
 

 

Interactive comment on “Cloud classification of ground-based infrared images 

combining manifold and texture features” by Qixiang Luo et al. 

 

 

We thank the anonymous reviewer for the insightful and thoughtful comments, which have allowed us 

to produce a stronger manuscript. Our responses to the comments are given below, and the corresponding 

changes are marked in red at specific location (Page X, Line X) in the revised manuscript. 

 

General comments: 

 

In the article “Cloud Classification of ground-based infrared images combining manifold and texture 

features” the authors introduce a new method to identify cloud regimes from ground based cloud imagers. 

They base their study on a dataset from the Whole-Sky Infrared Cloud Measurement System, which 

provides zenith and whole sky images. The clouds in the images have been classified by two independent 

experts, and the image is only used in case they agree. The authors define a feature vector basing on the 

grey level co-occurrence matrix, which provides the measures energy, entropy, contrast and homogeneity; 

and on manifold features which are constructed by computing the regional covariance descriptor and 

mapping it into its tangent space. With their new method, the authors reach a slightly higher accuracy 

(by 3 to 5 %) compared to earlier methods of Liu and Cheng. The structure and the content of the paper 

are ok, but it lacks clarity in several places. Also, the language should be improved. I recommend major 

revisions. Please find my specific comments below. 

 

Response: Many thanks for the constructive and valuable comments of the manuscript. We have tried 

our best to enrich the paper’s content to make it clearer. Besides, we have polished the language as far as 

we can to satisfy the requirement of publication. 

 

Specific comments: 

 

1. Comment: The article lacks some clarity. With regard to the underlying dataset, the authors explain 

how it is obtained and how the cases are chosen. However, in Section 3, “Experiments and discussion” 

the authors talk of “conducting each experiment 50 times on two datasets” (p.6, l.25). It is not clear to 

me what experiments are meant and in which way it can be repeated 50 times. Please state very clearly 

what you do and mean by this. 

 

Response: (Page 8, Line 13-18) We are sorry not to make it clear. In Section 3, “Experiments and 

discussion” validates which features are chosen, presents the results and gives the discussion. We first 

adopt 10-fold cross validation to determine which features among texture features, manifold features and 

combined features perform best. 10-fold cross validation means that each dataset is divided into 10 

subsets with the same size at random in turn, then one single subset is used for validation and the other 

9 parts are taken as the training set. To test the performance of the algorithm, 10-fold cross validation is 

conducted 50 times and average values are taken as final results.  

The combined features are used for the cloud type recognition experiments. Different from a 

deterministic case, the training samples of the experiments are chosen randomly. The purpose that we 

conduct the experiments is to test the performance of the algorithm. In each experiment, the training set 



 

 

is selected at random and the rest of the dataset forms the testing set, so we need to repeat this process 

many times and calculate the mean value in order to reduce the accidental bias and to measure the 

algorithm well. 

 

2. Comment: You mention a “Support Vector Machine” (SVM), which is used to perform the cloud 

classification. It is not clear what that actually is. Please extend the respective part a little bit, or give a 

citation at the very least. 

 

Response: (Page 7, Line 23-Page 8, Line 5) Many thanks for the constructive comments of the 

manuscript. In the area of machine learning, Support Vector Machines (SVMs) are supervised learning 

models (Cristianini and Shawe-Taylor, 2000). An SVM model is a representation of the examples as 

points in the Reproducing Kernel Hilbert Space, mapped so that the examples of the separate categories 

are divided by a clear gap that is as wide as possible. New examples are then mapped into that same 

space and predicted to belong to a category based on which side of the gap they fall. 

As Fig.1 shows, given a set of two-class training examples (denoted by × and o, respectively), the 

key problem is to find the optimal hyperplane to do the separation:  𝑤𝑇𝑥 + 𝑏 = 0, where 𝑤 is a weight 

vector and b is a bias, and an SVM training model with the largest margin (2/√𝑤𝑇𝑤) is built. The support 

vectors are the samples on the dotted lines. The optimization classification hyperplane is determined by 

the solid line. The test examples are assigned to one category or the other based on this model, making 

it a non-probabilistic binary linear classifier. In this work, we apply a simple linear function as the 

mapping kernel. 

 

 

Figure 1: The decision boundary of support vector machine with the largest margin. × and o denote two-class 

training examples, respectively. 𝒘𝑻𝒙 + 𝒃 = 𝟎 is the optimal hyperplane to do the separation, where w is a 

weight vector and b is a bias, and an SVM training model with the largest margin 𝟐/√𝒘𝑻𝒘 is built. The 

support vectors are the samples on the dotted lines. The optimization classification hyperplane is determined 

by the solid line. 

 

3. Comment: 

1) The mathematical framework of a manifold is explained in quite detail. It distracts a little bit from the 

final result, the feature vector (supposedly Eq. 11).  

2) It would add much clarity to extend Sec. 2.2.3 “Combining manifold and texture features” and clearly 

state what you are now using for a cloud classification.  



 

 

3) You could also add information about the SVM here.  

4) Overall it is difficult to assess why this manifold features play a bigger role, or if for example other 

parameters would add equally much information.  

5) The mathematics behind the manifold feature vector is rather complicated, and a physical 

interpretation is hardly possible. Why has this vector been chosen?  

6) Would the addition of different, more easily physically interpretable parameters also lead to a higher 

hit rate in the classification?  

7) Is this more a “fitting problem” (more parameters → better fit) or is it more physically based? 

Please justify the choice of your metrics more. 

 

Response: Many thanks for the constructive comments of the manuscript. 

1) (Page 6, Line 1-Page 7, Line 15) Generally speaking, the manifold is a topological space that is 

locally equivalent to a Euclidean space. The differential manifold has a globally defined differential 

structure. Its tangent space 𝑇𝑋𝑀 is a space formed by all possible tangent vectors at a given point 𝑋 on 

the differential manifold. For the Riemannian manifold  𝑀, an inner product is defined in its tangent 

space. The shortest curve between two points on the manifold is called a geodesic and the length of the 

geodesic is the shortest distance between two points. 

All SPD matrices form a Riemannian manifold. Suppose 𝑆𝑑 is a set of all 𝑛 × 𝑛 real symmetric 

matrices: 𝑆𝑑 = {𝐴 ∈ 𝑀(𝑑): 𝐴T = 𝐴} , where 𝑀(𝑑) represents the set of all 𝑑 × 𝑑 matrices, so that 

𝑆++
𝑑 = {𝐴 ∈ 𝑆𝑑: 𝐴 > 0}  is the set of all 𝑑 × 𝑑  SPD matrices, which construct a 𝑑(𝑑 + 1) 2⁄  

dimensional SPD manifold. According to the operation rules of the matrix, 𝑆𝑑 is a vector space while 

𝑆++
𝑑  is a non-Euclidean space. A Riemannian metric should be given to describe the geometric structure 

of the SPD matrix and to measure the distance of two points on 𝑆++
𝑑 . 

Geodesics on the manifold are related to the tangent vectors in the tangent space. Two operators, 

namely exponential map exp𝑋(·): 𝑇𝑋𝑀 → 𝑀  and the logarithm map log𝑋(·) = exp𝑋
−1(·):𝑀 → 𝑇𝑋𝑀 , 

are defined over differentiable manifolds to switch between the manifold and tangent space at the point 

X. As illustrated in Fig. 2, the tangent vector v is mapped to the point Y on the manifold through the 

exponential map. The length of v is equivalent to the geodesic distance between X and Y based on the 

property of the exponential map. The logarithm map is the inverse of the exponential map and maps a 

point on the manifold to the tangent space 𝑇𝑋 𝑀. Conversely, a point on the manifold is mapped to the 

tangent space 𝑇𝑋 𝑀 through the logarithm map. The exponential and logarithm maps vary as point X 

moves along the manifold. The details can be referred in Harandi et al. (2012). 



 

 

 

Figure 2: Illustration of the tangent space 𝑻𝑿𝑴 at point X on a Riemannian manifold. A SPD matrix can be 

interpreted as point X in the space of SPD matrices. The tangent vector v can be obtained through the 

logarithm map, ie. 𝒗 = 𝐥𝐨𝐠𝑿(𝒀). Every tangent vector in 𝑻𝑿𝑴 can be mapped to the manifold through the 

exponential map, ie. 𝐞𝐱𝐩𝑿(𝒗) = 𝒀. The dotted line shows the geodesic starting at X and ending at Y. 
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where log(∙)  and exp(∙)  are the matrix logarithm and exponential operators, respectively. For SPD 

matrices, they can be computed through Singular Value Decomposition (SVD). If we let 

diag(𝜆1, 𝜆2, … , 𝜆𝑑) be a diagonal matrix formed from real values 𝜆1, 𝜆2, … , 𝜆𝑑  on diagonal elements 

and 𝑋 = 𝑈diag(𝜆𝑖)𝑈
𝑇   be the SVD of the symmetric matrix X. In Eq. (1) and Eq. (2), log(∙)  and 

exp(∙) are calculated by 

log(𝑋) = ∑
(−1)𝑟−1

𝑟
(𝑋 − 𝐼)𝑟 = 𝑈diag(ln(𝜆𝑖))

∞
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1
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𝑋𝑟 = 𝑈diag(exp(𝜆𝑖))

∞
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where I is an identity matrix on manifolds. 

The manifold can be embedded into its tangent space at identity matrix I. Thus, based on the bi-

invariant Riemannian metric (Arsigny et al., 2008), the distance between two SPD matrices X, Y is 

𝑑(𝑋, Y) =  ‖log(𝑋) − log (𝑌)‖2 , where log(∙)  is the matrix logarithm operator. Since symmetric 

matrices (equivalently tangent spaces) form a vector space, the classification tools in the Euclidean space 

(SVM, KNN and so on) can be seamlessly employed to deal with the recognition problem. 

Given an SPD matrix A, its log-Euclidean vector representation 𝑎 ∈ ℝ𝑚 , 𝑚 = 𝑑(𝑑 + 1) 2⁄  , is 

unique and defined as 𝑎 = 𝑉𝑒𝑐(log (𝐴)). Let 𝐵 = log (𝐴), 𝐵 ∈ 𝑆𝑑 and 



 

 

𝐵 =  

[
 
 
 
𝑏1,1 𝑏1,2 𝑏1,3 … 𝑏1,𝑑

𝑏2,1 𝑏2,2 𝑏2,3 … 𝑏2,𝑑

⋮ ⋮ ⋮ … ⋮
𝑏𝑑,1 𝑏𝑑,2 𝑏𝑑,3 … 𝑏𝑑,𝑑]

 
 
 

𝑑×𝑑

,          (5) 

which lies in the Euclidean space. Since B is symmetric, we can rearrange it into a vector by vectorizing 

its upper triangular matrix: 

𝑎 = 𝑉𝑒𝑐(𝐵) =  [𝑏1,1, √2𝑏1,2, ⋯ , √2𝑏1,𝑑 , 𝑏2,2, √2𝑏2,3, ⋯ , 𝑏𝑑,𝑑]
T
.        (6) 

Thus, vector a is defined as the manifold features. Since 𝑓 is a 6-dimensional feature mapping in 

the experiment, the manifold feature vector 𝑎  to represent the cloud image is 6 × (6 + 1) 2⁄ = 21 

dimensions. The mapped feature vector can reflect the characteristics of its corresponding SPD matrix 

on matrix manifolds. Thus, manifold features can describe the non-Euclidean property of the infrared 

image features to some degree. 

 

2) (Page 7, Line 16-21) Section 2.2.3 Combining manifold and texture features 

As described in Sect. 2.2.1 and 2.2.2, manifold features and texture features can be extracted and 

integrated to represent the ground-based infrared images. For an image, the four features including energy, 

entropy, contrast and homogeneity from GLCM, express its texture, while 21-demensional manifold 

features describe the non-Euclidean geometric characteristics. The manifold and texture features are 

combined to form a feature vector to represent an image. Thus, the joint features of the infrared image 

have a total of 25 dimensions. 

 

3) (Page 7, Line 23-Page 8, Line 5) The information of SVM has be added in Section 2.3 

Classification. 

 

4) In the experiment, as shown in Table 1 (Corresponding to Table 3 in the manuscript), we first test 

the effects of different features. It is shown that manifold features perform better than texture features 

with an increase of at least 10% on the zenithal dataset and about 3.5% on the whole-sky dataset. When 

these two features are combined, there is an improvement on the 10-fold cross validated classification 

accuracy compared to using texture or manifold features alone. It’s clear on the whole-sky dataset, the 

accuracy is improved by about 2.7%. Comparing two features alone, manifold features provide more 

discriminate information than texture features. As a result, manifold features play a bigger role in the 

combined features in our experiment. 

 

Table 1. The 10-fold cross validated classification accuracy (%) of the proposed method on two 

datasets. 

 Zenithal Whole-sky 

Texture features 83.49 78.01 

Manifold features 96.46 82.38 

Combined features 96.50 85.12 

 

5) (Page 2, Line 21-31) In this paper, we utilize region covariance matrices, composed from densely 

sampled features, as the descriptors. This region descriptor has several advantages. Firstly, it calculates 

the first-order and second-order statistics of the local patch. Secondly, it straightforward fuses various 



 

 

features. Thirdly, it is independent of the region size and has low dimensions. Fourthly, by subtracting 

the mean feature vector, the effect of the noisy samples is reduced to some degree. Finally, it is able to 

speed up the computation in images and videos using efficient methods (Tuzel et al., 2008; Sanin et al., 

2013). Covariance matrices are Symmetric Positive Definite (SPD) matrices and naturally form a 

connected Riemannian manifold. The manifold feature vector can maintain these advantages and 

describe the images well, so it is chosen for a try on the ground-based cloud classification. 

 

6) In our work, we have tested other features proposed in the literatures. For example, 6-dimensional 

features including mean, standard deviation, smoothness, third moment, uniformity and entropy in Calbó 

and Sabburg (2008) and 4-dimensional features including mean, standard deviation, skewness and cloud 

cover in Heinle et al. (2010) were added with texture features for classification of ground-based cloud 

types. Table 2 gives the 10-fold cross validation results using these features compared to the proposed 

method on the zenithal dataset and whole-sky dataset, respectively. 

In Table 2, 10-dimensional features are the combination of 4-dimensional texture features, energy, 

entropy, contrast and homogeneity of GLCM and 6-dimensional features used in Calbó and Sabburg 

(2008), 8-dimensional features are the combination of these 4-dimensional texture features from GLCM 

and 4-dimensional features adopted in Heinle et al. (2010) and 25-dimensional features are the proposed 

method in this manuscript. As shown in Table 2, the results of 25-dimensional features outperform those 

of the other two combined features. It means that on these two datasets, combination of manifold features 

and texture features performs better. Other different, more easily physically interpretable parameters may 

exist and lead to a higher hit rate in the classification. In our manuscript, the addition of manifold features 

has validated its effectiveness in the ground-based cloud classification on the two datasets. 

 

Table 2. The 10-fold cross validated classification accuracy (%) with different features on two 

datasets. 

 Zenithal Whole-sky 

10-dimenisional features 94.76 82.59 

8-dimenisional features 92.91 82.01 

25-dimensional features 96.50 85.12 

 

7) Essentially, cloud classification is not a physically based problem, but a problem of pattern 

recognition. The classification accuracy is mainly dependent on the features and the classifier. Features 

are used to represent the image itself, and the classifier acts as a referee to predict its type according to 

its features. For example, if we can justify all the images based on one feature, there is no need to adopt 

the others. The best features should represent the most significant properties of the images well. That’s 

not to mean that the more parameters, the better fit.  

 

4. Comment: The preselection of the data used in this study is done by employing two experienced 

experts, and the images are only chosen if both of them agree on the cloud type. Does that not already 

mean a very strong constraint on the images with regard to their clarity? Does it affect the study result? 

How would the algorithm perform under realistic conditions, where images are not preselected? Is there 

a quality flag involved? Is there a way to further improve the classification? 

 

Response: (Page 3, Line 26–Page 4, Line 6) Many thanks for the constructive comments of the 



 

 

manuscript. It is true that the preselection of the data used in this study is done by employing two 

experienced experts, and the images are only chosen if both of them agree on the cloud type. The sentence 

“The selection criterion is that the chosen images should hold high visual quality and can be recognized 

by visual inspection” has been changed to “The selection premise is that …”. The purpose that the images 

should hold high visual quality is to make them recognized by visual inspection accurately. If an image 

is vague, it’s hard for experts to justify its type. For the algorithm, it’s hard to extract effective features 

of a vague image, not to mention recognizing its cloud type. In general, the ground-based images are 

obtained by the specific equipment, like Whole-Sky Infrared Cloud-Measuring System (WSIRCMS), so 

the quality of the images is similar in most cases. There is no specific quality flag to select images, and 

it is mainly dependent on the visual judgment. Under realistic conditions, according to the previous data 

gathered in one place, the SVM models are trained to predict the real-time images there. The results given 

by automatic cloud classification algorithm are compared with those determined by experts to evaluate 

the performance of the algorithm. To further improve the classification accuracy, we should gather as 

many representative samples in per class as possible. When the training images are typical and sufficient 

enough, there is no doubt that the recognition rate will be improved. 

 

5. Comment: Please also give some insight how to assess your improvement of the classification. 

Depending on the case and fraction it is somewhere between 2 and 10% it seems. Is that a great 

improvement? Does it depend on the choice of cases? 

 

Response: (Page 9, Line 10-14; Page 9, Line 31-Page 10, Line 2) Many thanks for the careful reading 

of our manuscript. In the manuscript, we give three cases to make comparison with different methods. 

First, when 1/10 of the dataset is treated as the training set, there is an increase of about 9.2% for the 

zenithal dataset and about 4.7% for the whole-sky dataset in the overall accuracy. This is a case that the 

training samples are not sufficient. Second, we conduct the experiment when 1/2 of the dataset is used 

for training. There is an increase of about 3.7% for the zenithal dataset and about 3% for the whole-sky 

dataset in the overall accuracy. This is a case that the training samples are enough. Third, we conduct the 

experiment when 9/10 of the dataset is used for training. There is an increase of about 2.9% for the 

zenithal dataset and about 3.7% for the whole-sky dataset in the overall accuracy. This is a case that the 

training samples are quite enough. With different fractions that the training set occupies, it is validated 

that in most cases the proposed method outperforms the other two methods (Liu et al., 2015; Cheng and 

Yu, 2015). As a whole, the improvement of the proposed method is between 2% and 10%. To some 

degree, it may not be a great improvement, but we have validated that the introduction of manifold 

features is effective and can achieve some success, it is worthy doing more work in this field to promote 

its development. In general, with the increase in the number of training samples, the overall accuracy 

will increase until it holds stable. 

 

6. Comment: Abstract: Overall, it already assumes a great background knowledge of the reader. 

 

Response: Many thanks for the constructive comments of our manuscript. We have added some 

introduction of SVM and other explanations in the revised manuscript. 

 

7. Comment: P1, l10: “the” Support Vector Machine → I think it is an overarching concept. “a” 

Support Vector Mache. 



 

 

 

Response: (Page 1, Line 10) Many thanks for the thoughtful commenting. We agree and have changed 

in the revised manuscript. 

 

8. Comment: P1, l13: Specify some numbers here (higher by how much?) 

 

Response: (Page 1, Line 13) Many thanks for the thoughtful comment. The proposed method performs 

higher by 2%-10% than the other two methods in the recognition rate. 

 

9. Comment: P1, l16 and following: Somewhere you should mention and cite CloudNet 

(http://www.cloud-net.org) which are quite capable of identifying cloud types. Or do you only focus on 

large scale cloud structures? (The you should clarify that, because cloud classification implies that you 

look at the cloud type also.). 

 

Response: (Page 1, Line 19-21) Many thanks for the constructive comments of the manuscript. The 

categorization products at the CloudNet Web site (http://www.cloud-net.org) form a dataset, aggregated 

from cloud radar, lidar, a numerical forecast model and optionally a rain gauge and microwave radiometer. 

They are used to improve the numerical prediction models. The observational datasets and model datasets 

are used in this procedure. Different from it, we focus on identifying cloud types based on the images, 

so it is a problem to extract features due to the formats of the input data. Compared to the traditional 

manual observation, ground-based infrared cloud images can be obtained continuously and have a high 

spatial resolution at a local scale. Also, the title “Cloud Classification of ground-based infrared images 

combining manifold and texture features” has clarified our purpose. We have added Illingworth et al. 

(2007) as a reference in the revised manuscript. 

 

10. Comment: P1, l23,24: “weaken their credibility”, please check the use of the word “credibility”. 

 

Response: (Page 1, Line 24) Many thanks for the careful reading. We have checked the use of the word 

“credibility”, and the original sentence (the last sentence in the first paragraph of Section Introduction) 

in Tzoumanikas et al. (2012) is “Additionally, the introduction of human factor and a rough measuring 

system (in octas or tenths of the sky dome) in the estimation of cloud cover and type weaken their 

credibility.”, so we use this word in the manuscript. 

 

11. Comment: P1 l23 – P2, l13: This seems like an itemization of the existing methods. In which way do 

they connect to your method? Why do you later on choose just two of them (Liu, Cheng) to compare to? 

 

Response: Many thanks for the constructive comments. As mentioned in the manuscript, there are some 

methods for ground-based cloud classification. Usually, the main steps contain feature extraction and 

cloud type recognition with the classifier. In the manuscript, we stated what features and classifiers were 

adopted in the literatures. As a result, we should hand these two sub-problems well to realize our goal. 

In these existing methods, most features including statistical, texture, and structure features are extracted 

in the Euclidean space. Different from these methods, besides the texture features, manifold features are 

extracted on Riemannian manifolds to describe non-Euclidean geometric characteristics in our method. 

Most methods are conducted on ground-based colour images, and the extracted features need 



 

 

different channels’ information. Infrared images only have one channel, so it’s hard to realize these 

methods based on colour features. Liu’s method uses Weighted Local Binary Pattern (WLBP), which 

just based on the grayscale images (Liu et al., 2015). Cheng’s method uses statistical features and 

distribution of local texture features (Cheng and Yu, 2015). Differences of R-G, R-B and G-B 

components are given up to make Cheng’s method apply to the infrared images. Then these two methods 

are adopted for comparison. 

 

12. Comment: P2, l5 “parallelepiped” → typo 

 

Response: (Page 2, Line 5) Many thanks for the careful reading. We have checked the spelling of the 

word “parallelepiped”, and the original sentence (the first sentence in the fourth paragraph of Section 

Results and discussion) in Calbó and Sabburg (2008) is “The classifier that we developed is based on the 

supervised parallelepiped technique, which has been used elsewhere for similar applications”, so we 

adopt this terminology in our manuscript. 

 

13. Comment: P2, l10: Support Vector Machine needs a citation, it is not generally known. 

 

Response: (Page 2, Line 11; Page 7, Line 24) Many thanks for the careful reading of our manuscript. 

We have added Cristianini and Shawe-Taylor (2000) as a reference to make it clear. 

 

14. Comment: P.2, l14 – l20: You state that colour images provide more information. Make clearer why 

infrared images are used anyway. 

 

Response: (Page 2, Line 16-19) Many thanks for the careful reading of our manuscript. It is known that 

the colour image has 3 channels of R, G and B while the infrared image only has one channel. As a result, 

from the aspect of the image itself, the RGB images can provide colour information, which is important 

for analyzing the cloud to some degree. Although colour images have this advantage, it is hard to gather 

them during the night. Compared to colour images, infrared images can be obtained day and night 

continuously, which is necessary for practical application. As a result, we investigate the ground-based 

infrared images. 

 

15. Comment: P.2, l21 – l24: Make it clear why manifolds are chosen. There are many mathematical 

constructs, it is not obvious why this way is chosen. Very clearly state here what the novelty and potential 

of your method is. 

 

Response: (Page 2, Line 21-31) We are sorry for our inadequate explanation. Nowadays, the Symmetric 

Positive Definite (SPD) matrix manifold has achieved success in many aspects, such as action 

recognition, material classification and image segmentation (Faraki et al., 2015; Jayasumana et al., 2015). 

It is because Euclidean space cannot gain special structures of image features well while Riemannian 

manifolds form non-Euclidean spaces and are more appropriate to address this problem. Although it 

proves effective, few researches are pursued for the task of cloud classification with manifold features. 

In this paper, we utilize region covariance matrices, composed from densely sampled features, as 

the descriptors. A region descriptor has several advantages. Firstly, it calculates the first-order and 

second-order statistics of the local patch. Secondly, it straightforward fuses various features. Thirdly, it 



 

 

is independent of the region size and has low dimensions. Fourthly, by subtracting the mean feature 

vector, the effect of the noisy samples is reduced to some degree. Finally, it is able to speed up the 

computation in images and videos using efficient methods (Tuzel et al., 2008; Sanin et al., 2013). 

Covariance matrices are SPD matrices and naturally form a connected Riemannian manifold. Covariance 

matrices are Symmetric Positive Definite (SPD) matrices and naturally form a connected Riemannian 

manifold. Although it proves effective, few researches are pursued for the task of cloud classification 

with manifold features. The manifold feature vector can maintain these advantages and describe the 

images well, so it is chosen for a try on the cloud classification. In this paper, a novel cloud classification 

method is proposed for ground-based infrared images. Manifold features, representing the non-Euclidean 

geometric structure of the image features, and texture features, expressing the image texture, are 

integrated for the feature extraction. 

 

16. Comment: P.2, l 31: “...displayed the best performance in the 10-fold cross validation overall”, it is 

not clear what 10-fold cross validation you mean. 

 

Response: (Page 3, Line 5) We are sorry for our inadequate explanation. Cross validation is a usual way 

to test the performance of the algorithm (Ripley, 2005), which has been applied by e.g. Heinle et al. 

(2010), Li et al. (2016) and Gan et al. (2017). In the 10-fold cross validation, the dataset is divided into 

10 subsets with the same size at random, then one single subset is used for validation in turn and the 

other 9 parts are taken as the training set. This process is then repeated 10 times. The average value is 

used to estimate the capability of the algorithm. In general, 10-fold cross validation is repeated many 

times to measure the algorithm’s performance. We have added Ripley (2005) as a reference and clarified 

it later (Page 8, Line 16-18) in the revised manuscript. 

 

17. Comment: P.3, l6: “...ground-based passive system that an uncooled microbolometer … is used.” 

→“...ground-based passive system that uses an uncooled microbolometer …” 

 

Response: (Page 3, Line 14) Many thanks for the careful reading of our manuscript. We have made this 

change in the revised manuscript. 

 

18. Comment: P.3, l 9: Are the pixels size or resolution? 

 

Response: (Page 3, Line 17) Sorry to make it confusing. Here are the pixels’ size, not the resolution. 

 

19. Comment: P.3, l20: It is not clear why a historical dataset would not contain a complex mixture of 

cloud types compared to a dataset of the present. 

 

Response: (Page 4, Line 4-5) We are sorry for our inadequate explanation. The dataset is used to assess 

the performance of the algorithm. The sky condition is classified into five types: stratiform clouds, 

cumuliform clouds, waveform clouds, cirriform clouds and clear sky. To guarantee the reliability of true 

label of each image, we should select the images without mixed cloud types. Indeed, the sky condition 

with mixed cloud types always exists, but it is complicated. We will investigate the images containing 

mixed cloud types next. 

 



 

 

20. Comment: P.3, l22: comprised of 100 images in each category 

 

Response: (Page 4, Line 6) Many thanks for the careful reading of our manuscript. We have made this 

change in the revised manuscript. 

 

21. Comment: P.3, l26: the number of cases with stratiform clouds, cumuliform clouds, … 

 

Response: (Page 4, Line 11) We are sorry for our carelessness. We have made this change in the revised 

manuscript. 

 

22. Comment: P.3, l29: “which is the area of clouds rather than the parts out of the circle” → what 

do you mean by “parts out of the circle”? 

 

Response: (Page 4, Line 13-15; Page 22) We are sorry to make it confusing. In Fig. 3, it can be seen 

that the region of interest is the white region while the black region is out of the circle. 

 

 

Figure 3: The mask of the whole-sky images. 

 

23. Comment: P.4, l5: Only later clear what “non-Euclidean features” are. 

 

Response: (Page 7, Line 18-20) Many thanks for the constructive comment. In the manuscript, the 

manifold features describe the non-Euclidean geometric characteristics of infrared image features. As 

each image corresponds to a SPD matrix, to better maintain its manifold geometric structure, it is mapped 

into its tangent space by the logarithm operation. The mapped feature vector can reflect the characteristics 

of its corresponding SPD matrix on matrix manifolds. Thus, manifold features can describe the non-

Euclidean property of the infrared image features to some degree. 

 

24. Comment: P.4, l22: “...mean values in four directions are obtained as texture feature”, mean over 

what? And what directions? 

 

Response: (Page 5, Line 6-10) We are sorry not to make it clear. The Grey Level Co-occurrence Matrix 

(GLCM) is calculated in a defined direction θ and a pixel distance d. In the experiment, we get four 

GLCMs with d=1 and θ=0°, 45°, 90°, 135°. Then four measures energy, entropy, contrast and 

homogeneity are computed according to Eq. (7) ~ Eq. (10). Since there are 4 GLCMs, the texture features 

are 16 dimensional. To alleviate the complexity, reduce the dimension and keep rotation invariance, four 

mean features of four GLCMs with d=1 and θ=0°, 45°, 90°, 135°are obtained as the final texture features. 



 

 

 

Energy =  ∑ ∑ 𝑝(𝑖, 𝑗)2𝑘−1
𝑗=0

𝑘−1
𝑖=0 .              (7) 

Entropy =  − ∑ ∑ 𝑝(𝑖, 𝑗)log2𝑝(𝑖, 𝑗)𝑘−1
𝑗=0

𝑘−1
𝑖=0 .           (8) 

Contrast =  ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)2𝑘−1
𝑗=0

𝑘−1
𝑖=0 .            (9) 

Homogeneity =  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|

𝑘−1
𝑗=0

𝑘−1
𝑖=0  .               (10) 

 

25. Comment: P.5, l10: This is supposedly a d times d matrix. Should the d not show up in this equation 

as an index or something? 

 

Response: (Page 5, Line 19) Many thanks for the constructive comments. We have checked this equation 

and there is no mistake for this equation. It is in the form of matrix operation. For a feature image F, it 

contains n=W×H points of d-dimensional features {fk, k=1, 2, …, n}. Its Covariance Descriptor (CovD) 

is a d×d covariance matrix, computed by 

𝐶 = 
1

𝑛−1
∑ (𝑓𝑘 − 𝜇)(𝑓𝑘 − 𝜇)T𝑛

𝑘=1 ,              (11) 

where 𝜇 =
1

𝑛
∑ 𝑓𝑘

𝑛
𝑘=1 , which represents the feature mean vector. In this equation, 𝑓𝑘 is a d-dimensional 

feature vector, and as the feature mean vector, 𝜇 is also d-dimensional, so (𝑓𝑘 − 𝜇)(𝑓𝑘 − 𝜇)T is a d×d 

matrix, and the CovD C is a d×d matrix. The (i, j)-th element of CovD in Eq. (11), 𝐶(𝑖, 𝑗), can also 

written as: 

𝐶(𝑖, 𝑗) =  
1

𝑛−1
∑ (𝑓𝑘(𝑖) − 𝜇(𝑖))(𝑓𝑘(𝑗) − 𝜇(𝑗))𝑛

𝑘=1 ,   𝑖, 𝑗 = 1,2, … , 𝑑,          (12) 

where 𝑓𝑘(𝑖), 𝜇(𝑖) mean the i-th elements of the feature vectors 𝑓𝑘 and 𝜇, respectively.  

 

26. Comment: P.6, l3: This is not an equation, it lacks a left side. P.6, Section 2.3: Needs some more 

explanation or at the least citations. SVM not understandable from this. 

 

Response: (Page 7, Line 4) Many thanks for the careful reading. This equation has been modified as 

follows: 

𝐴∗ = arg min
𝐴

‖𝐶 − 𝐴‖𝐹 , s. t. 𝐴 + 𝐴𝑇 > 0.              (13) 

 

27. Comment: P.6, l.21: What do you mean by “voting policy”? 

 

Response: (Page 8, Line 7-11) Many thanks for the thoughtful comments. In a multi-class task, the SVM 

is conducted between every two classes. In this paper, there are 5 types, so there are 5×(5-1)/2=10 SVM 

classifiers between every two classes. For an unknown-type image, it will be input into 10 models and 

get 10 output labels. That is to say, each binary classifier makes its vote to predict the sample’s class. 

According to the voting policy, the most frequent label is this sample’s type. 

 

28. Comment: P.6, Section 3, beginning: Here, it should be clarified at the very latest what you mean by 

“experiment” in your context. 

 



 

 

Response: (Page 8, Line 12-16) Many thanks for the constructive comment. Different from a concrete 

case, the experiment we carry out is random. The purpose that we conduct the experiment is to test the 

performance of the algorithm. In the experiment, the training set is selected at random and the rest of the 

dataset forms the testing set, so we need to repeat this process many times and calculate the mean value 

in order to avoid the accidental bias and to measure the algorithm well. In the revised manuscript, we 

have checked the “experiment” and “cross validation” to make it clear. 

 

29. Comment: P.7, l21: Do you really mean “confusion matrix”? 

 

Response: (Page 9, Line 17-19) Many thanks for the careful comment. The confusion matrix is a way 

to exhibit the experimental result, which has been applied by e.g. Zhuo et al. (2014), Liu et al. (2015), 

and Li et al. (2016). In the confusion matrix, each row of the matrix represents an actual class while each 

column represents the predicted class given by the algorithm. For example, the element in the second 

row and third column is the percentage of cumuliform clouds misclassified as waveform clouds. 

Therefore, the recognition rate for each class is in the diagonal of the matrix. 

 

30. Comment: P.7, l24: cululiform → cumuliform 

 

Response: (Page 9, Line 18) We are sorry for our carelessness. In the revised paper, we have corrected 

the spelling problems. 

 

31. Comment: P.7, l27: “has reached” → “is reached” 

 

Response: (Page 9, Line 22) We are sorry for our carelessness. In the revised manuscript, we have 

corrected the grammar problems. 

 

32. Comment: P.7, l30: exits → exists 

 

Response: (Page 9, Line 25) We are sorry for our carelessness. In the revised manuscript, we have 

corrected the spelling problems. 

 

33. Comment: P.8, l4: “when 1/2 for training.” → “when 1/2 for training is used.” 

 

Response: (Page 10, Line 3) We are sorry for our carelessness. We have corrected this error in the 

revised manuscript. 

 

34. Comment: P.8, l25: There is indeed improvement, but I would not call it “dramatically”. 

 

Response: (Page 10, Line 23; Page 10, Line 29-33) Many thanks for the constructive comment. We 

have deleted the word “dramatically” In the revised manuscript. 

 

35. Comment: P.8, l26: What do you mean by “the statistical learning method”? I think this hasn't been 

defined before. 

 



 

 

Response: (Page 10, Line 24-25) We are sorry not to make it clear. Statistical learning method is a 

framework for machine learning drawing from the fields of statistics and functional analysis (Trevor et 

al., 2009; Mohri et al., 2012). Statistical learning theory deals with the problem of finding a predictive 

function based on data. Because there is no definition before in the manuscript, we have changed this 

sentence as: “… on the other hand, the manifold features on the matrix manifold can describe the non-

Euclidean geometric structure of the image features and thus …”. 

 

36. Comment: P.8, l32: Gabor or wavelet coefficients may need a citation, not generally known. 

 

Response: (Page 11, Line 1) Many thanks for the constructive comment. We have added a reference Liu 

and Wechsler (2002) to make it clear in the revised manuscript. 

 

37. Comment: P.9, l3: “on the both” → “on both,” 

 

Response: (Page 11, Line 6) We are sorry for our carelessness. In the revised manuscript, we have 

corrected this problem. 

 

38. Comment: Images and Tables: Please provide more telling captions. Table 4 and 5: The 1/10, 1/2 and 

so on are not clear. 

 

Response: (Page 17; Page 18) Many thanks for the careful reading of our manuscript. We are sorry for 

our negligence. We have added some explanation of the fractions 1/10, 1 /2, 9/10 in Tables 4 and 5 in the 

revised manuscript to make it clear: 1/10, 1/2 and 9/10 are the certain proportions of the training set 

selected randomly from each category, and the rest part forms the testing set correspondingly. 

 

Special thanks for the reviewers’ constructive comments. 

 

We have tried our best to improve the manuscript and made some changes in the manuscript. These 

changes will not influence the content and framework of the paper. And here we did not list the changes 

but marked in red or blue in the revised paper. 

 

We appreciate for the reviewers’ warm work earnestly, and hope that the correction will meet with 

approval.  

 

Once again, thank you very much for your careful reading and inspiring suggestions. 
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