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Abstract. Volume mixing ratio water vapour profiles have been retrieved from IASI (Infrared Atmospheric Sounding Inter-

ferometer) spectra by using the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of

Atmospheric water) processor. The retrievals are made for IASI observations that coincide with Vaisala RS92 radiosonde

measurements performed in the framework of the GCOS (Global Climate Observing System) Reference Upper-Air Network

(GRUAN) in three different climate zones: the tropics (Manus Island, 2◦S), mid-latitudes (Lindenberg, 52◦N) and polar regions5

(Sodankylä, 67◦N).

The retrievals show good sensitivity with respect to the vertical H2O distribution between 1-2 km above ground and the

upper troposphere. Typical DOFS (degree of freedom for signal) values are about 5.5 for the tropics, 5.0 for summertime mid-

latitudes, 4.0 for wintertime mid-latitudes, and 4.5 for summertime polar regions. The errors of the IASI water vapour profiles

have been theoretically estimated considering the contribution of a large number of uncertainty sources. For all three climate10

regions unrecognized cirrus clouds and uncertainties in atmospheric temperature have been identified as the most important

error sources, whereby the total errors are estimated to be typically 25%.

The IASI water vapour profiles have been compared to 100 individual coinciding GRUAN water vapour profiles. The sys-

tematic difference between the IASI and GRUAN data is within 12% at all altitudes. The scatter is largest close to the surface

and close to the tropopause, but does never exceed 30%. The study documents that the MUSICA MetOp/IASI retrieval proces-15

sor provides H2O profiles with good accuracy and captures the variations in H2O volume mixing ratio profiles from 1 −2 km

above ground up to altitudes close to the tropopause with a precision that is in accordance to the theoretical error assessment.
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1 Introduction

Atmospheric water plays a key role for the atmospheric energy balance and temperature distribution via radiative effects

(clouds and vapour) and latent heat transport. Hence the distribution and transport of atmospheric moisture is closely linked to

atmospheric dynamics on all scales and understanding its spatial and temporal variations is essential for weather and climate

modeling. Also, understanding the coupling between moisture transport, clouds and atmospheric dynamics is seen as a major5

challenge for improving atmospheric models (Stevens and Bony, 2013). In this context the global monitoring of the water

vapour distribution is important, whereby the large inhomogeneity in time and space (horizontally and vertically) is particularly

challenging.

In the meantime, several in situ and remote sensing measurement techniques for the observation of water vapour have been

established using platforms such as surface stations, balloons, aircraft or satellites. The radiative properties of water vapour10

enable satellite remote sensing measurements in a large range of wavelength regimes from the visible (e.g. GOME; Grossi

et al., 2015), near-infrared (e.g. MODIS; Gao and Kaufman, 2003), infrared (e.g. TES; Worden et al., 2012 and IASI; Herbin

et al., 2009; Schneider and Hase, 2011) to the microwave (e.g. AMSU; Rosenkranz, 2000). The IASI instrument (Infrared

Atmospheric Sounding Interferometer; Clerbaux et al., 2009) aboard EUMETSAT’s MetOp satellites is particularly promising:

it provides global observations with high resolution and accuracy twice a day on a long-term mission for more than 14 years.15

Furthermore, IASI follow-up missions have already been approved guaranteeing respective observations until the 2030s, which

will offer great opportunities for studying the atmospheric composition over long time periods.

When using satellite data in research, it is important to understand their characteristics (sensitivity/representativeness and

errors). Theoretical error assessments can be used to reveal the leading error sources. Ideally these error assessments should be

accompanied by empirical data validation studies, in which the remote sensing data are compared to independent high quality20

reference data. Temperature and humidity profile reference data are produced from Vaisala RS92 radiosonde measurements

in the framework of the GCOS Refernce Upper-Air Network (GRUAN, www.gruan.org), a subnetwork of the Global Climate

Observing System (GCOS, http://www.wmo.int/pages/prog/gcos/index.php). Currently GRUAN consists of about 30 reference

sites.

In this paper we perform a detailed theoretical error assessment and an empirical validation of the water vapour profiles25

as generated by the MUSICA MetOp/IASI retrieval processor. The retrievals are made for three different climate regions

(tropics, midlatitudes, polar regions) and for coincidences with GRUAN in situ radiosonde measurements, which we use as the

reference for the empirical validation study. Our investigations will give a comprehensive overview of the retrieval’s capability

of profiling atmospheric water vapour. The paper is organised as follows: Section 2 will give a brief overview of the MUSICA

MetOp/IASI processor by describing general retrieval and error estimation principles, by presenting the particularities of the30

MUSICA retrieval setup and by discussing the MUSICA retrieval output. Section 3 presents the sites and time periods for

which the data evaluation is performed. Section 4 shows the theoretical IASI data characterisation and Sect. 5 gives the results

of the comparison between the remote sensing data and the GRUAN in situ reference data. In Sect. 6 we summarize the

outcome of the study.
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2 MUSICA MetOp/IASI data

2.1 Atmospheric remote sensing retrieval principles

In this subsection we give a very brief introduction into the principles of the optimal estimation retrieval method. It is a standard

retrieval method in atmospheric remote sensing. For more details please refer to Rodgers (2000) and for a general introduction

on vector and matrix algebra dedicated textbooks are recommended.5

Atmospheric remote sensing means that the atmospheric state is retrieved from the radiation measured after having interacted

with the atmosphere. This interaction of radiation with the atmosphere is modeled by a radiative transfer model (also called

forward model, F ), which enables relating the measurement vector and the atmospheric state vector by:

y = F (x,p) (1)

We measure y (the measurement vector, e.g. a thermal nadir spectrum in the case of IASI) and are interested in x (the atmo-10

spheric state vector). Vector p represents auxiliary parameters (like surface emissivity) or instrumental characteristics (like the

instrumental line shape), which are not part of the retrieval state vector. However, a direct inversion of Eq. (1) is generally not

possible, because there are many atmospheric states x that can explain one and the same measurement y.

For solving this ill-posed problem a cost function is set up, that combines the information provided by the measurement with

a priori known characteristics of the atmospheric state:15

[y−F (x,p)]TSε−1[y−F (x,p)] + [x−xa]TSa
−1[x−xa]. (2)

Here, the first term is a measure of the difference between the measured spectrum (represented by y) and the spectrum simulated

for a given atmospheric state (represented by x), while taking into account the actual measurement noise level (Sε is the

measurement noise covariance matrix). The second term of the cost function (Eq. 2) constrains the atmospheric solution state

(x) towards an a priori most likely state (xa), whereby kind and strength of the constraint are defined by the a priori covariance20

matrix Sa. The constrained solution is reached at the minimum of the cost function (Eq. 2). Due to the nonlinear behavior of

F (x,p), the minimisation is generally achieved iteratively. For the (i+ 1)th iteration it is:

xi+1 = xa + Gi[y−F (xi,p) + Ki(xi−xa)]. (3)

K is the Jacobian matrix (derivatives that capture how the measurement vector will change for changes in the atmospheric

state x). G is the gain matrix (derivatives that capture how the retrieved state vector will change for changes in the measurement25

vector y). G can be calculated from K, Sε and Sa as:

G = (KTSε−1K + Sa
−1)−1KTSε−1. (4)

The averaging kernel is an important component of a remote sensing retrieval and it is calculated as:

A = GK. (5)
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The averaging kernel A reveals how a small change of the real atmospheric state vector x affects the retrieved atmospheric

state vector x̂:

x̂−xa = A(x−xa). (6)

The propagation of errors due to parameter uncertainties εp can be estimated analytically with the help of the parameter

Jacobian matrix Kp (derivatives that capture how the measurement vector will change for changes in the parameter p). Ac-5

cording to Eq. (3), using the parameter p+εp (instead of the correct parameter p) for the forward model calculations will result

in an error in the atmospheric state vector of:

xe =−GKpεp. (7)

The respective error covariance matrix Se is:

Se = GKpSpKp
TGT , (8)10

where Sp is the covariance matrix of the uncertainties εp.

Noise on the measured radiances also affects the retrievals. The error covariance matrix for noise can be analytically calcu-

lated as:

Se = GSyGT , (9)

where Sy is the covariance matrix for noise on the measured radiances y.15

2.2 The MUSICA retrieval setup

The MUSICA MetOp/IASI retrieval is based on a nadir version of the retrieval code PROFFIT (PROFile FIT; Hase et al., 2004)

and on the corresponding radiative transfer model PRFFWD (PRoFit ForWarD model; Hase et al., 2004). The nadir code has

been developed in support of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle

of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php). The PRFFWD-nadir code has been recently updated20

by including water continuum calculations according to the model “MT_CKD” v2.5.2 (Mlawer et al., 2012; Delamere et al.,

2010; Payne et al., 2011).

For the MUSICA MetOp/IASI retrieval calculations a single broad spectral window ranging from 1190 cm−1 to 1400 cm−1 is

used. The spectral signatures of H2
16O, H2

18O and H2
17O are fitted together as a single species and HDO as a separate species.

Furthermore, the retrieval’s spectral window contains spectroscopic features of CH4 and N2O as well as weak spectroscopic25

features of HNO3 and very weak spectroscopic features of CO2 and O3. All these trace gases (except O3) are simultaneously

fitted during the retrieval process whereby the spectroscopic parameters are taken from the HITRAN database (Gordon et al.,

2017) with small modifications for HDO parameters (similar to Schneider et al., 2016, the line intensity parameters of HDO

have been increased by 10%).
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The water isotopologues are retrieved on a logarithmic scale. For CO2 and HNO3 the a priori profiles are scaled and for CH4

and N2O an ad hoc regularisation is applied allowing profile retrievals on a logarithmic scale (García et al., 2017). A single a

priori is used for all the retrievals for each of the different trace gases (Schneider et al., 2016; García et al., 2017).

The retrieval also fits the surface temperature and the atmospheric temperature profile, whereby the a priori temperatures are

taken from the EUMETSAT IASI level 2 (L2) products. There is no constraint on the surface temperature. The allowed atmo-5

spheric temperature variations are 1 K at ground, 0.5 K in the free troposphere, and 0.75 K above the tropopause. This altitude

dependency follows roughly the altitude dependency of uncertainties in the EUMETSAT IASI L2 atmospheric temperature

profiles (August et al., 2012).

The MUSICA MetOp/IASI water vapour retrieval only works for pixels that are not contaminated by clouds, whereby

we rely on the IASI L2 cloud flag (we require zero for the flag “cldfrm”). Ground elevations are from GTOPO30 devel-10

oped by US Geological Survey and provided by the Oak Ridge National Laboratory Distributed Active Archive Center

(ORNL DAAC). GTOPO30 is a global digital elevation model with a horizontal grid spacing of 30-arc seconds (approx-

imately 1 km). The land surface emissivities are from the “global database of infrared land surface emissivity” (IREMIS;

http://cimss.ssec.wisc.edu/iremis/; Seemann et al., 2008) and the sea surface emissivities are calculated according to the model

of Masuda et al. (1988).15

Figure 1 depicts an example of a typical radiance spectrum in the retrieval’s spectral range as measured by IASI (upper

graph) and the corresponding differences to the simulated spectra (the residuals, lower graph). The residuals are mostly within

the order of the instrument’s 1σ measurement noise (Pequignot et al., 2008). However, there are also distinctive spectral

signatures that are not well understood, specifically at 1250 cm−1 and at 1280 cm−1.

For further information on the retrieval setup a more detailed description is available in Schneider and Hase (2011) and20

Wiegele et al. (2014).

2.3 The MUSICA retrieval output

The output of the retrieval refers to the {ln [H2O] , ln [HDO]} basis system. In this basis system the state vector x consists of

the vector for the H2O profile extended by the vector for the HDO profile:

x =


 xH2O

xHDO


 . (10)25

Correspondingly, the averaging kernel matrix A has 2× 2 blocks

A =


 A11 A12

A21 A22


 . (11)

A11 and A22 describe how the retrieved H2O and HDO states depend on the actual atmospheric H2O and HDO variations,

respectively, and A12 and A21 reveal the cross-dependencies of the retrieved H2O on the actual atmospheric HDO and of

the retrieved HDO on the actual atmospheric H2O, respectively. Since H2O and HDO vary largely in parallel, we use in the30

following the A11 + A12 as the kernel for H2O (see also Sect. 4.3 in Barthlott et al., 2017).
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Similarly, retrieval error covariance matrices consist of 2×2 blocks where the blocks in the diagonal represent the H2O and

HDO covariances. For this study only the H2O covariance block is of interest (i.e. we are only interested in the H2O error

covariances). The outer diagonal blocks represent the error covariances between H2O and HDO.

3 Reference data and sites

The theoretical and empirical assessment studies are made for cloud-free IASI measurements that coincide with GRUAN5

processed Vaisala RS92 radiosonde measurements. Useful coincidences are defined in accordance to Pougatchev et al. (2009)

and Calbet et al. (2017).

We identified three different sites with coincidence between IASI and GRUAN measurements: Manus Island (Papua New

Guinea; 2°5’S, 146°58’E) for the tropics, Lindenberg (Germany; 52°12’N, 14°7’E) for the mid-latitudes and Sodankylä (Fin-

land; 67°25’N, 26°35’E) for the polar region.10

Figure 2 depicts all the GRUAN H2O profiles that coincide with IASI observation made for cloud-free conditions. There are

25 individual GRUAN profiles for Manus Island, 58 for Lindenberg, and 17 for Sodankylä, i.e. in total there are 100 individual

GRUAN radiosonde measurements that coincide with IASI cloud-free measurements. This ensemble of GRUAN profiles is

well representative for the highly varying tropospheric H2O distributions. In the free middle/upper troposphere the data show

variations of up to two orders of magnitude. At the tropical site of Manus Island we observe up to 10 000 ppmv (at 5 km a.s.l.)15

and up to 1000 ppmv (at 10 km a.s.l.), whereas at the mid-latitudinal and polar sites of Lindenberg and Sodankylä the H2O

concentrations can be as small as 100 ppmv and 10 ppmv, respectively. In this context using this ensemble of GRUAN data

enables us to make an evaluation of the retrieval performance that has a good global validity.

The coincidences at the three sites are for different time periods meaning that there is not a strictly uniform data set for

creating the retrieval input files (more details see Sects. 3.2-3.4 and the summary of Table 1).20

3.1 GRUAN processed Vaisala RS92 in-situ profiles

The Vaisala RS92 radiosonde is equipped with a wire-like capacitive temperature sensor (“Thermocap”), two polymer capaci-

tive moisture sensors (“Humicap”), a silicon-based pressure sensor and a GPS receiver to measure position, altitude and winds.

Each second the RS92 transmits sensor data, which are received, processed and stored by the ground station equipment.

The Humicap consists of a hydro-active polymer thin film as dielectric between two electrodes applied on a glass substrate. The25

humidity sensors are not covered by protective caps, but they are alternately heated to prevent icing. To prevent overheating,

the heating of the humidity sensors is switched off below −60 ◦C, or above 100 hPa, whichever is reached first. Humicaps show

good performance over a wide range of temperatures but suffer from systematic errors such as dry bias due to solar radiative

heating and a response lag below −40 ◦C. Known main error sources affecting the humidity profile are daytime solar heat-

ing of the Humicaps introducing a dry bias, sensor time-lag at temperatures below about −40 ◦C and temperature-dependent30

calibration correction.
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We work with Vaisala RS92 data that have been processed by the GRUAN lead centre (http://www.gruan.org). The GRUAN

data processing assures that the obtained humidity, pressure and temperature profiles are well-calibrated and highly accurate

(Dirksen et al., 2014; Sommer et al., 2016).

3.2 Manus Island (MI)

At Manus Island we have coincidences in 2012 and 2013 to 25 individual GRUAN radiosonde profiles. The collocation of IASI5

and GRUAN measurements has been performed by EUMETSAT in the framework of a planned IASI retrieval comparison study

(Calbet et al., 2017).

For our retrieval we use the a priori temperatures (atmosphere and surface skin) as well as surface emissivities from the

EUMETSAT IASI L2 product. Since most of the ground scenes are over the ocean surface, the emissivity values are mainly

according to the model of Masuda et al. (1988). The satellite pixels have been careful examined for clouds by EUMETSAT10

according to the cloud flags as provided in the IASI L2 data.

3.3 Lindenberg 2008 (LI08)

For Lindenberg there are coincidences to 32 individual GRUAN profiles in 2008 (representative for all seasons). We performed

the collocation and required that the satellite pixel has to be within a distance of 25 km with respect to the starting position of

the radiosonde and that the satellite’s pixel sensing time has to be within the sensing time period of the radiosonde.15

Like for Manus Island we rely on the IASI L2 data for our retrieval input data (surface and atmospheric temperatures, surface

emissivity, cloud filter, etc.). However, while for the 2012/13 time period (Manus Island) the IASI L2 data are generated with

the IASI L2 PPF (Product Processing Facility) software version 5, for the 2008 retrievals we work with L2 data generated by

the IASI L2 PPF software version 4.

3.4 Lindenberg 2007 (LI07) and Sodankylä 2007 (SK07)20

In 2007 we have 26 individual GRAUN profiles for Lindenberg and 17 individual GRUAN profiles for Sodankylä (details on

the Sodankylä campaign are available in Calbet et al., 2011) that coincide with IASI observations. This dataset is limited to the

summer observations. We performed the collocation using the same criteria as for the Lindenberg 2008 coincidences.

For summer 2007 IASI L2 data have not been available for our retrieval input. Thus data from the radiosonde measurements

have been used as the a priori temperatures and this might cause some minor inconsistencies to a retrieval that uses IASI L225

temperatures as a priori temperature (the MI and LI08 retrievals). Surface emissivities are taken from the “global database of

infrared land surface emissivity” (IREMIS; http://cimss.ssec.wisc.edu/iremis/; Seemann et al., 2008), i.e. in agreement to the

retrievals for 2008 (IASI L2 emissivities are based on IREMIS for land surfaces and use the Masuda model for sea surfaces).

Because there are no IASI L2 cloud products for summer 2007, we use the radiosonde measurements and the cloud detection

algorithm according to the model of Zhang et al. (2010) for identifying cloud-free situations.30
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4 Theoretical MUSICA MetOp/IASI data characterisation

4.1 Averaging Kernels

Figure 3 illustrates examples of H2O row kernels (A11 + A12, logarithmic state vector entries according to Sect. 2.3) for the

three reference sites. The peaks of the row kernels for the heights of 1.8 km, 4.9 km, 8.0 km and 10.9 km are close to their

nominal altitudes, meaning that the values retrieved for this altitudes well represent the situation at the nominal altitude. In5

contrast the row kernel for the lowermost troposphere (kernel with 0.4 km nominal altitude) peaks at around 1 km at every

reference site and is not well separated from the row kernels with nominal altitudes just above the boundary layer (kernel with

1.2 km nominal altitude). This shows that the retrieval has a poor sensitivity for the atmospheric layers near the ground.

For higher altitudes the sensitivity is best in the tropics and poorest in the polar region. In agreement with the location of

the tropopause we observe good sensitivity in the tropics up to 13 km, in mid-latitudes up to 11-12 km in summer and 8 km in10

winter and in polar regions in up to 11 km in summer. This becomes evident by looking on the altitudes where the example

kernels of Fig. 3 have their peak levels. Whereas for Manus Island the 13.6 km kernel is the uppermost kernel that peaks close

to its nominal altitude, for Lindenberg and Sodankylä the respective kernels are the 10.9 km kernels.

The seasonal dependency of the sensitivity is indicated in Fig. 5, which depicts the seasonal variations in the degree of

freedom for signal (DOFS) values. The DOFS values are calculated as the trace of the averaging kernel matrix and the higher15

the DOFS values the more profile information is in the retrieved atmospheric state. In the tropics we observe no seasonal

dependency. In the mid-latitudes the DOFS values are distinctively higher in summer than in winter (for polar regions we

analyse only summertime observations). The seasonal variations in the mid-latitudes are in line with the seasonal variation of

the tropopause.

In summary, at all three different sites the MUSICA MetOp/IASI retrieval provides H2O profile information from 1.5 −2 km20

above ground up to about the tropopause altitude.

4.2 Calculation of error Jacobians

The error Jacobians (Kp from Eqs. 7 and 8) are calculated by the forward model PRFFWD (Hase et al., 2004) as follows:

PRFFWD is executed running on a vertical grid of 28 levels from surface altitude to approximately 55 km above mean sea

level. For every site reference forward calculations are performed for all cloud-free situations. The input (i.e. temperature,25

trace gas concentrations, etc.) for the reference forward model runs is the same as the input used in the forward calculation of

the last iteration step of the MUSICA MetOp/IASI retrievals, i.e. the reference radiances are given by F (x̂,p). Then for each

reference scenario we make additional forward calculations with slightly modified parameters, i.e. we calculate F (x̂,p + εp).

For a measurement vector y having m elements and a parameter vector p having n elements the Jacobian matrix Kp will have

the dimension m×n. The individual matrix elements are calculated as:30

Kpk,l
=
Fk(x̂,p + εpl

)−Fk(x̂,p)
εpl

, (12)
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where k is the index for the kth element of the measurement state vector y (simulated by vector function F ) and l is the index

for the lth element of the parameter vector p, respectively.

Table 2 gives an overview of the uncertainty assumptions εp used for calculating the Jacobians and for performing the error

estimation. The calculations of the error Jacobians for water vapour continuum and clouds require a specific treatment, which

is detailed in the following two subsections.5

4.2.1 Water vapour continuum

We hypothetically assume that calculations based on the model “MT_CKD” v2.5.2 (Mlawer et al., 2012; Delamere et al.,

2010; Payne et al., 2011) only partly capture the full water vapour continuum effect. For the respective Jacobian calculation

we perform forward calculations without considering the water vapour continuum (F noWVC(x̂,p)). Then we calculate the

Jacobian matrix as KnoWVC = F noWVC(x̂,p)−F (x̂,p). The spectral response for an underestimation of 10% of the water10

vapour continuum effect is then KnoWVCεnoWVC with εnoWVC = 0.1.

4.2.2 Opaque clouds (cumulus)

We estimate the influence of fractional coverage with opaque liquid cumulus clouds with different cloud top altitudes (1.3 km,

3.0 km and 4.9 km). The radiance at top of the cloudy atmosphere F cum(x̂,p) is calculated by starting PRFFWD at the cloud’s

top height, assuring that no radiation from below the cloud contributes to F cum(x̂,p). Additionally it is assumed that the sur-15

face emissivity of the cloud is 1.0 and that the skin temperature of the cloud’s upward looking surface is in thermal equilibrium

with the surrounding air temperature. The Jacobian matrix for opaque cumulus clouds is then Kcum = F cum(x̂,p)−F (x̂,p)

and the spectral response of a 10% fractional cloud cover is Kcumεcum with εcum = 0.1.

4.2.3 Transmitting clouds (mineral dust and cirrus)

Some clouds are not opaque and we have to consider partial attenuation by the cloud particles. This is the case for cirrus clouds20

and mineral dust clouds. We consider these clouds by introducing them as an additional species in the forward model calcula-

tions. The extinction of these clouds is the sum of absorption and scattering. Since PRFFWD does not include the simulation of

scattering clouds we calculate the attenuated radiances using forward model calculations from KOPRA (Karlsruhe optimized

and precise radiative transfer algorithm; Stiller, 2000) and consider single scattering.

The frequency dependency of the extinction cross sections, the single scattering albedo, and the scattering phase functions of25

the clouds are calculated from OPAC v4.0b (Optical Properties of Aerosol and Clouds; Hess et al., 1998; Koepke et al., 2015).

For cirrus clouds we assume the particle composition as given by OPAC’s “Cirrus 3" ice cloud example (see Table 1b in Hess

et al., 1998) and for mineral dust clouds a particle composition according to OPAC’s “Desert" aerosol composition example

(see table Table 4 in Hess et al., 1998).
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We make cirrus cloud forward calculations F cir considering cirrus clouds with a vertical cloud layer thickness of 1 km and

cloud top at different altitudes ranging from 6 km to 14 km. The Jacobians are calculated as Kcir = F cir(x̂,p)−F (x̂,p) and

for a cloud coverage of 50% the spectral response is Kcirεcir with εcir = 0.5.

For the dust clouds we make forward calculations F dust for homogeneous 2 km thick layers between the ground and 6 km

altitude. The Jacobians are then given as Kdust = F dust(x̂,p)−F (x̂,p).5

4.3 Spectral response on uncertainty

Figure 5 depicts the spectral responses (i.e. Kpεp) for an example of different uncertainty sources for a typical situation

at the tropical reference site. The left panel shows that surface skin temperature uncertainties mainly affect the spectra be-

tween 1190 cm−1 to 1250 cm−1 (which is also the spectral region of an “atmospheric window”), but is negligible for higher

wavenumbers. This is similar for lower tropospheric temperature uncertainties and in contrast to upper tropospheric tempera-10

ture uncertainties, which have highest spectral responses for wavenumbers larger than 1250 cm−1.

The right panel of Fig. 5 illustrates that uncertainties in dust layers and uncertainties due to cirrus clouds have the highest

impact at the lower end of wavenumbers and that a cirrus cloud has a weaker dependency on wavenumber than a dust layer.

Furthermore unrecognized clouds have the opposite effect on the spectrum than increasing the surface skin and atmospheric

temperatures although affecting the spectrum in the same order of magnitude.15

4.4 Estimated errors

Figure 4 shows a certain seasonal variability in the DOFS values (in particular at the mid-latitudinal site), indicating varying

sensitivities of the remote sensing system. This variation is also present in the sensitivity with respect to uncertainty sources.

For this reason we present the estimated errors for all the Manus Island and Sodankylä retrievals and for all the Lindenberg

2008 retrievals. The Lindenberg 2008 error estimations are representative for all seasons, hence they cover the full variation20

with respect to uncertainty sources.

4.4.1 Measurement noise

Figure 6 depicts the H2O error profiles for noise on the measured radiances (from the left to the right for Manus Island,

Lindenberg, and Sodankylä). The shown error profiles are the square root of the diagonal elements of the error covariance

matrix Se calculated according to Eq. (9). For these calculations we assume a noise covariance Se of the IASI radiances25

according to Pequignot et al. (2008).

The measurement noise errors vary around 2-10% near the ground but decrease to approximately 2-3% above the boundary

layer and remain there throughout the free troposphere. Above and close to the tropopause errors increase again to values of

around 10%. For Manus Island we observe similar errors for all the different observations. For Sodankylä and in particular for

Lindenberg the errors vary. For instance, in the lower troposphere at Lindenberg the error is 10% for some days, but only 1-3%30
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for other days. The varying sensitivity with respect to the uncertainty sources is due to the varying atmospheric conditions and

in agreement with the varying DOFS values as documented by Fig. 4 (the Lindenberg data cover all mid-latitudinal seasons).

4.4.2 Temperature and surface emissivity

The H2O error pattern profiles due to positive errors in surface emissivity, surface skin temperature and atmospheric temper-

atures are calculated as xe according to Eq. (7). The patterns are plotted in Fig. 7 (top panels for uncertainties in surface5

emissivity and surface skin temperature and bottom panels for uncertainties in atmospheric temperatures).

Uncertainties in the surface emissivity of +2% have a strong impact near the ground (errors of approx. 20-40%). For Manus

Island, the error is always negative in the lower troposphere and similar for all observations, whereas for Lindenberg and

Sodankylä a +2% uncertainty in the surface emissivity causes sometimes positive and sometimes negative errors in the lower

troposphere, i.e. the sensitivity with respect to this uncertainty source is strongly varying. Surface skin temperature is fitted10

during the retrieval process, i.e. uncertainties in the first guess surface skin temperatures are partly corrected for during the

retrieval process. The remaining error due to an +2 K surface skin temperature uncertainty is largest in the lower troposphere,

where it can reach up to 20%. It can be positive or negative. Above 4 km altitude the surface emissivity and surface skin

temperature uncertainties are smaller than 5%.

Positive atmospheric temperature uncertainties cause large positive errors in the retrieved tropospheric H2O profiles. The15

errors can reach +30%, whereby these errors are largest for the heights (and atmospheric layers respectively) where the at-

mospheric temperature uncertainty is assumed: for instance, uncertainties in lower tropospheric temperature (0-2 km, upper

row) cause maximal errors from ground up to 3 km and decrease rapidly with altitude onwards, whereas uncertainties in upper

tropospheric temperature (5-10 km, bottom row) are negligible from ground up to 6 km, but then increase to values of around

+20% at 8 km.20

4.4.3 Spectroscopic parameters

Figure 8 illustrates the error pattern profiles (xe according to Eq. 7) for uncertainties in the spectroscopic parameters. We

consider uncertainties in the H2O line intensity and pressure broadening parameters and an uncertainty in the applied water

continuum model.

The uncertainty in the water vapour continuum model causes error profiles having small oscillations. For a water continuum25

model that underestimates the water continuum effect by 10% (see Sect. 4.2.1), the error is positive near ground (about +2%),

negative at around 3 km altitude (about -4%) and negligible for altitudes above 5 km.

A positive uncertainty of +5% in the linestrength parameter causes a negative error of about −5% in the retrieved H2O

values, with slight oscillations (the slight oscillation is an effect of the constraint between H2O and HDO applied for the

MUSICA retrievals). The impact of uncertainties in the pressure broadening parameter depends on the reference site: At30

Manus Island the resulting errors are negligible above 3 km, but at Lindenberg and Sodankylä the error profiles contain strong

oscillations with an amplitude of approximately 10% and maximal errors close to the tropopause.

11
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Uncertainties in the spectroscopic parameters of HDO and due to varying CH4 and N2O concentrations account for absolute

error values of less than 1% and are not depicted in the Figure.

4.4.4 Clouds

Figure 9 shows the influence of different cloud types on the retrieval. Uncertainties due to unrecognized cirrus clouds (top row

in Fig. 9) lead to errors of -20% from 3-6 km at all sites and then decrease with altitude. However their impact on the humidity5

profiles in the boundary layer shows large variation, especially at Lindenberg and Sodankylä, which is a result of the more

variable atmospheric conditions at these sites (compared to the tropical site of Manus Island).

The influence of a 10% fractional cloud cover of opaque clouds depends on the height where the clouds are assumed (middle

row in Fig. 9): Clouds at 1.3 km show only a small impact on the humidity profiles in the boundary layer with error magnitudes

of 5-10%, but clouds at 3.0 km account for errors of more than 10% up to 5 km above mean sea level. Yet similarly to cirrus10

clouds their effect in the boundary layer shows large variation at Lindenberg and Sodankylä.

The error pattern profiles due to mineral dust layers (bottom row in Fig. 9) show that such layers have almost no impact if

they are situated in the boundary layer, however if they are situated in the middle troposphere the errors can account for values

of more than 10%. The effect of dust clouds can be in particular large for the mid-latitudinal site of Lindenberg, where we also

observe the largest variability in the calculated error patterns.15

5 Empirical validation study

We use GRUAN processed Vaisala RS92 radiosonde measurements as reference for empirically validating the retrieved IASI

H2O profiles. The radiosonde ascents are collocated temporally and spatially with MetOp overpasses (details see Sect. 3),

which is essential for a meaningful comparison.

5.1 Regridding and smoothing of high resolution in-situ profiles20

The in situ profiles have a high vertical resolution. This is different to the remote sensing profiles, which can only detect

the major characteristics of the vertical H2O distribution. Before comparing the data we have to account for this different

characteristics by regridding and smoothing the in situ profiles.

While the remote sensing retrieval provides atmospheric states and averaging kernels on a coarse atmospheric grid (between

ground level and about 55 km a.s.l. 28 grid points are defined), the radiosonde reports data about every 10 m. So we have25

to regrid the radiosonde data to the coarse vertical grid used by the remote sensing retrieval. In order to guarantee that the

regridding does not significantly affect the H2O partial columns, the regridding is performed in two steps.

First, the radiosonde data points between the 28 MUSICA retrieval grid points are averaged by using a triangle inverse-

distance weighted function resulting in a first estimate of the regridded radiosonde data. In the second step this first estimate

is corrected by requiring that the partial columns between adjacent grid levels remain almost the same in the original high30

resolution data and in the regridded data. In the correction process a constraint is put to the smoothness of the profile, thereby

12
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avoiding that the correction produces strongly oscillating profiles. The results are regridded data consisting of reasonably

smooth profiles having practically the same partial columns as the original high resolved radiosonde profiles.

In order to get the in situ profile data that are comparable to the remote sensing data we have to smooth the regridded in situ

profiles xGRUAN according to the averaging kernels of the remote sensing retrieval. The regridded and smoothed in situ profile

x̂GRUAN is then comparable to the remote sensing profile, whereby:5

x̂GRUAN = (A11 + A12)(xGRUAN−xa) + xa. (13)

Here A11 is the H2O block of the averaging kernel matrix and A12 the block that describes the response of the retrieved H2O

on atmospheric HDO (see Sect. 2.3) and the vector xa is the a priori state vector. An example illustrating the effects of the

regridding and the smoothing is given in Fig. 10.

We would like to note that by using Eq. (13) we assume that H2O and HDO variations are fully correlated. However, H2O and10

HDO do not vary fully in parallel, i.e. calculating x̂GRUAN according to Eq. (13) implies an uncertainty that can be estimated

by the uncertainty covariance matrix Se,GRUAN according to (see also Sect. 4.3 of Barthlott et al., 2017):

Se,GRUAN = A12Sa,δDA12
T . (14)

Here Sa,δD describes the actual atmospheric δD covariances. Because A12 and Sa,δD have small entries only, this uncertainty

is below 1% and can be neglected for our comparison.15

5.2 Comparison of GRUAN and IASI data

In this section we present the comparison between the regridded and smoothed GRUAN H2O profiles and the IASI H2O

profiles. Thereby we illustrate the remote sensing data quality at the three reference sites that belong to three different climate

zones. It should be noted that the radiosonde measurements are also affected by several uncertainties which have to be taken

into account during the evaluation.20

In general the uncertainty of the GRUAN data increases with altitude. For the regridded and smoothed GRUAN profiles it

is about 3-5% near the surface and 5-20% at around 10 km altitude. For further information on the radiosonde uncertainty we

refer to Appendix A.

5.2.1 Correlation plots

We use scatter plots for representing the results at selected heights where the retrieval has a good sensitivity at the respective25

reference sites. Figure 11 illustrates correlations between the retrieval results and the smoothed GRUAN data for selected

retrieval altitude levels representative for the lower, middle and upper troposphere, respectively. For the lower and middle

troposphere we use the same altitude levels (1.8 km and 4.9 km, respectively) at all reference sites. For the upper troposphere

we illustrate the values for the highest altitude level at which the row kernels in Fig. 3 still indicate good sensitivity. This is

about 13.5 km for Manus Island and about 11 km for Lindenberg and Sodankylä.30

Near the ground and in the lower troposphere (top row in Fig. 11) the retrieval has a slightly higher variability than the

radiosonde measurements for the sites of Manus Island and Sodankylä, however the remote sensing and the in situ data well
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identify whether the air is more humid or drier than given by the a priori assumption (represented by the yellow star). For

Lindenberg we observe two outliers in the LI08 data, which might indicate the observation of different airmasses by IASI and

GRUAN.

In the middle troposphere (middle row of Fig. 11) the retrieval and the measurements remain in quasi-linear relation over

nearly one order of magnitude at all reference sites. This indicates the good sensitivity and precision of the remote sensing data5

at this altitude region.

In the upper troposphere close to the tropopause (bottom row) the H2O variability at Manus Island is rather small. In

agreement to the GRUAN radiosonde, the retrieval estimates an H2O increase if compared to the a priori assumption. It should

also be noted that the concentrations at this altitude are rather low (10 −40 ppmv) compared to the concentrations near the

ground (about 20 000 ppmv at 1.8 km). At Lindenberg and Sodankylä the H2O variability is higher and well captured by the10

IASI retrieval, despite the small humidity levels of below 100 ppmv.

The error bars on the diagonal of the plots of Fig. 11 indicate the typical GRUAN errors (x̂e,GRUAN as detailed in Ap-

pendix A) and the root square sum of the typical leading statistical IASI errors (xe from Eq. 7), whereby we have considered

measurement noise and uncertainties in surface emissivity, surface skin temperatures and atmospheric temperatures.

5.2.2 Bias and scatter15

For a better statistical quantification of the deviations of the remote sensing data from the GRUAN reference data, we introduce

a skill score DL describing the difference of the logarithmic values of the respective water vapour concentrations:

DL = ln([H2O]retrieval)− ln([H2O]GRUAN)

≈ [H2O]retrieval− [H2O]GRUAN

[H2O]GRUAN

, (15)

where [H2O]GRUAN is the regridded and smoothed radiosonde H2O data (i.e. x̂GRUAN from Eq. 13) and [H2O]retrieval is the20

retrieved IASI H2O data. The so defined skill score DL is a good measure for the relative difference between the GRUAN and

IASI data.

As a good measure for the mean relative difference between GRUAN and IASI we can use the mean difference of logarithmic

values (MDL):

MDL =
1
N

N∑

i=1

DLi =
1
N

N∑

i=1

[ln([H2O]retrieval)− ln([H2O]GRUAN)]
i

25

≈ 1
N

N∑

i=1

(
[H2O]retrieval− [H2O]GRUAN

[H2O]GRUAN

)

i

. (16)

Similarly, we can use the standard deviation of the logarithmic differences as a measure for the relative scatter between

GRUAN and IASI and introduce σMDL as

σMDL =

√√√√ 1
N

N∑

i=1

(DLi−MDL)2. (17)

14

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-374
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 26 October 2017
c© Author(s) 2017. CC BY 4.0 License.



For illustrating the variation of the atmospheric state we introduce σGRUAN as

σGRUAN =

√√√√ 1
N

N∑

i=1

[
ln([H2O]GRUAN)

i
− ln([H2O]GRUAN)

]2
. (18)

Figure 12 depicts the vertical profiles of the aforementioned skill scores calculated for all coinciding observations without

separating the different sites and time periods. The MDL value is within ±0.12 for all altitudes, indicating that the retrieval is

in very good agreement to the smoothed radiosonde data.5

The scatter between GRUAN and IASI (σMDL) decreases slightly linearly with altitude starting at ±0.3 at the ground and

reaching ±0.2 at 9 km. In contrast the variation of the smoothed radiosonde data, σGRUAN, reaches more than ±0.5 in the lower

troposphere and more than ±1.0 in the middle and upper troposphere. This reflects the large variation in the atmospheric water

vapour concentration data we use for our evaluation study (see also Fig. 2).

The small values of MDL and the small variations of σMDL throughout the atmosphere prove that the retrieval is able to10

detect the atmospheric water vapour concentration in all climate regions.

6 Summary

In this paper, we compare water vapour profiles retrieved from IASI spectra by the MUSICA MetOp/IASI retrieval with in

situ measurements from GRUAN radiosondes at three different reference sites representative for three different climate zones

(tropics, midlatitudes and polar region). Additionally we provide an extensive theoretical error estimation of the retrieval’s15

water vapour product for the respective reference sites considering a large number of different uncertainty sources.

The error estimations of the MUSICA MetOp/IASI water vapour profiles at the different reference sites reveal that for

the lowermost 3 km the errors can be as large as 40%. The most important uncertainty sources are unrecognized clouds and

uncertainties in lower tropospheric temperature, in surface skin temperature, and in surface emissivity. Between 3 and 6 km the

error can be as large as 20%, mainly due to middle atmospheric temperature uncertainties and unrecognized high cirrus clouds.20

Above 6 km the errors are typically smaller than 20% and mainly caused by uncertainties in upper tropospheric temperatures

and uncertainties in spectroscopic pressure broadening parameters.

For the empirical validation study the remote sensing MUSICA MetOp/IASI H2O profiles have been compared to 100

different Vaisala RS92 radiosonde measurements that have been processed by the GRUAN lead centre. The scatter found for

the difference between GRUAN and IASI is smaller than 25% between 1.5 and 10 km altitude. It is slightly higher near the25

ground and close to the tropopause. This is in good agreement with errors as given for the GRUAN data and the errors as

estimated for the MUSICA IASI product. It is important to note that the coincidences correspond to five different years and

represent three different climate zones, giving the here presented study a good global representativeness. We demonstrate that

the MUSICA MetOp/IASI retrieval is able to correctly capture variations in H2O profiles between 1.5 km above ground up to

the upper troposphere.30
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7 Data availability

The here presented MUSICA MetOp/IASI data are available on the MUSICA website http://www.imk-asf.kit.edu/english/

musica.php. The structure of the data will be explained in a manuscript that is currently prepared for submission to Earth

System Science Data (ESSD). In the meanwhile please contact M. Schneider for more details. The GRUAN data are available

at the GRUAN website: https://www.gruan.org/data/data-products/gdp/rs92-gdp-2/.5
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Appendix A: Uncertainties of GRUAN water vapour volume mixing ratios

In order to perform a valid comparison between remote sensing data and in situ measurements, the uncertainties of the in situ

data have to be considered.

GRUAN provides uncertainties for the relative humidity (∆%), for the temperature (∆T ), and for the pressure (∆p). The

water vapour volume mixing ratio (WVMR) is defined as5

WVMR =
%E(T )

p− %E(T )
≈ %E(T )

p
, (A1)

where E is the water vapour saturation pressure. The GRUAN WVMR error for each individual radiosonde ca be calculated as

WVMRe =

√(
∆E(T )
E(T )

)2

+
(

∆%
%

)2

×WVMR. (A2)

Uncertainties in atmospheric pressure p can be neglected if compared to the uncertainties of E(T ) and %. For the calculation

of the water vapour saturation pressure we use the same formula as GRUAN from Hyland and Wexler (1983). Since E(T ) is a10

highly non-linear function, we estimate the uncertainty of E by

∆E = max{|E(T + ∆T )−E(T )| ; |E(T −∆T )−E(T )|} . (A3)

According to Dirksen et al. (2014) there are correlated and uncorrelated errors. We investigate both separately. Figure A1

depicts for the correlated and uncorrelated GRUAN WVMR errors (WVMRe) in the top and bottom panels, respectively. Black

lines indicate the data ensembles that cover all seasons (Manus Island and Lindenberg 2008) and red lines the ensembles that15

are only representative for the summer season (Lindenberg 2007 and Sodankylä).

For a reasonable comparison the vertically high resolved GRUAN profiles have to be adjusted to the vertical resolution of the

remote sensing profiles (see Sect. 5.1). This means a significant reduction of the vertical resolution and the uncorrelated errors

will cancel out. The regridding and smoothing of the uncorrelated errors is accomplished as follows: First, the errors WVMRe

are added to the measured WVMR data. Second, for WVMR + WVMRe we perform the regridding as described in Sect. 5.1,20

i.e. we calculate the regridded version of the erroneous GRUAN WVMR profile. The difference between the erroneous and the

original profiles (of the regridded versions) give the regridded GRUAN WVMR error (εGRUAN). Third, in analogy to Eq. (13)

we apply the averaging kernels to εGRUAN and get the error in the regridded and smoothed GRUAN profiles as:

x̂e,GRUAN = (A11 + A12)εGRUAN. (A4)

Figure A2 depicts these error profiles (x̂e,GRUAN) for the different ensembles. The uncertainties typically increase from 5%25

near the ground to values 5-20% at around 10 km altitude. For higher altitudes it decreases again due to the decaying sensitivity

(see averaging kernel plots of Fig. 3).
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Figure 1. Example of an infrared spectra measured by IASI (upper panel) and residuals between satellite observation and radiative transfer

simulation (bottom panel) at Manus Island (2012-10-15 11:46:26 UT, satellite zenith angle 10.16°, integrated water vapour 59.49 kg m−2).

The red lines in the bottom panel indicate the typical IASI noise measurement level as given by the square root values of the diagonal

elements of the IASI noise covariance matrix (Pequignot et al., 2008).
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Figure 2. Vertical H2O profiles as measured by the 100 different GRUAN processed Vaisala RS92 radiosondes: from Manus Island, Linden-

berg and Sodankylä used for our study. Black lines indicate radiosonde data ensembles that cover all seasons (Manus Island and Lindenberg

2008) and red lines indicate ensembles that cover the summer season only.
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Figure 3. Example row kernels (A11 + A12, see Eq. 11) for the three reference sites. Manus Island: 2013-11-28 11:39:14 UT, satellite

zenith angle 12.44°, integrated water vapour 55.75 kg m−2; Lindenberg: 2008-06-03 08:59:14 UT, 23.95°, 20.05 kg m−2; Sodankylä: 2007-06-

07 18:40:38 UT, 17.70°, 11.17 kg m−2. Numbers in the upper right corners of every panel indicate the respective degrees of freedom of signal

(DOFS).
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Figure 5. Spectral responses of uncertainty sources for a typical situation at Manus Island (same situation as for the kernel in Fig. 3). The
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upper tropospheric ∆T = +1 K). The right panel illustrates examples for the influence of clouds (dust layer (4-6 km) and cirrus cloud (13-

14 km and 50% cloud fraction)) on the spectrum. Please note the different y-axis scales, i.e. the positive response for positive temperature

uncertainties and the negative response for unrecognized clouds.
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Figure 6. H2O error profiles caused by instrument noise calculated as the square root value of the diagonal of the matrix Se according to

Eq. (9). Shown are the error profiles for every situation examined in the validation study.
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sites. Shown are the error patterns for every situation examined in the validation study.
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Figure 8. Same as Fig. 7, but for errors due to uncertainties in the H2O spectroscopic parameters (linestrength, +5%, and pressure broadening,

+5%) and the water vapour continuum (assuming a 10% underestimation of the “MT_CKD” model).
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Figure 9. Same as Fig. 7, but for errors due to unrecognized clouds (cirrus, mineral dust, cumulus). Top panels: cirrus clouds with 50%

fractional coverage located at typical middle/upper tropospheric altitudes (location of cloud layers see legend); Middle panels: cumulus

clouds with 10% fractional coverage with cloud top altitudes as given in the legends; Bottom panel: homogeneous dust clouds with layers as

given in the legends.
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Figure 10. Example for the regridding and smoothing of the GRUAN data required before validating the MUSICA MetOp/IASI retrieval

H2O profiles. Black line: raw GRUAN data; Red line: regridded GRUAN data (xGRUAN); Green line: regridded and smoothed radiosonde

data (x̂GRUAN, according to Eq. 13).
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Figure 11. Correlation between GRUAN (along y-axes) and MUSICA MetOp/IASI data (along x-axes) at the 3 different reference sites for

3 different atmospheric levels (lower, middle and upper troposphere). The yellow star represents the a priori assumption for the respective

retrieval level (the retrieval uses globally the same a priori). The respective retrieval level altitudes are given in the individual scatter plots.

Red and black colour distinguish the remote sensing data ensembles that use different input data (MI and LI08, on the one hand, and LI07

and SK07, on the other hand; see Sect. 3.1 and Tab. 1). The blue dotted line represents the 1-to-1 diagonal and the blue error bars indicate

the typical GRAUN and IASI errors.
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Figure 12. Vertical profiles of retrieval skill scores calculated according to Eqs. (16)-(18) and using data from all ensembles (MI, LI07, LI08

and SK07). MDL (red line) is the mean difference between IASI and smoothed GRUAN data; ±σMDL (blue lines and blue shaded area) is

the 1σ scatter between IASI and smoothed GRUAN data; ±σGRUAN (black lines) is the 1σ variability of smoothed GRUAN data.
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Figure A1. Profiles of the WVMR errors of the GRUAN radiosondes: The top panels represent the correlated errors and the bottom panels

the uncorrelated errors. The colours distinguish the different ensembles of the retrieval setup: black for MI and LI08, red for LI07 and SK07.
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Figure A2. Same as top panels of Fig. A1, but for the correlated errors in the regridded and smoothed GRUAN radiosonde data.
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Table 1. Overview of the reference and retrieval input data sets

Manus Island Lindenberg 2008 Lindenberg 2007 Sodankylä 2007

time period 2011-2013 2008 (all months) 2007 (June, July, Au-

gust)

2007 (June, July, Au-

gust)

ground level IASI L2 (GTOPO30) IASI L2 (GTOPO30) GTOPO30 GTOPO30

emissivity IASI L2 (Masuda et al.,

1988)

IASI L2 (IREMIS) IREMIS IREMIS

cloud identification IASI L2, visual inspec-

tion

IASI L2 Zhang et al. (2010) Zhang et al. (2010)

a priori for atmospheric

and surface skin temper-

ature

IASI L2 IASI L2 Radiosonde Radiosonde

number of GRUAN son-

des

25 32 26 17
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Table 2. List of uncertainty assumptions used for the error estimation of the MUSICA MetOp/IASI water vapour product

uncertainty source uncertainty value

Surface emissivity 2%

Surface skin temperature 2 K

Temperature in lower troposphere (0-2 km) 2 K

Temperature in middle troposphere (2-5 km) 1 K

Temperature in upper troposphere (5-10 km) 1 K

Temperature in upper atmosphere (10 km-) 1 K

Water vapour continuum 10% of model MT_CKD v2.5.2

Line intensity H2O 5%

Pressure-broadening H2O 5%

Line intensity HDO 5%

Pressure-broadening HDO 5%

CH4 concentrations 2%

N2O concentrations 2%

Opaque cumulus cloud 10% fractional cover with cloud top at 1.3, 3.0 and 4.9 km

Cirrus cloud particle properties according to OPAC "Cirrus 3", 1 km thick-

ness, 50% fractional cover with cloud top at 6, 8, 11 and

14 km

Mineral dust cloud particle properties according to OPAC "Desert", homoge-

neous coverage for layers: ground-2 km, 2-4 km and 4-6 km
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