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Abstract. With the improved spatial resolution than earlier instruments and more than ten years of service, tropospheric NO2 

retrievals from the Ozone Monitoring Instrument (OMI) have led to many influential studies on the relationships between 

socioeconomic activities and NOx emissions. Previous studies have shown that the OMI NO2 data show different relative 

trends compared to in situ measurements. However, the sources of the discrepancies need further investigations. This study 15 

focuses on how to appropriately compare relative trends derived from OMI and in situ measurements. We retrieve OMI 

tropospheric NO2 vertical column densities (VCDs) and obtain the NO2 seasonal trends over the United States, which are 

compared with coincident in situ surface NO2 measurements from the Air Quality System (AQS) network. The Mann-Kendall 

method with the Sen’s slope estimator is applied to derive the NO2 seasonal and annual trends for four regions at coincident 

sites during 2005-2014. The OMI-based NO2 seasonal relative decreasing trends are generally biased low compared to the in 20 

situ trends by up to 3.7% yr-1, except for the underestimation in the Midwest and Northeast during Dec-Jan-Feb (DJF). We 

improve the OMI retrievals for trend analysis by removing the ocean trend, using the MODerate-resolution Imaging 

Spectroradiometer (MODIS) albedo data in air mass factor (AMF) calculation. We apply a lightning flash filter to exclude 

lightning affected data to make proper comparisons. These data processing procedures result in close agreement (within 0.3% 

yr-1) between in situ and OMI-based NO2 regional annual relative trends. The remaining discrepancies may result from inherent 25 

difference between trends of NO2 tropospheric VCDs and surface concentrations, different spatial sampling of the 

measurements, chemical non-linearity, and tropospheric NO2 profile changes. We recommend future studies to apply these 

procedures (ocean trend removal and MODIS albedo update) to ensure the quality of satellite-based NO2 trend analysis and 

apply the lightning filter in studying surface NOx emission changes using satellite observations and in comparison with the 

trends derived from in situ NO2 measurements. With these data processing procedures, we derive OMI-based NO2 regional 30 

annual relative trends using all available data for the West (-2.0%±0.3 yr-1), the Midwest (-1.8%±0.4 yr-1), the Northeast (-

3.1%±0.5 yr-1), and the South (-0.9%±0.3 yr-1). The OMI-based annual mean trend over the contiguous United States is -
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1.5%±0.2 yr-1. It is a factor of 2 lower than that of the AQS in situ data (-3.9%±0.4 yr-1); the difference is mainly due to the 

fact that the locations of AQS sites are concentrated in urban and suburban regions. 

1 Introduction 

Nitrogen dioxide (NO2) is an air pollutant. At high concentrations, it aggravates respiratory diseases and can lead to acid rain 

formation (e.g., Lamsal et al., 2015). It is also a key player to produce another pollutant, ozone (O3), through photochemical 5 

reactions in the presence of Volatile Organic Compounds (VOCs) under sunlight. Tropospheric NO2 is emitted both 

anthropogenically and naturally (e.g., Gu et al., 2016). Anthropogenic fossil fuel combustions and biomass burnings emit 

mostly nitrogen monoxide (NO) under high temperature, which is later oxidized by O3 into NO2. Major natural NO2 sources 

include lightning and soils.  

Surface NO2 concentrations are regulated by the U.S. Environmental Protection Agency (EPA) through the National 10 

Ambient Air Quality Standards (NAAQS). NO2 is measured routinely at the EPA Air Quality System (AQS) sites (Demerjian, 

2000). Although the AQS network continually provides valuable hourly NO2 measurements, AQS sites are mostly located in 

urban and suburban regions, leaving large regions of rural areas unmonitored. Satellite data provide a better spatial coverage 

than the in situ measurements. 

Several satellites were launched to monitor tropospheric NO2 vertical column densities (VCDs), such as the SCanning 15 

Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the Global Ozone Monitoring 

Experiment–2 (GOME-2), and the Ozone Monitoring Instrument (OMI). For trend analysis, the tropospheric NO2 products 

from OMI surpass the others for a relatively high spatial resolution and over one decade of continuous operation (Boersma et 

al., 2004; Boersma et al., 2011). Thus, OMI NO2 retrievals are widely applied in NO2 and NOx emission trend studies (e.g., 

Lin et al., 2010, 2011; Castellanos et al., 2012; Russell et al., 2012; Gu et al., 2013; Lamsal et al., 2015; Lu et al., 2015; Tong 20 

et al., 2015; Cui et al., 2016; Duncan et al., 2016; de Foy et al., 2016a, 2016b; Krotkov et al., 2016; Liu et al., 2017). Tong et 

al. (2015) reported that the reduction rates calculated from OMI NO2 VCDs and AQS surface NO2 data at eight cities were -

35% and -38% from 2005 to 2012, respectively. Lamsal et al. (2015) also found the divergence between the annual trends 

inferred from the two datasets, i.e. -4.8% yr-1 vs -3.7% yr-1 during 2005-2008, and -1.2% yr-1 vs -2.1% yr-1 during 2010-2013. 

There are several potential factors attributing to the discrepancies between trends from satellite and ground-based 25 

measurements: interferences by the oxidation products of NOx from the chemiluminescent instruments (Lamsal et al., 2008, 

2014, 2015), the differences of sampling time between OMI (~13:30 local time) and AQS (hourly) measurements (Tong et al., 

2015), a high sensitivity of NO2 VCDs to high-altitude NO2 in contrast to the high sensitivity of  surface NO2 concentrations 

to surface NOx emissions (Duncan et al., 2013; Lamsal et al., 2015), spatial representativeness of satellite pixels (Lamsal et 

al., 2015), and high uncertainties of satellite retrievals in clean regions (Lamsal et al., 2015). 30 

To understand how various factors and the retrieval procedure affect the differences between the OMI derived trends and 

those derived from the surface AQS measurements, we utilize a regional 3-D chemistry transport model (CTM), a radiative 
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transfer model (RTM), and the Mann-Kendall method (Mann, 1945; Kendall, 1948) to calculate OMI-based NO2 seasonal 

relative trends during Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), Jun-Jul-Aug (JJA), and Sept-Oct-Nov (SON) (Section 2). 

We find that two procedures are essential to ensure the quality of trend analysis using OMI tropospheric NO2 VCDs, including 

the ocean trend removal and the MODerate-resolution Imaging Spectroradiometer (MODIS) albedo update in calculating the 

air mass factors (AMFs).  The lightning filter (Section 3.1) is necessary for comparing OMI-based and in situ AQS NO2 trends. 5 

With these procedures implemented, the differences between OMI-based and AQS in situ annual relative trends are within 

0.3% yr-1 of coincident measurements for all the four regions. Finally, we estimate the OMI-based annual relative trends across 

the nation in Section 3.2. Conclusions are given in Section 4. 

2 Methods 

2.1 EPA AQS surface NO2 measurements 10 

The in situ surface NO2 measurements from the U.S. EPA AQS network are used in this research. Sites with a continuous 

measurement gap of more than 50 days are removed and the observations of 140 remaining cites are used (Fig. 1). The AQS 

chemiluminescent analyzers are equipped with molybdenum converters to measure ambient NO2 concentrations. These 

analyzers are known to have high biases, since the converters are not NO2 specific and they measure some fractions of 

peroxyacetyl nitrate, nitric acid and organic nitrates (Demerjian, 2000; Lamsal et al., 2008). In addition to chemiluminescent 15 

analyzers, several NO2 specific photolytic instruments were deployed since 2013. By utilizing the data from both 

chemiluminescent and photolytic measurements at coincident sites during the overpassing time of OMI, we calculate the 

observed NO2 concentration ratio between both measurements in Fig. S1 in the Supplement. The ratio peaks at 2.3 in June and 

decreases to 1.3 in November, indicating that the chemiluminescent analyzers overestimate by 27%-132% than photolytic 

instruments. This finding is in agreement with Lamsal et al. (2008). We correct the chemiluminescent NO2 data by the observed 20 

ratio assuming that the inter-annual change is small and the high bias of the chemiluminescent measurements is identical at all 

sites. This correction may contribute to the differences between in situ and OMI based absolute NO2 trends but do not 

significantly affect the relative trends (since the correction is canceled out in computing relative trends). In this study, we only 

examine the relative trends and therefore the analysis results are not affected by the uncertainties in the in situ NO2 

measurement corrections.  25 

2.2 REAM model 

We use a 3-D Regional chEmical trAnsport Model (REAM) in the simulation of NO2 profiles. REAM has widely been used 

in atmospheric NO2 studies, including vertical transport (Choi et al., 2005; Zhao et al., 2009a; Zhang et al., 2016a), emission 

inversions (Zhao et al., 2009b; Yang et al., 2011; Gu et al., 2013, 2014, 2016), and regional and seasonal variations (Choi et 

al., 2008a, 2008b). The model has a horizontal resolution of 36 km with 30 vertical layers in the troposphere, 5 vertical layers 30 

in the stratosphere, and a model top of 10 hpa. In this study, the domain of REAM is about 400 km larger on each side than 
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the contiguous United States (CONUS). Meteorology inputs driving transport process are simulated by the Weather Research 

and Forecasting model (WRF) assimilations constrained by National Centers for Environmental Prediction Climate Forecast 

System Reanalysis (NCEP CFSR, Saha et al., 2010) 6-hourly products. The KF-eta scheme is used for sub-grid convective 

transport in WRF (Kain and Fritsch,1993). We run the WRF model with the same resolution as in REAM but with a domain 

10 grids larger on each side than that of REAM. REAM updates most of the meteorology inputs every 30 minutes while those 5 

related to convective transport and lightning parameterization are updated every 5 minutes. The chemistry mechanism expands 

that of a global CTM GEOS-Chem (V9-02) with aromatics chemistry (Bey et al., 2001; Liu et al., 2010, 2012a, 2012b; Zhang 

et al., 2017). For consistency, the GEOS-Chem (V9-02) simulation with 2° × 2.5° resolution is used to generate initial and 

boundary conditions for chemical tracers.  

Anthropogenic emissions of NOx and other chemical species are from the U.S. National Emission Inventory 2008 prepared 10 

using the Sparse Matrix Operator Kernel Emission (SMOKE) model. Biogenic emissions are simulated online using the Model 

of Emissions of Gases and Aerosols from Nature (MEGAN) algorithm (v2.1, Guenther et al., 2012). We parameterize lightning 

emitted NOx as a function of convective mass flux and Convective Available Potential Energy (CAPE) (Choi et al., 2005). 

NOx production per flash is set to 250 moles NO per flash, and the emissions are distributed vertically following the C-shaped 

profiles by Pickering et al. (1998). For recent model evaluations of REAM with observations, we refer readers to Zhang et al. 15 

(2016a, 2016b), Cheng et al. (2017), and Zhang et al. (2017).  

2.3 OMI-based NO2 VCDs 

We retrieve the tropospheric NO2 VCDs using the tropospheric slant column densities (SCDs, without destriping) from the 

Royal Dutch Meteorological Institute (KNMI) Dutch OMI NO2 product (DOMINO v2, Boersma et al., 2011). OMI onboard 

the Aura satellite was launched in July 2004 and is still active. OMI overpasses the equator at about 13:30 Local Time (LT) 20 

and obtains global coverage with a 2600 km viewing swath spanning 60 rows. It has a ground level spatial resolution up to 13 

km x 24 km (at nadir). The spatial extent of the OMI pixels will not affect our analysis as we focus on regional trend analysis. 

SCDs are retrieved by matching a modeled spectrum to an observed top-of-atmosphere reflectance with the Differential Optical 

Absorption Spectroscopy (DOAS) technique within a fitting window of 405-465nm. The stratospheric portion of SCDs are 

estimated and subsequently removed with a global CTM TM4 with stratospheric ozone assimilation (Dirksen et al., 2011). 25 

Deriving tropospheric VCDs from the remaining tropospheric SCDs requires the calculation of AMFs. Being an optically thin 

gas, tropospheric AMF for NO2 can be calculated from AMF for each vertical layer (𝐴𝑀𝐹𝑙) weighted by NO2 partial VCDs at 

the corresponding layer (𝑥𝑙) (Boersma et al., 2004), as shown in equation (1).   

tropospheric AMF =
𝑡𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑆𝐶𝐷

𝑡𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑉𝐶𝐷
=

∫ 𝐴𝑀𝐹𝑙𝑥𝑙𝒹𝑙

∫ 𝑥𝑙𝒹𝑙
   (1) 

As the vertical distribution of NO2 is usually unknown, we typically substitute 𝑥𝑙 by an a priori profile (𝑥𝑙,𝑎𝑝𝑟𝑖𝑜𝑟𝑖) from a 30 

CTM. 𝐴𝑀𝐹𝑙 is the sensitivity of NO2 SCD to VCD at a given altitude (Eskes and Boersma, 2003), and is computed using the 
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Double Adding KNMI (DAK) RTM (Boersma et al., 2011). As a result, the retrieved tropospheric NO2 VCD computation 

depends on the a priori NO2 vertical profile, the surface reflectance, the surface pressure, the temperature profile, and the 

viewing geometry (Boersma et al., 2011). Previous studies have addressed the sources of uncertainties in NO2 retrievals, 

including surface reflectance resolutions (Russell et al., 2011; Lin et al., 2014), lightning NOx (Choi et al., 2005a; Martin et 

al., 2007; Bucsela et al., 2010), a priori CTM uncertainties (Russell et al., 2011; Heckel et al., 2011; Lin et al., 2012; Laughner 5 

et al., 2016), surface pressure and reflectance anisotropy in rugged terrain (Zhou et al., 2009), cloud and aerosol radiance (Lin 

et al., 2014, 2015), and boundary layer dynamics (Zhang et al., 2016a). In this study, we find that the first two factors are 

essential in NO2 VCD trend analysis and we will discuss these in the following sections.  

 

AMFs are derived using the pre-computed altitude-dependent AMF lookup table, which is generated by the DAK RTM. 10 

We use the NO2 profiles from REAM, temperature and pressure from CSFR, viewing geometry and cloud information from 

DOMINO v2 product. We use the REAM results of 2010 to avoid the uncertainty introduced by yearly variation of NO2 

profiles. The yearly variations of meteorology and anthropogenic emission changes have little impact in polluted areas on 

trend analysis results using OMI data (Lamsal et al., 2015). We use the surface reflectance from DOMINO v2 product as 

default (Kleipool et al., 2008), and update it using a surface reflectance product with a higher temporal resolution (Section 15 

2.3.2). The derived tropospheric NO2 VCD relative trends with default surface reflectance are referred as “Standard”. 

2.3.1 Ocean trend removal 

For trend and other analyses of OMI tropospheric VCDs, the data of anomalous pixels must be removed. The row anomaly 

initially occurred in June 2007 and subsequently in later years affected rows 26-40 (Schenkeveld et al., 2017). Additional 

anomalies can be found in some years in rows 41-55. For trend analysis from 2005-2014, we exclude rows 26-55, consistent 20 

with our understanding of the row anomaly (Schenkeveld et al., 2017). In addition, the data of coarse spatial resolution from 

rows 1-5 and rows 56-60 are also excluded, as suggested by Lamsal et al. (2015). The selection of rows 6-25 used in this 

research is stricter than the data flags in the DOMINO v2 product. Furthermore, we exclude OMI data with cloud fraction > 

0.3 to minimize retrieval uncertainties due to clouds and aerosols (Boersma et al., 2011; Lin et al., 2014).  

Fig. 2a shows that there is an apparent increasing trend of the averaged tropospheric SCDs in the remote ocean region (Fig. 25 

2b) with minimal marine traffic. This trend may reflect the inaccurately simulated stratospheric SCDs or the increase in the 

magnitude of the stripes (step-wise SCD variability from one row to another) in time, which originates from the use of a 

constant (2005-averaged) solar irradiance reference spectrum in the DOAS spectral fits throughout the mission and the weak 

increase of noise in the OMI radiance measurements (K. F. Boersma, personal communication, 2017; Zara et al., 2018). Fig. 

2a shows that there is a positive annual trend of 1.750.45x1013 molecules cm-2 yr-1. The ocean trend is insensitive to the region 30 

selection in the remote North Pacific (varies within 10%). We only analyze OMI tropospheric column trends over the CONUS 

for grid cells with 2005-2014 averaged VCDs > 1x1015 molecules cm-2, which tends to minimize the effect of the background 

noise. However, removing this background ocean (absolute) trend has a non-negligible effect in reducing the OMI relative 
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trend (Fig. 1). We treat this trend as a systematic bias. We calculate the contribution from the ocean (absolute) annual trend to 

SCDs for each year and subtract it from OMI tropospheric NO2 SCDs uniformly in the following analysis. Since the origin of 

this trend is not yet clear, the ocean trend removal method may need updates in future studies. We refer to such derived 

(relative) trend data as “Ocean”. An alternative method is to subtract monthly SCD trends of the remote ocean region (Fig. S2 

in the Supplement) from the OMI tropospheric SCD data. Although the end results (Fig. S3 in the Supplement) are essentially 5 

the same as the annual trend removal method, noises are added to the SCD data, making it more difficult to understand the 

effects of the MODIS albedo update and the lightning filter (next sections). We therefore choose to use the (absolute) annual 

trend removal method here.  

2.3.2 MODIS albedo update 

The albedo data used to calculate the 𝐴𝑀𝐹𝑙 in “Standard” and “Ocean” versions of trend analysis are from the DOMINO v2 10 

products, which are the climatology of averaged OMI measurements during 2005-2009 with a spatial resolution of 0.5°×0.5° 

(Kleipool et al., 2008) and is valid for 440 nm. We recalculate the 𝐴𝑀𝐹𝑙 using the MODIS 16-day MCD43B3 albedo product 

with 1km spatial resolution, which combines data from both MODIS onboard Aqua and Terra satellites (Schaaf et al., 2002; 

Tang and Zhang, 2007). Aqua and Terra have an equatorial overpassing time of 13:30 LT and 10:30 LT, respectively. The 

band 3 (459nm-479nm) is used to match the NO2 fitting window (405nm-465nm). The albedo is spatially integrated to the 15 

geometry of OMI pixels and is temporally interpolated to match OMI overpassing dates. In order to maintain the consistency 

of the DOMINO retrieval algorithm (Boersma et al., 2011), we only use the MODIS data to improve the temporal variations 

of albedo data used in the retrieval. We scale the MODIS albedo data such that the mean albedo during 2005-2009 is the same 

as the OMI climatology at 0.5°×0.5°. We recalculate OMI tropospheric VCDs using the MODIS albedo data as described. We 

recalculate the relative OMI trend and remove the ocean (absolute) trend (Section 2.3.1). We refer to this version of OMI 20 

relative trend data as “MODIS”. 

2.3.3 Lightning event filter 

Over North America, lightning is a major source of NOx in the free troposphere and its simulations in CTMs are uncertain 

(e.g., Zhao et al., 2009a; Luo et al., 2017). The large temporospatial variations of lightning NOx make it difficult to compute 

satellite based NO2 trends by changing the vertical distributions of NO2 affecting the AMF calculation (e.g., Choi et al., 2008b; 25 

Lamsal et al., 2010) and the SCD values. Furthermore, accompanying lightning occurrences, the presence of cloud significantly 

affects the lifetime of NOx and the partitioning of NO2 to NO in daytime and convective transport exports NOx from the 

surface and boundary layer to free troposphere, changing surface and column NO2 concentrations. Given the difficulty to 

simulate lightning NOx accurately across different years and meteorological effects (vertical mixing) of lightning, we use a 

lightning filter to remove potential effects of lightning NOx on the basis of the flash rate observations of cloud-to-ground (CG) 30 

lightning flash data detected by the National Lightning Detection NetworkTM (NLDN) (Cummins and Murphy, 2009; Rudlosky 

and Fuelberg, 2010). NLDN only reports the ground point of a CG lightning flash, while the CG lightning flash can extend 
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horizontally to tens of kilometers. A CG lightning flash can affect the NO2 retrievals not only in the model grid cell where the 

CG lightning is located but also the nearby model grid cells. The atmospheric lifetime of NOx in the free troposphere can be 

up to 1 week. Therefore, we exclude the OMI NO2 data within a radius of 90 km of the NLDN-reported CG lightning location 

(about two model grid cells around the grid cell where the CG lightning is located) for a period of 72 hours after the lightning 

occurrence. Since lightning usually occur along the track of a thunderstorm, the 90 km radius is more a constraint on lightning 5 

NOx effects across the track.  The extended period of 72 hours is to ensure that we exclude data affected by lightning NOx. 

Figure 4 shows the distribution of the number of days of 2005-2014 with lightning detection. The Southwest monsoon and the 

South regions have more lightning days than the other areas. While there are fewer lightning flashes in the Northeast than the 

South (Fig. 3), large amounts of lightning NOx can be produced by high flash ratios of severe thunderstorms and they can be 

transported northward from the South to the Northeast (Choi et al., 2005). We therefore further filter OMI NO2 data in the 10 

Northeast on the basis of CG lightning flash rates in the South. If the average CG flash rate in the South exceeds the 95th 

percentile value of the NLDN observations, which is 0.035 flash km-2 day-1 (Fig. S4 in the Supplement), we exclude in the 

analysis the Northeast OMI data in the following 72 hours. Excluding the OMI data based on CG lightning data implicitly 

removes the data affected by cloud-to-cloud lightning collocated with CG lightning. The lightning filter removes about 2%, 

27%, 20%, and 19% of OMI data, which are coincident with AQS data, for the West, the Midwest, the Northeast and the 15 

South, respectively. We refer to this version of OMI relative trend data as “Lightning filter”.  

3 Results and discussion 

We group the analysis results into different regions: (a) West, (b) Midwest, (c) Northeast, and (d) South (Fig. 1), following the 

regional divisions by the United States Census Bureau. To make a fair comparison between the in situ and OMI-based trends, 

we only use spatially and temporally coincident in situ and OMI NO2 observations in Section 3.1. The AQS data are temporally 20 

interpolated based on the overpassing time of the available OMI pixels which cover the corresponding AQS sites. Similarly, 

only OMI pixels covering the corresponding available AQS sites are used. The data from each dataset are then aggregated and 

averaged on a regional basis into time series to calculate the regional trends.   

We apply the Mann-Kendall method with the Sen’s slope estimator to calculate the relative trend of NO2 for each season, i.e. 

DJF, MAM, JJA, and SON, during 2005-2014. We compute the uncertainties of the trends with the 95th percentile confidence 25 

intervals using the Mann-Kendall method. Note that when we compare in situ and OMI-based trends, the lightning filter also 

removes in situ NO2 data, which are coincident with the OMI NO2 data affected by lightning. This leads to slightly different 

in situ NO2 trends between Fig. 4 and Fig. 6 (Section 3.2.3). We first compute the trends using the “Standard” OMI VCD data. 

The ocean trend removal, MODIS albedo update, and lightning filter are then added in sequence to compute three different 

OMI-based NO2 trends (in addition to “Standard”) to compare to the AQS in situ results. A subtlety in the comparison is that 30 

the coincident data change when the lightning filter is applied. As a result, the AQS in situ results in this set of comparison 

differ from those in the other three sets.   
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3.1 In situ and “Standard” OMI-based trends 

Fig. 4 shows that both AQS in situ and “Standard” OMI-based seasonal relative trends are negative for all seasons across the 

regions. OMI-based trends generally underestimate the decreasing trends by up to 3.7% yr-1 (the absolute difference between 

relative trends) except for the large overestimation in the Midwest and the Northeast regions during DJF. The overestimates 

in these two regions are 3.0% yr-1 and 1.1% yr-1, respectively. On average, the differences between OMI-based and in situ 5 

seasonal relative trends are 1.6% yr-1, -0.3% yr-1, 1.0% yr-1, and 1.4% yr-1 for the West, the Midwest, the Northeast, and the 

South regions, respectively. Note that the relative trends are calculated using coincident measurements for the comparisons. 

The focus of this work is to examine if the differences between AQS in situ and OMI-based trends can be reduced.  

3.1.1 Improvement due to ocean trend correction 

After removing the ocean trend as discussed in Section 2.3.1, the OMI-based NO2 decreasing trends are more pronounced as 10 

shown in Fig. 4 (“Ocean”, blue line) by 0.1-0.9% yr-1. The regional relative trends have different sensitivities to the ocean 

trend removal due to different tropospheric VCDs levels. In general, the discrepancies between OMI-based and in situ trends 

are reduced except for the Midwest and the Northeast regions during DJF, which are already biased low. The averaged 

differences between OMI-based and in situ seasonal relative trends for the West, the Midwest, the Northeast, and the South 

regions are 1.2% yr-1, -1.1% yr-1, 0.4% yr-1, and 1.0% yr-1. Only in the Midwest region, removing the ocean trend enlarges the 15 

difference due to the large winter bias.  

3.1.2 Improvement due to MODIS albedo update 

The adoption of the up-to-date MODIS albedo (Section 2.3.2) greatly reduces the difference of relative trends in the Midwest 

during DJF from -3.6% yr-1 (“Ocean”) to 1.3% yr-1 (“MODIS”), the improvement of DJF trend difference is more moderate 

from -1.7% to 0.5% (Fig. 4). There are no significant changes of the comparisons in other regions or other seasons. Fig. 5 20 

shows the albedo seasonal relative trends for the 4 regions coincident with AQS in situ NO2 data. The OMI DOMINO v2 

incorporates a climatology albedo dataset (Kleipool et al., 2008) with snow/ice albedo adjustment, in which the albedo value 

is reset to be 0.6 if snow/ice is reported in the NASA Near-real-time Ice and Snow Extent (NISE) dataset (Boersma et al., 

2011). The climatology albedo data have no trends. Thus, the trends of albedo from the DOMINO v2 product mainly originate 

from the yearly variation of NISE detected snow/ice and to a lesser extent the OMI sampling variation. The noticeable seasonal 25 

trend of the OMI DOMINO v2 albedo dataset is the 3.9% yr-1 increase in DJF of the Midwest and a smaller DJF increase 

(1.0%) of the Northeast. In contrast, the MODIS albedo dataset exhibits a smaller positive DJF trend (0.8% yr-1), 3.1% yr-1 

less than the trend from DOMINO v2, in the Midwest, and a small negative DJF trend (-0.8%) in the Northeast. These 

differences suggest that using a fixed snow/ice albedo and climatology albedo data are inadequate. The comparison to the AQS 

data shows that the MODIS albedo update leads to better agreement between satellite and in suit trends in winter in these 30 

regions (Fig. 4).  
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3.1.3 Comparison after lightning event filter 

As discussed in Section 2.3.3, lightning NOx affects the retrievals of satellite tropospheric NO2 VCDs and NO2 vertical mixing. 

Fig. 6 shows that the lightning filter significantly reduces the difference between the OMI-based relative trend and that of the 

AQS data by 0.5-1.4% yr-1 in the Northeast and 0.9-1.3% yr-1 in the South. As a result, the seasonal trend differences are within 

0.9% yr-1 in these two regions except during SON. The Northeast is affected by the lightning filter due to lightning in this 5 

region and transport of lightning NOx from the South (Section 2.3.3). The lightning filter has little effect on the West and the 

Midwest. While lightning NOx can be significant during the monsoon season in some regions of the West (Fig. 3), the average 

tropospheric NO2 VCDs are usually < 1x1015 molecules cm-2 and lightning affected regions are therefore excluded in trend 

analysis.  

The effect of lightning filter (Fig. 6) cannot be shown in Fig. 4 because the coincident OMI and AQS data points are fewer 10 

after applying the lightning filter. We examine the improvements of ocean trend removal, MODIS albedo update, and data 

screening with the lightning filter by comparing the differences of different OMI-based seasonal relative trends from the AQS 

in situ trends in Fig. 7. The previously discussed improvements such as OMI albedo update for the Midwest and the Northeast 

during DJF are shown. By subtracting the AQS trends, we can now find clear improvements of the lightning filter for the South 

and the Northeast. There remains seasonal variation of OMI-based trend biases relative to in situ data but the discrepancies of 15 

the annual trends after the three discussed procedures are relatively small at 0.3% yr-1, -0.3% yr-1, -0.1% yr-1, and 0.0% yr-1, in 

the West, the Midwest, the Northeast, and the South regions (Fig. 1), respectively. The remaining seasonal difference of the 

trends reflects in part the nonlinear photochemistry (Gu et al., 2013), the effects of NOx emission changes on NO2 retrievals 

(Lamsal et al., 2015), different spatial coverages of the two measurements, and the inherent difference between trends of NO2 

tropospheric VCDs and surface concentrations. 20 

3.2 OMI-based NO2 trends 

Table 1 summarizes the regional annual trends of coincident AQS in situ and OMI data. The “Standard” OMI data (following 

the DOMINO v2 algorithm) tend to show less NO2 reduction than AQS data. After applying the three data processing 

procedures discussed in the previous section to the OMI data, the agreement with the AQS trends is within the uncertainties 

of the trends. While lightning NOx is part of OMI NO2 observations, we treat the influence of lightning on the OMI 25 

tropospheric VCD trend as a bias for comparison purposes in this study. Table 1 shows the effects of data sampling when both 

AQS and OMI data are analyzed and when the lightning filter is applied. 

Without the lightning filter, AQS decreasing trends are stronger than the decreasing trends of OMI data (Fig. 7). The 

lightning trend in the NLDN data is unclear due in part to the changing instrument sensitivity (Koshak et al., 2015). If lightning 

NOx is not accounted for in OMI retrieval, tropospheric NO2 VCDs are overestimated. On the other hand, lightning 30 

accompanies low pressure systems which mix the atmosphere vertically and tend to reduce surface NO2 concentrations when 

anthropogenic emissions are high such as urban and suburban regions. Therefore, lightning has opposite effects on surface and 
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satellite trends. The low-pressure dilution effect on surface NO2 concentrations depends on anthropogenic emissions (since 

the end point of dilution is the background NO2 value). Therefore, the weaker decreasing surface trends likely reflects a 

reduction of low-pressure dilution effect. Similarly, as anthropogenic emissions decrease, the positive bias of tropospheric 

VCDs due to lightning NOx becomes larger, likely resulting in weaker decreasing trends. We consider the lightning effects on 

surface NO2 trends to be mostly meteorological driven not by lightning NOx directly (e.g., Ott et al., 2010; Lu et al., 2017) 5 

and hence the filtered OMI NO2 data are likely closer to emission related concentration changes. 

The AQS in situ NO2 annual relative trends (coincident with OMI data with lightning filter) are most significant in the 

Northeast (-5.2±0.6% yr-1) and the West (-4.2±0.5% yr-1), followed by the South (-3.0±0.5% yr-1) and the Midwest (-2.8±0.6% 

yr-1) regions. The nationwide annual trend is -4.1±0.4% yr-1, which is consistent with the previous studies (Lamsal et al., 2015; 

Lu et al., 2015; Tong et al., 2015; de Foy et al., 2016b; Duncan et al., 2016; Krotkov et al., 2016). The significant NO2 10 

reductions result from updated technologies and strict regulations (Krotkov, et al., 2016). The OMI-based NO2 trends with the 

discussed procedures (coincident with AQS data) show similar reduction rates in the West (-3.8±0.4% yr-1), the Midwest (-

3.1±0.5% yr-1), the Northeast (-5.3±0.7% yr-1) and the South (-3.0±0.5% yr-1) regions. The nationwide annual trend is -

3.9±0.3% yr-1.  

One advantage of satellite observations over a surface monitoring network is spatial coverage. The processed OMI data 15 

(“Lightning filter”) coincident with the AQS data show a national annual trend of -3.9±0.3% yr-1 similar to the AQS in situ 

trend of -4.1±0.4% yr-1. Using all data available (Fig. 8, Table 1), the OMI data (“Lightning filter”) show a much lower trend 

of -1.5±0.2%yr-1, about half of the AQS trend (-3.9±0.4% yr-1). Fig. 9 shows that the AQS sites, which are mostly urban and 

suburban sites, tend to be located in regions with high tropospheric NO2 VCDs. The OMI decreasing trend is a function of 

tropospheric NO2 VCDs, increasing from 0% yr-1 to -6% yr-1 (Fig. 9). The national annual trend is close to the value of clean 20 

regions which contribute much more than polluted regions. The larger decrease near the anthropogenic source regions reflect 

in part the nonlinear photochemistry (Gu et al., 2013) and in part to a stronger influence of NOx sources such as soils in rural 

regions.  

4. Conclusions  

Using data from the DOMINO v2 algorithm, we find that the computed OMI-based seasonal NO2 (relative) trends 25 

underestimate the decreasing trends of the EPA AQS data by up to 3.7% yr-1. While lightning NOx is part of OMI NO2 

observations, we treat the influence of lightning on the OMI tropospheric VCD trend as a bias for comparison purposes in this 

study. Furthermore, lightning NOx effects need to be removed when using satellite observations to understand the effects of 

changing anthropogenic emissions. 

In this study, we show that removing the background ocean trend, adopting MODIS albedo data (with better temporospatial 30 

resolutions and characterization of snow/ice), and excluding lightning influences can bring OMI tropospheric NO2 VCD trends 

in close agreement (within 0.3% yr-1) with those of the AQS data. Among the corrections, the background ocean trend removal 
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is not as significant as the latter two. Since the origin of this trend is not yet clear, the ocean trend removal method may need 

updates in future studies. The remaining differences may result from the inherent differences between trends of NO2 

tropospheric VCDs and surface concentrations, different spatial sampling of the measurements, chemical-nonlinearity, and 

tropospheric NO2 profile changes. The largest effects of MODIS albedo update are in winter in Midwest and Northeast and 

those of lightning filter are in the South and the Northeast. After applying these data processing procedures, the derived OMI-5 

based annual regional NO2 trends change by a factor of > 2 for the South, the Midwest, and the West and seasonal changes 

can be even larger. We derive OMI-based NO2 regional annual relative trends using all available data for the West (-2.0%±0.3 

yr-1), the Midwest (-1.8%±0.4 yr-1), the Northeast (-3.1%±0.5 yr-1), and the South (-0.9%±0.3 yr-1). 

The national annual trend of the processed OMI data is -1.5±0.2%yr-1, about half of the AQS trend (-3.9±0.4% yr-1). It 

reflects that the AQS sites are mostly located in the urban and suburban regions, where OMI data show much larger decreasing 10 

trends (up to -6% yr-1) than rural regions (down to 0% yr-1). The reasons for the dependence of OMI derived trends on 

tropospheric NO2 VCDs and the seasonal/regional trend differences are still not completely understood. Further studies are 

necessary to improve our understanding of these trends. The observation-based lightning filter implemented in this study is 

preliminary. Incorporating chemical transport modeling may improve this filter. Moreover, the results presented here represent 

an alternative and indirect way to assess the importance of lightning NOx for National Climate Assessment (NCA) analyses 15 

described in Koshak et al. (2015), and Koshak (2017). Inversion studies (e.g., Zhao and Wang, 2009; Gu et al., 2013, 2014, 

2016) will be needed to quantify the emission and AMF changes corresponding to the OMI tropospheric NO2 VCD trends. 
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Figure 1. The solid black borders in the center map define the four regions used in this study. The colored background shows the 

OMI-based NO2 annual relative trends of the “Lightning filter” data. Grid cells with 2005-2014 mean NO2 VCD values < 1x1015 

molecules cm-2 are excluded in this study and are shown in white. The black bordered circles represent the locations of AQS sites. 

Panel (a) through (d) show the regional difference (OMI-based relative trends minus AQS relative trends) of annual relative trends 5 
between coincident OMI-based and AQS in situ data. The colored diamonds are for “Standard” (orange), “Ocean” (blue), “MODIS” 

(green), and “Lightning filter” (red) OMI data, respectively. The different OMI VCD data are described in Section 2.4. 
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Figure 2. The black line in panel (a) shows the monthly averaged OMI tropospheric NO2 VCD values in the North Pacific region 

(red box in panel (b)) from 2005 to 2014. The red line in panel (a) represents the ocean trend used in this research, with the 95th 

percentile confidence intervals shaded in red.  5 
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Figure 3. Number of days with NLDN detected cloud-to-ground (CG) lightning per model grid cell per year during 2005-2014. The 

lightning occurrences are calculated using the REAM grid resolution. 

 

 5 



21 

 

 

Figure 4. Seasonal relative trends of NO2 calculated from the AQS in situ measurements (“AQS”, black line) and those derived from 

different OMI VCD data (“Standard”, orange line; “Ocean”, blue line; “MODIS”, green line). The error bars represent 95
th

 

percentile confidence intervals.  

 5 
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Figure 5. Seasonal relative albedo trends of OMI (black line) and MODIS (red line) surface reflectance products, coincident with 

AQS in situ data used in Figure 5. The error bars represent 95th percentile confidence intervals.  
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Figure 6. Seasonal relative trends of NO2 calculated from the AQS in situ measurements (“AQS”, black line) and those derived from 

OMI data after applying the lightning filter (“OMI (lightning filter)”, red line). The error bars represent 95th percentile confidence 

intervals. The coincident data points are less than those used in Figure 5 and therefore the AQS trends are not the same. 
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Figure 7. Seasonal differences of OMI-based relative trends from those computed from AQS in situ data. The error bars represent 

95th percentile confidence intervals. The relative trends are shown in Figs. 4 and 6. The figure legends are the same as in Figs. 4 and 

6 but with the AQS trends subtracted from the OMI-based trends.  
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Figure 8: Annual relative trends of OMI-based NO2 for “Standard” (a) and for “Lightning filter” (b) as the colored background. 

Black bordered circles indicate corresponding AQS NO2 trends. Grid cells with 2005-2014 mean NO2 VCDs < 1x1015 molecules cm-

2 are excluded in the analysis and are shown in white. 
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Figure 9. (a) The “Lightning filter” OMI-based NO2 relative trend as a function 2005-2014 averaged OMI tropospheric NO2 VCD 

binned every 𝟏 × 𝟏𝟎𝟏𝟓𝒎𝒐𝒍𝒆𝒄/𝒄𝒎𝟐. The error bars represent 95th percentile confidence intervals. The red line shows a least-squares 

regression. (b) The distribution of 2005-2014 averaged OMI tropospheric NO2 VCD. Black bordered circles represent AQS sites. 

The OMI tropospheric NO2 data (“Lightning filter”) are used. 5 
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Table 1. Annual relative trends calculated with coincident data and all available data. The 95th percentile confidence intervals from 

Mann-Kendall method are also listed. 

Region 

Annual relative trends of coincident data (% yr-1) Annual relative trends using all data (% yr-1) 

Standard Lightning filtera Standard Lightning filter 

AQS OMI AQS OMI AQS OMIb AQS OMIb 

West -4.1±0.5 -3.2±0.4 -4.2±0.5 -3.8±0.4 -4.1±0.5 -0.9±0.4 -4.2±0.5 -2.0±0.3 

Midwest -3.4±0.5 -3.6±0.4 -2.8±0.6 -3.1±0.5 -2.5±0.5 -0.9±0.4 -2.2±0.5 -1.8±0.4 

Northeast -5.8±0.5 -5.0±0.5 -5.2±0.6 -5.3±0.7 -4.7±0.5 -3.0±0.4 -4.1±0.5 -3.1±0.5 

South -3.8±0.4 -2.7±0.3 -3.0±0.5 -3.0±0.5 -3.5±0.4 -0.2±0.4 -3.0±0.5 -0.9±0.3 

Nationwide -4.3±0.4 -3.5±0.3 -4.1±0.4 -3.9±0.3 -4.0±0.4 -0.7±0.3 -3.9±0.4 -1.5±0.2 

 

a These data include the three data processing procedures of this study, namely, ocean trend correction, MODIS albedo update, and lightning 

filter screening.  5 

b The spatial coverage is shown in Figure 1. 

 


