6) 

68.2   (12.5) 

34.7   (7.1) 

81.6   (13.2) 

77.7   (13.2) 

IZA 

Winter 

Spring 

Summer 

Autumn 

Annual period 

-14.0   (-3.0) 

-14.0   (-2.2) 

-7.8   (-1.2) 

-1.4   (-0.3) 

-18.6   (-3.4) 

72.5   (15.5) 

72.4   (11.6) 

54.9   (8.6) 

60.8   (13.4) 

65.6   (12.0) 

-10.5   (-2.3) 

-10.9   (-1.7) 

-5.8   (-0.9) 

1.8   (0.4) 

-12.7   (-2.3) 

70.9   (15.2) 

71.4   (11.4) 

54.3   (8.5) 

62.8   (13.8) 

65.2   (12.0) 

-13.7   (-2.9) 

-19.1   (-3.0) 

-10.4   (-1.6) 

-4.2   (-0.9) 

-23.7   (-4.4) 

77.8   (16.7) 

86.9   (13.9) 

63.0   (9.9) 

65.3   (14.3) 

73.9   (13.6) 

TAM 

Winter 

Spring 

Summer 

Autumn 

Annual period 

-6.3   (-1.2) 

-3.5   (-0.6) 

5.4   (1.0) 

-7.0   (-1.3) 

-5.7   (-1.0) 

56.7   (11.2) 

85.4   (13.9) 

61.4   (11.1) 

61.4   (11.7) 

67.2   (12.2) 

-2.0   (-0.4) 

0.5   (0.1) 

7.7   (1.4) 

-4.2   (-0.8) 

1.0   (0.2) 

56.2   (11.1) 

85.9   (14.0) 

64.7   (11.7) 

62.5   (11.9) 

68.3   (12.4) 

-11.1   (-2.2) 

-11.5   (-1.9) 

1.0   (0.2) 

-10.5   (-2.0) 

-16.0   (-2.9) 

71.9   (14.3) 

95.4   (15.5) 

59.0   (10.7) 

71.5   (13.6) 

75.6   (13.7) 

CAB 

Winter 

Spring 

Summer 

Autumn 

Annual period 

2.9   (2.7) 

10.4   (3.6) 

13.8   (4.7) 

6.6   (4.5) 

16.9   (7.7) 

34.5   (31.9) 

88.1   (30.3) 

79.8   (27.0) 

44.1   (29.6) 

65.7  (29.9) 

5.0   (4.7) 

14.1   (4.9) 

16.3   (5.5) 

9.0   (6.1) 

22.3   (10.1) 

38.3   (35.4) 

93.3   (32.1) 

85.1   (28.8) 

49.4   (33.1) 

70.4   (32.0) 

10.3   (9.5) 

10.7   (3.7) 

11.5   (3.9) 

11.5   (7.7) 

22.0   (10.0) 

47.7   (44.2) 

82.2   (28.3) 

69.1   (23.4) 

51.2   (34.4) 

64.1   (29.2) 

CAM 

Winter 

Spring 

Summer 

Autumn 

Annual period 

4.6   (3.6) 

13.4   (4.6) 

14.6   (4.5) 

10.1   (6.2) 

21.4   (9.2) 

38.5   (30.3) 

93.3   (32.2) 

82.3   (25.2) 

52.2   (32.2) 

70.2   (30.3) 

7.6   (6.0) 

17.4   (6.0) 

17.5   (5.4) 

13.5   (8.3) 

28.0   (12.1) 

43.6   (34.3) 

98.8   (34.1) 

88.2   (26.9) 

59.2   (36.5) 

75.7   (32.7) 

11.9   (9.4) 

12.1   (4.2) 

10.8   (3.3) 

13.7   (8.4) 

24.2   (10.5) 

50.8   (40.0) 

85.5   (29.5) 

69.4   (21.2) 

57.0   (35.1) 

67.0   (28.9) 

CAR 

Winter 

Spring 

Summer 

Autumn 

Annual period 

3.3   (1.7) 

10.4   (2.8) 

8.5   (2.0) 

5.5   (2.2) 

13.9   (4.4) 

51.2   (26.5) 

88.0   (23.5) 

59.5   (13.6) 

47.9   (18.7) 

63.6   (20.2) 

6.2   (3.2) 

14.1   (3.8) 

11.3   (2.6) 

8.9   (3.5) 

20.2   (6.4) 

55.1   (28.5) 

93.1   (24.9) 

64.4   (14.7) 

53.4   (20.9) 

68.4   (21.7) 

8.7   (4.5) 

6.8   (1.8) 

3.8   (0.9) 

7.0   (2.7) 

13.1   (4.2) 

56.0   (29.0) 

81.5   (21.8) 

52.8   (12.0) 

50.8   (19.8) 

61.5   (19.5) 

CNR 

Winter 

Spring 

Summer 

Autumn 

Annual period 

10.6   (6.5) 

14.0   (4.0) 

10.2   (2.4) 

9.4   (3.8) 

22.1   (7.5) 

60.4   (37.2) 

100.8   (28.7) 

73.4   (17.3) 

53.7   (21.7) 

74.3   (25.1) 

14.2   (8.7) 

18.1   (5.2) 

12.9   (3.1) 

13.0   (5.3) 

29.1   (9.8) 

67.1   (41.3) 

105.5   (30.1) 

78.1   (18.5) 

60.7   (24.5) 

79.7   (27.0) 

14.6   (9.0) 

10.1   (2.9) 

5.5   (1.3) 

10.0   (4.0) 

20.0   (6.8) 

62.7   (38.6) 

91.2   (26.0) 

64.0   (15.1) 

54.1   (21.9) 

69.4   (23.5) 

LER 

Winter 

Spring 

Summer 

Autumn 

Annual period 

2.8   (5.1) 

15.6   (7.7) 

10.9   (4.3) 

5.6   (6.4) 

17.5   (10.7) 

20.3   (37.1) 

83.8   (41.3) 

68.8   (27.0) 

37.4   (42.4) 

58.2   (35.7) 

5.5   (10.1) 

19.9   (9.8) 

13.9   (5.4) 

8.2   (9.3) 

23.8   (14.6) 

26.7   (48.7) 

90.5   (44.6) 

74.9   (29.3) 

43.3   (49.2) 

64.0   (39.2) 

12.1   (22.2) 

18.6   (9.2) 

10.6   (4.1) 

12.5   (14.2) 

26.9   (16.5) 

45.1   (82.3) 

80.4   (39.6) 

63.2   (24.8) 

49.7   (56.4) 

61.1   (37.5) 

TOR 

Winter 

Spring 

Summer 

Autumn 

Annual period 

4.5   (8.0) 

21.6   (9.6) 

12.7   (4.4) 

6.3   (5.7) 

22.6   (12.6) 

27.0   (47.9) 

97.6   (43.4) 

67.7   (23.3) 

36.7   (33.1) 

63.6   (35.6) 

7.5   (13.3) 

26.9   (12.0) 

16.0   (5.5) 

9.2   (8.3) 

29.7   (16.6) 

33.8   (59.9) 

106.1   (47.2) 

75.0   (25.8) 

42.8   (38.7) 

70.5   (39.5) 

13.6   (24.1) 

21.6   (9.6) 

10.3   (3.5) 

12.4   (11.2) 

28.9   (16.2) 

49.0   (86.8) 

87.8   (39.1) 

60.2   (20.7) 

50.3   (45.4) 

63.7   (35.7) 
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Figure 8: Scatterplots of real-time (MRF and NN) and RTM simulated GHI in W/m2 as compared to the BSRN measurements for all 20 
stations under clear-sky (left) and all-sky (clear-sky and cloudy) conditions. 
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Figure 9: Mean percentage difference (blue) and standard deviation (red) of the 15-min GHI produced from the MRF technique as 

compared to ground-based measurements from all stations as a function of the COT. 10 
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Figure 10: Frequency histogram of differences between the CAMS and the PFR AOD at the Izaña station together with the mean absolute 

difference and standard deviation metrics. 
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Figure 11: Absolute differences in GHI (in W/m2) derived by the MRF technique from the ground-based measurements at Izaña (BSRN 20 
pyranometer), as a function of differences in AOD from CAMS and PFR. 
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