
 

 

We thank the reviewers for the insightful and thoughtful comments, which have allowed us to produce a 

stronger manuscript. Our responses to the comments are given below, and the corresponding changes are 

tracked at specific location (Page X, Line X) in the revised manuscript. 

 

Response to Referee #1 

 

General comments: 

The machine classification of cloud types found in automatically recorded images is an aim of 

considerable importance. However, it has proved difficult to develop suitable algorithms for this task. 

This paper combines two approaches, a texture analysis, such as one might expect based on statistical 

examination of the image structure, plus a manifold analysis such as is found effective, for instance, in 

facial recognition. The paper demonstrates that this combined process represents an improvement on 

previous analyses. The paper is interesting, well presented, and should be publishable. 

The progress represented by this paper is incremental and the ultimate aim of classifying any cloud image 

is still distant. The paper demonstrates an ability to analyse images of “high visual quality” and avoids 

“a complex mixture of cloud types” in its dataset, which is used both for training and analysis when 

manually analysed and then split into various groups. We are NOT addressing images with clouds of 

mixed types at various formation levels, which is a not-uncommon occurrence (noted as a next step in 

the Conclusions). However, the difficult issue of examining clouds away from the zenith, where the 

aspect of the cloud changes, is addressed with reasonable success. 

 

Specific comments: 

1. Comment: The images under study are recorded in the long-wave infra-red. In these cases, the clear 

sky background brightness (temperature) varies with time and zenith angle (clear in figures 3 b, e). There 

is no discussion of whether those variations affect the image analysis, particularly the textural features 

which may have baseline issues. 

 

Response: (Page 3, Line 23-29) Many thanks for the thoughtful commenting. It is true that the clear sky 

background radiance in 8-14 μm varies with time and zenith angle. The images of the datasets have been 

preprocessed in the consideration of this important factor. The clear sky radiance threshold in each image 

is calculated using the radiation transfer model (Liu et al., 2013). The real radiance 𝑅 at each pixel in 

each image is converted to the grey value 𝐺𝑝𝑖𝑥𝑒𝑙  between [0,255] with 𝐺𝑝𝑖𝑥𝑒𝑙 = 𝑅/(𝑅𝑡𝑒𝑚𝑝 − 𝑅𝑐𝑙𝑒𝑎𝑟) ×

255 , where 𝑅𝑐𝑙𝑒𝑎𝑟  is the corresponding clear sky radiance threshold and 𝑅𝑡𝑒𝑚𝑝  is the radiance 

corresponding to the real-time environment temperature. As a result, the effects of the clear sky 

background brightness temperature can be ignored, which means that this factor has little influence on 

the feature extraction of the images. In the revised manuscript, a further description of the cloud image 

preprocessing will be added in Section 2.1. 

 

2. Comment: In the same sense, the camera (if radiometric) provides real information on the apparent 

temperature of the cloud, and this is unused. 

Response: (Page 11, Line 25-27) Thanks for your constructive comments of the manuscript. The real 

information on the apparent temperature of the cloud is useful for analysing the images. The radiance 

value at each pixel in the image corresponds to a bright temperature. How to utilize the information of 

the brightness temperature effectively is worth further studying. At present, we mainly use the texture 



 

 

and manifold features to identify the cloud type. The addition of the brightness temperature of the 

physical information, or the combination of the height information obtained from the laser ceilometer 

might be helpful for the improvement of the cloud type recognition accuracy. We will carry out the 

research in the following work. Thanks again for the reviewer’s advice. We will add this point to the 

section of Conclusions in the revised manuscript. 

 

3. Comment: So far as presentation is concerned, the paper is clearly written. Tables 4 and 5 should 

include some explanation of the fractions 1/10, 1 /2, 9/10 even though their meaning is clear from a 

reading of the text (minor revision). 

 

Response: (Page 18, 19) Many thanks for the careful reading of our manuscript. We are sorry for our 

negligence. We will add some explanation of the fractions 1/10, 1 /2, 9/10 in Tables 4 and 5 in the revised 

manuscript to make it clear: 1/10, 1/2 and 9/10 are the certain proportions of the training set selected 

randomly from each category, and the rest part forms the testing set correspondingly. 

 

 

Response to Referee #2 

 

General comments: 

 

In the article “Cloud Classification of ground-based infrared images combining manifold and texture 

features” the authors introduce a new method to identify cloud regimes from ground based cloud imagers. 

They base their study on a dataset from the Whole-Sky Infrared Cloud Measurement System, which 

provides zenith and whole sky images. The clouds in the images have been classified by two independent 

experts, and the image is only used in case they agree. The authors define a feature vector basing on the 

grey level co-occurrence matrix, which provides the measures energy, entropy, contrast and homogeneity; 

and on manifold features which are constructed by computing the regional covariance descriptor and 

mapping it into its tangent space. With their new method, the authors reach a slightly higher accuracy 

(by 3 to 5 %) compared to earlier methods of Liu and Cheng. The structure and the content of the paper 

are ok, but it lacks clarity in several places. Also, the language should be improved. I recommend major 

revisions. Please find my specific comments below. 

 

Response: Many thanks for the constructive and valuable comments of the manuscript. We have tried 

our best to enrich the paper’s content to make it clearer. Besides, we have polished the language as far as 

we can to satisfy the requirement of publication. 

 

Specific comments: 

 

1. Comment: The article lacks some clarity. With regard to the underlying dataset, the authors explain 

how it is obtained and how the cases are chosen. However, in Section 3, “Experiments and discussion” 

the authors talk of “conducting each experiment 50 times on two datasets” (p.6, l.25). It is not clear to 

me what experiments are meant and in which way it can be repeated 50 times. Please state very clearly 

what you do and mean by this. 

 



 

 

Response: (Page 8, Line 29-Page 9, Line 6) We are sorry not to make it clear. In Section 3, “Experiments 

and discussion” validates which features are chosen, presents the results and gives the discussion. We 

first adopt 10-fold cross validation to determine which features among texture features, manifold features 

and combined features perform best. 10-fold cross validation means that each dataset is divided into 10 

subsets with the same size at random in turn, then one single subset is used for validation and the other 

9 parts are taken as the training set. To test the performance of the algorithm, 10-fold cross validation is 

conducted 50 times and average values are taken as final results.  

The combined features are used for the cloud type recognition experiments. Different from a 

deterministic case, the training samples of the experiments are chosen randomly. The purpose that we 

conduct the experiments is to test the performance of the algorithm. In each experiment, the training set 

is selected at random and the rest of the dataset forms the testing set, so we need to repeat this process 

many times and calculate the mean value in order to reduce the accidental bias and to measure the 

algorithm well. 

 

2. Comment: You mention a “Support Vector Machine” (SVM), which is used to perform the cloud 

classification. It is not clear what that actually is. Please extend the respective part a little bit, or give a 

citation at the very least. 

 

Response: (Page 8, Line 8-21) Many thanks for the constructive comments of the manuscript. In the 

area of machine learning, Support Vector Machines (SVMs) are supervised learning models (Cristianini 

and Shawe-Taylor, 2000). An SVM model is a representation of the examples as points in the 

Reproducing Kernel Hilbert Space, mapped so that the examples of the separate categories are divided 

by a clear gap that is as wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category based on which side of the gap they fall. 

As Fig.1 shows, given a set of two-class training examples (denoted by × and o, respectively), the 

key problem is to find the optimal hyperplane to do the separation:  𝑤𝑇𝑥 + 𝑏 = 0, where 𝑤 is a weight 

vector and b is a bias, and an SVM training model with the largest margin (2/√𝑤𝑇𝑤) is built. The support 

vectors are the samples on the dotted lines. The optimization classification hyperplane is determined by 

the solid line. The test examples are assigned to one category or the other based on this model, making 

it a non-probabilistic binary linear classifier. In this work, we apply a simple linear function as the 

mapping kernel. 

 

 



 

 

Figure 1: The decision boundary of support vector machine with the largest margin. × and o denote two-class 

training examples, respectively. 𝒘𝑻𝒙 + 𝒃 = 𝟎 is the optimal hyperplane to do the separation, where w is a 

weight vector and b is a bias, and an SVM training model with the largest margin 𝟐/√𝒘𝑻𝒘 is built. The 

support vectors are the samples on the dotted lines. The optimization classification hyperplane is determined 

by the solid line. 

 

3. Comment: 

1) The mathematical framework of a manifold is explained in quite detail. It distracts a little bit from the 

final result, the feature vector (supposedly Eq. 11).  

2) It would add much clarity to extend Sec. 2.2.3 “Combining manifold and texture features” and clearly 

state what you are now using for a cloud classification.  

3) You could also add information about the SVM here.  

4) Overall it is difficult to assess why this manifold features play a bigger role, or if for example other 

parameters would add equally much information.  

5) The mathematics behind the manifold feature vector is rather complicated, and a physical 

interpretation is hardly possible. Why has this vector been chosen?  

6) Would the addition of different, more easily physically interpretable parameters also lead to a higher 

hit rate in the classification?  

7) Is this more a “fitting problem” (more parameters → better fit) or is it more physically based? 

Please justify the choice of your metrics more. 

 

Response: Many thanks for the constructive comments of the manuscript. 

1) (Page 6, Line 9-Page 7, Line 27) Generally speaking, the manifold is a topological space that is 

locally equivalent to a Euclidean space. The differential manifold has a globally defined differential 

structure. Its tangent space 𝑇𝑋𝑀 is a space formed by all possible tangent vectors at a given point 𝑋 on 

the differential manifold. For the Riemannian manifold  𝑀, an inner product is defined in its tangent 

space. The shortest curve between two points on the manifold is called a geodesic and the length of the 

geodesic is the shortest distance between two points. 

All SPD matrices form a Riemannian manifold. Suppose 𝑆𝑑 is a set of all 𝑛 × 𝑛 real symmetric 

matrices: 𝑆𝑑 = {𝐴 ∈ 𝑀(𝑑): 𝐴T = 𝐴} , where 𝑀(𝑑) represents the set of all 𝑑 × 𝑑 matrices, so that 

𝑆++
𝑑 = {𝐴 ∈ 𝑆𝑑: 𝐴 > 0}  is the set of all 𝑑 × 𝑑  SPD matrices, which construct a 𝑑(𝑑 + 1) 2⁄  

dimensional SPD manifold. According to the operation rules of the matrix, 𝑆𝑑 is a vector space while 

𝑆++
𝑑  is a non-Euclidean space. A Riemannian metric should be given to describe the geometric structure 

of the SPD matrix and to measure the distance of two points on 𝑆++
𝑑 . 

Geodesics on the manifold are related to the tangent vectors in the tangent space. Two operators, 

namely exponential map exp𝑋(·): 𝑇𝑋𝑀 → 𝑀  and the logarithm map log𝑋(·) = exp𝑋
−1(·):𝑀 → 𝑇𝑋𝑀 , 

are defined over differentiable manifolds to switch between the manifold and tangent space at the point 

X. As illustrated in Fig. 2, the tangent vector v is mapped to the point Y on the manifold through the 

exponential map. The length of v is equivalent to the geodesic distance between X and Y based on the 

property of the exponential map. The logarithm map is the inverse of the exponential map and maps a 

point on the manifold to the tangent space 𝑇𝑋 𝑀. Conversely, a point on the manifold is mapped to the 

tangent space 𝑇𝑋 𝑀 through the logarithm map. The exponential and logarithm maps vary as point X 

moves along the manifold. The details can be referred in Harandi et al. (2012). 



 

 

 

Figure 2: Illustration of the tangent space 𝑻𝑿𝑴 at point X on a Riemannian manifold. A SPD matrix can be 

interpreted as point X in the space of SPD matrices. The tangent vector v can be obtained through the 

logarithm map, ie. 𝒗 = 𝐥𝐨𝐠𝑿(𝒀). Every tangent vector in 𝑻𝑿𝑴 can be mapped to the manifold through the 

exponential map, ie. 𝐞𝐱𝐩𝑿(𝒗) = 𝒀. The dotted line shows the geodesic starting at X and ending at Y. 
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where log(∙)  and exp(∙)  are the matrix logarithm and exponential operators, respectively. For SPD 

matrices, they can be computed through Singular Value Decomposition (SVD). If we let 

diag(𝜆1, 𝜆2, … , 𝜆𝑑) be a diagonal matrix formed from real values 𝜆1, 𝜆2, … , 𝜆𝑑  on diagonal elements 

and 𝑋 = 𝑈diag(𝜆𝑖)𝑈
𝑇   be the SVD of the symmetric matrix X. In Eq. (1) and Eq. (2), log(∙)  and 

exp(∙) are calculated by 

log(𝑋) = ∑
(−1)𝑟−1

𝑟
(𝑋 − 𝐼)𝑟 = 𝑈diag(ln(𝜆𝑖))

∞
𝑟=1 𝑈𝑇 ,         (3) 

exp(𝑋) = ∑
1

𝑟!
𝑋𝑟 = 𝑈diag(exp(𝜆𝑖))

∞
𝑟=0 𝑈𝑇,           (4) 

where I is an identity matrix on manifolds. 

The manifold can be embedded into its tangent space at identity matrix I. Thus, based on the bi-

invariant Riemannian metric (Arsigny et al., 2008), the distance between two SPD matrices X, Y is 

𝑑(𝑋, Y) =  ‖log(𝑋) − log (𝑌)‖2 , where log(∙)  is the matrix logarithm operator. Since symmetric 

matrices (equivalently tangent spaces) form a vector space, the classification tools in the Euclidean space 

(SVM, KNN and so on) can be seamlessly employed to deal with the recognition problem. 

Given an SPD matrix A, its log-Euclidean vector representation 𝑎 ∈ ℝ𝑚 , 𝑚 = 𝑑(𝑑 + 1) 2⁄  , is 

unique and defined as 𝑎 = 𝑉𝑒𝑐(log (𝐴)). Let 𝐵 = log (𝐴), 𝐵 ∈ 𝑆𝑑 and 



 

 

𝐵 =  

[
 
 
 
𝑏1,1 𝑏1,2 𝑏1,3 … 𝑏1,𝑑

𝑏2,1 𝑏2,2 𝑏2,3 … 𝑏2,𝑑

⋮ ⋮ ⋮ … ⋮
𝑏𝑑,1 𝑏𝑑,2 𝑏𝑑,3 … 𝑏𝑑,𝑑]

 
 
 

𝑑×𝑑

,          (5) 

which lies in the Euclidean space. Since B is symmetric, we can rearrange it into a vector by vectorizing 

its upper triangular matrix: 

𝑎 = 𝑉𝑒𝑐(𝐵) =  [𝑏1,1, √2𝑏1,2, ⋯ , √2𝑏1,𝑑 , 𝑏2,2, √2𝑏2,3, ⋯ , 𝑏𝑑,𝑑]
T
.        (6) 

Thus, vector a is defined as the manifold features. Since 𝑓 is a 6-dimensional feature mapping in 

the experiment, the manifold feature vector 𝑎  to represent the cloud image is 6 × (6 + 1) 2⁄ = 21 

dimensions. The mapped feature vector can reflect the characteristics of its corresponding SPD matrix 

on matrix manifolds. Thus, manifold features can describe the non-Euclidean property of the infrared 

image features to some degree. 

 

2) (Page 8, Line 1-6) Section 2.2.3 Combining manifold and texture features 

As described in Sect. 2.2.1 and 2.2.2, manifold features and texture features can be extracted and 

integrated to represent the ground-based infrared images. For an image, the four features including energy, 

entropy, contrast and homogeneity from GLCM, express its texture, while 21-demensional manifold 

features describe the non-Euclidean geometric characteristics. The manifold and texture features are 

combined to form a feature vector to represent an image. Thus, the joint features of the infrared image 

have a total of 25 dimensions. 

 

3) (Page 8, Line 8-21) The information of SVM has be added in Section 2.3 Classification. 

 

4) In the experiment, as shown in Table 1 (Corresponding to Table 3 in the manuscript), we first test 

the effects of different features. It is shown that manifold features perform better than texture features 

with an increase of at least 10% on the zenithal dataset and about 3.5% on the whole-sky dataset. When 

these two features are combined, there is an improvement on the 10-fold cross validated classification 

accuracy compared to using texture or manifold features alone. It’s clear on the whole-sky dataset, the 

accuracy is improved by about 2.7%. Comparing two features alone, manifold features provide more 

discriminate information than texture features. As a result, manifold features play a bigger role in the 

combined features in our experiment. 

 

Table 1. The 10-fold cross validated classification accuracy (%) of the proposed method on two 

datasets. 

 Zenithal Whole-sky 

Texture features 83.49 78.01 

Manifold features 96.46 82.38 

Combined features 96.50 85.12 

 

5) (Page 2, Line 21-31) In this paper, we utilize region covariance matrices, composed from densely 

sampled features, as the descriptors. This region descriptor has several advantages. Firstly, it calculates 

the first-order and second-order statistics of the local patch. Secondly, it straightforward fuses various 

features. Thirdly, it is independent of the region size and has low dimensions. Fourthly, by subtracting 



 

 

the mean feature vector, the effect of the noisy samples is reduced to some degree. Finally, it is able to 

speed up the computation in images and videos using efficient methods (Tuzel et al., 2008; Sanin et al., 

2013). Covariance matrices are Symmetric Positive Definite (SPD) matrices and naturally form a 

connected Riemannian manifold. The manifold feature vector can maintain these advantages and 

describe the images well, so it is chosen for a try on the ground-based cloud classification. 

 

6) In our work, we have tested other features proposed in the literatures. For example, 6-dimensional 

features including mean, standard deviation, smoothness, third moment, uniformity and entropy in Calbó 

and Sabburg (2008) and 4-dimensional features including mean, standard deviation, skewness and cloud 

cover in Heinle et al. (2010) were added with texture features for classification of ground-based cloud 

types. Table 2 gives the 10-fold cross validation results using these features compared to the proposed 

method on the zenithal dataset and whole-sky dataset, respectively. 

In Table 2, 10-dimensional features are the combination of 4-dimensional texture features, energy, 

entropy, contrast and homogeneity of GLCM and 6-dimensional features used in Calbó and Sabburg 

(2008), 8-dimensional features are the combination of these 4-dimensional texture features from GLCM 

and 4-dimensional features adopted in Heinle et al. (2010) and 25-dimensional features are the proposed 

method in this manuscript. As shown in Table 2, the results of 25-dimensional features outperform those 

of the other two combined features. It means that on these two datasets, combination of manifold features 

and texture features performs better. Other different, more easily physically interpretable parameters may 

exist and lead to a higher hit rate in the classification. In our manuscript, the addition of manifold features 

has validated its effectiveness in the ground-based cloud classification on the two datasets. 

 

Table 2. The 10-fold cross validated classification accuracy (%) with different features on two 

datasets. 

 Zenithal Whole-sky 

10-dimenisional features 94.76 82.59 

8-dimenisional features 92.91 82.01 

25-dimensional features 96.50 85.12 

 

7) Essentially, cloud classification is not a physically based problem, but a problem of pattern 

recognition. The classification accuracy is mainly dependent on the features and the classifier. Features 

are used to represent the image itself, and the classifier acts as a referee to predict its type according to 

its features. For example, if we can justify all the images based on one feature, there is no need to adopt 

the others. The best features should represent the most significant properties of the images well. That’s 

not to mean that the more parameters, the better fit.  

 

4. Comment: The preselection of the data used in this study is done by employing two experienced 

experts, and the images are only chosen if both of them agree on the cloud type. Does that not already 

mean a very strong constraint on the images with regard to their clarity? Does it affect the study result? 

How would the algorithm perform under realistic conditions, where images are not preselected? Is there 

a quality flag involved? Is there a way to further improve the classification? 

 

Response: (Page 3, Line 30–Page 4, Line 10) Many thanks for the constructive comments of the 

manuscript. It is true that the preselection of the data used in this study is done by employing two 



 

 

experienced experts, and the images are only chosen if both of them agree on the cloud type. The sentence 

“The selection criterion is that the chosen images should hold high visual quality and can be recognized 

by visual inspection” has been changed to “The selection premise is that …”. The purpose that the images 

should hold high visual quality is to make them recognized by visual inspection accurately. If an image 

is vague, it’s hard for experts to justify its type. For the algorithm, it’s hard to extract effective features 

of a vague image, not to mention recognizing its cloud type. In general, the ground-based images are 

obtained by the specific equipment, like Whole-Sky Infrared Cloud-Measuring System (WSIRCMS), so 

the quality of the images is similar in most cases. There is no specific quality flag to select images, and 

it is mainly dependent on the visual judgment. Under realistic conditions, according to the previous data 

gathered in one place, the SVM models are trained to predict the real-time images there. The results given 

by automatic cloud classification algorithm are compared with those determined by experts to evaluate 

the performance of the algorithm. To further improve the classification accuracy, we should gather as 

many representative samples in per class as possible. When the training images are typical and sufficient 

enough, there is no doubt that the recognition rate will be improved. 

 

5. Comment: Please also give some insight how to assess your improvement of the classification. 

Depending on the case and fraction it is somewhere between 2 and 10% it seems. Is that a great 

improvement? Does it depend on the choice of cases? 

 

Response: (Page 9, Line 29-33; Page 10, Line 17-20) Many thanks for the careful reading of our 

manuscript. In the manuscript, we give three cases to make comparison with different methods. First, 

when 1/10 of the dataset is treated as the training set, there is an increase of about 9.2% for the zenithal 

dataset and about 4.7% for the whole-sky dataset in the overall accuracy. This is a case that the training 

samples are not sufficient. Second, we conduct the experiment when 1/2 of the dataset is used for training. 

There is an increase of about 3.7% for the zenithal dataset and about 3% for the whole-sky dataset in the 

overall accuracy. This is a case that the training samples are enough. Third, we conduct the experiment 

when 9/10 of the dataset is used for training. There is an increase of about 2.9% for the zenithal dataset 

and about 3.7% for the whole-sky dataset in the overall accuracy. This is a case that the training samples 

are quite enough. With different fractions that the training set occupies, it is validated that in most cases 

the proposed method outperforms the other two methods (Liu et al., 2015; Cheng and Yu, 2015). As a 

whole, the improvement of the proposed method is between 2% and 10%. To some degree, it may not be 

a great improvement, but we have validated that the introduction of manifold features is effective and 

can achieve some success, it is worthy doing more work in this field to promote its development. In 

general, with the increase in the number of training samples, the overall accuracy will increase until it 

holds stable. 

 

6. Comment: Abstract: Overall, it already assumes a great background knowledge of the reader. 

 

Response: Many thanks for the constructive comments of our manuscript. We have added some 

introduction of SVM and other explanations in the revised manuscript. 

 

7. Comment: P1, l10: “the” Support Vector Machine → I think it is an overarching concept. “a” 

Support Vector Mache. 

 



 

 

Response: (Page 1, Line 10) Many thanks for the thoughtful commenting. We agree and have changed 

in the revised manuscript. 

 

8. Comment: P1, l13: Specify some numbers here (higher by how much?) 

 

Response: (Page 1, Line 14) Many thanks for the thoughtful comment. The proposed method performs 

higher by 2%-10% than the other two methods in the recognition rate. 

 

9. Comment: P1, l16 and following: Somewhere you should mention and cite CloudNet 

(http://www.cloud-net.org) which are quite capable of identifying cloud types. Or do you only focus on 

large scale cloud structures? (The you should clarify that, because cloud classification implies that you 

look at the cloud type also.). 

 

Response: (Page 1, Line 21) Many thanks for the constructive comments of the manuscript. The 

categorization products at the CloudNet Web site (http://www.cloud-net.org) form a dataset, aggregated 

from cloud radar, lidar, a numerical forecast model and optionally a rain gauge and microwave radiometer. 

They are used to improve the numerical prediction models. The observational datasets and model datasets 

are used in this procedure. Different from it, we focus on identifying cloud types based on the images, 

so it is a problem to extract features due to the formats of the input data. Compared to the traditional 

manual observation, ground-based infrared cloud images can be obtained continuously and have a high 

spatial resolution at a local scale. Also, the title “Cloud Classification of ground-based infrared images 

combining manifold and texture features” has clarified our purpose. We have added Illingworth et al. 

(2007) as a reference in the revised manuscript. 

 

10. Comment: P1, l23,24: “weaken their credibility”, please check the use of the word “credibility”. 

 

Response: (Page 1, Line 24) Many thanks for the careful reading. We have checked the use of the word 

“credibility”, and the original sentence (the last sentence in the first paragraph of Section Introduction) 

in Tzoumanikas et al. (2012) is “Additionally, the introduction of human factor and a rough measuring 

system (in octas or tenths of the sky dome) in the estimation of cloud cover and type weaken their 

credibility.”, so we use this word in the manuscript. 

 

11. Comment: P1 l23 – P2, l13: This seems like an itemization of the existing methods. In which way do 

they connect to your method? Why do you later on choose just two of them (Liu, Cheng) to compare to? 

 

Response: Many thanks for the constructive comments. As mentioned in the manuscript, there are some 

methods for ground-based cloud classification. Usually, the main steps contain feature extraction and 

cloud type recognition with the classifier. In the manuscript, we stated what features and classifiers were 

adopted in the literatures. As a result, we should hand these two sub-problems well to realize our goal. 

In these existing methods, most features including statistical, texture, and structure features are extracted 

in the Euclidean space. Different from these methods, besides the texture features, manifold features are 

extracted on Riemannian manifolds to describe non-Euclidean geometric characteristics in our method. 

Most methods are conducted on ground-based colour images, and the extracted features need 

different channels’ information. Infrared images only have one channel, so it’s hard to realize these 



 

 

methods based on colour features. Liu’s method uses Weighted Local Binary Pattern (WLBP), which 

just based on the grayscale images (Liu et al., 2015). Cheng’s method uses statistical features and 

distribution of local texture features (Cheng and Yu, 2015). Differences of R-G, R-B and G-B 

components are given up to make Cheng’s method apply to the infrared images. Then these two methods 

are adopted for comparison. 

 

12. Comment: P2, l5 “parallelepiped” → typo 

 

Response: (Page 2, Line 6) Many thanks for the careful reading. We have checked the spelling of the 

word “parallelepiped”, and the original sentence (the first sentence in the fourth paragraph of Section 

Results and discussion) in Calbó and Sabburg (2008) is “The classifier that we developed is based on the 

supervised parallelepiped technique, which has been used elsewhere for similar applications”, so we 

adopt this terminology in our manuscript. 

 

13. Comment: P2, l10: Support Vector Machine needs a citation, it is not generally known. 

 

Response: (Page 2, Line 11; Page 8, Line 9) Many thanks for the careful reading of our manuscript. We 

have added Cristianini and Shawe-Taylor (2000) as a reference to make it clear. 

 

14. Comment: P.2, l14 – l20: You state that colour images provide more information. Make clearer why 

infrared images are used anyway. 

 

Response: (Page 2, Line 16-23) Many thanks for the careful reading of our manuscript. It is known that 

the colour image has 3 channels of R, G and B while the infrared image only has one channel. As a result, 

from the aspect of the image itself, the RGB images can provide colour information, which is important 

for analyzing the cloud to some degree. Although colour images have this advantage, it is hard to gather 

them during the night. Compared to colour images, infrared images can be obtained day and night 

continuously, which is necessary for practical application. As a result, we investigate the ground-based 

infrared images. 

 

15. Comment: P.2, l21 – l24: Make it clear why manifolds are chosen. There are many mathematical 

constructs, it is not obvious why this way is chosen. Very clearly state here what the novelty and potential 

of your method is. 

 

Response: (Page 2, Line 24- Page 3, Line 2) We are sorry for our inadequate explanation. Nowadays, 

the Symmetric Positive Definite (SPD) matrix manifold has achieved success in many aspects, such as 

action recognition, material classification and image segmentation (Faraki et al., 2015; Jayasumana et 

al., 2015). It is because Euclidean space cannot gain special structures of image features well while 

Riemannian manifolds form non-Euclidean spaces and are more appropriate to address this problem. 

Although it proves effective, few researches are pursued for the task of cloud classification with manifold 

features. 

In this paper, we utilize region covariance matrices, composed from densely sampled features, as 

the descriptors. A region descriptor has several advantages. Firstly, it calculates the first-order and 

second-order statistics of the local patch. Secondly, it straightforward fuses various features. Thirdly, it 



 

 

is independent of the region size and has low dimensions. Fourthly, by subtracting the mean feature 

vector, the effect of the noisy samples is reduced to some degree. Finally, it is able to speed up the 

computation in images and videos using efficient methods (Tuzel et al., 2008; Sanin et al., 2013). 

Covariance matrices are SPD matrices and naturally form a connected Riemannian manifold. Covariance 

matrices are Symmetric Positive Definite (SPD) matrices and naturally form a connected Riemannian 

manifold. Although it proves effective, few researches are pursued for the task of cloud classification 

with manifold features. The manifold feature vector can maintain these advantages and describe the 

images well, so it is chosen for a try on the cloud classification. In this paper, a novel cloud classification 

method is proposed for ground-based infrared images. Manifold features, representing the non-Euclidean 

geometric structure of the image features, and texture features, expressing the image texture, are 

integrated for the feature extraction. 

 

16. Comment: P.2, l 31: “...displayed the best performance in the 10-fold cross validation overall”, it is 

not clear what 10-fold cross validation you mean. 

 

Response: (Page 3, Line 10) We are sorry for our inadequate explanation. Cross validation is a usual 

way to test the performance of the algorithm (Ripley, 2005), which has been applied by e.g. Heinle et al. 

(2010), Li et al. (2016) and Gan et al. (2017). In the 10-fold cross validation, the dataset is divided into 

10 subsets with the same size at random, then one single subset is used for validation in turn and the 

other 9 parts are taken as the training set. This process is then repeated 10 times. The average value is 

used to estimate the capability of the algorithm. In general, 10-fold cross validation is repeated many 

times to measure the algorithm’s performance. We have added Ripley (2005) as a reference and clarified 

it later (Page 9, Line 3-5) in the tracking-changes manuscript. 

 

17. Comment: P.3, l6: “...ground-based passive system that an uncooled microbolometer … is used.” 

→“...ground-based passive system that uses an uncooled microbolometer …” 

 

Response: (Page 3, Line 18) Many thanks for the careful reading of our manuscript. We have made this 

change in the revised manuscript. 

 

18. Comment: P.3, l 9: Are the pixels size or resolution? 

 

Response: (Page 3, Line 21) Sorry to make it confusing. Here are the pixels’ size, not the resolution. 

 

19. Comment: P.3, l20: It is not clear why a historical dataset would not contain a complex mixture of 

cloud types compared to a dataset of the present. 

 

Response: (Page 4, Line 8-10) We are sorry for our inadequate explanation. The dataset is used to assess 

the performance of the algorithm. The sky condition is classified into five types: stratiform clouds, 

cumuliform clouds, waveform clouds, cirriform clouds and clear sky. To guarantee the reliability of true 

label of each image, we should select the images without mixed cloud types. Indeed, the sky condition 

with mixed cloud types always exists, but it is complicated. We will investigate the images containing 

mixed cloud types next. 

 



 

 

20. Comment: P.3, l22: comprised of 100 images in each category 

 

Response: (Page 4, Line 11) Many thanks for the careful reading of our manuscript. We have made this 

change in the revised manuscript. 

 

21. Comment: P.3, l26: the number of cases with stratiform clouds, cumuliform clouds, … 

 

Response: (Page 4, Line 15) We are sorry for our carelessness. We have made this change in the revised 

manuscript. 

 

22. Comment: P.3, l29: “which is the area of clouds rather than the parts out of the circle” → what 

do you mean by “parts out of the circle”? 

 

Response: (Page 4, Line 17-19; Page 23) We are sorry to make it confusing. In Fig. 3, it can be seen 

that the region of interest is the white region while the black region is out of the circle. 

 

 

Figure 3: The mask of the whole-sky images. 

 

23. Comment: P.4, l5: Only later clear what “non-Euclidean features” are. 

 

Response: (Page 7, Line25-27) Many thanks for the constructive comment. In the manuscript, the 

manifold features describe the non-Euclidean geometric characteristics of infrared image features. As 

each image corresponds to a SPD matrix, to better maintain its manifold geometric structure, it is mapped 

into its tangent space by the logarithm operation. The mapped feature vector can reflect the characteristics 

of its corresponding SPD matrix on matrix manifolds. Thus, manifold features can describe the non-

Euclidean property of the infrared image features to some degree. 

 

24. Comment: P.4, l22: “...mean values in four directions are obtained as texture feature”, mean over 

what? And what directions? 

 

Response: (Page 5, Line 10-14) We are sorry not to make it clear. The Grey Level Co-occurrence Matrix 

(GLCM) is calculated in a defined direction θ and a pixel distance d. In the experiment, we get four 

GLCMs with d=1 and θ=0°, 45°, 90°, 135°. Then four measures energy, entropy, contrast and 

homogeneity are computed according to Eq. (7) ~ Eq. (10). Since there are 4 GLCMs, the texture features 

are 16 dimensional. To alleviate the complexity, reduce the dimension and keep rotation invariance, four 

mean features of four GLCMs with d=1 and θ=0°, 45°, 90°, 135°are obtained as the final texture features. 



 

 

 

Energy =  ∑ ∑ 𝑝(𝑖, 𝑗)2𝑘−1
𝑗=0

𝑘−1
𝑖=0 .              (7) 

Entropy =  − ∑ ∑ 𝑝(𝑖, 𝑗)log2𝑝(𝑖, 𝑗)𝑘−1
𝑗=0

𝑘−1
𝑖=0 .           (8) 

Contrast =  ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)2𝑘−1
𝑗=0

𝑘−1
𝑖=0 .            (9) 

Homogeneity =  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|

𝑘−1
𝑗=0

𝑘−1
𝑖=0  .               (10) 

 

25. Comment: P.5, l10: This is supposedly a d times d matrix. Should the d not show up in this equation 

as an index or something? 

 

Response: (Page 5, Line 23) Many thanks for the constructive comments. We have checked this equation 

and there is no mistake for this equation. It is in the form of matrix operation. For a feature image F, it 

contains n=W×H points of d-dimensional features {fk, k=1, 2, …, n}. Its Covariance Descriptor (CovD) 

is a d×d covariance matrix, computed by 

𝐶 = 
1

𝑛−1
∑ (𝑓𝑘 − 𝜇)(𝑓𝑘 − 𝜇)T𝑛

𝑘=1 ,              (11) 

where 𝜇 =
1

𝑛
∑ 𝑓𝑘

𝑛
𝑘=1 , which represents the feature mean vector. In this equation, 𝑓𝑘 is a d-dimensional 

feature vector, and as the feature mean vector, 𝜇 is also d-dimensional, so (𝑓𝑘 − 𝜇)(𝑓𝑘 − 𝜇)T is a d×d 

matrix, and the CovD C is a d×d matrix. The (i, j)-th element of CovD in Eq. (11), 𝐶(𝑖, 𝑗), can also 

written as: 

𝐶(𝑖, 𝑗) =  
1

𝑛−1
∑ (𝑓𝑘(𝑖) − 𝜇(𝑖))(𝑓𝑘(𝑗) − 𝜇(𝑗))𝑛

𝑘=1 ,   𝑖, 𝑗 = 1,2, … , 𝑑,          (12) 

where 𝑓𝑘(𝑖), 𝜇(𝑖) mean the i-th elements of the feature vectors 𝑓𝑘 and 𝜇, respectively.  

 

26. Comment: P.6, l3: This is not an equation, it lacks a left side. P.6, Section 2.3: Needs some more 

explanation or at the least citations. SVM not understandable from this. 

 

Response: (Page 7, Line 13-14) Many thanks for the careful reading. This equation has been modified 

as follows: 

𝐴∗ = arg min
𝐴

‖𝐶 − 𝐴‖𝐹 , s. t. 𝐴 + 𝐴𝑇 > 0.              (13) 

 

27. Comment: P.6, l.21: What do you mean by “voting policy”? 

 

Response: (Page 8, Line 22-27) Many thanks for the thoughtful comments. In a multi-class task, the 

SVM is conducted between every two classes. In this paper, there are 5 types, so there are 5×(5-1)/2=10 

SVM classifiers between every two classes. For an unknown-type image, it will be input into 10 models 

and get 10 output labels. That is to say, each binary classifier makes its vote to predict the sample’s class. 

According to the voting policy, the most frequent label is this sample’s type. 

 

28. Comment: P.6, Section 3, beginning: Here, it should be clarified at the very latest what you mean by 

“experiment” in your context. 

 



 

 

Response: (Page 8, Line 29- Page 9, Line 5) Many thanks for the constructive comment. Different from 

a concrete case, the experiment we carry out is random. The purpose that we conduct the experiment is 

to test the performance of the algorithm. In the experiment, the training set is selected at random and the 

rest of the dataset forms the testing set, so we need to repeat this process many times and calculate the 

mean value in order to avoid the accidental bias and to measure the algorithm well. In the revised 

manuscript, we have checked the “experiment” and “cross validation” to make it clear. 

 

29. Comment: P.7, l21: Do you really mean “confusion matrix”? 

 

Response: (Page 10, Line 1-6) Many thanks for the careful comment. The confusion matrix is a way to 

exhibit the experimental result, which has been applied by e.g. Zhuo et al. (2014), Liu et al. (2015), and 

Li et al. (2016). In the confusion matrix, each row of the matrix represents an actual class while each 

column represents the predicted class given by the algorithm. For example, the element in the second 

row and third column is the percentage of cumuliform clouds misclassified as waveform clouds. 

Therefore, the recognition rate for each class is in the diagonal of the matrix. 

 

30. Comment: P.7, l24: cululiform → cumuliform 

 

Response: (Page 10, Line 4) We are sorry for our carelessness. In the revised paper, we have corrected 

the spelling problems. 

 

31. Comment: P.7, l27: “has reached” → “is reached” 

 

Response: (Page 10, Line 8) We are sorry for our carelessness. In the revised manuscript, we have 

corrected the grammar problems. 

 

32. Comment: P.7, l30: exits → exists 

 

Response: (Page 10, Line 11) We are sorry for our carelessness. In the revised manuscript, we have 

corrected the spelling problems. 

 

33. Comment: P.8, l4: “when 1/2 for training.” → “when 1/2 for training is used.” 

 

Response: (Page 10, Line 21) We are sorry for our carelessness. We have corrected this error in the 

revised manuscript. 

 

34. Comment: P.8, l25: There is indeed improvement, but I would not call it “dramatically”. 

 

Response: (Page 11, Line 10; Page 11, Line 17-21) Many thanks for the constructive comment. We 

have deleted the word “dramatically” In the revised manuscript. 

 

35. Comment: P.8, l26: What do you mean by “the statistical learning method”? I think this hasn't been 

defined before. 

 



 

 

Response: (Page 11, Line 10-11) We are sorry not to make it clear. Statistical learning method is a 

framework for machine learning drawing from the fields of statistics and functional analysis (Trevor et 

al., 2009; Mohri et al., 2012). Statistical learning theory deals with the problem of finding a predictive 

function based on data. Because there is no definition before in the manuscript, we have changed this 

sentence as: “… on the other hand, the manifold features on the matrix manifold can describe the non-

Euclidean geometric structure of the image features and thus …”. 

 

36. Comment: P.8, l32: Gabor or wavelet coefficients may need a citation, not generally known. 

 

Response: (Page 11, Line 22) Many thanks for the constructive comment. We have added a reference 

Liu and Wechsler (2002) to make it clear in the revised manuscript. 

 

37. Comment: P.9, l3: “on the both” → “on both,” 

 

Response: (Page 11, Line 27) We are sorry for our carelessness. In the revised manuscript, we have 

corrected this problem. 

 

38. Comment: Images and Tables: Please provide more telling captions. Table 4 and 5: The 1/10, 1/2 and 

so on are not clear. 

 

Response: (Page 18; Page 19) Many thanks for the careful reading of our manuscript. We are sorry for 

our negligence. We have added some explanation of the fractions 1/10, 1 /2, 9/10 in Tables 4 and 5 in the 

revised manuscript to make it clear: 1/10, 1/2 and 9/10 are the certain proportions of the training set 

selected randomly from each category, and the rest part forms the testing set correspondingly. 

 

Special thanks for the reviewers’ constructive comments. 

 

We have tried our best to improve the manuscript and made some changes in the manuscript. These 

changes will not influence the content and framework of the paper. And here we did not list the changes 

but marked in the revised paper. 

 

We appreciate for the reviewers’ warm work earnestly, and hope that the correction will meet with 

approval.  

 

Once again, thank you very much for your careful reading and inspiring suggestions. 
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Abstract. Automatic cloud type recognition of ground-based infrared images is still a challenging task. A novel cloud 

classification method is proposed to group images into five cloud types based on manifold and texture features. Compared 

with statistical features in the Euclidean space, manifold features extracted on Symmetric Positive Definite (SPD) matrix 

space can describe the non-Euclidean geometric characteristics of the infrared image. The proposed method comprises three 

stages: pre-processing, feature extraction and classification. Cloud classification is performed by the a Support Vector 10 

Machine (SVM). The datasets are comprised of the zenithal and whole-sky images taken by the Whole-Sky Infrared Cloud-

Measuring System (WSIRCMS). Benefiting from the joint features, compared to the recent cloud type recognition methods, 

the experimental results illustrate that the proposed method acquires a higher recognition rate and exhibits a more 

competitive classification resultwith an increase of 2%-10% on the ground-based infrared datasets. 

  Introduction 15 

The cloud has an essential impact on the absorption, scattering, emission of atmosphere, the vertical transport of heat, 

moisture and momentum (Hartmann et al., 1992; Chen et al., 2000). Cloud cover and cloud type can affect the daily weather 

and climate change through its radiation and hydrological effects (Isaac and Stuart, 1996; Liu et al., 2008; Naud et al., 2016). 

Therefore, accurate cloud detection and classification is necessary for meteorological observation. Nowadays, cloud cover 

changes and cloud type determination have been available through the ground-based sky imaging systems (Souzaecher et al., 20 

2006; Shields et al., 2003; Illingworth et al., 2007). Different from traditional manual observation, ground-based sky-

imaging devices can obtain continuous information of sky condition at a local scale with a high spatial resolution. 

However, due to subject factors and a rough ground-based measuring system, the estimation of cloud cover and type may 

weaken their credibility (Tzoumanikas et al., 2012). Some attempts have been made to develop algorithms for cloud 

classification of ground-based images (Buch and Sun, 1995; Singh and Glennen, 2005; Cazorla et al., 2008; Heinle et al., 25 

2010; Ghonima et al., 2012; Taravat et al., 2014; Zhuo et al., 2014). Wang and Sassen (2001) developed a cloud detection 

algorithm by combining ground-based active and passive remote sensing data to illustrate how extended-time remote sensing 

datasets can be converted to cloud properties of concern to climate research. Li et al. (2002) proposed a method for 

automatic classification of surface and cloud type using Moderate Resolution Imaging Spectro-radiometer (MODIS) 

radiance measurements, whose advantage lied in its independence of radiance or brightness temperature threshold criteria, 30 
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and its interpretation of each class was based on the radiative spectral characteristics of different classes. Singh and Glennen 

(2005) adopted the k-nearest neighbour (KNN) and neural network classifiers to identify cloud types with texture features, 

including autocorrelation, co-occurrence matrices, edge frequency, Law’s features and primitive length. Calbó and Sabburg 

(2008) extracted statistical texture features based on the greyscale images, pattern features based on the spectral power 

function of images and other features based on the thresholded images for recognizing the cloud type with the supervised 5 

parallelepiped classifier. Heinle et al. (2010) chose 12 dimensional features mainly describing the colour and the texture of 

images for automatic cloud classification, based on the KNN classifier. Besides the statistical feature like the mean grey 

value of the infrared image, Liu et al. (2011) explored another six structure features to characterize the cloud structure for 

classification. Zhuo et al. (2014) validated that cloud classification may not perform well if the texture or structure features 

were employed alone. As a result, texture and structure features were captured from the colour image and then fed into a 10 

trained Support Vector Machine (SVM) (Cristlanini and Shawe-Taylor, 2000) to obtain the cloud type. Different from 

traditional feature extraction, Shi et al. (2017) proposed to adopt the deep convolutional activations-based features and 

provided a promising cloud type recognition result with a multi-label linear SVM model. 

Automatic cloud classification has made certain achievements; however, the cloud classification of ground-based infrared 

images poses a great challenge to us. By far, few researches works of cloud classification have been dedicated to the ground-15 

based infrared images (Sun et al., 2009; Liu et al., 2011). Most recent methods conducted on the RGB visible images (Heinle 

et al., 2010; Zhuo et al., 2014; Li et al., 2016; Gan et al., 2017) cannot directly be exploited on the cloud type classification 

of infrared images owingdue to the lack of colour information. Compared to colour images, Ground-based infrared images 

can be obtained continuously day and night continuously, which is important for practical application and analysis. but lack 

colour information, so it’s hard to reach a perfect performance when the recognition method of colour images is applied to 20 

the infrared images. Most recent methods conducted on the RGB visible images (Heinle et al., 2010; Zhuo et al., 2014; Li et 

al., 2016; Gan et al., 2017) cannot directly be exploited on the cloud type classification of infrared images owing to the lack 

of colour information. 

Nowadays, the Symmetric Positive Definite (SPD) matrix manifold has achieved success in many aspects, such as action 

recognition, material classification and image segmentation (Faraki et al., 2015; Jayasumana et al., 2015). As a 25 

representative of SPD matrix, the Covariance Descriptor (CovD) is a powerful tool to extract the feature of the image. It 

owns several advantages. Firstly, it calculates the first-order and second-order statistics of the local patch. Secondly, it 

straightforward fuses various features. Thirdly, it is independent of the region size and has low dimensions. Fourthly, by 

subtracting the mean feature vector, the effect of the noisy samples is reduced to some degree. Finally, it is able to speed up 

the computation in images and videos using efficient methods (Tuzel et al., 2008; Sanin et al., 2013). Covariance matrices 30 

naturally form a connected Riemannian manifold. Although it proves effective, few investigations researches are pursued for 

the task of cloud classification with manifold features. The manifold feature vector can maintain these advantages of non-

Euclidean geometric space and describe the image features comprehensively, so it is chosen for a try on the cloud 

classification. In this paper, a novel cloud classification method combining manifold and texture features is proposed for 
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ground-based infrared images. Manifold features, representing the non-Euclidean geometric structure of the image features, 

and texture features, expressing the image texture, are integrated for the feature extraction. 

To exhibit the classification performance, we have compared the results with the other two models (Liu et al., 2015; 

Cheng and Yu, 2015), which are adapted for the classification task of infrared images. To make up for the weakness of the 

Local Binary Patterns (LBP) that cannot describe the local contrast well, Liu et al. (2015) proposed a new descriptor called 5 

Weighted Local Binary Patterns (WLBP) for the feature extraction. And then the KNN classifier based on the chi-square 

distance was employed for cloud type recognition. Cheng and Yu (2015) incorporated statistical features and local texture 

features for block-based cloud classification. As Cheng and Yu (2015) reported, the method combining the statistical and 

uniform LBP features with the Bayesian classifier (Bensmail and Celeux, 1996) displayed the best performance in the 10-

fold cross validation (Ripley, 2005) overall. 10 

In this paper, the data and methodology of the method are described in Sect. 2. Section 3 focuses on the experimental 

results. Conclusions are summarized in Sect. 4. 

  Data and Methodology 

In this section, the datasets and the methodology for cloud classification are introduced. The proposed method contains three 

main steps: pre-processing, feature extraction and classification. The framework is illustrated in Fig. 1. 15 

2.1 Dataset and pre-processing 

The datasets include the zenithal images and whole-sky images, which are gathered by the Whole-Sky Infrared Cloud 

Measuring System (WSIRCMS) (Liu et al., 2013). The WSIRCMS is a ground-based passive system that uses an uncooled 

microbolometer detector array of 320×240 pixels is used to measure downwelling atmospheric radiance in 8-14μm (Liu et 

al., 2011). A whole-sky image is obtained after combining the zenithal image and other images at eight different orientations. 20 

As a result, the zenithal image has a resolution size of 320×240 pixels while the whole-sky image is of 650×650 pixels. 

The datasets are provided by National University of Defense Technology in Nanjing, China. 

It is true that the clear sky background radiance in 8-14μm varies with time and zenith angle. The images of the datasets 

have been pre-processed in the consideration of this important factor. The clear sky radiance threshold in each image is 

calculated using the radiation transfer model (Liu et al., 2013). The real radiance 𝑅 at each pixel in each image is converted 25 

to the grey value 𝐺𝑝𝑖𝑥𝑒𝑙 between [0,255] with 𝐺𝑝𝑖𝑥𝑒𝑙 = 𝑅/(𝑅𝑡𝑒𝑚𝑝 − 𝑅𝑐𝑙𝑒𝑎𝑟) × 255, where 𝑅𝑐𝑙𝑒𝑎𝑟  is the corresponding clear 

sky radiance threshold and 𝑅𝑡𝑒𝑚𝑝 is the radiance corresponding to the real-time environment temperature. As a result, the 

effects of the clear sky background brightness temperature can be ignored, which means that this factor has little influence 

on the feature extraction of the images. 

The cloud images used in the experiment are selected with the help of two professional meteorological observers with 30 

many years of observation experiences. The selection premise criterion is that the chosen images should hold high visual 

quality and can be recognized by visual inspection. If an image is vague, it’s hard for experts to justify its type. For the 
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algorithm, it’s difficult to extract effective features of a vague image, not to mention recognizing its cloud type. All infrared 

cloud images are labelled to construct the training set and testing set. To guarantee the golden-standard’s confidence, only 

images labelled same by two meteorological observers are finally chosen as the dataset used in this study. Different from 

traditional cloud classification by observers, automatic cloud classification by the devices needs a new criterion for 

recognition. According to the morphology and generating mechanism of the cloud, the sky condition is classified into five 5 

categories in this study (Sun et al., 2009): stratiform clouds, cumuliform clouds, waveform clouds, cirriform clouds and clear 

sky. The sky condition and its corresponding description are as shown in Table 1. 

The zenithal dataset used in this study is selected from historical dataset to assess the performance of the algorithm. To 

guarantee the reliability of true label of each image, the images without mixed cloud types are selected.purposely to avoid a 

complex mixture of cloud types. The typical samples from each category are demonstrated in Fig. 2. As listed in Table 2, the 10 

zenithal dataset is comprised of 100 cloud images in each category. 

The whole-sky dataset is obtained during July to October in 2014 at Changsha, China. Since the whole-sky image is 

obtained by combining the nine sub-images at different orientations, the division rules of the whole-sky dataset remain the 

same as that of the zenithal dataset. The whole-sky samples from each category are exhibited in Fig. 3. As listed in Table 2, 

the number of cases with stratiform clouds, cumuliform clouds, waveform clouds, cirriform clouds and clear sky is 246, 240, 15 

239, 46 and 88, respectively. 

As Fig. 3 4 shows, a pre-processing mask is provided on the whole-sky images, which is used to extract the region of 

interest (ROI) from the images, which is the areas within the circleof the clouds rather than the parts out of the circle. 

Different from the whole-sky images, all parts of the zenithal images are ROI. Thus, we implement the feature extraction 

directly on the original zenithal images. 20 

2.2 Feature extraction 

In addition to the manifold features proposed in this work, the texture features are also combined. The manifold features of 

the ground-based infrared image are extracted on the SPD matrix manifolds, and after that, they are mapped into the tangent 

space to form a feature vector in Euclidean space. The texture features represent the statistical information in Euclidean 

space; on the contrary, the manifold features describe the non-Euclidean geometric characteristics of the infrared image. 25 

2.2.1 Texture features 

In this paper, the Grey Level Co-occurrence Matrix (GLCM) is used to extract the texture features, including energy, entropy, 

contrast and homogeneity (Haralick et al., 1973). Each matrix element in the GLCM represents the joint probability 

occurrence 𝑝(𝑖, 𝑗) of pixel pairs with a defined direction θ and a pixel distance d having grey level values 𝑖 and 𝑗 in the 

image. 30 
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GLCM = [

𝑝(0,0) 𝑝(0,1) 𝑝(0,2) … 𝑝(0, 𝑘 − 1)
𝑝(1,0) 𝑝(1,1) 𝑝(1,2) … 𝑝(1, 𝑘 − 1)

⋮ ⋮ ⋮ … ⋮
𝑝(𝑘 − 1,0) 𝑝(𝑘 − 1,1) 𝑝(𝑘 − 1,2) … 𝑝(𝑘 − 1, 𝑘 − 1)

]

𝑘×𝑘

               (1) 

The energy measures the uniformity and texture roughness of the grey level distribution: 

Energy =  ∑ ∑ 𝑝(𝑖, 𝑗)2𝑘−1
𝑗=0

𝑘−1
𝑖=0                     (2) 

The entropy is a measure of randomness of grey level distribution: 

Entropy =  −∑ ∑ 𝑝(𝑖, 𝑗)log2𝑝(𝑖, 𝑗)𝑘−1
𝑗=0

𝑘−1
𝑖=0                    (3) 5 

The contrast is a measure of local variation of grey level distribution: 

Contrast =  ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)2𝑘−1
𝑗=0

𝑘−1
𝑖=0                    (4) 

The homogeneity measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal: 

Homogeneity =  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|

𝑘−1
𝑗=0

𝑘−1
𝑖=0                     (5) 

As the number of intensity levels 𝑘 increases, the computation of the GLCM increases strongly. In this work, 𝑘 is set with 10 

16 and then the texture features are obtained by calculating four the GLCMs with d = 1  and θ = 0°, 45°, 90°, 135° , 

respectively. To alleviate avoid the complexity and, reduce the dimension and keep rotation invariance, four mean features 

of four GLCMs with θ = 0°, 45°, 90°, 135°mean values in four directions are obtained as the final texture features. In the 

experiments, we find that these texture features are significant for the cloud classification of the ground-based infrared image. 

2.2.2 Manifold features 15 

The manifold features are attained by two steps: computing the regional CovD and mapping the CovD into its tangent space 

to form a feature vector. 

Step 1: Computing the regional CovD 

Suppose the image 𝐼 is of the size 𝑊 × 𝐻, its d-dimensional features containing greyscale and gradient at each pixel are 

computed, which compose the feature image 𝐹, whose size is 𝑊 × 𝐻 × 𝑑: 20 

𝐹(𝑥, 𝑦) = 𝑓(𝐼, 𝑥, 𝑦)                     (6) 

where the feature mapping 𝑓 is defined as: 

𝑓 =  [𝐼(𝑥, 𝑦)   |𝐼𝑥|   |𝐼𝑦|   √|𝐼𝑥|
2 + |𝐼𝑦|

2
   |𝐼𝑥𝑥|   |𝐼𝑦𝑦|]

T

                 (7) 

In which  (𝑥, 𝑦) denotes the location, 𝐼(𝑥, 𝑦) denotes the greyscale. |𝐼𝑥|, |𝐼𝑦|, |𝐼𝑥𝑥| and |𝐼𝑦𝑦| represent the first and second 

order derivative in the direction of 𝑥 and 𝑦 at each pixel, respectively. √|𝐼𝑥|
2 + |𝐼𝑦|

2
 denotes the modulus of gradient. 25 

For the feature image 𝐹, supposing it contains 𝑛 = 𝑊 × 𝐻 points of d-dimensional features {𝑓𝑘, 𝑘 = 1,2, … , 𝑛}. Its CovD 

is a 𝑑 × 𝑑 covariance matrix, computed by Eq. (8): 
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𝐶 = 
1

𝑛−1
∑ (𝑓𝑘 − 𝜇)(𝑓𝑘 − 𝜇)T𝑛

𝑘=1                     (8) 

where 𝜇 =  
1

𝑛
∑ 𝑓𝑘

𝑛
𝑘=1 , which represents the feature mean vector. 

The CovD can fuse multiple dimensional features of the image and express the correlations between different features. 

Besides, since the CovD is symmetric, it is only 𝑑(𝑑 + 1) 2⁄  dimensional.It removes the mean of the sample features; 

therefore, it has certain effects of denoising. The CovD is symmetric and its dimension is only 𝑑(𝑑 + 1) 2⁄ . If we convert the 5 

CovD into a feature vector to describe the image, its dimension is 𝑛 × 𝑑, which needs a high computation cost for cloud 

classification. 

Step 2: Obtaining the feature vector by mapping the CovD into its tangent space 

Generally speaking, the manifold is a topological space that is locally equivalent to a Euclidean space. The differential 

manifold has a globally defined differential structure. Its tangent space 𝑇𝑋𝑀 is a space formed by all possible tangent vectors 10 

at a given point 𝑋 on the differential manifold. For the Riemannian manifold  𝑀, an inner product is defined in its tangent 

space. The shortest curve between two points on the manifold is called the geodesic and the length of the geodesic is the 

distance between two points. 

All SPD matrices form a Riemannian manifold. Suppose 𝑆𝑑  is a set of all 𝑛 × 𝑛  real symmetric matrices: 𝑆𝑑 =

 {𝐴 ∈ 𝑀(𝑑): 𝐴T = 𝐴} , where 𝑀(𝑑) represents the set of all 𝑑 × 𝑑 matrices, so that 𝑆++
𝑑 = {𝐴 ∈ 𝑆𝑑: 𝐴 > 0} is the set of all 15 

𝑑 × 𝑑 SPD matrices, which construct a 𝑑(𝑑 + 1) 2⁄  dimensional SPD manifold. According to the operation rules of the 

matrix, the set of the real symmetric matrix is a vector space while the real SPD matrix space is a non-Euclidean space. A 

Riemannian metric should be given to describe the geometric structure of the SPD matrix and to measure the distance of two 

points on 𝑆++
𝑑 . 

Geodesics on the manifold are related to the tangent vectors in the tangent space. Two operators, exponential map 20 

exp𝑋(·): 𝑇𝑋𝑀 → 𝑀  and the logarithm map log𝑋(·) = exp𝑋
−1(·):𝑀 → 𝑇𝑋𝑀 , are defined over differentiable manifolds to 

switch between the manifold and its tangent space at X. As illustrated in Fig. 5, the tangent vector v is mapped to the point Y 

on the manifold through the exponential map. The length of v is equivalent to the geodesic distance between X and Y due to 

the property of the exponential map. Conversely, a point on the manifold is mapped to the tangent space 𝑇𝑋 𝑀 through the 

logarithm map. As point X moves along the manifold, the exponential and logarithm maps change. The details can be 25 

referred in Harandi et al. (2012). 

For 𝑆++
𝑑 , the logarithm and exponential maps are given by: 

log𝑋(𝐴) = 𝑋
1

2log (𝑋−
1

2𝐴𝑋−
1

2)𝑋
1

2,                 (9) 

exp𝑋(𝑦) = 𝑋
1

2exp (𝑋−
1

2𝑦𝑋−
1

2)𝑋
1

2,                  (10) 

where log(∙) and exp(∙) are the matrix logarithm and exponential operators, respectively. For SPD matrices, they can be 30 

computed through Singular Value Decomposition (SVD). If we let diag(𝜆1, 𝜆2, … , 𝜆𝑑) be a diagonal matrix formed from real 

values 𝜆1, 𝜆2, … , 𝜆𝑑  on diagonal elements and 𝐴 = 𝑈diag(𝜆𝑖)𝑈
𝑇  be the SVD of the symmetric matrix A, then  
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log(𝐴) = ∑
(−1)𝑟−1

𝑟
(𝐴 − 𝐼)𝑟 = 𝑈diag(ln(𝜆𝑖))

∞
𝑟=1 𝑈𝑇,              (11) 

exp(𝐴) = ∑
1

𝑟!
𝑋𝑟 = 𝑈diag(exp(𝜆𝑖))

∞
𝑟=0 𝑈𝑇 ,               (12) 

where I is an identity matrix on manifolds. 

The manifold can be embedded into its tangent space at identity matrix I. Thus, Bbased on the bi-invariant Riemannian 

metric (Arsigny et al., 2008), the distance between 𝐴 and 𝐵 on the SPD matrix manifold is 𝑑(𝐴, 𝐵) =  ‖log(𝐴) − log (𝐵)‖2, 5 

where log(∙) denotes matrix logarithm. The logarithmic operation is applied in the elements of the diagonal matrix obtained 

by the singular value decomposition of the SPD matrix. Since symmetric matrices (equivalently tangent spaces) form a 

vector space, the classification tools in the Euclidean space (SVM, KNN and so on) can be seamlessly employed to deal with 

the recognition problem. 

The logarithmic operator is valid only if the eigenvalues of the symmetric matrix are positive. When no cloud is observed 10 

in the clear sky, the CovD of the image features could be non-negative definite, and in this case, it needs to be converted to a 

SPD matrix. We can formulate it as an optimization problem (Harandi et al., 2015): 

min
𝐴

‖𝐶 − 𝐴‖𝐹

s. t. 𝐴 + 𝐴𝑇 > 0
                      (9) 

𝐴∗ = arg min
𝐴

‖𝐶 − 𝐴‖𝐹 , s. t. 𝐴 + 𝐴𝑇 > 0,                (13) 

where 𝐶 is a CovD and 𝐴∗𝐴 is the closest SPD matrix to 𝐶. 15 

For a SPD matrix 𝐴, its corresponding feature vector can be represented as Eq. (10): log-Euclidean vector representation 

𝑎 ∈ ℝ𝑚  , 𝑚 = 𝑑(𝑑 + 1) 2⁄ , is unique and can be represented as 𝑎 = 𝑉𝑒𝑐(log (𝐴)). Let 𝐵 = log (𝐴), 𝐵 ∈ 𝑆𝑑 and 

𝐵 =  

[
 
 
 
𝑏1,1 𝑏1,2 𝑏1,3 … 𝑏1,𝑑

𝑏2,1 𝑏2,2 𝑏2,3 … 𝑏2,𝑑

⋮ ⋮ ⋮ … ⋮
𝑏𝑑,1 𝑏𝑑,2 𝑏𝑑,3 … 𝑏𝑑,𝑑]

 
 
 

𝑑×𝑑

,                 (14) 

which lies in the Euclidean space. Since B is symmetric, we can rearrange it into a vector by vectorizing the upper triangular 

matrix: 20 

𝑎 = 𝑉𝑒𝑐(log (𝐴))                   (10) 

where 𝑉𝑒𝑐(𝐵) is a vector in Euclidean space by vectorizing the upper triangular matrix 𝐵: 

𝑎 = 𝑉𝑒𝑐(𝐵) =  [𝑏1,1, √2𝑏1,2, ⋯ , √2𝑏1,𝑑 , 𝑏2,2, √2𝑏2,3, ⋯ , 𝑏𝑑,𝑑]
T
 .      (1115) 

Vector a is defined as the manifold features. Since 𝑓 is a 6-dimensional feature mapping, the manifold feature vector 𝑎 to 

describe the cloud image is 6 × (6 + 1) 2⁄ = 2121 dimensions. The mapped feature vector can reflect the characteristics of 25 

its corresponding SPD matrix on matrix manifolds. Thus, manifold features can describe the non-Euclidean property of the 

infrared image features to some degree. 
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2.2.3 Combining manifold and texture features 

As described in Sect. 2.2.1 and 2.2.2, manifold and texture features can be extracted and integrated to represent the ground-

based infrared images. For an image, its four features including energy, entropy, contrast and homogeneity from GLCM, 

express its texture, while 21-dimensional manifold features describe the non-Euclidean geometric characteristics. The 

manifold and texture features are combined to form a feature vector to represent the image. Besides the 4-dimensional 5 

texture featuresThus, the joint features of the infrared image have a total of 25 dimensions. 

2.3 Classification 

2.3.1 Support vector machine 

The classifier used in this paper is the SVM (Cristlanini and Shawe-Taylor, 2000), which exhibits prominent classification 

performance in the cloud type recognition experiments. (Zhuo et al., 2014; Li et al., 2016; Shi et al., 2017). In machine 10 

learning, SVMs are supervised learning models. An SVM model is a representation of the examples as points in the 

Reproducing Kernel Hilbert Space, mapped so that the examples of the separate categories are divided by a clear gap that is 

as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on 

which side of the gap they fall. As Fig. 6 shows, given a set of two-class training examples (denoted by × and o, 

respectively), the key problem is to find the optimal hyperplane to do the separation: 𝑤𝑇𝑥 + 𝑏 = 0, where 𝑤 is a weight 15 

vector and b is a bias, and an SVM training model with the largest margin 2/√𝑤𝑇𝑤 is built. The support vectors are the 

samples on the dotted lines. The optimization classification hyperplane is determined by the solid line. The test examples are 

assigned to one category or the other based on this model, making it a non-probabilistic binary linear classifier. It is a two-

class classifier; its basic model is a linear classifier with the largest margin in the feature space. The margin maximization 

can be formulated as a convex quadratic programming problem. In this work, we apply A a simple linear function is chosen 20 

as the mapping kernel, which is validated by the cloud classification experiments. 

2.3.2 Multi-class support vector machine method 

For a multi-class multiple-classification task, the SVM is conducted between every two classes. If there are 𝑐 types, then the 

total number of classification operation is 𝑐(𝑐 − 1) 2⁄ . one binary SVM classifier is constructed for every pair of distinct 

classes, and so, all together 𝑐(𝑐 − 1) 2⁄  binary SVM classifiers are constructed. For an unknown-type sample, it will be input 25 

into these binary classifiers and each classifier makes its vote, thus 𝑐(𝑐 − 1) 2⁄  independent output labels are obtained. The 

most frequent label is the sample’s type. 𝑐 is 5 in this paper and the final result is determined by the voting policy. 

 Experiments and discussions 

In this section, we validate which features are chosen and report experimental results and to assess the performance of the 

proposed cloud classification method. Different from a deterministic case, the training samples of the experiments are chosen 30 
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randomly. We first validate tThe effects of the proposed features are first tested by conducting the 10-fold cross validation 

(Li et al., 2016; Gan et al., 2017)each experiment 50 times on two datasets, respectively, and average values are taken as 

final results. The results of 10-fold cross validation with different features are given in Table 3. In the 10-fold cross 

validation, Each each dataset is divided into 10 subsets with the same size at random. One single subset is used for validation 

in turn and the other 9 parts are taken as the training set. The results of 10-fold cross validation with different features are 5 

given in Table 3. As Table 3 illustrates, the overall accuracy of texture, manifold and combined features achieves 83.49%, 

96.46% and 96.50% on the zenithal dataset while 78.01%, 82.38% and 85.12% on the whole-sky dataset, respectively. It can 

be seen that the texture or manifold features alone don’t achieve a better performance than the joint features, which not only 

inherit the advantage of the texture features, but also own the characteristic of manifold features. On the whole, the method 

using the joint features performs best in the cross validation. 10 

Naturally, combined features are used for the cloud type recognition. In the experiment, each dataset is grouped into the 

training set and testing set. The training set is selected randomly from each category in accordance with a certain proportion 

1/10, 1/2 and 9/10, respectively and the rest part forms the testing set. Each experiment is implemented 50 times to reduce 

the accidental bias and the average accuracy is regarded as the final results of classification to evaluate the performance of 

the method. 15 

To exhibit the recognition performance of the proposed method, we also compare with the other two models (Liu et al., 

2015; Cheng and Yu, 2015) to assess its performance in this experiment. Liu’s model employs WLBP feature with the KNN 

classifier based on the chi-square distance while Cheng’s method adopts the statistical and uniform LBP features with the 

Bayesian classifier. Note that we extract the statistical features from the greyscale images rather than from the RGB images 

so that the statistical features have only 8 dimension, as a result, without extra colour information provided, both of the two 20 

methods are adaptable to the infrared images. 

3.1 Results of the zenithal dataset 

The first experiment is performed on the zenithal dataset. Table 4 reports the overall recognition rates of the proposed 

method and the other methods. The proposed method gets the best results, with at least 2.5% improvement over Liu’s 

method and over 9.5% higher than Cheng’s method. Meanwhile, the proposed method demonstrates a more stable and more 25 

superior performance than the other two methods, especially when 1/10 of the dataset is treated as the training set. In this 

case, the proposed method is up to 90.85% on the overall accuracy while the other two methods achieve 81.30% and 81.64%, 

respectively. That means discriminative features used for classification can be gained even with insufficient training data as 

well. Although only three cases are given when the fractions of training set are 1/10, 1/2 and 9/10, they can represent most 

cases when training samples are insufficient, enough and quite enough. In general, with the increase in the number of 30 

training samples, the overall accuracy of testing samples will increase until it holds stable, which is in line with the results in 

Table 4. As a result, when the training images are typical and sufficient enough, there is no doubt that the recognition rate 

will be improved. 
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In Fig. 47, the classification results of the proposed method are demonstrated in the form of the confusion matrix (Zhuo et 

al., 2014; Liu et al., 2015; Li et al., 2016)  when 1/2 of the dataset constructs the training set while the rest 1/2 is used for 

testing. In the confusion matrix, Each each row of the matrix represents an actual class while each column represents the 

predicted class given by SVM. For example, the element in the second row and third column is the percentage of cumuliform 

cululiform clouds misclassified as waveform clouds. Therefore, the recognition rate for each class is in the diagonal of the 5 

matrix. The discrimination rate of stratiform clouds is up to 100%, which indicates that stratiform clouds have the most 

significant features to be distinguished among five cloud types. Likewise, the results of the other four cloud types achieve 

over 93%. It is shown that a rather high accuracy of each cloud type has is reached, which means the proposed method 

performs well in classifying the ground-based infrared zenithal images on the whole. 

3.2 Results of the whole-sky dataset 10 

The second experiment is performed on the whole-sky dataset, which is more challenging because there exits exists larger 

inner-class difference than that of the zenithal dataset. The experimental configuration retains the same in Sec. 3.1. Table 5 

lists the results of different methods. It is illustrated that the proposed method gains the overall accuracy of 78.27%, 83.54% 

and 85.01% as the proportion of the training set varies. In comparison, Liu’s method achieves 73.58%, 80.55% and 81.31% 

while Cheng’s method achieves 66.99%, 67.36% and 68.18%, correspondingly. Comparing to the other two methods, the 15 

experimental results indicate the effectiveness of the proposed method with an obvious improvement in the accuracy. 

Similarly, the cases when the fractions of training set are 1/10, 1/2 and 9/10, can represent most cases when training samples 

are insufficient, enough and quite enough. Generally, the rise in the number of training samples makes the overall accuracy 

improve, which is in line with the results in Table 5. In a nutshell, a sufficient and representative training set can further 

promote the classification accuracy. 20 

Figure 5 8 displays the confusion matrix of the whole-sky dataset when 1/2 for training is used. The number of each 

category in the training set is 123, 120, 120, 23 and 44, respectively and the remaining part is treated as the testing set. It is 

demonstrated that stratiform clouds and clear sky possess obvious characteristics for classification while cumuliform, 

waveform and cirriform clouds pose a great challenge for a high accuracy of classification. Cirriform clouds are likely to be 

confused with the clear sky and about 15.22% of cirriform cloud images are misclassified as the clear sky in the experiment. 25 

In the whole-sky image, when it is on the condition of cirriform clouds, the area of cirriform clouds may be just a fraction of 

the whole sky, making it hard to be distinguished correctly. What’s more, multiple cloud types could exist in the whole-sky 

condition, which may result in a relatively low accuracy of the single-type classification, like cumuliform, waveform and 

cirriform clouds. 

There are some misclassifications, just as demonstrated in Fig. 69. Figure 69(a) shows that stratiform clouds are 30 

recognized as waveform clouds. It can be seen that the cloud base has a little fluctuation and makes it similar to the 

waveform cloud. Figure 69(b) shows that cumuliform clouds are recognized as waveform clouds. We can distinguish it as 

waveform clouds by the shape but the strong vertical motion of cumuliform clouds makes it hard to differ from waveform 
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clouds. Figure 69(c) shows that cumuliform clouds are recognized as cirriform clouds. In this image, besides cumuliform 

clouds, a little cirriform clouds can also be found. Figure 69(d) shows that waveform clouds are recognized as cumuliform 

clouds. It can be seen that both waveform and cumuliform clouds coexist in the sky. Figure 69(e) shows that cirriform clouds 

are recognized as cumuliform clouds. It is admitted that the whole-sky dataset is more complicated than the zenithal dataset 

as the weather conditions change. 5 

 Conclusions 

In this paper, a novel cloud classification method of the ground-based infrared images, including the zenithal and whole-sky 

datasets, is proposed. Besides the texture features computed from the GLCM, manifold features obtained from the SPD 

matrix manifold are combined together. With the joint features, the proposed method can improve the recognition rate of the 

cloud types dramatically. On the one hand, the joint features can inherit the advantages of the statistical features, which 10 

represent texture information in Euclidean space; on the other hand, the manifold features on the matrix manifoldthe 

statistical learning method on the manifold can describe the non-Euclidean geometric structure of the image features and 

thus the proposed method can benefit from it for a high classification precision. The CovD is calculated by extracting 6-

dimensional features including greyscale, first-order and second-order gradient information, and the mean values are 

subtracted from the feature vectors, which may improve the recognition performance to some extent, since it can remove the 15 

noises of the infrared images. The manifold feature vector is produced by mapping the SPD matrix into the tangent space 

and afterwards the combined feature vector is adopted for cloud type recognition with SVM. With different fractions that the 

training set occupies, it is validated that in most cases the proposed method outperforms the other two methods (Liu et al., 

2015; Cheng and Yu, 2015). As a whole, the improvement of the proposed method is between 2% and 10%. To some degree, 

it may not be a great improvement, but we have validated that the introduction of manifold features is effective and can 20 

achieve some success, it is worthy doing more work in this field to promote its development.  

In future work, more suitable image features like Gabor or wavelet coefficients (Liu and Wechsler, 2002) can be 

incorporated into the SPD matrix and the classification would be performed directly on the manifolds to improve the 

recognition rate further. Besides, feature extraction using deep learning method such as convolutional neural networks can be 

taken into account to increase the classification accuracy. What’s more, the addition of the brightness temperature, or the 25 

height information obtained from the laser ceilometer might be helpful for the improvement of the cloud type recognition 

accuracy. It is found that the proposed method is effective to satisfy the requirement of the cloud classification task on the 

both zenithal and whole-sky datasets. The complex sky condition with multiple cloud types should arise our concern in the 

next work. 

 Code availability 30 

The code of the proposed method will be available online upon the acceptance of the paper. 
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 Data availability 

The two ground-based infrared cloud datasets used in this paper will be available upon the acceptance of the paper. This will 

be helpful for further benchmarking ground-based infrared image classification. 

 

Acknowledgements. This work is in part supported financially by the National Natural Science Foundation of China under 5 

Grant No.61473310 and No.41174164. 

References 

Arsigny, V., Fillard, P., Pennec, X., and Ayache, N.: Geometric means in a novel vector space structure on symmetric 

positive-definite matrices, Siam J. Matrix Anal. A., 29, 328-347, doi:10.1137/050637996, 2008. 

Bensmail, H., and Celeux, G.: Regularized Gaussian discriminant analysis through eigenvalue decomposition, J. Am. Stat. 10 

Assoc., 91, 1743-1748, doi:10.1080/01621459.1996.10476746, 1996. 

Buch, K. A., Sun Chen-Hui, and Thorne L. R.: Cloud classification using whole-sky imager data, In Proceedings of the 5th 

Atmospheric Radiation Measurement Science Team Meeting, San Diego, CA, USA, 1995. 

Calbó, J., and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. 

Ocean. Techn., 25, 3, doi:10.1175/2007JTECHA959.1, 2008. 15 

Cazorla, A., Olmo, F. J., and Aladosarboledas, L.: Development of a sky imager for cloud cover assessment, J. Opt. Soc. Am. 

A., 25, 29-39, doi:10.1364/JOSAA.25.000029, 2008. 

Chen, T., Rossow, W. B., and Zhang, Y.: Radiative effects of cloud-type variations. J. Climate, 13, 264-286, 

doi:10.1175/1520-0442(2000)013<0264, 2000. 

Cheng, H. Y., and Yu, C. C.: Block-based cloud classification with statistical features and distribution of local texture 20 

features, Atmos. Meas. Tech., 8, 1173-1182, doi:10.5194/amt-8-1173-2015, 2015. 

Cristianini, N. and Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods, 

Cambridge university press, 2000. 

Faraki, M., Palhang, M., and Sanderson, C.: Log-Euclidean bag of words for human action recognition, IET Comput. Vis., 9, 

331-339, doi:10.1049/iet-cvi.2014.0018, 2015. 25 

Gan, J., Lu, W., Li, Q., Zhang, Z., Yang, J., Ma, Y. and Yao, W.: Cloud type classification of total-sky images using duplex 

norm-bounded sparse coding. IEEE J. Sel. Top. Appl., 10, 3360-3372, doi:10.1109/JSTARS.2017.2669206, 2017. 

Ghonima, M. S., Urquhart, B., Chow, C. W., and Shields, J. E.: A method for cloud detection and opacity classification 

based on ground based sky imagery, Atmos. Meas. Tech., 5, 4535-4569, doi:10.5194/amt-5-2881-2012, 2012. 

Haralick, R. M., Shanmugam, K., and Dinstein, I. H.: Textural features for image classification, IEEE T. Syst. Man Cyb., 3, 30 

610-621, doi:10.1109/TSMC.1973.4309314, 1973. 



13 

 

Harandi, M. T., Hartley, R., Lovell, B., and Sanderson, C.: Sparse coding on symmetric positive definite manifolds using 

Bregman divergences, IEEE T. Neur. Net. Lear., 27, 1294-1306, doi:10.1109/TNNLS.2014.2387383, 2015. 

Hartmann, D. L., Ockert-bell, M. E., and Michelsen M. L.: The effect of cloud type on earth’s energy balance: global 

analysis. J. Climate., 5, 1281-1304, doi:10.1175/1520-0442(1992)005<1281, 1992. 

Heinle, A., Macke, A., and Srivastav, A.: Automatic cloud classification of whole sky images, Atmos. Meas. Tech., 3, 557-5 

567, doi:10.5194/amt-3-557-2010, 2010. 

Illingworth, A. J., Hogan, R. J., O'connor, E. J., et al.: Cloudnet: Continuous evaluation of cloud profiles in seven operational 

models using ground-based observations, B. Am. Meteorol. Soc., 88, 883-898, 2007. 

Isaac, G. A., and Stuart, R. A.: Relationships between cloud type and amount, precipitation, and surface temperature in the 

mackenzie river valley-beaufort sea area. J. Climate, 9, 1921-1941, doi:10.1175/1520-0442(1996)<1921, 1996. 10 

Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. T.: Kernel methods on Riemannian manifolds with 

Gaussian RBF kernels, IEEE T. Pattern Anal., 37, 2464-2477, doi:10.1109/TPAMI.2015.2414422, 2015. 

Li, J., Menzel, W. P., Yang, Z., Frey, R. A., and Ackerman, S. A.: High-spatial-resolution surface and cloud-type 

classification from MODIS multispectral band measurements, J. Appl. Meteorol., 42, 204-226, doi:10.1175/1520-

0450(2003)042<0204, 2002. 15 

Li, Q., Zhang, Z., Lu, W., Yang, J., Ma, Y. and Yao, W.: From pixels to patches: a cloud classification method based on a 

bag of micro-structures, Atmos. Meas. Tech., 9, 753-764, doi:10.5194/amt-9-753-2016, 2016. 

Liu, C. and Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face 

recognition, IEEE T. Image Process., 11, 467-476, doi:10.1109/tip.2002.999679, 2002. 

Liu, L., Sun, X., Chen, F., Zhao, S., and Gao, T.: Cloud classification based on structure features of infrared images, J. 20 

Atmos. Ocean. Techn., 28, 410-417, doi:10.1175/2010JTECHA1385.1, 2011. 

Liu, L., Sun, X., Gao, T., and Zhao, S.: Comparison of cloud properties from ground-based infrared cloud measurement and 

visual observations, J. Atmos. Ocean. Techn., 30, 1171-1179, doi:10.1175/JTECH-D-12-00157.1, 2013. 

Liu, S., Zhang, Z., and Mei, X.: Ground-based cloud classification using weighted local binary patterns, J. Appl. Remote 

Sens., 9, 095062, doi:10.1117/1.JRS.9.095062, 2015. 25 

Liu, Y., Key, J. R., and Wang, X.: The influence of changes in cloud cover on recent surface temperature trends in the Arctic. 

J. Climate, 21, 705-715, doi:10.1175/2007JCLI1681.1, 2008. 

Naud, C. M., Booth, J. F. and Del Genio, A.D.: The relationships between boundary layer stability and cloud cover in the 

post-cloud-frontal region. J. Climate, 29, 8129-8149, doi: 10.1175/JCLI-D-15-0700.1, 2016. 

Ripley, B. D.: Pattern recognition and neural networks, Cambridge University Press, 8 edn., 2005. 30 

Sanin, A., Sanderson, C., Harandi, M. T., and Lovell, B. C.: Spatio-temporal covariance descriptors for action and gesture 

recognition, In Proceedings of 2013 IEEE Workshop on Applications of Computer Vision (WACV), Tampa, FL, USA, 

103-110, doi:10.1109/WACV.2013.6475006, 2013. 



14 

 

Shi, C., Wang, C., Wang, Y., and Xiao, B.: Deep convolutional activations-based features for ground-based cloud 

classification, IEEE Geosci. Remote S., PP, 1-5, doi:10.1109/LGRS.2017.2681658, 2017. 

Shields, J. E., Johnson, R. W., Karr, M. E., Burden, A. R., and Baker, J. G.: Daylight visible/NIR whole-sky imagers for 

cloud and radiance monitoring in support of UV research programs, SPIE International Symposium on Optical Science 

& Technology, 155-166, doi:10.1117/12.509062, 2003. 5 

Singh, M., and Glennen, M.: Automated ground-based cloud recognition, Pattern Anal. Appl., 8, 258-271, 

doi:10.1007/s10044-005-0007-5, 2005. 

Souzaecher, M. P., Pereira, E. B., Bins, L. S., and Andrade, M. A. R.: A simple method for the assessment of the cloud cover 

state in high-latitude regions by a ground-based digital camera, J. Atmos. Ocean. Techn., 23, 437, 

doi:10.1175/JTECH1833.1, 2006. 10 

Sun, X. J., Liu, L., Gao, T. C., and Zhao, S. J.: Classification of whole sky infrared cloud image based on the LBP operator, 

Transactions of Atmospheric Sciences, 32, 490-497, doi:10.3969/j.issn.1674-7097.2009.04.004, 2009 (in Chinese). 

Taravat, A., Frate, F. D., Cornaro, C., and Vergari, S.: Neural networks and support vector machine algorithms for automatic 

cloud classification of whole-sky ground-based images, IEEE Geosci. Remote S., 12, 666-670, 

doi:10.1109/LGRS.2014.2356616, 2014. 15 

Tuzel, O., Porikli, F., and Meer, P.: Pedestrian detection via classification on Riemannian manifolds, IEEE T. Pattern Anal., 

30,1713-1727, 2008. 

Tzoumanikas, P., Kazantzidis, A., Bais, A. F., Fotopoulos, S., and Economou, G.: Cloud detection and classification with the 

use of whole-sky ground-based images, Atmos. Res., 113, 80-88, doi:10.1016/j.atmosres.2012.05.005, 2012. 

Wang, Z., and Sassen, K.: Cloud type and macrophysical property retrieval using multiple remote sensors, J. Appl. Meteorol., 20 

40, 1665-1683, doi:10.1175/1520-0450(2001)040<1665, 2001. 

Zhuo, W., Cao, Z., and Xiao, Y.: Cloud classification of ground-based images using texture–structure features, J. Atmos. 

Ocean. Techn., 31, 79-92, doi:10.1175/JTECH-D-13-00048.1, 2014. 



15 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The sky condition classes and corresponding description. 

 

 

 

 

 

 

 

 

 

 

 

Sky condition classes Description Cloud types 

Stratiform clouds Horizontal, layered clouds that stretch out across the sky like a blanket St、As、Cs 

(Sc、Ac、Cb、Ns) 

Cumuliform clouds Thick clouds that are puffy in appearance, like large cotton balls Cu、Cb 

Waveform clouds Thin or thick clouds occurring in sheets or patches with wavy, rounded 

masses or rolls 

Sc、Ac、Cc 

Cirriform clouds Thin clouds; very wispy and feathery looking Ci 

Clear sky Clear No clouds 
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Table 2. The numbers of each class on two datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sky condition classes Zenithal Whole-sky 

Stratiform clouds 100 246 

Cumuliform clouds 100 240 

Waveform clouds 100 239 

Cirriform clouds 100 46 

Clear sky 100 88 

Total 500 859 
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Table 3. The 10-fold cross validated classification accuracy (%) on two datasets. 

 Zenithal Whole-sky 

Texture features 
83.49 78.01 

Manifold features 
96.46 82.38 

Combined features 
96.50 85.12 
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Table 4. The overall classification accuracy (%) on the zenithal dataset. 1/10, 1/2 and 9/10 are the certain proportions 

of the training set selected randomly from each category, and the rest part forms the testing set correspondingly. 

 1/10 1/2 9/10 

Liu’s method 81.64 92.24 93.48 

Cheng’s method 81.30 81.92 81.32 

Proposed method 90.85 95.98 96.36 
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Table 5. The overall classification accuracy (%) on the whole-sky dataset. 1/10, 1/2 and 9/10 are the certain 

proportions of the training set selected randomly from each category, and the rest part forms the testing set 

correspondingly. 

 1/10 1/2 9/10 

Liu’s method 73.58 80.55 81.31 

Cheng’s method 66.99 67.36 68.18 

Proposed method 78.27 83.54 85.01 
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Figure 1: System framework. 
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Figure 2: Cloud samples from the zenithal dataset. (a) stratiform clouds, (b) cumuliform clouds, (c) waveform clouds, (d) cirriform 

clouds and (e) clear sky. 
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Figure 3: Cloud samples from the whole-sky dataset. (a) stratiform clouds, (b) cumuliform clouds, (c) waveform clouds, (d) 

cirriform clouds and (e) clear sky. 
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Figure 4: The mask of the whole-sky images. The area within the circle is the ROI, and the area outside the circle is not the ROI. 
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Figure 5: Illustration of the tangent space 𝑻𝑿𝑴 at point X on a Riemannian manifold. A SPD matrix can be interpreted as point X 

in the space of SPD matrices. The tangent vector v can be obtained through the logarithm map, ie. 𝒗 = 𝐥𝐨𝐠𝑿(𝒀). Every tangent 

vector in 𝑻𝑿𝑴 can be mapped to the manifold through the exponential map, ie. 𝐞𝐱𝐩𝑿(𝒗) = 𝒀. The dotted line shows the geodesic 

starting at X and ending at Y. 
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Figure 6: The decision boundary of support vector machine with the largest margin. × and o denote two-class training examples, 

respectively. 𝒘𝑻𝒙 + 𝒃 = 𝟎 is the optimal hyperplane to do the separation, where 𝒘 is a weight vector and b is a bias, and an SVM 

training model with the largest margin 𝟐/√𝒘𝑻𝒘 is built. The support vectors are the samples on the dotted lines. The optimization 

classification hyperplane is determined by the solid line. 
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Figure 47: Confusion matrix (%) on the zenithal dataset. (1/2 for training and the overall accuracy is 95.98%) 
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Figure 58: Confusion matrix (%) on the whole-sky dataset. (1/2 for training and the overall accuracy is 83.54%) 
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Figure 69: Selected misclassified whole-sky images. (a) stratiform clouds to waveform clouds, (b) cumuliform clouds to waveform 

clouds, (c) cumuliform clouds to cirriform clouds, (d) waveform clouds to cumuliform clouds and (e) cirriform clouds to 

cumuliform clouds. 

 


